[TCP] FRTO: Moved tcp_use_frto from tcp.h to tcp_input.c
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
120 {
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
124
125 icsk->icsk_ack.last_seg_size = 0;
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
130 len = skb_shinfo(skb)->gso_size ?: skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
157 }
158 }
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 }
163 }
164
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169
170 if (quickacks==0)
171 quickacks=2;
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183
184 /* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193
194 /* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
236 {
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249 }
250
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
253 {
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 inet_csk(sk)->icsk_ack.quick |= 1;
271 }
272 }
273 }
274
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
283 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291
292 /* 4. Try to fixup all. It is made immediately after connection enters
293 * established state.
294 */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 struct inet_connection_sock *icsk = inet_csk(sk);
332
333 icsk->icsk_ack.quick = 0;
334
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
341 }
342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345
346
347 /* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365
366 /* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
392 * non-timestamp case, we do not smooth things out
393 * else with timestamps disabled convergence takes too
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
402 /* No previous measure. */
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408 }
409
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420 new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 struct tcp_sock *tp = tcp_sk(sk);
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433
434 /*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
443
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
446
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
451
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
486
487 new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490 }
491
492 /* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 struct inet_connection_sock *icsk = inet_csk(sk);
505 u32 now;
506
507 inet_csk_schedule_ack(sk);
508
509 tcp_measure_rcv_mss(sk, skb);
510
511 tcp_rcv_rtt_measure(tp);
512
513 now = tcp_time_stamp;
514
515 if (!icsk->icsk_ack.ato) {
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
521 } else {
522 int m = now - icsk->icsk_ack.lrcvtime;
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
532 /* Too long gap. Apparently sender failed to
533 * restart window, so that we send ACKs quickly.
534 */
535 tcp_incr_quickack(sk);
536 sk_stream_mem_reclaim(sk);
537 }
538 }
539 icsk->icsk_ack.lrcvtime = now;
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545 }
546
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 long m = mrtt; /* RTT */
560
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
572 * too slowly, when it should be increased quickly, decrease too quickly
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
617 }
618
619 /* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 const struct tcp_sock *tp = tcp_sk(sk);
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
633 * ACKs in some circumstances.
634 */
635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
640 * with correct one. It is exactly, which we pretend to do.
641 */
642 }
643
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652
653 /* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
668 const struct inet_connection_sock *icsk = inet_csk(sk);
669 int m;
670
671 if (icsk->icsk_backoff || !tp->srtt) {
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 icsk->icsk_ca_state == TCP_CA_Open) {
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745 }
746
747 /* Numbers are taken from RFC2414. */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
753 if (tp->mss_cache > 1460)
754 cwnd = 2;
755 else
756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780 }
781
782 /* Initialize metrics on socket. */
783
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
819 * is sent until it is ACKed. In normal circumstances sending small
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843 reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 }
853 }
854
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882 }
883
884 /* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 const struct inet_connection_sock *icsk = inet_csk(sk);
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 struct sk_buff *cached_skb;
940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 int reord = tp->packets_out;
942 int prior_fackets;
943 u32 lost_retrans = 0;
944 int flag = 0;
945 int dup_sack = 0;
946 int cached_fack_count;
947 int i;
948 int first_sack_index;
949
950 if (!tp->sacked_out)
951 tp->fackets_out = 0;
952 prior_fackets = tp->fackets_out;
953
954 /* Check for D-SACK. */
955 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 dup_sack = 1;
957 tp->rx_opt.sack_ok |= 4;
958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 } else if (num_sacks > 1 &&
960 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 dup_sack = 1;
963 tp->rx_opt.sack_ok |= 4;
964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 }
966
967 /* D-SACK for already forgotten data...
968 * Do dumb counting. */
969 if (dup_sack &&
970 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 after(ntohl(sp[0].end_seq), tp->undo_marker))
972 tp->undo_retrans--;
973
974 /* Eliminate too old ACKs, but take into
975 * account more or less fresh ones, they can
976 * contain valid SACK info.
977 */
978 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 return 0;
980
981 /* SACK fastpath:
982 * if the only SACK change is the increase of the end_seq of
983 * the first block then only apply that SACK block
984 * and use retrans queue hinting otherwise slowpath */
985 flag = 1;
986 for (i = 0; i < num_sacks; i++) {
987 __be32 start_seq = sp[i].start_seq;
988 __be32 end_seq = sp[i].end_seq;
989
990 if (i == 0) {
991 if (tp->recv_sack_cache[i].start_seq != start_seq)
992 flag = 0;
993 } else {
994 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 (tp->recv_sack_cache[i].end_seq != end_seq))
996 flag = 0;
997 }
998 tp->recv_sack_cache[i].start_seq = start_seq;
999 tp->recv_sack_cache[i].end_seq = end_seq;
1000 }
1001 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1002 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1003 tp->recv_sack_cache[i].start_seq = 0;
1004 tp->recv_sack_cache[i].end_seq = 0;
1005 }
1006
1007 first_sack_index = 0;
1008 if (flag)
1009 num_sacks = 1;
1010 else {
1011 int j;
1012 tp->fastpath_skb_hint = NULL;
1013
1014 /* order SACK blocks to allow in order walk of the retrans queue */
1015 for (i = num_sacks-1; i > 0; i--) {
1016 for (j = 0; j < i; j++){
1017 if (after(ntohl(sp[j].start_seq),
1018 ntohl(sp[j+1].start_seq))){
1019 struct tcp_sack_block_wire tmp;
1020
1021 tmp = sp[j];
1022 sp[j] = sp[j+1];
1023 sp[j+1] = tmp;
1024
1025 /* Track where the first SACK block goes to */
1026 if (j == first_sack_index)
1027 first_sack_index = j+1;
1028 }
1029
1030 }
1031 }
1032 }
1033
1034 /* clear flag as used for different purpose in following code */
1035 flag = 0;
1036
1037 /* Use SACK fastpath hint if valid */
1038 cached_skb = tp->fastpath_skb_hint;
1039 cached_fack_count = tp->fastpath_cnt_hint;
1040 if (!cached_skb) {
1041 cached_skb = sk->sk_write_queue.next;
1042 cached_fack_count = 0;
1043 }
1044
1045 for (i=0; i<num_sacks; i++, sp++) {
1046 struct sk_buff *skb;
1047 __u32 start_seq = ntohl(sp->start_seq);
1048 __u32 end_seq = ntohl(sp->end_seq);
1049 int fack_count;
1050
1051 skb = cached_skb;
1052 fack_count = cached_fack_count;
1053
1054 /* Event "B" in the comment above. */
1055 if (after(end_seq, tp->high_seq))
1056 flag |= FLAG_DATA_LOST;
1057
1058 sk_stream_for_retrans_queue_from(skb, sk) {
1059 int in_sack, pcount;
1060 u8 sacked;
1061
1062 cached_skb = skb;
1063 cached_fack_count = fack_count;
1064 if (i == first_sack_index) {
1065 tp->fastpath_skb_hint = skb;
1066 tp->fastpath_cnt_hint = fack_count;
1067 }
1068
1069 /* The retransmission queue is always in order, so
1070 * we can short-circuit the walk early.
1071 */
1072 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1073 break;
1074
1075 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1076 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1077
1078 pcount = tcp_skb_pcount(skb);
1079
1080 if (pcount > 1 && !in_sack &&
1081 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1082 unsigned int pkt_len;
1083
1084 in_sack = !after(start_seq,
1085 TCP_SKB_CB(skb)->seq);
1086
1087 if (!in_sack)
1088 pkt_len = (start_seq -
1089 TCP_SKB_CB(skb)->seq);
1090 else
1091 pkt_len = (end_seq -
1092 TCP_SKB_CB(skb)->seq);
1093 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1094 break;
1095 pcount = tcp_skb_pcount(skb);
1096 }
1097
1098 fack_count += pcount;
1099
1100 sacked = TCP_SKB_CB(skb)->sacked;
1101
1102 /* Account D-SACK for retransmitted packet. */
1103 if ((dup_sack && in_sack) &&
1104 (sacked & TCPCB_RETRANS) &&
1105 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1106 tp->undo_retrans--;
1107
1108 /* The frame is ACKed. */
1109 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1110 if (sacked&TCPCB_RETRANS) {
1111 if ((dup_sack && in_sack) &&
1112 (sacked&TCPCB_SACKED_ACKED))
1113 reord = min(fack_count, reord);
1114 } else {
1115 /* If it was in a hole, we detected reordering. */
1116 if (fack_count < prior_fackets &&
1117 !(sacked&TCPCB_SACKED_ACKED))
1118 reord = min(fack_count, reord);
1119 }
1120
1121 /* Nothing to do; acked frame is about to be dropped. */
1122 continue;
1123 }
1124
1125 if ((sacked&TCPCB_SACKED_RETRANS) &&
1126 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1127 (!lost_retrans || after(end_seq, lost_retrans)))
1128 lost_retrans = end_seq;
1129
1130 if (!in_sack)
1131 continue;
1132
1133 if (!(sacked&TCPCB_SACKED_ACKED)) {
1134 if (sacked & TCPCB_SACKED_RETRANS) {
1135 /* If the segment is not tagged as lost,
1136 * we do not clear RETRANS, believing
1137 * that retransmission is still in flight.
1138 */
1139 if (sacked & TCPCB_LOST) {
1140 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1141 tp->lost_out -= tcp_skb_pcount(skb);
1142 tp->retrans_out -= tcp_skb_pcount(skb);
1143
1144 /* clear lost hint */
1145 tp->retransmit_skb_hint = NULL;
1146 }
1147 } else {
1148 /* New sack for not retransmitted frame,
1149 * which was in hole. It is reordering.
1150 */
1151 if (!(sacked & TCPCB_RETRANS) &&
1152 fack_count < prior_fackets)
1153 reord = min(fack_count, reord);
1154
1155 if (sacked & TCPCB_LOST) {
1156 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1157 tp->lost_out -= tcp_skb_pcount(skb);
1158
1159 /* clear lost hint */
1160 tp->retransmit_skb_hint = NULL;
1161 }
1162 }
1163
1164 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1165 flag |= FLAG_DATA_SACKED;
1166 tp->sacked_out += tcp_skb_pcount(skb);
1167
1168 if (fack_count > tp->fackets_out)
1169 tp->fackets_out = fack_count;
1170 } else {
1171 if (dup_sack && (sacked&TCPCB_RETRANS))
1172 reord = min(fack_count, reord);
1173 }
1174
1175 /* D-SACK. We can detect redundant retransmission
1176 * in S|R and plain R frames and clear it.
1177 * undo_retrans is decreased above, L|R frames
1178 * are accounted above as well.
1179 */
1180 if (dup_sack &&
1181 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 tp->retrans_out -= tcp_skb_pcount(skb);
1184 tp->retransmit_skb_hint = NULL;
1185 }
1186 }
1187 }
1188
1189 /* Check for lost retransmit. This superb idea is
1190 * borrowed from "ratehalving". Event "C".
1191 * Later note: FACK people cheated me again 8),
1192 * we have to account for reordering! Ugly,
1193 * but should help.
1194 */
1195 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1196 struct sk_buff *skb;
1197
1198 sk_stream_for_retrans_queue(skb, sk) {
1199 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1200 break;
1201 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1202 continue;
1203 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1204 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1205 (IsFack(tp) ||
1206 !before(lost_retrans,
1207 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1208 tp->mss_cache))) {
1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 tp->retrans_out -= tcp_skb_pcount(skb);
1211
1212 /* clear lost hint */
1213 tp->retransmit_skb_hint = NULL;
1214
1215 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1216 tp->lost_out += tcp_skb_pcount(skb);
1217 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1218 flag |= FLAG_DATA_SACKED;
1219 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1220 }
1221 }
1222 }
1223 }
1224
1225 tp->left_out = tp->sacked_out + tp->lost_out;
1226
1227 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1228 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1229
1230 #if FASTRETRANS_DEBUG > 0
1231 BUG_TRAP((int)tp->sacked_out >= 0);
1232 BUG_TRAP((int)tp->lost_out >= 0);
1233 BUG_TRAP((int)tp->retrans_out >= 0);
1234 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1235 #endif
1236 return flag;
1237 }
1238
1239 int tcp_use_frto(const struct sock *sk)
1240 {
1241 const struct tcp_sock *tp = tcp_sk(sk);
1242
1243 /* F-RTO must be activated in sysctl and there must be some
1244 * unsent new data, and the advertised window should allow
1245 * sending it.
1246 */
1247 return (sysctl_tcp_frto && sk->sk_send_head &&
1248 !after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1249 tp->snd_una + tp->snd_wnd));
1250 }
1251
1252 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1253 * segments to see from the next ACKs whether any data was really missing.
1254 * If the RTO was spurious, new ACKs should arrive.
1255 */
1256 void tcp_enter_frto(struct sock *sk)
1257 {
1258 const struct inet_connection_sock *icsk = inet_csk(sk);
1259 struct tcp_sock *tp = tcp_sk(sk);
1260 struct sk_buff *skb;
1261
1262 tp->frto_counter = 1;
1263
1264 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1265 tp->snd_una == tp->high_seq ||
1266 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1267 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1268 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1269 tcp_ca_event(sk, CA_EVENT_FRTO);
1270 }
1271
1272 /* Have to clear retransmission markers here to keep the bookkeeping
1273 * in shape, even though we are not yet in Loss state.
1274 * If something was really lost, it is eventually caught up
1275 * in tcp_enter_frto_loss.
1276 */
1277 tp->retrans_out = 0;
1278 tp->undo_marker = tp->snd_una;
1279 tp->undo_retrans = 0;
1280
1281 sk_stream_for_retrans_queue(skb, sk) {
1282 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1283 }
1284 tcp_sync_left_out(tp);
1285
1286 tcp_set_ca_state(sk, TCP_CA_Open);
1287 tp->frto_highmark = tp->snd_nxt;
1288 }
1289
1290 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1291 * which indicates that we should follow the traditional RTO recovery,
1292 * i.e. mark everything lost and do go-back-N retransmission.
1293 */
1294 static void tcp_enter_frto_loss(struct sock *sk)
1295 {
1296 struct tcp_sock *tp = tcp_sk(sk);
1297 struct sk_buff *skb;
1298 int cnt = 0;
1299
1300 tp->sacked_out = 0;
1301 tp->lost_out = 0;
1302 tp->fackets_out = 0;
1303
1304 sk_stream_for_retrans_queue(skb, sk) {
1305 cnt += tcp_skb_pcount(skb);
1306 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1307 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1308
1309 /* Do not mark those segments lost that were
1310 * forward transmitted after RTO
1311 */
1312 if (!after(TCP_SKB_CB(skb)->end_seq,
1313 tp->frto_highmark)) {
1314 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1315 tp->lost_out += tcp_skb_pcount(skb);
1316 }
1317 } else {
1318 tp->sacked_out += tcp_skb_pcount(skb);
1319 tp->fackets_out = cnt;
1320 }
1321 }
1322 tcp_sync_left_out(tp);
1323
1324 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1325 tp->snd_cwnd_cnt = 0;
1326 tp->snd_cwnd_stamp = tcp_time_stamp;
1327 tp->undo_marker = 0;
1328 tp->frto_counter = 0;
1329
1330 tp->reordering = min_t(unsigned int, tp->reordering,
1331 sysctl_tcp_reordering);
1332 tcp_set_ca_state(sk, TCP_CA_Loss);
1333 tp->high_seq = tp->frto_highmark;
1334 TCP_ECN_queue_cwr(tp);
1335
1336 clear_all_retrans_hints(tp);
1337 }
1338
1339 void tcp_clear_retrans(struct tcp_sock *tp)
1340 {
1341 tp->left_out = 0;
1342 tp->retrans_out = 0;
1343
1344 tp->fackets_out = 0;
1345 tp->sacked_out = 0;
1346 tp->lost_out = 0;
1347
1348 tp->undo_marker = 0;
1349 tp->undo_retrans = 0;
1350 }
1351
1352 /* Enter Loss state. If "how" is not zero, forget all SACK information
1353 * and reset tags completely, otherwise preserve SACKs. If receiver
1354 * dropped its ofo queue, we will know this due to reneging detection.
1355 */
1356 void tcp_enter_loss(struct sock *sk, int how)
1357 {
1358 const struct inet_connection_sock *icsk = inet_csk(sk);
1359 struct tcp_sock *tp = tcp_sk(sk);
1360 struct sk_buff *skb;
1361 int cnt = 0;
1362
1363 /* Reduce ssthresh if it has not yet been made inside this window. */
1364 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1365 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1366 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1367 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1368 tcp_ca_event(sk, CA_EVENT_LOSS);
1369 }
1370 tp->snd_cwnd = 1;
1371 tp->snd_cwnd_cnt = 0;
1372 tp->snd_cwnd_stamp = tcp_time_stamp;
1373
1374 tp->bytes_acked = 0;
1375 tcp_clear_retrans(tp);
1376
1377 /* Push undo marker, if it was plain RTO and nothing
1378 * was retransmitted. */
1379 if (!how)
1380 tp->undo_marker = tp->snd_una;
1381
1382 sk_stream_for_retrans_queue(skb, sk) {
1383 cnt += tcp_skb_pcount(skb);
1384 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1385 tp->undo_marker = 0;
1386 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1387 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1388 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1389 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1390 tp->lost_out += tcp_skb_pcount(skb);
1391 } else {
1392 tp->sacked_out += tcp_skb_pcount(skb);
1393 tp->fackets_out = cnt;
1394 }
1395 }
1396 tcp_sync_left_out(tp);
1397
1398 tp->reordering = min_t(unsigned int, tp->reordering,
1399 sysctl_tcp_reordering);
1400 tcp_set_ca_state(sk, TCP_CA_Loss);
1401 tp->high_seq = tp->snd_nxt;
1402 TCP_ECN_queue_cwr(tp);
1403
1404 clear_all_retrans_hints(tp);
1405 }
1406
1407 static int tcp_check_sack_reneging(struct sock *sk)
1408 {
1409 struct sk_buff *skb;
1410
1411 /* If ACK arrived pointing to a remembered SACK,
1412 * it means that our remembered SACKs do not reflect
1413 * real state of receiver i.e.
1414 * receiver _host_ is heavily congested (or buggy).
1415 * Do processing similar to RTO timeout.
1416 */
1417 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1418 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1419 struct inet_connection_sock *icsk = inet_csk(sk);
1420 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1421
1422 tcp_enter_loss(sk, 1);
1423 icsk->icsk_retransmits++;
1424 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1426 icsk->icsk_rto, TCP_RTO_MAX);
1427 return 1;
1428 }
1429 return 0;
1430 }
1431
1432 static inline int tcp_fackets_out(struct tcp_sock *tp)
1433 {
1434 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1435 }
1436
1437 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1438 {
1439 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1440 }
1441
1442 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1443 {
1444 return tp->packets_out &&
1445 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1446 }
1447
1448 /* Linux NewReno/SACK/FACK/ECN state machine.
1449 * --------------------------------------
1450 *
1451 * "Open" Normal state, no dubious events, fast path.
1452 * "Disorder" In all the respects it is "Open",
1453 * but requires a bit more attention. It is entered when
1454 * we see some SACKs or dupacks. It is split of "Open"
1455 * mainly to move some processing from fast path to slow one.
1456 * "CWR" CWND was reduced due to some Congestion Notification event.
1457 * It can be ECN, ICMP source quench, local device congestion.
1458 * "Recovery" CWND was reduced, we are fast-retransmitting.
1459 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1460 *
1461 * tcp_fastretrans_alert() is entered:
1462 * - each incoming ACK, if state is not "Open"
1463 * - when arrived ACK is unusual, namely:
1464 * * SACK
1465 * * Duplicate ACK.
1466 * * ECN ECE.
1467 *
1468 * Counting packets in flight is pretty simple.
1469 *
1470 * in_flight = packets_out - left_out + retrans_out
1471 *
1472 * packets_out is SND.NXT-SND.UNA counted in packets.
1473 *
1474 * retrans_out is number of retransmitted segments.
1475 *
1476 * left_out is number of segments left network, but not ACKed yet.
1477 *
1478 * left_out = sacked_out + lost_out
1479 *
1480 * sacked_out: Packets, which arrived to receiver out of order
1481 * and hence not ACKed. With SACKs this number is simply
1482 * amount of SACKed data. Even without SACKs
1483 * it is easy to give pretty reliable estimate of this number,
1484 * counting duplicate ACKs.
1485 *
1486 * lost_out: Packets lost by network. TCP has no explicit
1487 * "loss notification" feedback from network (for now).
1488 * It means that this number can be only _guessed_.
1489 * Actually, it is the heuristics to predict lossage that
1490 * distinguishes different algorithms.
1491 *
1492 * F.e. after RTO, when all the queue is considered as lost,
1493 * lost_out = packets_out and in_flight = retrans_out.
1494 *
1495 * Essentially, we have now two algorithms counting
1496 * lost packets.
1497 *
1498 * FACK: It is the simplest heuristics. As soon as we decided
1499 * that something is lost, we decide that _all_ not SACKed
1500 * packets until the most forward SACK are lost. I.e.
1501 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1502 * It is absolutely correct estimate, if network does not reorder
1503 * packets. And it loses any connection to reality when reordering
1504 * takes place. We use FACK by default until reordering
1505 * is suspected on the path to this destination.
1506 *
1507 * NewReno: when Recovery is entered, we assume that one segment
1508 * is lost (classic Reno). While we are in Recovery and
1509 * a partial ACK arrives, we assume that one more packet
1510 * is lost (NewReno). This heuristics are the same in NewReno
1511 * and SACK.
1512 *
1513 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1514 * deflation etc. CWND is real congestion window, never inflated, changes
1515 * only according to classic VJ rules.
1516 *
1517 * Really tricky (and requiring careful tuning) part of algorithm
1518 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1519 * The first determines the moment _when_ we should reduce CWND and,
1520 * hence, slow down forward transmission. In fact, it determines the moment
1521 * when we decide that hole is caused by loss, rather than by a reorder.
1522 *
1523 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1524 * holes, caused by lost packets.
1525 *
1526 * And the most logically complicated part of algorithm is undo
1527 * heuristics. We detect false retransmits due to both too early
1528 * fast retransmit (reordering) and underestimated RTO, analyzing
1529 * timestamps and D-SACKs. When we detect that some segments were
1530 * retransmitted by mistake and CWND reduction was wrong, we undo
1531 * window reduction and abort recovery phase. This logic is hidden
1532 * inside several functions named tcp_try_undo_<something>.
1533 */
1534
1535 /* This function decides, when we should leave Disordered state
1536 * and enter Recovery phase, reducing congestion window.
1537 *
1538 * Main question: may we further continue forward transmission
1539 * with the same cwnd?
1540 */
1541 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1542 {
1543 __u32 packets_out;
1544
1545 /* Trick#1: The loss is proven. */
1546 if (tp->lost_out)
1547 return 1;
1548
1549 /* Not-A-Trick#2 : Classic rule... */
1550 if (tcp_fackets_out(tp) > tp->reordering)
1551 return 1;
1552
1553 /* Trick#3 : when we use RFC2988 timer restart, fast
1554 * retransmit can be triggered by timeout of queue head.
1555 */
1556 if (tcp_head_timedout(sk, tp))
1557 return 1;
1558
1559 /* Trick#4: It is still not OK... But will it be useful to delay
1560 * recovery more?
1561 */
1562 packets_out = tp->packets_out;
1563 if (packets_out <= tp->reordering &&
1564 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1565 !tcp_may_send_now(sk, tp)) {
1566 /* We have nothing to send. This connection is limited
1567 * either by receiver window or by application.
1568 */
1569 return 1;
1570 }
1571
1572 return 0;
1573 }
1574
1575 /* If we receive more dupacks than we expected counting segments
1576 * in assumption of absent reordering, interpret this as reordering.
1577 * The only another reason could be bug in receiver TCP.
1578 */
1579 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1580 {
1581 struct tcp_sock *tp = tcp_sk(sk);
1582 u32 holes;
1583
1584 holes = max(tp->lost_out, 1U);
1585 holes = min(holes, tp->packets_out);
1586
1587 if ((tp->sacked_out + holes) > tp->packets_out) {
1588 tp->sacked_out = tp->packets_out - holes;
1589 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1590 }
1591 }
1592
1593 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1594
1595 static void tcp_add_reno_sack(struct sock *sk)
1596 {
1597 struct tcp_sock *tp = tcp_sk(sk);
1598 tp->sacked_out++;
1599 tcp_check_reno_reordering(sk, 0);
1600 tcp_sync_left_out(tp);
1601 }
1602
1603 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1604
1605 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1606 {
1607 if (acked > 0) {
1608 /* One ACK acked hole. The rest eat duplicate ACKs. */
1609 if (acked-1 >= tp->sacked_out)
1610 tp->sacked_out = 0;
1611 else
1612 tp->sacked_out -= acked-1;
1613 }
1614 tcp_check_reno_reordering(sk, acked);
1615 tcp_sync_left_out(tp);
1616 }
1617
1618 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1619 {
1620 tp->sacked_out = 0;
1621 tp->left_out = tp->lost_out;
1622 }
1623
1624 /* Mark head of queue up as lost. */
1625 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1626 int packets, u32 high_seq)
1627 {
1628 struct sk_buff *skb;
1629 int cnt;
1630
1631 BUG_TRAP(packets <= tp->packets_out);
1632 if (tp->lost_skb_hint) {
1633 skb = tp->lost_skb_hint;
1634 cnt = tp->lost_cnt_hint;
1635 } else {
1636 skb = sk->sk_write_queue.next;
1637 cnt = 0;
1638 }
1639
1640 sk_stream_for_retrans_queue_from(skb, sk) {
1641 /* TODO: do this better */
1642 /* this is not the most efficient way to do this... */
1643 tp->lost_skb_hint = skb;
1644 tp->lost_cnt_hint = cnt;
1645 cnt += tcp_skb_pcount(skb);
1646 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1647 break;
1648 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1649 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1650 tp->lost_out += tcp_skb_pcount(skb);
1651
1652 /* clear xmit_retransmit_queue hints
1653 * if this is beyond hint */
1654 if(tp->retransmit_skb_hint != NULL &&
1655 before(TCP_SKB_CB(skb)->seq,
1656 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1657
1658 tp->retransmit_skb_hint = NULL;
1659 }
1660 }
1661 }
1662 tcp_sync_left_out(tp);
1663 }
1664
1665 /* Account newly detected lost packet(s) */
1666
1667 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1668 {
1669 if (IsFack(tp)) {
1670 int lost = tp->fackets_out - tp->reordering;
1671 if (lost <= 0)
1672 lost = 1;
1673 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1674 } else {
1675 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1676 }
1677
1678 /* New heuristics: it is possible only after we switched
1679 * to restart timer each time when something is ACKed.
1680 * Hence, we can detect timed out packets during fast
1681 * retransmit without falling to slow start.
1682 */
1683 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1684 struct sk_buff *skb;
1685
1686 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1687 : sk->sk_write_queue.next;
1688
1689 sk_stream_for_retrans_queue_from(skb, sk) {
1690 if (!tcp_skb_timedout(sk, skb))
1691 break;
1692
1693 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1694 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1695 tp->lost_out += tcp_skb_pcount(skb);
1696
1697 /* clear xmit_retrans hint */
1698 if (tp->retransmit_skb_hint &&
1699 before(TCP_SKB_CB(skb)->seq,
1700 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1701
1702 tp->retransmit_skb_hint = NULL;
1703 }
1704 }
1705
1706 tp->scoreboard_skb_hint = skb;
1707
1708 tcp_sync_left_out(tp);
1709 }
1710 }
1711
1712 /* CWND moderation, preventing bursts due to too big ACKs
1713 * in dubious situations.
1714 */
1715 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1716 {
1717 tp->snd_cwnd = min(tp->snd_cwnd,
1718 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1719 tp->snd_cwnd_stamp = tcp_time_stamp;
1720 }
1721
1722 /* Lower bound on congestion window is slow start threshold
1723 * unless congestion avoidance choice decides to overide it.
1724 */
1725 static inline u32 tcp_cwnd_min(const struct sock *sk)
1726 {
1727 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1728
1729 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1730 }
1731
1732 /* Decrease cwnd each second ack. */
1733 static void tcp_cwnd_down(struct sock *sk)
1734 {
1735 struct tcp_sock *tp = tcp_sk(sk);
1736 int decr = tp->snd_cwnd_cnt + 1;
1737
1738 tp->snd_cwnd_cnt = decr&1;
1739 decr >>= 1;
1740
1741 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1742 tp->snd_cwnd -= decr;
1743
1744 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1745 tp->snd_cwnd_stamp = tcp_time_stamp;
1746 }
1747
1748 /* Nothing was retransmitted or returned timestamp is less
1749 * than timestamp of the first retransmission.
1750 */
1751 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1752 {
1753 return !tp->retrans_stamp ||
1754 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1755 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1756 }
1757
1758 /* Undo procedures. */
1759
1760 #if FASTRETRANS_DEBUG > 1
1761 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1762 {
1763 struct inet_sock *inet = inet_sk(sk);
1764 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1765 msg,
1766 NIPQUAD(inet->daddr), ntohs(inet->dport),
1767 tp->snd_cwnd, tp->left_out,
1768 tp->snd_ssthresh, tp->prior_ssthresh,
1769 tp->packets_out);
1770 }
1771 #else
1772 #define DBGUNDO(x...) do { } while (0)
1773 #endif
1774
1775 static void tcp_undo_cwr(struct sock *sk, const int undo)
1776 {
1777 struct tcp_sock *tp = tcp_sk(sk);
1778
1779 if (tp->prior_ssthresh) {
1780 const struct inet_connection_sock *icsk = inet_csk(sk);
1781
1782 if (icsk->icsk_ca_ops->undo_cwnd)
1783 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1784 else
1785 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1786
1787 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1788 tp->snd_ssthresh = tp->prior_ssthresh;
1789 TCP_ECN_withdraw_cwr(tp);
1790 }
1791 } else {
1792 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1793 }
1794 tcp_moderate_cwnd(tp);
1795 tp->snd_cwnd_stamp = tcp_time_stamp;
1796
1797 /* There is something screwy going on with the retrans hints after
1798 an undo */
1799 clear_all_retrans_hints(tp);
1800 }
1801
1802 static inline int tcp_may_undo(struct tcp_sock *tp)
1803 {
1804 return tp->undo_marker &&
1805 (!tp->undo_retrans || tcp_packet_delayed(tp));
1806 }
1807
1808 /* People celebrate: "We love our President!" */
1809 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1810 {
1811 if (tcp_may_undo(tp)) {
1812 /* Happy end! We did not retransmit anything
1813 * or our original transmission succeeded.
1814 */
1815 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1816 tcp_undo_cwr(sk, 1);
1817 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1818 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1819 else
1820 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1821 tp->undo_marker = 0;
1822 }
1823 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1824 /* Hold old state until something *above* high_seq
1825 * is ACKed. For Reno it is MUST to prevent false
1826 * fast retransmits (RFC2582). SACK TCP is safe. */
1827 tcp_moderate_cwnd(tp);
1828 return 1;
1829 }
1830 tcp_set_ca_state(sk, TCP_CA_Open);
1831 return 0;
1832 }
1833
1834 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1835 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1836 {
1837 if (tp->undo_marker && !tp->undo_retrans) {
1838 DBGUNDO(sk, tp, "D-SACK");
1839 tcp_undo_cwr(sk, 1);
1840 tp->undo_marker = 0;
1841 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1842 }
1843 }
1844
1845 /* Undo during fast recovery after partial ACK. */
1846
1847 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1848 int acked)
1849 {
1850 /* Partial ACK arrived. Force Hoe's retransmit. */
1851 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1852
1853 if (tcp_may_undo(tp)) {
1854 /* Plain luck! Hole if filled with delayed
1855 * packet, rather than with a retransmit.
1856 */
1857 if (tp->retrans_out == 0)
1858 tp->retrans_stamp = 0;
1859
1860 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1861
1862 DBGUNDO(sk, tp, "Hoe");
1863 tcp_undo_cwr(sk, 0);
1864 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1865
1866 /* So... Do not make Hoe's retransmit yet.
1867 * If the first packet was delayed, the rest
1868 * ones are most probably delayed as well.
1869 */
1870 failed = 0;
1871 }
1872 return failed;
1873 }
1874
1875 /* Undo during loss recovery after partial ACK. */
1876 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1877 {
1878 if (tcp_may_undo(tp)) {
1879 struct sk_buff *skb;
1880 sk_stream_for_retrans_queue(skb, sk) {
1881 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1882 }
1883
1884 clear_all_retrans_hints(tp);
1885
1886 DBGUNDO(sk, tp, "partial loss");
1887 tp->lost_out = 0;
1888 tp->left_out = tp->sacked_out;
1889 tcp_undo_cwr(sk, 1);
1890 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1891 inet_csk(sk)->icsk_retransmits = 0;
1892 tp->undo_marker = 0;
1893 if (!IsReno(tp))
1894 tcp_set_ca_state(sk, TCP_CA_Open);
1895 return 1;
1896 }
1897 return 0;
1898 }
1899
1900 static inline void tcp_complete_cwr(struct sock *sk)
1901 {
1902 struct tcp_sock *tp = tcp_sk(sk);
1903 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1904 tp->snd_cwnd_stamp = tcp_time_stamp;
1905 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1906 }
1907
1908 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1909 {
1910 tp->left_out = tp->sacked_out;
1911
1912 if (tp->retrans_out == 0)
1913 tp->retrans_stamp = 0;
1914
1915 if (flag&FLAG_ECE)
1916 tcp_enter_cwr(sk);
1917
1918 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1919 int state = TCP_CA_Open;
1920
1921 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1922 state = TCP_CA_Disorder;
1923
1924 if (inet_csk(sk)->icsk_ca_state != state) {
1925 tcp_set_ca_state(sk, state);
1926 tp->high_seq = tp->snd_nxt;
1927 }
1928 tcp_moderate_cwnd(tp);
1929 } else {
1930 tcp_cwnd_down(sk);
1931 }
1932 }
1933
1934 static void tcp_mtup_probe_failed(struct sock *sk)
1935 {
1936 struct inet_connection_sock *icsk = inet_csk(sk);
1937
1938 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1939 icsk->icsk_mtup.probe_size = 0;
1940 }
1941
1942 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1943 {
1944 struct tcp_sock *tp = tcp_sk(sk);
1945 struct inet_connection_sock *icsk = inet_csk(sk);
1946
1947 /* FIXME: breaks with very large cwnd */
1948 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1949 tp->snd_cwnd = tp->snd_cwnd *
1950 tcp_mss_to_mtu(sk, tp->mss_cache) /
1951 icsk->icsk_mtup.probe_size;
1952 tp->snd_cwnd_cnt = 0;
1953 tp->snd_cwnd_stamp = tcp_time_stamp;
1954 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1955
1956 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1957 icsk->icsk_mtup.probe_size = 0;
1958 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1959 }
1960
1961
1962 /* Process an event, which can update packets-in-flight not trivially.
1963 * Main goal of this function is to calculate new estimate for left_out,
1964 * taking into account both packets sitting in receiver's buffer and
1965 * packets lost by network.
1966 *
1967 * Besides that it does CWND reduction, when packet loss is detected
1968 * and changes state of machine.
1969 *
1970 * It does _not_ decide what to send, it is made in function
1971 * tcp_xmit_retransmit_queue().
1972 */
1973 static void
1974 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1975 int prior_packets, int flag)
1976 {
1977 struct inet_connection_sock *icsk = inet_csk(sk);
1978 struct tcp_sock *tp = tcp_sk(sk);
1979 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1980
1981 /* Some technical things:
1982 * 1. Reno does not count dupacks (sacked_out) automatically. */
1983 if (!tp->packets_out)
1984 tp->sacked_out = 0;
1985 /* 2. SACK counts snd_fack in packets inaccurately. */
1986 if (tp->sacked_out == 0)
1987 tp->fackets_out = 0;
1988
1989 /* Now state machine starts.
1990 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1991 if (flag&FLAG_ECE)
1992 tp->prior_ssthresh = 0;
1993
1994 /* B. In all the states check for reneging SACKs. */
1995 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1996 return;
1997
1998 /* C. Process data loss notification, provided it is valid. */
1999 if ((flag&FLAG_DATA_LOST) &&
2000 before(tp->snd_una, tp->high_seq) &&
2001 icsk->icsk_ca_state != TCP_CA_Open &&
2002 tp->fackets_out > tp->reordering) {
2003 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2004 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2005 }
2006
2007 /* D. Synchronize left_out to current state. */
2008 tcp_sync_left_out(tp);
2009
2010 /* E. Check state exit conditions. State can be terminated
2011 * when high_seq is ACKed. */
2012 if (icsk->icsk_ca_state == TCP_CA_Open) {
2013 if (!sysctl_tcp_frto)
2014 BUG_TRAP(tp->retrans_out == 0);
2015 tp->retrans_stamp = 0;
2016 } else if (!before(tp->snd_una, tp->high_seq)) {
2017 switch (icsk->icsk_ca_state) {
2018 case TCP_CA_Loss:
2019 icsk->icsk_retransmits = 0;
2020 if (tcp_try_undo_recovery(sk, tp))
2021 return;
2022 break;
2023
2024 case TCP_CA_CWR:
2025 /* CWR is to be held something *above* high_seq
2026 * is ACKed for CWR bit to reach receiver. */
2027 if (tp->snd_una != tp->high_seq) {
2028 tcp_complete_cwr(sk);
2029 tcp_set_ca_state(sk, TCP_CA_Open);
2030 }
2031 break;
2032
2033 case TCP_CA_Disorder:
2034 tcp_try_undo_dsack(sk, tp);
2035 if (!tp->undo_marker ||
2036 /* For SACK case do not Open to allow to undo
2037 * catching for all duplicate ACKs. */
2038 IsReno(tp) || tp->snd_una != tp->high_seq) {
2039 tp->undo_marker = 0;
2040 tcp_set_ca_state(sk, TCP_CA_Open);
2041 }
2042 break;
2043
2044 case TCP_CA_Recovery:
2045 if (IsReno(tp))
2046 tcp_reset_reno_sack(tp);
2047 if (tcp_try_undo_recovery(sk, tp))
2048 return;
2049 tcp_complete_cwr(sk);
2050 break;
2051 }
2052 }
2053
2054 /* F. Process state. */
2055 switch (icsk->icsk_ca_state) {
2056 case TCP_CA_Recovery:
2057 if (prior_snd_una == tp->snd_una) {
2058 if (IsReno(tp) && is_dupack)
2059 tcp_add_reno_sack(sk);
2060 } else {
2061 int acked = prior_packets - tp->packets_out;
2062 if (IsReno(tp))
2063 tcp_remove_reno_sacks(sk, tp, acked);
2064 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2065 }
2066 break;
2067 case TCP_CA_Loss:
2068 if (flag&FLAG_DATA_ACKED)
2069 icsk->icsk_retransmits = 0;
2070 if (!tcp_try_undo_loss(sk, tp)) {
2071 tcp_moderate_cwnd(tp);
2072 tcp_xmit_retransmit_queue(sk);
2073 return;
2074 }
2075 if (icsk->icsk_ca_state != TCP_CA_Open)
2076 return;
2077 /* Loss is undone; fall through to processing in Open state. */
2078 default:
2079 if (IsReno(tp)) {
2080 if (tp->snd_una != prior_snd_una)
2081 tcp_reset_reno_sack(tp);
2082 if (is_dupack)
2083 tcp_add_reno_sack(sk);
2084 }
2085
2086 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2087 tcp_try_undo_dsack(sk, tp);
2088
2089 if (!tcp_time_to_recover(sk, tp)) {
2090 tcp_try_to_open(sk, tp, flag);
2091 return;
2092 }
2093
2094 /* MTU probe failure: don't reduce cwnd */
2095 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2096 icsk->icsk_mtup.probe_size &&
2097 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2098 tcp_mtup_probe_failed(sk);
2099 /* Restores the reduction we did in tcp_mtup_probe() */
2100 tp->snd_cwnd++;
2101 tcp_simple_retransmit(sk);
2102 return;
2103 }
2104
2105 /* Otherwise enter Recovery state */
2106
2107 if (IsReno(tp))
2108 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2109 else
2110 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2111
2112 tp->high_seq = tp->snd_nxt;
2113 tp->prior_ssthresh = 0;
2114 tp->undo_marker = tp->snd_una;
2115 tp->undo_retrans = tp->retrans_out;
2116
2117 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2118 if (!(flag&FLAG_ECE))
2119 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2120 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2121 TCP_ECN_queue_cwr(tp);
2122 }
2123
2124 tp->bytes_acked = 0;
2125 tp->snd_cwnd_cnt = 0;
2126 tcp_set_ca_state(sk, TCP_CA_Recovery);
2127 }
2128
2129 if (is_dupack || tcp_head_timedout(sk, tp))
2130 tcp_update_scoreboard(sk, tp);
2131 tcp_cwnd_down(sk);
2132 tcp_xmit_retransmit_queue(sk);
2133 }
2134
2135 /* Read draft-ietf-tcplw-high-performance before mucking
2136 * with this code. (Supersedes RFC1323)
2137 */
2138 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2139 {
2140 /* RTTM Rule: A TSecr value received in a segment is used to
2141 * update the averaged RTT measurement only if the segment
2142 * acknowledges some new data, i.e., only if it advances the
2143 * left edge of the send window.
2144 *
2145 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2146 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2147 *
2148 * Changed: reset backoff as soon as we see the first valid sample.
2149 * If we do not, we get strongly overestimated rto. With timestamps
2150 * samples are accepted even from very old segments: f.e., when rtt=1
2151 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2152 * answer arrives rto becomes 120 seconds! If at least one of segments
2153 * in window is lost... Voila. --ANK (010210)
2154 */
2155 struct tcp_sock *tp = tcp_sk(sk);
2156 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2157 tcp_rtt_estimator(sk, seq_rtt);
2158 tcp_set_rto(sk);
2159 inet_csk(sk)->icsk_backoff = 0;
2160 tcp_bound_rto(sk);
2161 }
2162
2163 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2164 {
2165 /* We don't have a timestamp. Can only use
2166 * packets that are not retransmitted to determine
2167 * rtt estimates. Also, we must not reset the
2168 * backoff for rto until we get a non-retransmitted
2169 * packet. This allows us to deal with a situation
2170 * where the network delay has increased suddenly.
2171 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2172 */
2173
2174 if (flag & FLAG_RETRANS_DATA_ACKED)
2175 return;
2176
2177 tcp_rtt_estimator(sk, seq_rtt);
2178 tcp_set_rto(sk);
2179 inet_csk(sk)->icsk_backoff = 0;
2180 tcp_bound_rto(sk);
2181 }
2182
2183 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2184 const s32 seq_rtt)
2185 {
2186 const struct tcp_sock *tp = tcp_sk(sk);
2187 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2188 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2189 tcp_ack_saw_tstamp(sk, flag);
2190 else if (seq_rtt >= 0)
2191 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2192 }
2193
2194 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2195 u32 in_flight, int good)
2196 {
2197 const struct inet_connection_sock *icsk = inet_csk(sk);
2198 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2199 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2200 }
2201
2202 /* Restart timer after forward progress on connection.
2203 * RFC2988 recommends to restart timer to now+rto.
2204 */
2205
2206 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2207 {
2208 if (!tp->packets_out) {
2209 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2210 } else {
2211 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2212 }
2213 }
2214
2215 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2216 __u32 now, __s32 *seq_rtt)
2217 {
2218 struct tcp_sock *tp = tcp_sk(sk);
2219 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2220 __u32 seq = tp->snd_una;
2221 __u32 packets_acked;
2222 int acked = 0;
2223
2224 /* If we get here, the whole TSO packet has not been
2225 * acked.
2226 */
2227 BUG_ON(!after(scb->end_seq, seq));
2228
2229 packets_acked = tcp_skb_pcount(skb);
2230 if (tcp_trim_head(sk, skb, seq - scb->seq))
2231 return 0;
2232 packets_acked -= tcp_skb_pcount(skb);
2233
2234 if (packets_acked) {
2235 __u8 sacked = scb->sacked;
2236
2237 acked |= FLAG_DATA_ACKED;
2238 if (sacked) {
2239 if (sacked & TCPCB_RETRANS) {
2240 if (sacked & TCPCB_SACKED_RETRANS)
2241 tp->retrans_out -= packets_acked;
2242 acked |= FLAG_RETRANS_DATA_ACKED;
2243 *seq_rtt = -1;
2244 } else if (*seq_rtt < 0)
2245 *seq_rtt = now - scb->when;
2246 if (sacked & TCPCB_SACKED_ACKED)
2247 tp->sacked_out -= packets_acked;
2248 if (sacked & TCPCB_LOST)
2249 tp->lost_out -= packets_acked;
2250 if (sacked & TCPCB_URG) {
2251 if (tp->urg_mode &&
2252 !before(seq, tp->snd_up))
2253 tp->urg_mode = 0;
2254 }
2255 } else if (*seq_rtt < 0)
2256 *seq_rtt = now - scb->when;
2257
2258 if (tp->fackets_out) {
2259 __u32 dval = min(tp->fackets_out, packets_acked);
2260 tp->fackets_out -= dval;
2261 }
2262 tp->packets_out -= packets_acked;
2263
2264 BUG_ON(tcp_skb_pcount(skb) == 0);
2265 BUG_ON(!before(scb->seq, scb->end_seq));
2266 }
2267
2268 return acked;
2269 }
2270
2271 static u32 tcp_usrtt(struct timeval *tv)
2272 {
2273 struct timeval now;
2274
2275 do_gettimeofday(&now);
2276 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2277 }
2278
2279 /* Remove acknowledged frames from the retransmission queue. */
2280 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2281 {
2282 struct tcp_sock *tp = tcp_sk(sk);
2283 const struct inet_connection_sock *icsk = inet_csk(sk);
2284 struct sk_buff *skb;
2285 __u32 now = tcp_time_stamp;
2286 int acked = 0;
2287 __s32 seq_rtt = -1;
2288 u32 pkts_acked = 0;
2289 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2290 = icsk->icsk_ca_ops->rtt_sample;
2291 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2292
2293 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2294 skb != sk->sk_send_head) {
2295 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2296 __u8 sacked = scb->sacked;
2297
2298 /* If our packet is before the ack sequence we can
2299 * discard it as it's confirmed to have arrived at
2300 * the other end.
2301 */
2302 if (after(scb->end_seq, tp->snd_una)) {
2303 if (tcp_skb_pcount(skb) > 1 &&
2304 after(tp->snd_una, scb->seq))
2305 acked |= tcp_tso_acked(sk, skb,
2306 now, &seq_rtt);
2307 break;
2308 }
2309
2310 /* Initial outgoing SYN's get put onto the write_queue
2311 * just like anything else we transmit. It is not
2312 * true data, and if we misinform our callers that
2313 * this ACK acks real data, we will erroneously exit
2314 * connection startup slow start one packet too
2315 * quickly. This is severely frowned upon behavior.
2316 */
2317 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2318 acked |= FLAG_DATA_ACKED;
2319 ++pkts_acked;
2320 } else {
2321 acked |= FLAG_SYN_ACKED;
2322 tp->retrans_stamp = 0;
2323 }
2324
2325 /* MTU probing checks */
2326 if (icsk->icsk_mtup.probe_size) {
2327 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2328 tcp_mtup_probe_success(sk, skb);
2329 }
2330 }
2331
2332 if (sacked) {
2333 if (sacked & TCPCB_RETRANS) {
2334 if(sacked & TCPCB_SACKED_RETRANS)
2335 tp->retrans_out -= tcp_skb_pcount(skb);
2336 acked |= FLAG_RETRANS_DATA_ACKED;
2337 seq_rtt = -1;
2338 } else if (seq_rtt < 0) {
2339 seq_rtt = now - scb->when;
2340 skb_get_timestamp(skb, &tv);
2341 }
2342 if (sacked & TCPCB_SACKED_ACKED)
2343 tp->sacked_out -= tcp_skb_pcount(skb);
2344 if (sacked & TCPCB_LOST)
2345 tp->lost_out -= tcp_skb_pcount(skb);
2346 if (sacked & TCPCB_URG) {
2347 if (tp->urg_mode &&
2348 !before(scb->end_seq, tp->snd_up))
2349 tp->urg_mode = 0;
2350 }
2351 } else if (seq_rtt < 0) {
2352 seq_rtt = now - scb->when;
2353 skb_get_timestamp(skb, &tv);
2354 }
2355 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2356 tcp_packets_out_dec(tp, skb);
2357 __skb_unlink(skb, &sk->sk_write_queue);
2358 sk_stream_free_skb(sk, skb);
2359 clear_all_retrans_hints(tp);
2360 }
2361
2362 if (acked&FLAG_ACKED) {
2363 tcp_ack_update_rtt(sk, acked, seq_rtt);
2364 tcp_ack_packets_out(sk, tp);
2365 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2366 (*rtt_sample)(sk, tcp_usrtt(&tv));
2367
2368 if (icsk->icsk_ca_ops->pkts_acked)
2369 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2370 }
2371
2372 #if FASTRETRANS_DEBUG > 0
2373 BUG_TRAP((int)tp->sacked_out >= 0);
2374 BUG_TRAP((int)tp->lost_out >= 0);
2375 BUG_TRAP((int)tp->retrans_out >= 0);
2376 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2377 const struct inet_connection_sock *icsk = inet_csk(sk);
2378 if (tp->lost_out) {
2379 printk(KERN_DEBUG "Leak l=%u %d\n",
2380 tp->lost_out, icsk->icsk_ca_state);
2381 tp->lost_out = 0;
2382 }
2383 if (tp->sacked_out) {
2384 printk(KERN_DEBUG "Leak s=%u %d\n",
2385 tp->sacked_out, icsk->icsk_ca_state);
2386 tp->sacked_out = 0;
2387 }
2388 if (tp->retrans_out) {
2389 printk(KERN_DEBUG "Leak r=%u %d\n",
2390 tp->retrans_out, icsk->icsk_ca_state);
2391 tp->retrans_out = 0;
2392 }
2393 }
2394 #endif
2395 *seq_rtt_p = seq_rtt;
2396 return acked;
2397 }
2398
2399 static void tcp_ack_probe(struct sock *sk)
2400 {
2401 const struct tcp_sock *tp = tcp_sk(sk);
2402 struct inet_connection_sock *icsk = inet_csk(sk);
2403
2404 /* Was it a usable window open? */
2405
2406 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2407 tp->snd_una + tp->snd_wnd)) {
2408 icsk->icsk_backoff = 0;
2409 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2410 /* Socket must be waked up by subsequent tcp_data_snd_check().
2411 * This function is not for random using!
2412 */
2413 } else {
2414 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2415 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2416 TCP_RTO_MAX);
2417 }
2418 }
2419
2420 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2421 {
2422 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2423 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2424 }
2425
2426 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2427 {
2428 const struct tcp_sock *tp = tcp_sk(sk);
2429 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2430 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2431 }
2432
2433 /* Check that window update is acceptable.
2434 * The function assumes that snd_una<=ack<=snd_next.
2435 */
2436 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2437 const u32 ack_seq, const u32 nwin)
2438 {
2439 return (after(ack, tp->snd_una) ||
2440 after(ack_seq, tp->snd_wl1) ||
2441 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2442 }
2443
2444 /* Update our send window.
2445 *
2446 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2447 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2448 */
2449 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2450 struct sk_buff *skb, u32 ack, u32 ack_seq)
2451 {
2452 int flag = 0;
2453 u32 nwin = ntohs(skb->h.th->window);
2454
2455 if (likely(!skb->h.th->syn))
2456 nwin <<= tp->rx_opt.snd_wscale;
2457
2458 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2459 flag |= FLAG_WIN_UPDATE;
2460 tcp_update_wl(tp, ack, ack_seq);
2461
2462 if (tp->snd_wnd != nwin) {
2463 tp->snd_wnd = nwin;
2464
2465 /* Note, it is the only place, where
2466 * fast path is recovered for sending TCP.
2467 */
2468 tp->pred_flags = 0;
2469 tcp_fast_path_check(sk, tp);
2470
2471 if (nwin > tp->max_window) {
2472 tp->max_window = nwin;
2473 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2474 }
2475 }
2476 }
2477
2478 tp->snd_una = ack;
2479
2480 return flag;
2481 }
2482
2483 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2484 * continue in congestion avoidance.
2485 */
2486 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2487 {
2488 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2489 tcp_moderate_cwnd(tp);
2490 }
2491
2492 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2493 {
2494 struct tcp_sock *tp = tcp_sk(sk);
2495
2496 tcp_sync_left_out(tp);
2497
2498 if (tp->snd_una == prior_snd_una ||
2499 !before(tp->snd_una, tp->frto_highmark)) {
2500 /* RTO was caused by loss, start retransmitting in
2501 * go-back-N slow start
2502 */
2503 tcp_enter_frto_loss(sk);
2504 return;
2505 }
2506
2507 if (tp->frto_counter == 1) {
2508 /* First ACK after RTO advances the window: allow two new
2509 * segments out.
2510 */
2511 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2512 } else {
2513 tcp_conservative_spur_to_response(tp);
2514 }
2515
2516 /* F-RTO affects on two new ACKs following RTO.
2517 * At latest on third ACK the TCP behavior is back to normal.
2518 */
2519 tp->frto_counter = (tp->frto_counter + 1) % 3;
2520 }
2521
2522 /* This routine deals with incoming acks, but not outgoing ones. */
2523 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2524 {
2525 struct inet_connection_sock *icsk = inet_csk(sk);
2526 struct tcp_sock *tp = tcp_sk(sk);
2527 u32 prior_snd_una = tp->snd_una;
2528 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2529 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2530 u32 prior_in_flight;
2531 s32 seq_rtt;
2532 int prior_packets;
2533
2534 /* If the ack is newer than sent or older than previous acks
2535 * then we can probably ignore it.
2536 */
2537 if (after(ack, tp->snd_nxt))
2538 goto uninteresting_ack;
2539
2540 if (before(ack, prior_snd_una))
2541 goto old_ack;
2542
2543 if (sysctl_tcp_abc) {
2544 if (icsk->icsk_ca_state < TCP_CA_CWR)
2545 tp->bytes_acked += ack - prior_snd_una;
2546 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2547 /* we assume just one segment left network */
2548 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2549 }
2550
2551 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2552 /* Window is constant, pure forward advance.
2553 * No more checks are required.
2554 * Note, we use the fact that SND.UNA>=SND.WL2.
2555 */
2556 tcp_update_wl(tp, ack, ack_seq);
2557 tp->snd_una = ack;
2558 flag |= FLAG_WIN_UPDATE;
2559
2560 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2561
2562 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2563 } else {
2564 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2565 flag |= FLAG_DATA;
2566 else
2567 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2568
2569 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2570
2571 if (TCP_SKB_CB(skb)->sacked)
2572 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2573
2574 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2575 flag |= FLAG_ECE;
2576
2577 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2578 }
2579
2580 /* We passed data and got it acked, remove any soft error
2581 * log. Something worked...
2582 */
2583 sk->sk_err_soft = 0;
2584 tp->rcv_tstamp = tcp_time_stamp;
2585 prior_packets = tp->packets_out;
2586 if (!prior_packets)
2587 goto no_queue;
2588
2589 prior_in_flight = tcp_packets_in_flight(tp);
2590
2591 /* See if we can take anything off of the retransmit queue. */
2592 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2593
2594 if (tp->frto_counter)
2595 tcp_process_frto(sk, prior_snd_una);
2596
2597 if (tcp_ack_is_dubious(sk, flag)) {
2598 /* Advance CWND, if state allows this. */
2599 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2600 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2601 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2602 } else {
2603 if ((flag & FLAG_DATA_ACKED))
2604 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2605 }
2606
2607 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2608 dst_confirm(sk->sk_dst_cache);
2609
2610 return 1;
2611
2612 no_queue:
2613 icsk->icsk_probes_out = 0;
2614
2615 /* If this ack opens up a zero window, clear backoff. It was
2616 * being used to time the probes, and is probably far higher than
2617 * it needs to be for normal retransmission.
2618 */
2619 if (sk->sk_send_head)
2620 tcp_ack_probe(sk);
2621 return 1;
2622
2623 old_ack:
2624 if (TCP_SKB_CB(skb)->sacked)
2625 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2626
2627 uninteresting_ack:
2628 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2629 return 0;
2630 }
2631
2632
2633 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2634 * But, this can also be called on packets in the established flow when
2635 * the fast version below fails.
2636 */
2637 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2638 {
2639 unsigned char *ptr;
2640 struct tcphdr *th = skb->h.th;
2641 int length=(th->doff*4)-sizeof(struct tcphdr);
2642
2643 ptr = (unsigned char *)(th + 1);
2644 opt_rx->saw_tstamp = 0;
2645
2646 while(length>0) {
2647 int opcode=*ptr++;
2648 int opsize;
2649
2650 switch (opcode) {
2651 case TCPOPT_EOL:
2652 return;
2653 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2654 length--;
2655 continue;
2656 default:
2657 opsize=*ptr++;
2658 if (opsize < 2) /* "silly options" */
2659 return;
2660 if (opsize > length)
2661 return; /* don't parse partial options */
2662 switch(opcode) {
2663 case TCPOPT_MSS:
2664 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2665 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2666 if (in_mss) {
2667 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2668 in_mss = opt_rx->user_mss;
2669 opt_rx->mss_clamp = in_mss;
2670 }
2671 }
2672 break;
2673 case TCPOPT_WINDOW:
2674 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2675 if (sysctl_tcp_window_scaling) {
2676 __u8 snd_wscale = *(__u8 *) ptr;
2677 opt_rx->wscale_ok = 1;
2678 if (snd_wscale > 14) {
2679 if(net_ratelimit())
2680 printk(KERN_INFO "tcp_parse_options: Illegal window "
2681 "scaling value %d >14 received.\n",
2682 snd_wscale);
2683 snd_wscale = 14;
2684 }
2685 opt_rx->snd_wscale = snd_wscale;
2686 }
2687 break;
2688 case TCPOPT_TIMESTAMP:
2689 if(opsize==TCPOLEN_TIMESTAMP) {
2690 if ((estab && opt_rx->tstamp_ok) ||
2691 (!estab && sysctl_tcp_timestamps)) {
2692 opt_rx->saw_tstamp = 1;
2693 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2694 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2695 }
2696 }
2697 break;
2698 case TCPOPT_SACK_PERM:
2699 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2700 if (sysctl_tcp_sack) {
2701 opt_rx->sack_ok = 1;
2702 tcp_sack_reset(opt_rx);
2703 }
2704 }
2705 break;
2706
2707 case TCPOPT_SACK:
2708 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2709 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2710 opt_rx->sack_ok) {
2711 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2712 }
2713 #ifdef CONFIG_TCP_MD5SIG
2714 case TCPOPT_MD5SIG:
2715 /*
2716 * The MD5 Hash has already been
2717 * checked (see tcp_v{4,6}_do_rcv()).
2718 */
2719 break;
2720 #endif
2721 };
2722 ptr+=opsize-2;
2723 length-=opsize;
2724 };
2725 }
2726 }
2727
2728 /* Fast parse options. This hopes to only see timestamps.
2729 * If it is wrong it falls back on tcp_parse_options().
2730 */
2731 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2732 struct tcp_sock *tp)
2733 {
2734 if (th->doff == sizeof(struct tcphdr)>>2) {
2735 tp->rx_opt.saw_tstamp = 0;
2736 return 0;
2737 } else if (tp->rx_opt.tstamp_ok &&
2738 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2739 __be32 *ptr = (__be32 *)(th + 1);
2740 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2741 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2742 tp->rx_opt.saw_tstamp = 1;
2743 ++ptr;
2744 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2745 ++ptr;
2746 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2747 return 1;
2748 }
2749 }
2750 tcp_parse_options(skb, &tp->rx_opt, 1);
2751 return 1;
2752 }
2753
2754 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2755 {
2756 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2757 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2758 }
2759
2760 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2761 {
2762 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2763 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2764 * extra check below makes sure this can only happen
2765 * for pure ACK frames. -DaveM
2766 *
2767 * Not only, also it occurs for expired timestamps.
2768 */
2769
2770 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2771 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2772 tcp_store_ts_recent(tp);
2773 }
2774 }
2775
2776 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2777 *
2778 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2779 * it can pass through stack. So, the following predicate verifies that
2780 * this segment is not used for anything but congestion avoidance or
2781 * fast retransmit. Moreover, we even are able to eliminate most of such
2782 * second order effects, if we apply some small "replay" window (~RTO)
2783 * to timestamp space.
2784 *
2785 * All these measures still do not guarantee that we reject wrapped ACKs
2786 * on networks with high bandwidth, when sequence space is recycled fastly,
2787 * but it guarantees that such events will be very rare and do not affect
2788 * connection seriously. This doesn't look nice, but alas, PAWS is really
2789 * buggy extension.
2790 *
2791 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2792 * states that events when retransmit arrives after original data are rare.
2793 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2794 * the biggest problem on large power networks even with minor reordering.
2795 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2796 * up to bandwidth of 18Gigabit/sec. 8) ]
2797 */
2798
2799 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2800 {
2801 struct tcp_sock *tp = tcp_sk(sk);
2802 struct tcphdr *th = skb->h.th;
2803 u32 seq = TCP_SKB_CB(skb)->seq;
2804 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2805
2806 return (/* 1. Pure ACK with correct sequence number. */
2807 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2808
2809 /* 2. ... and duplicate ACK. */
2810 ack == tp->snd_una &&
2811
2812 /* 3. ... and does not update window. */
2813 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2814
2815 /* 4. ... and sits in replay window. */
2816 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2817 }
2818
2819 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2820 {
2821 const struct tcp_sock *tp = tcp_sk(sk);
2822 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2823 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2824 !tcp_disordered_ack(sk, skb));
2825 }
2826
2827 /* Check segment sequence number for validity.
2828 *
2829 * Segment controls are considered valid, if the segment
2830 * fits to the window after truncation to the window. Acceptability
2831 * of data (and SYN, FIN, of course) is checked separately.
2832 * See tcp_data_queue(), for example.
2833 *
2834 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2835 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2836 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2837 * (borrowed from freebsd)
2838 */
2839
2840 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2841 {
2842 return !before(end_seq, tp->rcv_wup) &&
2843 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2844 }
2845
2846 /* When we get a reset we do this. */
2847 static void tcp_reset(struct sock *sk)
2848 {
2849 /* We want the right error as BSD sees it (and indeed as we do). */
2850 switch (sk->sk_state) {
2851 case TCP_SYN_SENT:
2852 sk->sk_err = ECONNREFUSED;
2853 break;
2854 case TCP_CLOSE_WAIT:
2855 sk->sk_err = EPIPE;
2856 break;
2857 case TCP_CLOSE:
2858 return;
2859 default:
2860 sk->sk_err = ECONNRESET;
2861 }
2862
2863 if (!sock_flag(sk, SOCK_DEAD))
2864 sk->sk_error_report(sk);
2865
2866 tcp_done(sk);
2867 }
2868
2869 /*
2870 * Process the FIN bit. This now behaves as it is supposed to work
2871 * and the FIN takes effect when it is validly part of sequence
2872 * space. Not before when we get holes.
2873 *
2874 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2875 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2876 * TIME-WAIT)
2877 *
2878 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2879 * close and we go into CLOSING (and later onto TIME-WAIT)
2880 *
2881 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2882 */
2883 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2884 {
2885 struct tcp_sock *tp = tcp_sk(sk);
2886
2887 inet_csk_schedule_ack(sk);
2888
2889 sk->sk_shutdown |= RCV_SHUTDOWN;
2890 sock_set_flag(sk, SOCK_DONE);
2891
2892 switch (sk->sk_state) {
2893 case TCP_SYN_RECV:
2894 case TCP_ESTABLISHED:
2895 /* Move to CLOSE_WAIT */
2896 tcp_set_state(sk, TCP_CLOSE_WAIT);
2897 inet_csk(sk)->icsk_ack.pingpong = 1;
2898 break;
2899
2900 case TCP_CLOSE_WAIT:
2901 case TCP_CLOSING:
2902 /* Received a retransmission of the FIN, do
2903 * nothing.
2904 */
2905 break;
2906 case TCP_LAST_ACK:
2907 /* RFC793: Remain in the LAST-ACK state. */
2908 break;
2909
2910 case TCP_FIN_WAIT1:
2911 /* This case occurs when a simultaneous close
2912 * happens, we must ack the received FIN and
2913 * enter the CLOSING state.
2914 */
2915 tcp_send_ack(sk);
2916 tcp_set_state(sk, TCP_CLOSING);
2917 break;
2918 case TCP_FIN_WAIT2:
2919 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2920 tcp_send_ack(sk);
2921 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2922 break;
2923 default:
2924 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2925 * cases we should never reach this piece of code.
2926 */
2927 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2928 __FUNCTION__, sk->sk_state);
2929 break;
2930 };
2931
2932 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2933 * Probably, we should reset in this case. For now drop them.
2934 */
2935 __skb_queue_purge(&tp->out_of_order_queue);
2936 if (tp->rx_opt.sack_ok)
2937 tcp_sack_reset(&tp->rx_opt);
2938 sk_stream_mem_reclaim(sk);
2939
2940 if (!sock_flag(sk, SOCK_DEAD)) {
2941 sk->sk_state_change(sk);
2942
2943 /* Do not send POLL_HUP for half duplex close. */
2944 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2945 sk->sk_state == TCP_CLOSE)
2946 sk_wake_async(sk, 1, POLL_HUP);
2947 else
2948 sk_wake_async(sk, 1, POLL_IN);
2949 }
2950 }
2951
2952 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2953 {
2954 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2955 if (before(seq, sp->start_seq))
2956 sp->start_seq = seq;
2957 if (after(end_seq, sp->end_seq))
2958 sp->end_seq = end_seq;
2959 return 1;
2960 }
2961 return 0;
2962 }
2963
2964 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2965 {
2966 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2967 if (before(seq, tp->rcv_nxt))
2968 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2969 else
2970 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2971
2972 tp->rx_opt.dsack = 1;
2973 tp->duplicate_sack[0].start_seq = seq;
2974 tp->duplicate_sack[0].end_seq = end_seq;
2975 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2976 }
2977 }
2978
2979 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2980 {
2981 if (!tp->rx_opt.dsack)
2982 tcp_dsack_set(tp, seq, end_seq);
2983 else
2984 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2985 }
2986
2987 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2988 {
2989 struct tcp_sock *tp = tcp_sk(sk);
2990
2991 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2992 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2993 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2994 tcp_enter_quickack_mode(sk);
2995
2996 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2997 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2998
2999 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3000 end_seq = tp->rcv_nxt;
3001 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3002 }
3003 }
3004
3005 tcp_send_ack(sk);
3006 }
3007
3008 /* These routines update the SACK block as out-of-order packets arrive or
3009 * in-order packets close up the sequence space.
3010 */
3011 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3012 {
3013 int this_sack;
3014 struct tcp_sack_block *sp = &tp->selective_acks[0];
3015 struct tcp_sack_block *swalk = sp+1;
3016
3017 /* See if the recent change to the first SACK eats into
3018 * or hits the sequence space of other SACK blocks, if so coalesce.
3019 */
3020 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3021 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3022 int i;
3023
3024 /* Zap SWALK, by moving every further SACK up by one slot.
3025 * Decrease num_sacks.
3026 */
3027 tp->rx_opt.num_sacks--;
3028 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3029 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3030 sp[i] = sp[i+1];
3031 continue;
3032 }
3033 this_sack++, swalk++;
3034 }
3035 }
3036
3037 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3038 {
3039 __u32 tmp;
3040
3041 tmp = sack1->start_seq;
3042 sack1->start_seq = sack2->start_seq;
3043 sack2->start_seq = tmp;
3044
3045 tmp = sack1->end_seq;
3046 sack1->end_seq = sack2->end_seq;
3047 sack2->end_seq = tmp;
3048 }
3049
3050 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3051 {
3052 struct tcp_sock *tp = tcp_sk(sk);
3053 struct tcp_sack_block *sp = &tp->selective_acks[0];
3054 int cur_sacks = tp->rx_opt.num_sacks;
3055 int this_sack;
3056
3057 if (!cur_sacks)
3058 goto new_sack;
3059
3060 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3061 if (tcp_sack_extend(sp, seq, end_seq)) {
3062 /* Rotate this_sack to the first one. */
3063 for (; this_sack>0; this_sack--, sp--)
3064 tcp_sack_swap(sp, sp-1);
3065 if (cur_sacks > 1)
3066 tcp_sack_maybe_coalesce(tp);
3067 return;
3068 }
3069 }
3070
3071 /* Could not find an adjacent existing SACK, build a new one,
3072 * put it at the front, and shift everyone else down. We
3073 * always know there is at least one SACK present already here.
3074 *
3075 * If the sack array is full, forget about the last one.
3076 */
3077 if (this_sack >= 4) {
3078 this_sack--;
3079 tp->rx_opt.num_sacks--;
3080 sp--;
3081 }
3082 for(; this_sack > 0; this_sack--, sp--)
3083 *sp = *(sp-1);
3084
3085 new_sack:
3086 /* Build the new head SACK, and we're done. */
3087 sp->start_seq = seq;
3088 sp->end_seq = end_seq;
3089 tp->rx_opt.num_sacks++;
3090 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3091 }
3092
3093 /* RCV.NXT advances, some SACKs should be eaten. */
3094
3095 static void tcp_sack_remove(struct tcp_sock *tp)
3096 {
3097 struct tcp_sack_block *sp = &tp->selective_acks[0];
3098 int num_sacks = tp->rx_opt.num_sacks;
3099 int this_sack;
3100
3101 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3102 if (skb_queue_empty(&tp->out_of_order_queue)) {
3103 tp->rx_opt.num_sacks = 0;
3104 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3105 return;
3106 }
3107
3108 for(this_sack = 0; this_sack < num_sacks; ) {
3109 /* Check if the start of the sack is covered by RCV.NXT. */
3110 if (!before(tp->rcv_nxt, sp->start_seq)) {
3111 int i;
3112
3113 /* RCV.NXT must cover all the block! */
3114 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3115
3116 /* Zap this SACK, by moving forward any other SACKS. */
3117 for (i=this_sack+1; i < num_sacks; i++)
3118 tp->selective_acks[i-1] = tp->selective_acks[i];
3119 num_sacks--;
3120 continue;
3121 }
3122 this_sack++;
3123 sp++;
3124 }
3125 if (num_sacks != tp->rx_opt.num_sacks) {
3126 tp->rx_opt.num_sacks = num_sacks;
3127 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3128 }
3129 }
3130
3131 /* This one checks to see if we can put data from the
3132 * out_of_order queue into the receive_queue.
3133 */
3134 static void tcp_ofo_queue(struct sock *sk)
3135 {
3136 struct tcp_sock *tp = tcp_sk(sk);
3137 __u32 dsack_high = tp->rcv_nxt;
3138 struct sk_buff *skb;
3139
3140 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3141 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3142 break;
3143
3144 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3145 __u32 dsack = dsack_high;
3146 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3147 dsack_high = TCP_SKB_CB(skb)->end_seq;
3148 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3149 }
3150
3151 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3152 SOCK_DEBUG(sk, "ofo packet was already received \n");
3153 __skb_unlink(skb, &tp->out_of_order_queue);
3154 __kfree_skb(skb);
3155 continue;
3156 }
3157 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3158 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3159 TCP_SKB_CB(skb)->end_seq);
3160
3161 __skb_unlink(skb, &tp->out_of_order_queue);
3162 __skb_queue_tail(&sk->sk_receive_queue, skb);
3163 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3164 if(skb->h.th->fin)
3165 tcp_fin(skb, sk, skb->h.th);
3166 }
3167 }
3168
3169 static int tcp_prune_queue(struct sock *sk);
3170
3171 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3172 {
3173 struct tcphdr *th = skb->h.th;
3174 struct tcp_sock *tp = tcp_sk(sk);
3175 int eaten = -1;
3176
3177 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3178 goto drop;
3179
3180 __skb_pull(skb, th->doff*4);
3181
3182 TCP_ECN_accept_cwr(tp, skb);
3183
3184 if (tp->rx_opt.dsack) {
3185 tp->rx_opt.dsack = 0;
3186 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3187 4 - tp->rx_opt.tstamp_ok);
3188 }
3189
3190 /* Queue data for delivery to the user.
3191 * Packets in sequence go to the receive queue.
3192 * Out of sequence packets to the out_of_order_queue.
3193 */
3194 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3195 if (tcp_receive_window(tp) == 0)
3196 goto out_of_window;
3197
3198 /* Ok. In sequence. In window. */
3199 if (tp->ucopy.task == current &&
3200 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3201 sock_owned_by_user(sk) && !tp->urg_data) {
3202 int chunk = min_t(unsigned int, skb->len,
3203 tp->ucopy.len);
3204
3205 __set_current_state(TASK_RUNNING);
3206
3207 local_bh_enable();
3208 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3209 tp->ucopy.len -= chunk;
3210 tp->copied_seq += chunk;
3211 eaten = (chunk == skb->len && !th->fin);
3212 tcp_rcv_space_adjust(sk);
3213 }
3214 local_bh_disable();
3215 }
3216
3217 if (eaten <= 0) {
3218 queue_and_out:
3219 if (eaten < 0 &&
3220 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3221 !sk_stream_rmem_schedule(sk, skb))) {
3222 if (tcp_prune_queue(sk) < 0 ||
3223 !sk_stream_rmem_schedule(sk, skb))
3224 goto drop;
3225 }
3226 sk_stream_set_owner_r(skb, sk);
3227 __skb_queue_tail(&sk->sk_receive_queue, skb);
3228 }
3229 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3230 if(skb->len)
3231 tcp_event_data_recv(sk, tp, skb);
3232 if(th->fin)
3233 tcp_fin(skb, sk, th);
3234
3235 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3236 tcp_ofo_queue(sk);
3237
3238 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3239 * gap in queue is filled.
3240 */
3241 if (skb_queue_empty(&tp->out_of_order_queue))
3242 inet_csk(sk)->icsk_ack.pingpong = 0;
3243 }
3244
3245 if (tp->rx_opt.num_sacks)
3246 tcp_sack_remove(tp);
3247
3248 tcp_fast_path_check(sk, tp);
3249
3250 if (eaten > 0)
3251 __kfree_skb(skb);
3252 else if (!sock_flag(sk, SOCK_DEAD))
3253 sk->sk_data_ready(sk, 0);
3254 return;
3255 }
3256
3257 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3258 /* A retransmit, 2nd most common case. Force an immediate ack. */
3259 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3260 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3261
3262 out_of_window:
3263 tcp_enter_quickack_mode(sk);
3264 inet_csk_schedule_ack(sk);
3265 drop:
3266 __kfree_skb(skb);
3267 return;
3268 }
3269
3270 /* Out of window. F.e. zero window probe. */
3271 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3272 goto out_of_window;
3273
3274 tcp_enter_quickack_mode(sk);
3275
3276 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3277 /* Partial packet, seq < rcv_next < end_seq */
3278 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3279 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3280 TCP_SKB_CB(skb)->end_seq);
3281
3282 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3283
3284 /* If window is closed, drop tail of packet. But after
3285 * remembering D-SACK for its head made in previous line.
3286 */
3287 if (!tcp_receive_window(tp))
3288 goto out_of_window;
3289 goto queue_and_out;
3290 }
3291
3292 TCP_ECN_check_ce(tp, skb);
3293
3294 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3295 !sk_stream_rmem_schedule(sk, skb)) {
3296 if (tcp_prune_queue(sk) < 0 ||
3297 !sk_stream_rmem_schedule(sk, skb))
3298 goto drop;
3299 }
3300
3301 /* Disable header prediction. */
3302 tp->pred_flags = 0;
3303 inet_csk_schedule_ack(sk);
3304
3305 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3306 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3307
3308 sk_stream_set_owner_r(skb, sk);
3309
3310 if (!skb_peek(&tp->out_of_order_queue)) {
3311 /* Initial out of order segment, build 1 SACK. */
3312 if (tp->rx_opt.sack_ok) {
3313 tp->rx_opt.num_sacks = 1;
3314 tp->rx_opt.dsack = 0;
3315 tp->rx_opt.eff_sacks = 1;
3316 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3317 tp->selective_acks[0].end_seq =
3318 TCP_SKB_CB(skb)->end_seq;
3319 }
3320 __skb_queue_head(&tp->out_of_order_queue,skb);
3321 } else {
3322 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3323 u32 seq = TCP_SKB_CB(skb)->seq;
3324 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3325
3326 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3327 __skb_append(skb1, skb, &tp->out_of_order_queue);
3328
3329 if (!tp->rx_opt.num_sacks ||
3330 tp->selective_acks[0].end_seq != seq)
3331 goto add_sack;
3332
3333 /* Common case: data arrive in order after hole. */
3334 tp->selective_acks[0].end_seq = end_seq;
3335 return;
3336 }
3337
3338 /* Find place to insert this segment. */
3339 do {
3340 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3341 break;
3342 } while ((skb1 = skb1->prev) !=
3343 (struct sk_buff*)&tp->out_of_order_queue);
3344
3345 /* Do skb overlap to previous one? */
3346 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3347 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3348 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3349 /* All the bits are present. Drop. */
3350 __kfree_skb(skb);
3351 tcp_dsack_set(tp, seq, end_seq);
3352 goto add_sack;
3353 }
3354 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3355 /* Partial overlap. */
3356 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3357 } else {
3358 skb1 = skb1->prev;
3359 }
3360 }
3361 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3362
3363 /* And clean segments covered by new one as whole. */
3364 while ((skb1 = skb->next) !=
3365 (struct sk_buff*)&tp->out_of_order_queue &&
3366 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3367 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3368 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3369 break;
3370 }
3371 __skb_unlink(skb1, &tp->out_of_order_queue);
3372 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3373 __kfree_skb(skb1);
3374 }
3375
3376 add_sack:
3377 if (tp->rx_opt.sack_ok)
3378 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3379 }
3380 }
3381
3382 /* Collapse contiguous sequence of skbs head..tail with
3383 * sequence numbers start..end.
3384 * Segments with FIN/SYN are not collapsed (only because this
3385 * simplifies code)
3386 */
3387 static void
3388 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3389 struct sk_buff *head, struct sk_buff *tail,
3390 u32 start, u32 end)
3391 {
3392 struct sk_buff *skb;
3393
3394 /* First, check that queue is collapsible and find
3395 * the point where collapsing can be useful. */
3396 for (skb = head; skb != tail; ) {
3397 /* No new bits? It is possible on ofo queue. */
3398 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3399 struct sk_buff *next = skb->next;
3400 __skb_unlink(skb, list);
3401 __kfree_skb(skb);
3402 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3403 skb = next;
3404 continue;
3405 }
3406
3407 /* The first skb to collapse is:
3408 * - not SYN/FIN and
3409 * - bloated or contains data before "start" or
3410 * overlaps to the next one.
3411 */
3412 if (!skb->h.th->syn && !skb->h.th->fin &&
3413 (tcp_win_from_space(skb->truesize) > skb->len ||
3414 before(TCP_SKB_CB(skb)->seq, start) ||
3415 (skb->next != tail &&
3416 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3417 break;
3418
3419 /* Decided to skip this, advance start seq. */
3420 start = TCP_SKB_CB(skb)->end_seq;
3421 skb = skb->next;
3422 }
3423 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3424 return;
3425
3426 while (before(start, end)) {
3427 struct sk_buff *nskb;
3428 int header = skb_headroom(skb);
3429 int copy = SKB_MAX_ORDER(header, 0);
3430
3431 /* Too big header? This can happen with IPv6. */
3432 if (copy < 0)
3433 return;
3434 if (end-start < copy)
3435 copy = end-start;
3436 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3437 if (!nskb)
3438 return;
3439 skb_reserve(nskb, header);
3440 memcpy(nskb->head, skb->head, header);
3441 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3442 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3443 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3444 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3445 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3446 __skb_insert(nskb, skb->prev, skb, list);
3447 sk_stream_set_owner_r(nskb, sk);
3448
3449 /* Copy data, releasing collapsed skbs. */
3450 while (copy > 0) {
3451 int offset = start - TCP_SKB_CB(skb)->seq;
3452 int size = TCP_SKB_CB(skb)->end_seq - start;
3453
3454 BUG_ON(offset < 0);
3455 if (size > 0) {
3456 size = min(copy, size);
3457 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3458 BUG();
3459 TCP_SKB_CB(nskb)->end_seq += size;
3460 copy -= size;
3461 start += size;
3462 }
3463 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3464 struct sk_buff *next = skb->next;
3465 __skb_unlink(skb, list);
3466 __kfree_skb(skb);
3467 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3468 skb = next;
3469 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3470 return;
3471 }
3472 }
3473 }
3474 }
3475
3476 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3477 * and tcp_collapse() them until all the queue is collapsed.
3478 */
3479 static void tcp_collapse_ofo_queue(struct sock *sk)
3480 {
3481 struct tcp_sock *tp = tcp_sk(sk);
3482 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3483 struct sk_buff *head;
3484 u32 start, end;
3485
3486 if (skb == NULL)
3487 return;
3488
3489 start = TCP_SKB_CB(skb)->seq;
3490 end = TCP_SKB_CB(skb)->end_seq;
3491 head = skb;
3492
3493 for (;;) {
3494 skb = skb->next;
3495
3496 /* Segment is terminated when we see gap or when
3497 * we are at the end of all the queue. */
3498 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3499 after(TCP_SKB_CB(skb)->seq, end) ||
3500 before(TCP_SKB_CB(skb)->end_seq, start)) {
3501 tcp_collapse(sk, &tp->out_of_order_queue,
3502 head, skb, start, end);
3503 head = skb;
3504 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3505 break;
3506 /* Start new segment */
3507 start = TCP_SKB_CB(skb)->seq;
3508 end = TCP_SKB_CB(skb)->end_seq;
3509 } else {
3510 if (before(TCP_SKB_CB(skb)->seq, start))
3511 start = TCP_SKB_CB(skb)->seq;
3512 if (after(TCP_SKB_CB(skb)->end_seq, end))
3513 end = TCP_SKB_CB(skb)->end_seq;
3514 }
3515 }
3516 }
3517
3518 /* Reduce allocated memory if we can, trying to get
3519 * the socket within its memory limits again.
3520 *
3521 * Return less than zero if we should start dropping frames
3522 * until the socket owning process reads some of the data
3523 * to stabilize the situation.
3524 */
3525 static int tcp_prune_queue(struct sock *sk)
3526 {
3527 struct tcp_sock *tp = tcp_sk(sk);
3528
3529 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3530
3531 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3532
3533 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3534 tcp_clamp_window(sk, tp);
3535 else if (tcp_memory_pressure)
3536 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3537
3538 tcp_collapse_ofo_queue(sk);
3539 tcp_collapse(sk, &sk->sk_receive_queue,
3540 sk->sk_receive_queue.next,
3541 (struct sk_buff*)&sk->sk_receive_queue,
3542 tp->copied_seq, tp->rcv_nxt);
3543 sk_stream_mem_reclaim(sk);
3544
3545 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3546 return 0;
3547
3548 /* Collapsing did not help, destructive actions follow.
3549 * This must not ever occur. */
3550
3551 /* First, purge the out_of_order queue. */
3552 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3553 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3554 __skb_queue_purge(&tp->out_of_order_queue);
3555
3556 /* Reset SACK state. A conforming SACK implementation will
3557 * do the same at a timeout based retransmit. When a connection
3558 * is in a sad state like this, we care only about integrity
3559 * of the connection not performance.
3560 */
3561 if (tp->rx_opt.sack_ok)
3562 tcp_sack_reset(&tp->rx_opt);
3563 sk_stream_mem_reclaim(sk);
3564 }
3565
3566 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3567 return 0;
3568
3569 /* If we are really being abused, tell the caller to silently
3570 * drop receive data on the floor. It will get retransmitted
3571 * and hopefully then we'll have sufficient space.
3572 */
3573 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3574
3575 /* Massive buffer overcommit. */
3576 tp->pred_flags = 0;
3577 return -1;
3578 }
3579
3580
3581 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3582 * As additional protections, we do not touch cwnd in retransmission phases,
3583 * and if application hit its sndbuf limit recently.
3584 */
3585 void tcp_cwnd_application_limited(struct sock *sk)
3586 {
3587 struct tcp_sock *tp = tcp_sk(sk);
3588
3589 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3590 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3591 /* Limited by application or receiver window. */
3592 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3593 u32 win_used = max(tp->snd_cwnd_used, init_win);
3594 if (win_used < tp->snd_cwnd) {
3595 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3596 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3597 }
3598 tp->snd_cwnd_used = 0;
3599 }
3600 tp->snd_cwnd_stamp = tcp_time_stamp;
3601 }
3602
3603 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3604 {
3605 /* If the user specified a specific send buffer setting, do
3606 * not modify it.
3607 */
3608 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3609 return 0;
3610
3611 /* If we are under global TCP memory pressure, do not expand. */
3612 if (tcp_memory_pressure)
3613 return 0;
3614
3615 /* If we are under soft global TCP memory pressure, do not expand. */
3616 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3617 return 0;
3618
3619 /* If we filled the congestion window, do not expand. */
3620 if (tp->packets_out >= tp->snd_cwnd)
3621 return 0;
3622
3623 return 1;
3624 }
3625
3626 /* When incoming ACK allowed to free some skb from write_queue,
3627 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3628 * on the exit from tcp input handler.
3629 *
3630 * PROBLEM: sndbuf expansion does not work well with largesend.
3631 */
3632 static void tcp_new_space(struct sock *sk)
3633 {
3634 struct tcp_sock *tp = tcp_sk(sk);
3635
3636 if (tcp_should_expand_sndbuf(sk, tp)) {
3637 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3638 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3639 demanded = max_t(unsigned int, tp->snd_cwnd,
3640 tp->reordering + 1);
3641 sndmem *= 2*demanded;
3642 if (sndmem > sk->sk_sndbuf)
3643 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3644 tp->snd_cwnd_stamp = tcp_time_stamp;
3645 }
3646
3647 sk->sk_write_space(sk);
3648 }
3649
3650 static void tcp_check_space(struct sock *sk)
3651 {
3652 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3653 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3654 if (sk->sk_socket &&
3655 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3656 tcp_new_space(sk);
3657 }
3658 }
3659
3660 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3661 {
3662 tcp_push_pending_frames(sk, tp);
3663 tcp_check_space(sk);
3664 }
3665
3666 /*
3667 * Check if sending an ack is needed.
3668 */
3669 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3670 {
3671 struct tcp_sock *tp = tcp_sk(sk);
3672
3673 /* More than one full frame received... */
3674 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3675 /* ... and right edge of window advances far enough.
3676 * (tcp_recvmsg() will send ACK otherwise). Or...
3677 */
3678 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3679 /* We ACK each frame or... */
3680 tcp_in_quickack_mode(sk) ||
3681 /* We have out of order data. */
3682 (ofo_possible &&
3683 skb_peek(&tp->out_of_order_queue))) {
3684 /* Then ack it now */
3685 tcp_send_ack(sk);
3686 } else {
3687 /* Else, send delayed ack. */
3688 tcp_send_delayed_ack(sk);
3689 }
3690 }
3691
3692 static inline void tcp_ack_snd_check(struct sock *sk)
3693 {
3694 if (!inet_csk_ack_scheduled(sk)) {
3695 /* We sent a data segment already. */
3696 return;
3697 }
3698 __tcp_ack_snd_check(sk, 1);
3699 }
3700
3701 /*
3702 * This routine is only called when we have urgent data
3703 * signaled. Its the 'slow' part of tcp_urg. It could be
3704 * moved inline now as tcp_urg is only called from one
3705 * place. We handle URGent data wrong. We have to - as
3706 * BSD still doesn't use the correction from RFC961.
3707 * For 1003.1g we should support a new option TCP_STDURG to permit
3708 * either form (or just set the sysctl tcp_stdurg).
3709 */
3710
3711 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3712 {
3713 struct tcp_sock *tp = tcp_sk(sk);
3714 u32 ptr = ntohs(th->urg_ptr);
3715
3716 if (ptr && !sysctl_tcp_stdurg)
3717 ptr--;
3718 ptr += ntohl(th->seq);
3719
3720 /* Ignore urgent data that we've already seen and read. */
3721 if (after(tp->copied_seq, ptr))
3722 return;
3723
3724 /* Do not replay urg ptr.
3725 *
3726 * NOTE: interesting situation not covered by specs.
3727 * Misbehaving sender may send urg ptr, pointing to segment,
3728 * which we already have in ofo queue. We are not able to fetch
3729 * such data and will stay in TCP_URG_NOTYET until will be eaten
3730 * by recvmsg(). Seems, we are not obliged to handle such wicked
3731 * situations. But it is worth to think about possibility of some
3732 * DoSes using some hypothetical application level deadlock.
3733 */
3734 if (before(ptr, tp->rcv_nxt))
3735 return;
3736
3737 /* Do we already have a newer (or duplicate) urgent pointer? */
3738 if (tp->urg_data && !after(ptr, tp->urg_seq))
3739 return;
3740
3741 /* Tell the world about our new urgent pointer. */
3742 sk_send_sigurg(sk);
3743
3744 /* We may be adding urgent data when the last byte read was
3745 * urgent. To do this requires some care. We cannot just ignore
3746 * tp->copied_seq since we would read the last urgent byte again
3747 * as data, nor can we alter copied_seq until this data arrives
3748 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3749 *
3750 * NOTE. Double Dutch. Rendering to plain English: author of comment
3751 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3752 * and expect that both A and B disappear from stream. This is _wrong_.
3753 * Though this happens in BSD with high probability, this is occasional.
3754 * Any application relying on this is buggy. Note also, that fix "works"
3755 * only in this artificial test. Insert some normal data between A and B and we will
3756 * decline of BSD again. Verdict: it is better to remove to trap
3757 * buggy users.
3758 */
3759 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3760 !sock_flag(sk, SOCK_URGINLINE) &&
3761 tp->copied_seq != tp->rcv_nxt) {
3762 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3763 tp->copied_seq++;
3764 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3765 __skb_unlink(skb, &sk->sk_receive_queue);
3766 __kfree_skb(skb);
3767 }
3768 }
3769
3770 tp->urg_data = TCP_URG_NOTYET;
3771 tp->urg_seq = ptr;
3772
3773 /* Disable header prediction. */
3774 tp->pred_flags = 0;
3775 }
3776
3777 /* This is the 'fast' part of urgent handling. */
3778 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3779 {
3780 struct tcp_sock *tp = tcp_sk(sk);
3781
3782 /* Check if we get a new urgent pointer - normally not. */
3783 if (th->urg)
3784 tcp_check_urg(sk,th);
3785
3786 /* Do we wait for any urgent data? - normally not... */
3787 if (tp->urg_data == TCP_URG_NOTYET) {
3788 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3789 th->syn;
3790
3791 /* Is the urgent pointer pointing into this packet? */
3792 if (ptr < skb->len) {
3793 u8 tmp;
3794 if (skb_copy_bits(skb, ptr, &tmp, 1))
3795 BUG();
3796 tp->urg_data = TCP_URG_VALID | tmp;
3797 if (!sock_flag(sk, SOCK_DEAD))
3798 sk->sk_data_ready(sk, 0);
3799 }
3800 }
3801 }
3802
3803 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3804 {
3805 struct tcp_sock *tp = tcp_sk(sk);
3806 int chunk = skb->len - hlen;
3807 int err;
3808
3809 local_bh_enable();
3810 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3811 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3812 else
3813 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3814 tp->ucopy.iov);
3815
3816 if (!err) {
3817 tp->ucopy.len -= chunk;
3818 tp->copied_seq += chunk;
3819 tcp_rcv_space_adjust(sk);
3820 }
3821
3822 local_bh_disable();
3823 return err;
3824 }
3825
3826 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3827 {
3828 __sum16 result;
3829
3830 if (sock_owned_by_user(sk)) {
3831 local_bh_enable();
3832 result = __tcp_checksum_complete(skb);
3833 local_bh_disable();
3834 } else {
3835 result = __tcp_checksum_complete(skb);
3836 }
3837 return result;
3838 }
3839
3840 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3841 {
3842 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3843 __tcp_checksum_complete_user(sk, skb);
3844 }
3845
3846 #ifdef CONFIG_NET_DMA
3847 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3848 {
3849 struct tcp_sock *tp = tcp_sk(sk);
3850 int chunk = skb->len - hlen;
3851 int dma_cookie;
3852 int copied_early = 0;
3853
3854 if (tp->ucopy.wakeup)
3855 return 0;
3856
3857 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3858 tp->ucopy.dma_chan = get_softnet_dma();
3859
3860 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3861
3862 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3863 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3864
3865 if (dma_cookie < 0)
3866 goto out;
3867
3868 tp->ucopy.dma_cookie = dma_cookie;
3869 copied_early = 1;
3870
3871 tp->ucopy.len -= chunk;
3872 tp->copied_seq += chunk;
3873 tcp_rcv_space_adjust(sk);
3874
3875 if ((tp->ucopy.len == 0) ||
3876 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3877 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3878 tp->ucopy.wakeup = 1;
3879 sk->sk_data_ready(sk, 0);
3880 }
3881 } else if (chunk > 0) {
3882 tp->ucopy.wakeup = 1;
3883 sk->sk_data_ready(sk, 0);
3884 }
3885 out:
3886 return copied_early;
3887 }
3888 #endif /* CONFIG_NET_DMA */
3889
3890 /*
3891 * TCP receive function for the ESTABLISHED state.
3892 *
3893 * It is split into a fast path and a slow path. The fast path is
3894 * disabled when:
3895 * - A zero window was announced from us - zero window probing
3896 * is only handled properly in the slow path.
3897 * - Out of order segments arrived.
3898 * - Urgent data is expected.
3899 * - There is no buffer space left
3900 * - Unexpected TCP flags/window values/header lengths are received
3901 * (detected by checking the TCP header against pred_flags)
3902 * - Data is sent in both directions. Fast path only supports pure senders
3903 * or pure receivers (this means either the sequence number or the ack
3904 * value must stay constant)
3905 * - Unexpected TCP option.
3906 *
3907 * When these conditions are not satisfied it drops into a standard
3908 * receive procedure patterned after RFC793 to handle all cases.
3909 * The first three cases are guaranteed by proper pred_flags setting,
3910 * the rest is checked inline. Fast processing is turned on in
3911 * tcp_data_queue when everything is OK.
3912 */
3913 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3914 struct tcphdr *th, unsigned len)
3915 {
3916 struct tcp_sock *tp = tcp_sk(sk);
3917
3918 /*
3919 * Header prediction.
3920 * The code loosely follows the one in the famous
3921 * "30 instruction TCP receive" Van Jacobson mail.
3922 *
3923 * Van's trick is to deposit buffers into socket queue
3924 * on a device interrupt, to call tcp_recv function
3925 * on the receive process context and checksum and copy
3926 * the buffer to user space. smart...
3927 *
3928 * Our current scheme is not silly either but we take the
3929 * extra cost of the net_bh soft interrupt processing...
3930 * We do checksum and copy also but from device to kernel.
3931 */
3932
3933 tp->rx_opt.saw_tstamp = 0;
3934
3935 /* pred_flags is 0xS?10 << 16 + snd_wnd
3936 * if header_prediction is to be made
3937 * 'S' will always be tp->tcp_header_len >> 2
3938 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3939 * turn it off (when there are holes in the receive
3940 * space for instance)
3941 * PSH flag is ignored.
3942 */
3943
3944 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3945 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3946 int tcp_header_len = tp->tcp_header_len;
3947
3948 /* Timestamp header prediction: tcp_header_len
3949 * is automatically equal to th->doff*4 due to pred_flags
3950 * match.
3951 */
3952
3953 /* Check timestamp */
3954 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3955 __be32 *ptr = (__be32 *)(th + 1);
3956
3957 /* No? Slow path! */
3958 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3959 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3960 goto slow_path;
3961
3962 tp->rx_opt.saw_tstamp = 1;
3963 ++ptr;
3964 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3965 ++ptr;
3966 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3967
3968 /* If PAWS failed, check it more carefully in slow path */
3969 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3970 goto slow_path;
3971
3972 /* DO NOT update ts_recent here, if checksum fails
3973 * and timestamp was corrupted part, it will result
3974 * in a hung connection since we will drop all
3975 * future packets due to the PAWS test.
3976 */
3977 }
3978
3979 if (len <= tcp_header_len) {
3980 /* Bulk data transfer: sender */
3981 if (len == tcp_header_len) {
3982 /* Predicted packet is in window by definition.
3983 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3984 * Hence, check seq<=rcv_wup reduces to:
3985 */
3986 if (tcp_header_len ==
3987 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3988 tp->rcv_nxt == tp->rcv_wup)
3989 tcp_store_ts_recent(tp);
3990
3991 /* We know that such packets are checksummed
3992 * on entry.
3993 */
3994 tcp_ack(sk, skb, 0);
3995 __kfree_skb(skb);
3996 tcp_data_snd_check(sk, tp);
3997 return 0;
3998 } else { /* Header too small */
3999 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4000 goto discard;
4001 }
4002 } else {
4003 int eaten = 0;
4004 int copied_early = 0;
4005
4006 if (tp->copied_seq == tp->rcv_nxt &&
4007 len - tcp_header_len <= tp->ucopy.len) {
4008 #ifdef CONFIG_NET_DMA
4009 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4010 copied_early = 1;
4011 eaten = 1;
4012 }
4013 #endif
4014 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4015 __set_current_state(TASK_RUNNING);
4016
4017 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4018 eaten = 1;
4019 }
4020 if (eaten) {
4021 /* Predicted packet is in window by definition.
4022 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4023 * Hence, check seq<=rcv_wup reduces to:
4024 */
4025 if (tcp_header_len ==
4026 (sizeof(struct tcphdr) +
4027 TCPOLEN_TSTAMP_ALIGNED) &&
4028 tp->rcv_nxt == tp->rcv_wup)
4029 tcp_store_ts_recent(tp);
4030
4031 tcp_rcv_rtt_measure_ts(sk, skb);
4032
4033 __skb_pull(skb, tcp_header_len);
4034 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4035 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4036 }
4037 if (copied_early)
4038 tcp_cleanup_rbuf(sk, skb->len);
4039 }
4040 if (!eaten) {
4041 if (tcp_checksum_complete_user(sk, skb))
4042 goto csum_error;
4043
4044 /* Predicted packet is in window by definition.
4045 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4046 * Hence, check seq<=rcv_wup reduces to:
4047 */
4048 if (tcp_header_len ==
4049 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4050 tp->rcv_nxt == tp->rcv_wup)
4051 tcp_store_ts_recent(tp);
4052
4053 tcp_rcv_rtt_measure_ts(sk, skb);
4054
4055 if ((int)skb->truesize > sk->sk_forward_alloc)
4056 goto step5;
4057
4058 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4059
4060 /* Bulk data transfer: receiver */
4061 __skb_pull(skb,tcp_header_len);
4062 __skb_queue_tail(&sk->sk_receive_queue, skb);
4063 sk_stream_set_owner_r(skb, sk);
4064 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4065 }
4066
4067 tcp_event_data_recv(sk, tp, skb);
4068
4069 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4070 /* Well, only one small jumplet in fast path... */
4071 tcp_ack(sk, skb, FLAG_DATA);
4072 tcp_data_snd_check(sk, tp);
4073 if (!inet_csk_ack_scheduled(sk))
4074 goto no_ack;
4075 }
4076
4077 __tcp_ack_snd_check(sk, 0);
4078 no_ack:
4079 #ifdef CONFIG_NET_DMA
4080 if (copied_early)
4081 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4082 else
4083 #endif
4084 if (eaten)
4085 __kfree_skb(skb);
4086 else
4087 sk->sk_data_ready(sk, 0);
4088 return 0;
4089 }
4090 }
4091
4092 slow_path:
4093 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4094 goto csum_error;
4095
4096 /*
4097 * RFC1323: H1. Apply PAWS check first.
4098 */
4099 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4100 tcp_paws_discard(sk, skb)) {
4101 if (!th->rst) {
4102 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4103 tcp_send_dupack(sk, skb);
4104 goto discard;
4105 }
4106 /* Resets are accepted even if PAWS failed.
4107
4108 ts_recent update must be made after we are sure
4109 that the packet is in window.
4110 */
4111 }
4112
4113 /*
4114 * Standard slow path.
4115 */
4116
4117 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4118 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4119 * (RST) segments are validated by checking their SEQ-fields."
4120 * And page 69: "If an incoming segment is not acceptable,
4121 * an acknowledgment should be sent in reply (unless the RST bit
4122 * is set, if so drop the segment and return)".
4123 */
4124 if (!th->rst)
4125 tcp_send_dupack(sk, skb);
4126 goto discard;
4127 }
4128
4129 if(th->rst) {
4130 tcp_reset(sk);
4131 goto discard;
4132 }
4133
4134 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4135
4136 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4137 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4138 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4139 tcp_reset(sk);
4140 return 1;
4141 }
4142
4143 step5:
4144 if(th->ack)
4145 tcp_ack(sk, skb, FLAG_SLOWPATH);
4146
4147 tcp_rcv_rtt_measure_ts(sk, skb);
4148
4149 /* Process urgent data. */
4150 tcp_urg(sk, skb, th);
4151
4152 /* step 7: process the segment text */
4153 tcp_data_queue(sk, skb);
4154
4155 tcp_data_snd_check(sk, tp);
4156 tcp_ack_snd_check(sk);
4157 return 0;
4158
4159 csum_error:
4160 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4161
4162 discard:
4163 __kfree_skb(skb);
4164 return 0;
4165 }
4166
4167 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4168 struct tcphdr *th, unsigned len)
4169 {
4170 struct tcp_sock *tp = tcp_sk(sk);
4171 struct inet_connection_sock *icsk = inet_csk(sk);
4172 int saved_clamp = tp->rx_opt.mss_clamp;
4173
4174 tcp_parse_options(skb, &tp->rx_opt, 0);
4175
4176 if (th->ack) {
4177 /* rfc793:
4178 * "If the state is SYN-SENT then
4179 * first check the ACK bit
4180 * If the ACK bit is set
4181 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4182 * a reset (unless the RST bit is set, if so drop
4183 * the segment and return)"
4184 *
4185 * We do not send data with SYN, so that RFC-correct
4186 * test reduces to:
4187 */
4188 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4189 goto reset_and_undo;
4190
4191 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4192 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4193 tcp_time_stamp)) {
4194 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4195 goto reset_and_undo;
4196 }
4197
4198 /* Now ACK is acceptable.
4199 *
4200 * "If the RST bit is set
4201 * If the ACK was acceptable then signal the user "error:
4202 * connection reset", drop the segment, enter CLOSED state,
4203 * delete TCB, and return."
4204 */
4205
4206 if (th->rst) {
4207 tcp_reset(sk);
4208 goto discard;
4209 }
4210
4211 /* rfc793:
4212 * "fifth, if neither of the SYN or RST bits is set then
4213 * drop the segment and return."
4214 *
4215 * See note below!
4216 * --ANK(990513)
4217 */
4218 if (!th->syn)
4219 goto discard_and_undo;
4220
4221 /* rfc793:
4222 * "If the SYN bit is on ...
4223 * are acceptable then ...
4224 * (our SYN has been ACKed), change the connection
4225 * state to ESTABLISHED..."
4226 */
4227
4228 TCP_ECN_rcv_synack(tp, th);
4229
4230 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4231 tcp_ack(sk, skb, FLAG_SLOWPATH);
4232
4233 /* Ok.. it's good. Set up sequence numbers and
4234 * move to established.
4235 */
4236 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4237 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4238
4239 /* RFC1323: The window in SYN & SYN/ACK segments is
4240 * never scaled.
4241 */
4242 tp->snd_wnd = ntohs(th->window);
4243 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4244
4245 if (!tp->rx_opt.wscale_ok) {
4246 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4247 tp->window_clamp = min(tp->window_clamp, 65535U);
4248 }
4249
4250 if (tp->rx_opt.saw_tstamp) {
4251 tp->rx_opt.tstamp_ok = 1;
4252 tp->tcp_header_len =
4253 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4254 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4255 tcp_store_ts_recent(tp);
4256 } else {
4257 tp->tcp_header_len = sizeof(struct tcphdr);
4258 }
4259
4260 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4261 tp->rx_opt.sack_ok |= 2;
4262
4263 tcp_mtup_init(sk);
4264 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4265 tcp_initialize_rcv_mss(sk);
4266
4267 /* Remember, tcp_poll() does not lock socket!
4268 * Change state from SYN-SENT only after copied_seq
4269 * is initialized. */
4270 tp->copied_seq = tp->rcv_nxt;
4271 smp_mb();
4272 tcp_set_state(sk, TCP_ESTABLISHED);
4273
4274 security_inet_conn_established(sk, skb);
4275
4276 /* Make sure socket is routed, for correct metrics. */
4277 icsk->icsk_af_ops->rebuild_header(sk);
4278
4279 tcp_init_metrics(sk);
4280
4281 tcp_init_congestion_control(sk);
4282
4283 /* Prevent spurious tcp_cwnd_restart() on first data
4284 * packet.
4285 */
4286 tp->lsndtime = tcp_time_stamp;
4287
4288 tcp_init_buffer_space(sk);
4289
4290 if (sock_flag(sk, SOCK_KEEPOPEN))
4291 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4292
4293 if (!tp->rx_opt.snd_wscale)
4294 __tcp_fast_path_on(tp, tp->snd_wnd);
4295 else
4296 tp->pred_flags = 0;
4297
4298 if (!sock_flag(sk, SOCK_DEAD)) {
4299 sk->sk_state_change(sk);
4300 sk_wake_async(sk, 0, POLL_OUT);
4301 }
4302
4303 if (sk->sk_write_pending ||
4304 icsk->icsk_accept_queue.rskq_defer_accept ||
4305 icsk->icsk_ack.pingpong) {
4306 /* Save one ACK. Data will be ready after
4307 * several ticks, if write_pending is set.
4308 *
4309 * It may be deleted, but with this feature tcpdumps
4310 * look so _wonderfully_ clever, that I was not able
4311 * to stand against the temptation 8) --ANK
4312 */
4313 inet_csk_schedule_ack(sk);
4314 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4315 icsk->icsk_ack.ato = TCP_ATO_MIN;
4316 tcp_incr_quickack(sk);
4317 tcp_enter_quickack_mode(sk);
4318 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4319 TCP_DELACK_MAX, TCP_RTO_MAX);
4320
4321 discard:
4322 __kfree_skb(skb);
4323 return 0;
4324 } else {
4325 tcp_send_ack(sk);
4326 }
4327 return -1;
4328 }
4329
4330 /* No ACK in the segment */
4331
4332 if (th->rst) {
4333 /* rfc793:
4334 * "If the RST bit is set
4335 *
4336 * Otherwise (no ACK) drop the segment and return."
4337 */
4338
4339 goto discard_and_undo;
4340 }
4341
4342 /* PAWS check. */
4343 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4344 goto discard_and_undo;
4345
4346 if (th->syn) {
4347 /* We see SYN without ACK. It is attempt of
4348 * simultaneous connect with crossed SYNs.
4349 * Particularly, it can be connect to self.
4350 */
4351 tcp_set_state(sk, TCP_SYN_RECV);
4352
4353 if (tp->rx_opt.saw_tstamp) {
4354 tp->rx_opt.tstamp_ok = 1;
4355 tcp_store_ts_recent(tp);
4356 tp->tcp_header_len =
4357 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4358 } else {
4359 tp->tcp_header_len = sizeof(struct tcphdr);
4360 }
4361
4362 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4363 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4364
4365 /* RFC1323: The window in SYN & SYN/ACK segments is
4366 * never scaled.
4367 */
4368 tp->snd_wnd = ntohs(th->window);
4369 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4370 tp->max_window = tp->snd_wnd;
4371
4372 TCP_ECN_rcv_syn(tp, th);
4373
4374 tcp_mtup_init(sk);
4375 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4376 tcp_initialize_rcv_mss(sk);
4377
4378
4379 tcp_send_synack(sk);
4380 #if 0
4381 /* Note, we could accept data and URG from this segment.
4382 * There are no obstacles to make this.
4383 *
4384 * However, if we ignore data in ACKless segments sometimes,
4385 * we have no reasons to accept it sometimes.
4386 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4387 * is not flawless. So, discard packet for sanity.
4388 * Uncomment this return to process the data.
4389 */
4390 return -1;
4391 #else
4392 goto discard;
4393 #endif
4394 }
4395 /* "fifth, if neither of the SYN or RST bits is set then
4396 * drop the segment and return."
4397 */
4398
4399 discard_and_undo:
4400 tcp_clear_options(&tp->rx_opt);
4401 tp->rx_opt.mss_clamp = saved_clamp;
4402 goto discard;
4403
4404 reset_and_undo:
4405 tcp_clear_options(&tp->rx_opt);
4406 tp->rx_opt.mss_clamp = saved_clamp;
4407 return 1;
4408 }
4409
4410
4411 /*
4412 * This function implements the receiving procedure of RFC 793 for
4413 * all states except ESTABLISHED and TIME_WAIT.
4414 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4415 * address independent.
4416 */
4417
4418 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4419 struct tcphdr *th, unsigned len)
4420 {
4421 struct tcp_sock *tp = tcp_sk(sk);
4422 struct inet_connection_sock *icsk = inet_csk(sk);
4423 int queued = 0;
4424
4425 tp->rx_opt.saw_tstamp = 0;
4426
4427 switch (sk->sk_state) {
4428 case TCP_CLOSE:
4429 goto discard;
4430
4431 case TCP_LISTEN:
4432 if(th->ack)
4433 return 1;
4434
4435 if(th->rst)
4436 goto discard;
4437
4438 if(th->syn) {
4439 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4440 return 1;
4441
4442 /* Now we have several options: In theory there is
4443 * nothing else in the frame. KA9Q has an option to
4444 * send data with the syn, BSD accepts data with the
4445 * syn up to the [to be] advertised window and
4446 * Solaris 2.1 gives you a protocol error. For now
4447 * we just ignore it, that fits the spec precisely
4448 * and avoids incompatibilities. It would be nice in
4449 * future to drop through and process the data.
4450 *
4451 * Now that TTCP is starting to be used we ought to
4452 * queue this data.
4453 * But, this leaves one open to an easy denial of
4454 * service attack, and SYN cookies can't defend
4455 * against this problem. So, we drop the data
4456 * in the interest of security over speed unless
4457 * it's still in use.
4458 */
4459 kfree_skb(skb);
4460 return 0;
4461 }
4462 goto discard;
4463
4464 case TCP_SYN_SENT:
4465 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4466 if (queued >= 0)
4467 return queued;
4468
4469 /* Do step6 onward by hand. */
4470 tcp_urg(sk, skb, th);
4471 __kfree_skb(skb);
4472 tcp_data_snd_check(sk, tp);
4473 return 0;
4474 }
4475
4476 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4477 tcp_paws_discard(sk, skb)) {
4478 if (!th->rst) {
4479 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4480 tcp_send_dupack(sk, skb);
4481 goto discard;
4482 }
4483 /* Reset is accepted even if it did not pass PAWS. */
4484 }
4485
4486 /* step 1: check sequence number */
4487 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4488 if (!th->rst)
4489 tcp_send_dupack(sk, skb);
4490 goto discard;
4491 }
4492
4493 /* step 2: check RST bit */
4494 if(th->rst) {
4495 tcp_reset(sk);
4496 goto discard;
4497 }
4498
4499 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4500
4501 /* step 3: check security and precedence [ignored] */
4502
4503 /* step 4:
4504 *
4505 * Check for a SYN in window.
4506 */
4507 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4508 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4509 tcp_reset(sk);
4510 return 1;
4511 }
4512
4513 /* step 5: check the ACK field */
4514 if (th->ack) {
4515 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4516
4517 switch(sk->sk_state) {
4518 case TCP_SYN_RECV:
4519 if (acceptable) {
4520 tp->copied_seq = tp->rcv_nxt;
4521 smp_mb();
4522 tcp_set_state(sk, TCP_ESTABLISHED);
4523 sk->sk_state_change(sk);
4524
4525 /* Note, that this wakeup is only for marginal
4526 * crossed SYN case. Passively open sockets
4527 * are not waked up, because sk->sk_sleep ==
4528 * NULL and sk->sk_socket == NULL.
4529 */
4530 if (sk->sk_socket) {
4531 sk_wake_async(sk,0,POLL_OUT);
4532 }
4533
4534 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4535 tp->snd_wnd = ntohs(th->window) <<
4536 tp->rx_opt.snd_wscale;
4537 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4538 TCP_SKB_CB(skb)->seq);
4539
4540 /* tcp_ack considers this ACK as duplicate
4541 * and does not calculate rtt.
4542 * Fix it at least with timestamps.
4543 */
4544 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4545 !tp->srtt)
4546 tcp_ack_saw_tstamp(sk, 0);
4547
4548 if (tp->rx_opt.tstamp_ok)
4549 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4550
4551 /* Make sure socket is routed, for
4552 * correct metrics.
4553 */
4554 icsk->icsk_af_ops->rebuild_header(sk);
4555
4556 tcp_init_metrics(sk);
4557
4558 tcp_init_congestion_control(sk);
4559
4560 /* Prevent spurious tcp_cwnd_restart() on
4561 * first data packet.
4562 */
4563 tp->lsndtime = tcp_time_stamp;
4564
4565 tcp_mtup_init(sk);
4566 tcp_initialize_rcv_mss(sk);
4567 tcp_init_buffer_space(sk);
4568 tcp_fast_path_on(tp);
4569 } else {
4570 return 1;
4571 }
4572 break;
4573
4574 case TCP_FIN_WAIT1:
4575 if (tp->snd_una == tp->write_seq) {
4576 tcp_set_state(sk, TCP_FIN_WAIT2);
4577 sk->sk_shutdown |= SEND_SHUTDOWN;
4578 dst_confirm(sk->sk_dst_cache);
4579
4580 if (!sock_flag(sk, SOCK_DEAD))
4581 /* Wake up lingering close() */
4582 sk->sk_state_change(sk);
4583 else {
4584 int tmo;
4585
4586 if (tp->linger2 < 0 ||
4587 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4588 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4589 tcp_done(sk);
4590 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4591 return 1;
4592 }
4593
4594 tmo = tcp_fin_time(sk);
4595 if (tmo > TCP_TIMEWAIT_LEN) {
4596 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4597 } else if (th->fin || sock_owned_by_user(sk)) {
4598 /* Bad case. We could lose such FIN otherwise.
4599 * It is not a big problem, but it looks confusing
4600 * and not so rare event. We still can lose it now,
4601 * if it spins in bh_lock_sock(), but it is really
4602 * marginal case.
4603 */
4604 inet_csk_reset_keepalive_timer(sk, tmo);
4605 } else {
4606 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4607 goto discard;
4608 }
4609 }
4610 }
4611 break;
4612
4613 case TCP_CLOSING:
4614 if (tp->snd_una == tp->write_seq) {
4615 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4616 goto discard;
4617 }
4618 break;
4619
4620 case TCP_LAST_ACK:
4621 if (tp->snd_una == tp->write_seq) {
4622 tcp_update_metrics(sk);
4623 tcp_done(sk);
4624 goto discard;
4625 }
4626 break;
4627 }
4628 } else
4629 goto discard;
4630
4631 /* step 6: check the URG bit */
4632 tcp_urg(sk, skb, th);
4633
4634 /* step 7: process the segment text */
4635 switch (sk->sk_state) {
4636 case TCP_CLOSE_WAIT:
4637 case TCP_CLOSING:
4638 case TCP_LAST_ACK:
4639 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4640 break;
4641 case TCP_FIN_WAIT1:
4642 case TCP_FIN_WAIT2:
4643 /* RFC 793 says to queue data in these states,
4644 * RFC 1122 says we MUST send a reset.
4645 * BSD 4.4 also does reset.
4646 */
4647 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4648 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4649 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4650 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4651 tcp_reset(sk);
4652 return 1;
4653 }
4654 }
4655 /* Fall through */
4656 case TCP_ESTABLISHED:
4657 tcp_data_queue(sk, skb);
4658 queued = 1;
4659 break;
4660 }
4661
4662 /* tcp_data could move socket to TIME-WAIT */
4663 if (sk->sk_state != TCP_CLOSE) {
4664 tcp_data_snd_check(sk, tp);
4665 tcp_ack_snd_check(sk);
4666 }
4667
4668 if (!queued) {
4669 discard:
4670 __kfree_skb(skb);
4671 }
4672 return 0;
4673 }
4674
4675 EXPORT_SYMBOL(sysctl_tcp_ecn);
4676 EXPORT_SYMBOL(sysctl_tcp_reordering);
4677 EXPORT_SYMBOL(tcp_parse_options);
4678 EXPORT_SYMBOL(tcp_rcv_established);
4679 EXPORT_SYMBOL(tcp_rcv_state_process);
4680 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.136067 seconds and 6 git commands to generate.