[TCP] FRTO: Reverse RETRANS bit clearing logic
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
120 {
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
124
125 icsk->icsk_ack.last_seg_size = 0;
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
130 len = skb_shinfo(skb)->gso_size ?: skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
157 }
158 }
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 }
163 }
164
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169
170 if (quickacks==0)
171 quickacks=2;
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183
184 /* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193
194 /* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
229 * window and then starts to feed us spaghetti. But it should work
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
236 {
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249 }
250
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
253 {
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 inet_csk(sk)->icsk_ack.quick |= 1;
271 }
272 }
273 }
274
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
283 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291
292 /* 4. Try to fixup all. It is made immediately after connection enters
293 * established state.
294 */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 struct inet_connection_sock *icsk = inet_csk(sk);
332
333 icsk->icsk_ack.quick = 0;
334
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
341 }
342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345
346
347 /* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365
366 /* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
392 * non-timestamp case, we do not smooth things out
393 * else with timestamps disabled convergence takes too
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
402 /* No previous measure. */
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408 }
409
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420 new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 struct tcp_sock *tp = tcp_sk(sk);
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433
434 /*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
443
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
446
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
451
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
486
487 new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490 }
491
492 /* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 struct inet_connection_sock *icsk = inet_csk(sk);
505 u32 now;
506
507 inet_csk_schedule_ack(sk);
508
509 tcp_measure_rcv_mss(sk, skb);
510
511 tcp_rcv_rtt_measure(tp);
512
513 now = tcp_time_stamp;
514
515 if (!icsk->icsk_ack.ato) {
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
521 } else {
522 int m = now - icsk->icsk_ack.lrcvtime;
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
532 /* Too long gap. Apparently sender failed to
533 * restart window, so that we send ACKs quickly.
534 */
535 tcp_incr_quickack(sk);
536 sk_stream_mem_reclaim(sk);
537 }
538 }
539 icsk->icsk_ack.lrcvtime = now;
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545 }
546
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 long m = mrtt; /* RTT */
560
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
572 * too slowly, when it should be increased quickly, decrease too quickly
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
617 }
618
619 /* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 const struct tcp_sock *tp = tcp_sk(sk);
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
633 * ACKs in some circumstances.
634 */
635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
640 * with correct one. It is exactly, which we pretend to do.
641 */
642 }
643
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652
653 /* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
668 const struct inet_connection_sock *icsk = inet_csk(sk);
669 int m;
670
671 if (icsk->icsk_backoff || !tp->srtt) {
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 icsk->icsk_ca_state == TCP_CA_Open) {
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745 }
746
747 /* Numbers are taken from RFC2414. */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
753 if (tp->mss_cache > 1460)
754 cwnd = 2;
755 else
756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780 }
781
782 /* Initialize metrics on socket. */
783
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
819 * is sent until it is ACKed. In normal circumstances sending small
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843 reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 }
853 }
854
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882 }
883
884 /* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 const struct inet_connection_sock *icsk = inet_csk(sk);
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 struct sk_buff *cached_skb;
940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 int reord = tp->packets_out;
942 int prior_fackets;
943 u32 lost_retrans = 0;
944 int flag = 0;
945 int dup_sack = 0;
946 int cached_fack_count;
947 int i;
948 int first_sack_index;
949
950 if (!tp->sacked_out)
951 tp->fackets_out = 0;
952 prior_fackets = tp->fackets_out;
953
954 /* Check for D-SACK. */
955 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 dup_sack = 1;
957 tp->rx_opt.sack_ok |= 4;
958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 } else if (num_sacks > 1 &&
960 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 dup_sack = 1;
963 tp->rx_opt.sack_ok |= 4;
964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 }
966
967 /* D-SACK for already forgotten data...
968 * Do dumb counting. */
969 if (dup_sack &&
970 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 after(ntohl(sp[0].end_seq), tp->undo_marker))
972 tp->undo_retrans--;
973
974 /* Eliminate too old ACKs, but take into
975 * account more or less fresh ones, they can
976 * contain valid SACK info.
977 */
978 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 return 0;
980
981 /* SACK fastpath:
982 * if the only SACK change is the increase of the end_seq of
983 * the first block then only apply that SACK block
984 * and use retrans queue hinting otherwise slowpath */
985 flag = 1;
986 for (i = 0; i < num_sacks; i++) {
987 __be32 start_seq = sp[i].start_seq;
988 __be32 end_seq = sp[i].end_seq;
989
990 if (i == 0) {
991 if (tp->recv_sack_cache[i].start_seq != start_seq)
992 flag = 0;
993 } else {
994 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 (tp->recv_sack_cache[i].end_seq != end_seq))
996 flag = 0;
997 }
998 tp->recv_sack_cache[i].start_seq = start_seq;
999 tp->recv_sack_cache[i].end_seq = end_seq;
1000 }
1001 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1002 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1003 tp->recv_sack_cache[i].start_seq = 0;
1004 tp->recv_sack_cache[i].end_seq = 0;
1005 }
1006
1007 first_sack_index = 0;
1008 if (flag)
1009 num_sacks = 1;
1010 else {
1011 int j;
1012 tp->fastpath_skb_hint = NULL;
1013
1014 /* order SACK blocks to allow in order walk of the retrans queue */
1015 for (i = num_sacks-1; i > 0; i--) {
1016 for (j = 0; j < i; j++){
1017 if (after(ntohl(sp[j].start_seq),
1018 ntohl(sp[j+1].start_seq))){
1019 struct tcp_sack_block_wire tmp;
1020
1021 tmp = sp[j];
1022 sp[j] = sp[j+1];
1023 sp[j+1] = tmp;
1024
1025 /* Track where the first SACK block goes to */
1026 if (j == first_sack_index)
1027 first_sack_index = j+1;
1028 }
1029
1030 }
1031 }
1032 }
1033
1034 /* clear flag as used for different purpose in following code */
1035 flag = 0;
1036
1037 /* Use SACK fastpath hint if valid */
1038 cached_skb = tp->fastpath_skb_hint;
1039 cached_fack_count = tp->fastpath_cnt_hint;
1040 if (!cached_skb) {
1041 cached_skb = sk->sk_write_queue.next;
1042 cached_fack_count = 0;
1043 }
1044
1045 for (i=0; i<num_sacks; i++, sp++) {
1046 struct sk_buff *skb;
1047 __u32 start_seq = ntohl(sp->start_seq);
1048 __u32 end_seq = ntohl(sp->end_seq);
1049 int fack_count;
1050
1051 skb = cached_skb;
1052 fack_count = cached_fack_count;
1053
1054 /* Event "B" in the comment above. */
1055 if (after(end_seq, tp->high_seq))
1056 flag |= FLAG_DATA_LOST;
1057
1058 sk_stream_for_retrans_queue_from(skb, sk) {
1059 int in_sack, pcount;
1060 u8 sacked;
1061
1062 cached_skb = skb;
1063 cached_fack_count = fack_count;
1064 if (i == first_sack_index) {
1065 tp->fastpath_skb_hint = skb;
1066 tp->fastpath_cnt_hint = fack_count;
1067 }
1068
1069 /* The retransmission queue is always in order, so
1070 * we can short-circuit the walk early.
1071 */
1072 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1073 break;
1074
1075 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1076 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1077
1078 pcount = tcp_skb_pcount(skb);
1079
1080 if (pcount > 1 && !in_sack &&
1081 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1082 unsigned int pkt_len;
1083
1084 in_sack = !after(start_seq,
1085 TCP_SKB_CB(skb)->seq);
1086
1087 if (!in_sack)
1088 pkt_len = (start_seq -
1089 TCP_SKB_CB(skb)->seq);
1090 else
1091 pkt_len = (end_seq -
1092 TCP_SKB_CB(skb)->seq);
1093 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1094 break;
1095 pcount = tcp_skb_pcount(skb);
1096 }
1097
1098 fack_count += pcount;
1099
1100 sacked = TCP_SKB_CB(skb)->sacked;
1101
1102 /* Account D-SACK for retransmitted packet. */
1103 if ((dup_sack && in_sack) &&
1104 (sacked & TCPCB_RETRANS) &&
1105 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1106 tp->undo_retrans--;
1107
1108 /* The frame is ACKed. */
1109 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1110 if (sacked&TCPCB_RETRANS) {
1111 if ((dup_sack && in_sack) &&
1112 (sacked&TCPCB_SACKED_ACKED))
1113 reord = min(fack_count, reord);
1114 } else {
1115 /* If it was in a hole, we detected reordering. */
1116 if (fack_count < prior_fackets &&
1117 !(sacked&TCPCB_SACKED_ACKED))
1118 reord = min(fack_count, reord);
1119 }
1120
1121 /* Nothing to do; acked frame is about to be dropped. */
1122 continue;
1123 }
1124
1125 if ((sacked&TCPCB_SACKED_RETRANS) &&
1126 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1127 (!lost_retrans || after(end_seq, lost_retrans)))
1128 lost_retrans = end_seq;
1129
1130 if (!in_sack)
1131 continue;
1132
1133 if (!(sacked&TCPCB_SACKED_ACKED)) {
1134 if (sacked & TCPCB_SACKED_RETRANS) {
1135 /* If the segment is not tagged as lost,
1136 * we do not clear RETRANS, believing
1137 * that retransmission is still in flight.
1138 */
1139 if (sacked & TCPCB_LOST) {
1140 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1141 tp->lost_out -= tcp_skb_pcount(skb);
1142 tp->retrans_out -= tcp_skb_pcount(skb);
1143
1144 /* clear lost hint */
1145 tp->retransmit_skb_hint = NULL;
1146 }
1147 } else {
1148 /* New sack for not retransmitted frame,
1149 * which was in hole. It is reordering.
1150 */
1151 if (!(sacked & TCPCB_RETRANS) &&
1152 fack_count < prior_fackets)
1153 reord = min(fack_count, reord);
1154
1155 if (sacked & TCPCB_LOST) {
1156 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1157 tp->lost_out -= tcp_skb_pcount(skb);
1158
1159 /* clear lost hint */
1160 tp->retransmit_skb_hint = NULL;
1161 }
1162 }
1163
1164 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1165 flag |= FLAG_DATA_SACKED;
1166 tp->sacked_out += tcp_skb_pcount(skb);
1167
1168 if (fack_count > tp->fackets_out)
1169 tp->fackets_out = fack_count;
1170 } else {
1171 if (dup_sack && (sacked&TCPCB_RETRANS))
1172 reord = min(fack_count, reord);
1173 }
1174
1175 /* D-SACK. We can detect redundant retransmission
1176 * in S|R and plain R frames and clear it.
1177 * undo_retrans is decreased above, L|R frames
1178 * are accounted above as well.
1179 */
1180 if (dup_sack &&
1181 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 tp->retrans_out -= tcp_skb_pcount(skb);
1184 tp->retransmit_skb_hint = NULL;
1185 }
1186 }
1187 }
1188
1189 /* Check for lost retransmit. This superb idea is
1190 * borrowed from "ratehalving". Event "C".
1191 * Later note: FACK people cheated me again 8),
1192 * we have to account for reordering! Ugly,
1193 * but should help.
1194 */
1195 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1196 struct sk_buff *skb;
1197
1198 sk_stream_for_retrans_queue(skb, sk) {
1199 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1200 break;
1201 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1202 continue;
1203 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1204 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1205 (IsFack(tp) ||
1206 !before(lost_retrans,
1207 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1208 tp->mss_cache))) {
1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 tp->retrans_out -= tcp_skb_pcount(skb);
1211
1212 /* clear lost hint */
1213 tp->retransmit_skb_hint = NULL;
1214
1215 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1216 tp->lost_out += tcp_skb_pcount(skb);
1217 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1218 flag |= FLAG_DATA_SACKED;
1219 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1220 }
1221 }
1222 }
1223 }
1224
1225 tp->left_out = tp->sacked_out + tp->lost_out;
1226
1227 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1228 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1229
1230 #if FASTRETRANS_DEBUG > 0
1231 BUG_TRAP((int)tp->sacked_out >= 0);
1232 BUG_TRAP((int)tp->lost_out >= 0);
1233 BUG_TRAP((int)tp->retrans_out >= 0);
1234 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1235 #endif
1236 return flag;
1237 }
1238
1239 /* F-RTO can only be used if these conditions are satisfied:
1240 * - there must be some unsent new data
1241 * - the advertised window should allow sending it
1242 * - TCP has never retransmitted anything other than head
1243 */
1244 int tcp_use_frto(struct sock *sk)
1245 {
1246 const struct tcp_sock *tp = tcp_sk(sk);
1247 struct sk_buff *skb;
1248
1249 if (!sysctl_tcp_frto || !sk->sk_send_head ||
1250 after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1251 tp->snd_una + tp->snd_wnd))
1252 return 0;
1253
1254 /* Avoid expensive walking of rexmit queue if possible */
1255 if (tp->retrans_out > 1)
1256 return 0;
1257
1258 skb = skb_peek(&sk->sk_write_queue)->next; /* Skips head */
1259 sk_stream_for_retrans_queue_from(skb, sk) {
1260 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1261 return 0;
1262 /* Short-circuit when first non-SACKed skb has been checked */
1263 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1264 break;
1265 }
1266 return 1;
1267 }
1268
1269 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1270 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1271 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1272 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1273 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1274 * bits are handled if the Loss state is really to be entered (in
1275 * tcp_enter_frto_loss).
1276 *
1277 * Do like tcp_enter_loss() would; when RTO expires the second time it
1278 * does:
1279 * "Reduce ssthresh if it has not yet been made inside this window."
1280 */
1281 void tcp_enter_frto(struct sock *sk)
1282 {
1283 const struct inet_connection_sock *icsk = inet_csk(sk);
1284 struct tcp_sock *tp = tcp_sk(sk);
1285 struct sk_buff *skb;
1286
1287 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1288 tp->snd_una == tp->high_seq ||
1289 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1290 !icsk->icsk_retransmits)) {
1291 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1292 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1293 tcp_ca_event(sk, CA_EVENT_FRTO);
1294 }
1295
1296 tp->undo_marker = tp->snd_una;
1297 tp->undo_retrans = 0;
1298
1299 skb = skb_peek(&sk->sk_write_queue);
1300 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1301 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1302 tp->retrans_out -= tcp_skb_pcount(skb);
1303 }
1304 tcp_sync_left_out(tp);
1305
1306 tcp_set_ca_state(sk, TCP_CA_Disorder);
1307 tp->high_seq = tp->snd_nxt;
1308 tp->frto_highmark = tp->snd_nxt;
1309 tp->frto_counter = 1;
1310 }
1311
1312 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1313 * which indicates that we should follow the traditional RTO recovery,
1314 * i.e. mark everything lost and do go-back-N retransmission.
1315 */
1316 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1317 {
1318 struct tcp_sock *tp = tcp_sk(sk);
1319 struct sk_buff *skb;
1320 int cnt = 0;
1321
1322 tp->sacked_out = 0;
1323 tp->lost_out = 0;
1324 tp->fackets_out = 0;
1325 tp->retrans_out = 0;
1326
1327 sk_stream_for_retrans_queue(skb, sk) {
1328 cnt += tcp_skb_pcount(skb);
1329 /*
1330 * Count the retransmission made on RTO correctly (only when
1331 * waiting for the first ACK and did not get it)...
1332 */
1333 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1334 tp->retrans_out += tcp_skb_pcount(skb);
1335 /* ...enter this if branch just for the first segment */
1336 flag |= FLAG_DATA_ACKED;
1337 } else {
1338 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1339 }
1340 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1341
1342 /* Do not mark those segments lost that were
1343 * forward transmitted after RTO
1344 */
1345 if (!after(TCP_SKB_CB(skb)->end_seq,
1346 tp->frto_highmark)) {
1347 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1348 tp->lost_out += tcp_skb_pcount(skb);
1349 }
1350 } else {
1351 tp->sacked_out += tcp_skb_pcount(skb);
1352 tp->fackets_out = cnt;
1353 }
1354 }
1355 tcp_sync_left_out(tp);
1356
1357 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1358 tp->snd_cwnd_cnt = 0;
1359 tp->snd_cwnd_stamp = tcp_time_stamp;
1360 tp->undo_marker = 0;
1361 tp->frto_counter = 0;
1362
1363 tp->reordering = min_t(unsigned int, tp->reordering,
1364 sysctl_tcp_reordering);
1365 tcp_set_ca_state(sk, TCP_CA_Loss);
1366 tp->high_seq = tp->frto_highmark;
1367 TCP_ECN_queue_cwr(tp);
1368
1369 clear_all_retrans_hints(tp);
1370 }
1371
1372 void tcp_clear_retrans(struct tcp_sock *tp)
1373 {
1374 tp->left_out = 0;
1375 tp->retrans_out = 0;
1376
1377 tp->fackets_out = 0;
1378 tp->sacked_out = 0;
1379 tp->lost_out = 0;
1380
1381 tp->undo_marker = 0;
1382 tp->undo_retrans = 0;
1383 }
1384
1385 /* Enter Loss state. If "how" is not zero, forget all SACK information
1386 * and reset tags completely, otherwise preserve SACKs. If receiver
1387 * dropped its ofo queue, we will know this due to reneging detection.
1388 */
1389 void tcp_enter_loss(struct sock *sk, int how)
1390 {
1391 const struct inet_connection_sock *icsk = inet_csk(sk);
1392 struct tcp_sock *tp = tcp_sk(sk);
1393 struct sk_buff *skb;
1394 int cnt = 0;
1395
1396 /* Reduce ssthresh if it has not yet been made inside this window. */
1397 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1398 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1399 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1400 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1401 tcp_ca_event(sk, CA_EVENT_LOSS);
1402 }
1403 tp->snd_cwnd = 1;
1404 tp->snd_cwnd_cnt = 0;
1405 tp->snd_cwnd_stamp = tcp_time_stamp;
1406
1407 tp->bytes_acked = 0;
1408 tcp_clear_retrans(tp);
1409
1410 /* Push undo marker, if it was plain RTO and nothing
1411 * was retransmitted. */
1412 if (!how)
1413 tp->undo_marker = tp->snd_una;
1414
1415 sk_stream_for_retrans_queue(skb, sk) {
1416 cnt += tcp_skb_pcount(skb);
1417 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1418 tp->undo_marker = 0;
1419 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1420 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1421 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1422 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1423 tp->lost_out += tcp_skb_pcount(skb);
1424 } else {
1425 tp->sacked_out += tcp_skb_pcount(skb);
1426 tp->fackets_out = cnt;
1427 }
1428 }
1429 tcp_sync_left_out(tp);
1430
1431 tp->reordering = min_t(unsigned int, tp->reordering,
1432 sysctl_tcp_reordering);
1433 tcp_set_ca_state(sk, TCP_CA_Loss);
1434 tp->high_seq = tp->snd_nxt;
1435 TCP_ECN_queue_cwr(tp);
1436
1437 clear_all_retrans_hints(tp);
1438 }
1439
1440 static int tcp_check_sack_reneging(struct sock *sk)
1441 {
1442 struct sk_buff *skb;
1443
1444 /* If ACK arrived pointing to a remembered SACK,
1445 * it means that our remembered SACKs do not reflect
1446 * real state of receiver i.e.
1447 * receiver _host_ is heavily congested (or buggy).
1448 * Do processing similar to RTO timeout.
1449 */
1450 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1451 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1452 struct inet_connection_sock *icsk = inet_csk(sk);
1453 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1454
1455 tcp_enter_loss(sk, 1);
1456 icsk->icsk_retransmits++;
1457 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1458 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1459 icsk->icsk_rto, TCP_RTO_MAX);
1460 return 1;
1461 }
1462 return 0;
1463 }
1464
1465 static inline int tcp_fackets_out(struct tcp_sock *tp)
1466 {
1467 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1468 }
1469
1470 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1471 {
1472 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1473 }
1474
1475 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1476 {
1477 return tp->packets_out &&
1478 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1479 }
1480
1481 /* Linux NewReno/SACK/FACK/ECN state machine.
1482 * --------------------------------------
1483 *
1484 * "Open" Normal state, no dubious events, fast path.
1485 * "Disorder" In all the respects it is "Open",
1486 * but requires a bit more attention. It is entered when
1487 * we see some SACKs or dupacks. It is split of "Open"
1488 * mainly to move some processing from fast path to slow one.
1489 * "CWR" CWND was reduced due to some Congestion Notification event.
1490 * It can be ECN, ICMP source quench, local device congestion.
1491 * "Recovery" CWND was reduced, we are fast-retransmitting.
1492 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1493 *
1494 * tcp_fastretrans_alert() is entered:
1495 * - each incoming ACK, if state is not "Open"
1496 * - when arrived ACK is unusual, namely:
1497 * * SACK
1498 * * Duplicate ACK.
1499 * * ECN ECE.
1500 *
1501 * Counting packets in flight is pretty simple.
1502 *
1503 * in_flight = packets_out - left_out + retrans_out
1504 *
1505 * packets_out is SND.NXT-SND.UNA counted in packets.
1506 *
1507 * retrans_out is number of retransmitted segments.
1508 *
1509 * left_out is number of segments left network, but not ACKed yet.
1510 *
1511 * left_out = sacked_out + lost_out
1512 *
1513 * sacked_out: Packets, which arrived to receiver out of order
1514 * and hence not ACKed. With SACKs this number is simply
1515 * amount of SACKed data. Even without SACKs
1516 * it is easy to give pretty reliable estimate of this number,
1517 * counting duplicate ACKs.
1518 *
1519 * lost_out: Packets lost by network. TCP has no explicit
1520 * "loss notification" feedback from network (for now).
1521 * It means that this number can be only _guessed_.
1522 * Actually, it is the heuristics to predict lossage that
1523 * distinguishes different algorithms.
1524 *
1525 * F.e. after RTO, when all the queue is considered as lost,
1526 * lost_out = packets_out and in_flight = retrans_out.
1527 *
1528 * Essentially, we have now two algorithms counting
1529 * lost packets.
1530 *
1531 * FACK: It is the simplest heuristics. As soon as we decided
1532 * that something is lost, we decide that _all_ not SACKed
1533 * packets until the most forward SACK are lost. I.e.
1534 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1535 * It is absolutely correct estimate, if network does not reorder
1536 * packets. And it loses any connection to reality when reordering
1537 * takes place. We use FACK by default until reordering
1538 * is suspected on the path to this destination.
1539 *
1540 * NewReno: when Recovery is entered, we assume that one segment
1541 * is lost (classic Reno). While we are in Recovery and
1542 * a partial ACK arrives, we assume that one more packet
1543 * is lost (NewReno). This heuristics are the same in NewReno
1544 * and SACK.
1545 *
1546 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1547 * deflation etc. CWND is real congestion window, never inflated, changes
1548 * only according to classic VJ rules.
1549 *
1550 * Really tricky (and requiring careful tuning) part of algorithm
1551 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1552 * The first determines the moment _when_ we should reduce CWND and,
1553 * hence, slow down forward transmission. In fact, it determines the moment
1554 * when we decide that hole is caused by loss, rather than by a reorder.
1555 *
1556 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1557 * holes, caused by lost packets.
1558 *
1559 * And the most logically complicated part of algorithm is undo
1560 * heuristics. We detect false retransmits due to both too early
1561 * fast retransmit (reordering) and underestimated RTO, analyzing
1562 * timestamps and D-SACKs. When we detect that some segments were
1563 * retransmitted by mistake and CWND reduction was wrong, we undo
1564 * window reduction and abort recovery phase. This logic is hidden
1565 * inside several functions named tcp_try_undo_<something>.
1566 */
1567
1568 /* This function decides, when we should leave Disordered state
1569 * and enter Recovery phase, reducing congestion window.
1570 *
1571 * Main question: may we further continue forward transmission
1572 * with the same cwnd?
1573 */
1574 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1575 {
1576 __u32 packets_out;
1577
1578 /* Do not perform any recovery during FRTO algorithm */
1579 if (tp->frto_counter)
1580 return 0;
1581
1582 /* Trick#1: The loss is proven. */
1583 if (tp->lost_out)
1584 return 1;
1585
1586 /* Not-A-Trick#2 : Classic rule... */
1587 if (tcp_fackets_out(tp) > tp->reordering)
1588 return 1;
1589
1590 /* Trick#3 : when we use RFC2988 timer restart, fast
1591 * retransmit can be triggered by timeout of queue head.
1592 */
1593 if (tcp_head_timedout(sk, tp))
1594 return 1;
1595
1596 /* Trick#4: It is still not OK... But will it be useful to delay
1597 * recovery more?
1598 */
1599 packets_out = tp->packets_out;
1600 if (packets_out <= tp->reordering &&
1601 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1602 !tcp_may_send_now(sk, tp)) {
1603 /* We have nothing to send. This connection is limited
1604 * either by receiver window or by application.
1605 */
1606 return 1;
1607 }
1608
1609 return 0;
1610 }
1611
1612 /* If we receive more dupacks than we expected counting segments
1613 * in assumption of absent reordering, interpret this as reordering.
1614 * The only another reason could be bug in receiver TCP.
1615 */
1616 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1617 {
1618 struct tcp_sock *tp = tcp_sk(sk);
1619 u32 holes;
1620
1621 holes = max(tp->lost_out, 1U);
1622 holes = min(holes, tp->packets_out);
1623
1624 if ((tp->sacked_out + holes) > tp->packets_out) {
1625 tp->sacked_out = tp->packets_out - holes;
1626 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1627 }
1628 }
1629
1630 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1631
1632 static void tcp_add_reno_sack(struct sock *sk)
1633 {
1634 struct tcp_sock *tp = tcp_sk(sk);
1635 tp->sacked_out++;
1636 tcp_check_reno_reordering(sk, 0);
1637 tcp_sync_left_out(tp);
1638 }
1639
1640 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1641
1642 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1643 {
1644 if (acked > 0) {
1645 /* One ACK acked hole. The rest eat duplicate ACKs. */
1646 if (acked-1 >= tp->sacked_out)
1647 tp->sacked_out = 0;
1648 else
1649 tp->sacked_out -= acked-1;
1650 }
1651 tcp_check_reno_reordering(sk, acked);
1652 tcp_sync_left_out(tp);
1653 }
1654
1655 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1656 {
1657 tp->sacked_out = 0;
1658 tp->left_out = tp->lost_out;
1659 }
1660
1661 /* Mark head of queue up as lost. */
1662 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1663 int packets, u32 high_seq)
1664 {
1665 struct sk_buff *skb;
1666 int cnt;
1667
1668 BUG_TRAP(packets <= tp->packets_out);
1669 if (tp->lost_skb_hint) {
1670 skb = tp->lost_skb_hint;
1671 cnt = tp->lost_cnt_hint;
1672 } else {
1673 skb = sk->sk_write_queue.next;
1674 cnt = 0;
1675 }
1676
1677 sk_stream_for_retrans_queue_from(skb, sk) {
1678 /* TODO: do this better */
1679 /* this is not the most efficient way to do this... */
1680 tp->lost_skb_hint = skb;
1681 tp->lost_cnt_hint = cnt;
1682 cnt += tcp_skb_pcount(skb);
1683 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1684 break;
1685 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1686 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1687 tp->lost_out += tcp_skb_pcount(skb);
1688
1689 /* clear xmit_retransmit_queue hints
1690 * if this is beyond hint */
1691 if(tp->retransmit_skb_hint != NULL &&
1692 before(TCP_SKB_CB(skb)->seq,
1693 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1694
1695 tp->retransmit_skb_hint = NULL;
1696 }
1697 }
1698 }
1699 tcp_sync_left_out(tp);
1700 }
1701
1702 /* Account newly detected lost packet(s) */
1703
1704 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1705 {
1706 if (IsFack(tp)) {
1707 int lost = tp->fackets_out - tp->reordering;
1708 if (lost <= 0)
1709 lost = 1;
1710 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1711 } else {
1712 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1713 }
1714
1715 /* New heuristics: it is possible only after we switched
1716 * to restart timer each time when something is ACKed.
1717 * Hence, we can detect timed out packets during fast
1718 * retransmit without falling to slow start.
1719 */
1720 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1721 struct sk_buff *skb;
1722
1723 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1724 : sk->sk_write_queue.next;
1725
1726 sk_stream_for_retrans_queue_from(skb, sk) {
1727 if (!tcp_skb_timedout(sk, skb))
1728 break;
1729
1730 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1731 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1732 tp->lost_out += tcp_skb_pcount(skb);
1733
1734 /* clear xmit_retrans hint */
1735 if (tp->retransmit_skb_hint &&
1736 before(TCP_SKB_CB(skb)->seq,
1737 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1738
1739 tp->retransmit_skb_hint = NULL;
1740 }
1741 }
1742
1743 tp->scoreboard_skb_hint = skb;
1744
1745 tcp_sync_left_out(tp);
1746 }
1747 }
1748
1749 /* CWND moderation, preventing bursts due to too big ACKs
1750 * in dubious situations.
1751 */
1752 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1753 {
1754 tp->snd_cwnd = min(tp->snd_cwnd,
1755 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1756 tp->snd_cwnd_stamp = tcp_time_stamp;
1757 }
1758
1759 /* Lower bound on congestion window is slow start threshold
1760 * unless congestion avoidance choice decides to overide it.
1761 */
1762 static inline u32 tcp_cwnd_min(const struct sock *sk)
1763 {
1764 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1765
1766 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1767 }
1768
1769 /* Decrease cwnd each second ack. */
1770 static void tcp_cwnd_down(struct sock *sk)
1771 {
1772 struct tcp_sock *tp = tcp_sk(sk);
1773 int decr = tp->snd_cwnd_cnt + 1;
1774
1775 tp->snd_cwnd_cnt = decr&1;
1776 decr >>= 1;
1777
1778 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1779 tp->snd_cwnd -= decr;
1780
1781 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1782 tp->snd_cwnd_stamp = tcp_time_stamp;
1783 }
1784
1785 /* Nothing was retransmitted or returned timestamp is less
1786 * than timestamp of the first retransmission.
1787 */
1788 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1789 {
1790 return !tp->retrans_stamp ||
1791 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1792 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1793 }
1794
1795 /* Undo procedures. */
1796
1797 #if FASTRETRANS_DEBUG > 1
1798 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1799 {
1800 struct inet_sock *inet = inet_sk(sk);
1801 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1802 msg,
1803 NIPQUAD(inet->daddr), ntohs(inet->dport),
1804 tp->snd_cwnd, tp->left_out,
1805 tp->snd_ssthresh, tp->prior_ssthresh,
1806 tp->packets_out);
1807 }
1808 #else
1809 #define DBGUNDO(x...) do { } while (0)
1810 #endif
1811
1812 static void tcp_undo_cwr(struct sock *sk, const int undo)
1813 {
1814 struct tcp_sock *tp = tcp_sk(sk);
1815
1816 if (tp->prior_ssthresh) {
1817 const struct inet_connection_sock *icsk = inet_csk(sk);
1818
1819 if (icsk->icsk_ca_ops->undo_cwnd)
1820 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1821 else
1822 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1823
1824 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1825 tp->snd_ssthresh = tp->prior_ssthresh;
1826 TCP_ECN_withdraw_cwr(tp);
1827 }
1828 } else {
1829 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1830 }
1831 tcp_moderate_cwnd(tp);
1832 tp->snd_cwnd_stamp = tcp_time_stamp;
1833
1834 /* There is something screwy going on with the retrans hints after
1835 an undo */
1836 clear_all_retrans_hints(tp);
1837 }
1838
1839 static inline int tcp_may_undo(struct tcp_sock *tp)
1840 {
1841 return tp->undo_marker &&
1842 (!tp->undo_retrans || tcp_packet_delayed(tp));
1843 }
1844
1845 /* People celebrate: "We love our President!" */
1846 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1847 {
1848 if (tcp_may_undo(tp)) {
1849 /* Happy end! We did not retransmit anything
1850 * or our original transmission succeeded.
1851 */
1852 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1853 tcp_undo_cwr(sk, 1);
1854 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1855 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1856 else
1857 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1858 tp->undo_marker = 0;
1859 }
1860 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1861 /* Hold old state until something *above* high_seq
1862 * is ACKed. For Reno it is MUST to prevent false
1863 * fast retransmits (RFC2582). SACK TCP is safe. */
1864 tcp_moderate_cwnd(tp);
1865 return 1;
1866 }
1867 tcp_set_ca_state(sk, TCP_CA_Open);
1868 return 0;
1869 }
1870
1871 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1872 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1873 {
1874 if (tp->undo_marker && !tp->undo_retrans) {
1875 DBGUNDO(sk, tp, "D-SACK");
1876 tcp_undo_cwr(sk, 1);
1877 tp->undo_marker = 0;
1878 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1879 }
1880 }
1881
1882 /* Undo during fast recovery after partial ACK. */
1883
1884 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1885 int acked)
1886 {
1887 /* Partial ACK arrived. Force Hoe's retransmit. */
1888 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1889
1890 if (tcp_may_undo(tp)) {
1891 /* Plain luck! Hole if filled with delayed
1892 * packet, rather than with a retransmit.
1893 */
1894 if (tp->retrans_out == 0)
1895 tp->retrans_stamp = 0;
1896
1897 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1898
1899 DBGUNDO(sk, tp, "Hoe");
1900 tcp_undo_cwr(sk, 0);
1901 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1902
1903 /* So... Do not make Hoe's retransmit yet.
1904 * If the first packet was delayed, the rest
1905 * ones are most probably delayed as well.
1906 */
1907 failed = 0;
1908 }
1909 return failed;
1910 }
1911
1912 /* Undo during loss recovery after partial ACK. */
1913 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1914 {
1915 if (tcp_may_undo(tp)) {
1916 struct sk_buff *skb;
1917 sk_stream_for_retrans_queue(skb, sk) {
1918 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1919 }
1920
1921 clear_all_retrans_hints(tp);
1922
1923 DBGUNDO(sk, tp, "partial loss");
1924 tp->lost_out = 0;
1925 tp->left_out = tp->sacked_out;
1926 tcp_undo_cwr(sk, 1);
1927 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1928 inet_csk(sk)->icsk_retransmits = 0;
1929 tp->undo_marker = 0;
1930 if (!IsReno(tp))
1931 tcp_set_ca_state(sk, TCP_CA_Open);
1932 return 1;
1933 }
1934 return 0;
1935 }
1936
1937 static inline void tcp_complete_cwr(struct sock *sk)
1938 {
1939 struct tcp_sock *tp = tcp_sk(sk);
1940 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1941 tp->snd_cwnd_stamp = tcp_time_stamp;
1942 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1943 }
1944
1945 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1946 {
1947 tp->left_out = tp->sacked_out;
1948
1949 if (tp->retrans_out == 0)
1950 tp->retrans_stamp = 0;
1951
1952 if (flag&FLAG_ECE)
1953 tcp_enter_cwr(sk);
1954
1955 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1956 int state = TCP_CA_Open;
1957
1958 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1959 state = TCP_CA_Disorder;
1960
1961 if (inet_csk(sk)->icsk_ca_state != state) {
1962 tcp_set_ca_state(sk, state);
1963 tp->high_seq = tp->snd_nxt;
1964 }
1965 tcp_moderate_cwnd(tp);
1966 } else {
1967 tcp_cwnd_down(sk);
1968 }
1969 }
1970
1971 static void tcp_mtup_probe_failed(struct sock *sk)
1972 {
1973 struct inet_connection_sock *icsk = inet_csk(sk);
1974
1975 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1976 icsk->icsk_mtup.probe_size = 0;
1977 }
1978
1979 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1980 {
1981 struct tcp_sock *tp = tcp_sk(sk);
1982 struct inet_connection_sock *icsk = inet_csk(sk);
1983
1984 /* FIXME: breaks with very large cwnd */
1985 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1986 tp->snd_cwnd = tp->snd_cwnd *
1987 tcp_mss_to_mtu(sk, tp->mss_cache) /
1988 icsk->icsk_mtup.probe_size;
1989 tp->snd_cwnd_cnt = 0;
1990 tp->snd_cwnd_stamp = tcp_time_stamp;
1991 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1992
1993 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1994 icsk->icsk_mtup.probe_size = 0;
1995 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1996 }
1997
1998
1999 /* Process an event, which can update packets-in-flight not trivially.
2000 * Main goal of this function is to calculate new estimate for left_out,
2001 * taking into account both packets sitting in receiver's buffer and
2002 * packets lost by network.
2003 *
2004 * Besides that it does CWND reduction, when packet loss is detected
2005 * and changes state of machine.
2006 *
2007 * It does _not_ decide what to send, it is made in function
2008 * tcp_xmit_retransmit_queue().
2009 */
2010 static void
2011 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2012 int prior_packets, int flag)
2013 {
2014 struct inet_connection_sock *icsk = inet_csk(sk);
2015 struct tcp_sock *tp = tcp_sk(sk);
2016 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2017
2018 /* Some technical things:
2019 * 1. Reno does not count dupacks (sacked_out) automatically. */
2020 if (!tp->packets_out)
2021 tp->sacked_out = 0;
2022 /* 2. SACK counts snd_fack in packets inaccurately. */
2023 if (tp->sacked_out == 0)
2024 tp->fackets_out = 0;
2025
2026 /* Now state machine starts.
2027 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2028 if (flag&FLAG_ECE)
2029 tp->prior_ssthresh = 0;
2030
2031 /* B. In all the states check for reneging SACKs. */
2032 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2033 return;
2034
2035 /* C. Process data loss notification, provided it is valid. */
2036 if ((flag&FLAG_DATA_LOST) &&
2037 before(tp->snd_una, tp->high_seq) &&
2038 icsk->icsk_ca_state != TCP_CA_Open &&
2039 tp->fackets_out > tp->reordering) {
2040 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2041 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2042 }
2043
2044 /* D. Synchronize left_out to current state. */
2045 tcp_sync_left_out(tp);
2046
2047 /* E. Check state exit conditions. State can be terminated
2048 * when high_seq is ACKed. */
2049 if (icsk->icsk_ca_state == TCP_CA_Open) {
2050 BUG_TRAP(tp->retrans_out == 0);
2051 tp->retrans_stamp = 0;
2052 } else if (!before(tp->snd_una, tp->high_seq)) {
2053 switch (icsk->icsk_ca_state) {
2054 case TCP_CA_Loss:
2055 icsk->icsk_retransmits = 0;
2056 if (tcp_try_undo_recovery(sk, tp))
2057 return;
2058 break;
2059
2060 case TCP_CA_CWR:
2061 /* CWR is to be held something *above* high_seq
2062 * is ACKed for CWR bit to reach receiver. */
2063 if (tp->snd_una != tp->high_seq) {
2064 tcp_complete_cwr(sk);
2065 tcp_set_ca_state(sk, TCP_CA_Open);
2066 }
2067 break;
2068
2069 case TCP_CA_Disorder:
2070 tcp_try_undo_dsack(sk, tp);
2071 if (!tp->undo_marker ||
2072 /* For SACK case do not Open to allow to undo
2073 * catching for all duplicate ACKs. */
2074 IsReno(tp) || tp->snd_una != tp->high_seq) {
2075 tp->undo_marker = 0;
2076 tcp_set_ca_state(sk, TCP_CA_Open);
2077 }
2078 break;
2079
2080 case TCP_CA_Recovery:
2081 if (IsReno(tp))
2082 tcp_reset_reno_sack(tp);
2083 if (tcp_try_undo_recovery(sk, tp))
2084 return;
2085 tcp_complete_cwr(sk);
2086 break;
2087 }
2088 }
2089
2090 /* F. Process state. */
2091 switch (icsk->icsk_ca_state) {
2092 case TCP_CA_Recovery:
2093 if (prior_snd_una == tp->snd_una) {
2094 if (IsReno(tp) && is_dupack)
2095 tcp_add_reno_sack(sk);
2096 } else {
2097 int acked = prior_packets - tp->packets_out;
2098 if (IsReno(tp))
2099 tcp_remove_reno_sacks(sk, tp, acked);
2100 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2101 }
2102 break;
2103 case TCP_CA_Loss:
2104 if (flag&FLAG_DATA_ACKED)
2105 icsk->icsk_retransmits = 0;
2106 if (!tcp_try_undo_loss(sk, tp)) {
2107 tcp_moderate_cwnd(tp);
2108 tcp_xmit_retransmit_queue(sk);
2109 return;
2110 }
2111 if (icsk->icsk_ca_state != TCP_CA_Open)
2112 return;
2113 /* Loss is undone; fall through to processing in Open state. */
2114 default:
2115 if (IsReno(tp)) {
2116 if (tp->snd_una != prior_snd_una)
2117 tcp_reset_reno_sack(tp);
2118 if (is_dupack)
2119 tcp_add_reno_sack(sk);
2120 }
2121
2122 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2123 tcp_try_undo_dsack(sk, tp);
2124
2125 if (!tcp_time_to_recover(sk, tp)) {
2126 tcp_try_to_open(sk, tp, flag);
2127 return;
2128 }
2129
2130 /* MTU probe failure: don't reduce cwnd */
2131 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2132 icsk->icsk_mtup.probe_size &&
2133 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2134 tcp_mtup_probe_failed(sk);
2135 /* Restores the reduction we did in tcp_mtup_probe() */
2136 tp->snd_cwnd++;
2137 tcp_simple_retransmit(sk);
2138 return;
2139 }
2140
2141 /* Otherwise enter Recovery state */
2142
2143 if (IsReno(tp))
2144 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2145 else
2146 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2147
2148 tp->high_seq = tp->snd_nxt;
2149 tp->prior_ssthresh = 0;
2150 tp->undo_marker = tp->snd_una;
2151 tp->undo_retrans = tp->retrans_out;
2152
2153 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2154 if (!(flag&FLAG_ECE))
2155 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2156 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2157 TCP_ECN_queue_cwr(tp);
2158 }
2159
2160 tp->bytes_acked = 0;
2161 tp->snd_cwnd_cnt = 0;
2162 tcp_set_ca_state(sk, TCP_CA_Recovery);
2163 }
2164
2165 if (is_dupack || tcp_head_timedout(sk, tp))
2166 tcp_update_scoreboard(sk, tp);
2167 tcp_cwnd_down(sk);
2168 tcp_xmit_retransmit_queue(sk);
2169 }
2170
2171 /* Read draft-ietf-tcplw-high-performance before mucking
2172 * with this code. (Supersedes RFC1323)
2173 */
2174 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2175 {
2176 /* RTTM Rule: A TSecr value received in a segment is used to
2177 * update the averaged RTT measurement only if the segment
2178 * acknowledges some new data, i.e., only if it advances the
2179 * left edge of the send window.
2180 *
2181 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2182 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2183 *
2184 * Changed: reset backoff as soon as we see the first valid sample.
2185 * If we do not, we get strongly overestimated rto. With timestamps
2186 * samples are accepted even from very old segments: f.e., when rtt=1
2187 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2188 * answer arrives rto becomes 120 seconds! If at least one of segments
2189 * in window is lost... Voila. --ANK (010210)
2190 */
2191 struct tcp_sock *tp = tcp_sk(sk);
2192 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2193 tcp_rtt_estimator(sk, seq_rtt);
2194 tcp_set_rto(sk);
2195 inet_csk(sk)->icsk_backoff = 0;
2196 tcp_bound_rto(sk);
2197 }
2198
2199 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2200 {
2201 /* We don't have a timestamp. Can only use
2202 * packets that are not retransmitted to determine
2203 * rtt estimates. Also, we must not reset the
2204 * backoff for rto until we get a non-retransmitted
2205 * packet. This allows us to deal with a situation
2206 * where the network delay has increased suddenly.
2207 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2208 */
2209
2210 if (flag & FLAG_RETRANS_DATA_ACKED)
2211 return;
2212
2213 tcp_rtt_estimator(sk, seq_rtt);
2214 tcp_set_rto(sk);
2215 inet_csk(sk)->icsk_backoff = 0;
2216 tcp_bound_rto(sk);
2217 }
2218
2219 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2220 const s32 seq_rtt)
2221 {
2222 const struct tcp_sock *tp = tcp_sk(sk);
2223 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2224 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2225 tcp_ack_saw_tstamp(sk, flag);
2226 else if (seq_rtt >= 0)
2227 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2228 }
2229
2230 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2231 u32 in_flight, int good)
2232 {
2233 const struct inet_connection_sock *icsk = inet_csk(sk);
2234 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2235 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2236 }
2237
2238 /* Restart timer after forward progress on connection.
2239 * RFC2988 recommends to restart timer to now+rto.
2240 */
2241
2242 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2243 {
2244 if (!tp->packets_out) {
2245 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2246 } else {
2247 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2248 }
2249 }
2250
2251 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2252 __u32 now, __s32 *seq_rtt)
2253 {
2254 struct tcp_sock *tp = tcp_sk(sk);
2255 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2256 __u32 seq = tp->snd_una;
2257 __u32 packets_acked;
2258 int acked = 0;
2259
2260 /* If we get here, the whole TSO packet has not been
2261 * acked.
2262 */
2263 BUG_ON(!after(scb->end_seq, seq));
2264
2265 packets_acked = tcp_skb_pcount(skb);
2266 if (tcp_trim_head(sk, skb, seq - scb->seq))
2267 return 0;
2268 packets_acked -= tcp_skb_pcount(skb);
2269
2270 if (packets_acked) {
2271 __u8 sacked = scb->sacked;
2272
2273 acked |= FLAG_DATA_ACKED;
2274 if (sacked) {
2275 if (sacked & TCPCB_RETRANS) {
2276 if (sacked & TCPCB_SACKED_RETRANS)
2277 tp->retrans_out -= packets_acked;
2278 acked |= FLAG_RETRANS_DATA_ACKED;
2279 *seq_rtt = -1;
2280 } else if (*seq_rtt < 0)
2281 *seq_rtt = now - scb->when;
2282 if (sacked & TCPCB_SACKED_ACKED)
2283 tp->sacked_out -= packets_acked;
2284 if (sacked & TCPCB_LOST)
2285 tp->lost_out -= packets_acked;
2286 if (sacked & TCPCB_URG) {
2287 if (tp->urg_mode &&
2288 !before(seq, tp->snd_up))
2289 tp->urg_mode = 0;
2290 }
2291 } else if (*seq_rtt < 0)
2292 *seq_rtt = now - scb->when;
2293
2294 if (tp->fackets_out) {
2295 __u32 dval = min(tp->fackets_out, packets_acked);
2296 tp->fackets_out -= dval;
2297 }
2298 tp->packets_out -= packets_acked;
2299
2300 BUG_ON(tcp_skb_pcount(skb) == 0);
2301 BUG_ON(!before(scb->seq, scb->end_seq));
2302 }
2303
2304 return acked;
2305 }
2306
2307 static u32 tcp_usrtt(struct timeval *tv)
2308 {
2309 struct timeval now;
2310
2311 do_gettimeofday(&now);
2312 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2313 }
2314
2315 /* Remove acknowledged frames from the retransmission queue. */
2316 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2317 {
2318 struct tcp_sock *tp = tcp_sk(sk);
2319 const struct inet_connection_sock *icsk = inet_csk(sk);
2320 struct sk_buff *skb;
2321 __u32 now = tcp_time_stamp;
2322 int acked = 0;
2323 __s32 seq_rtt = -1;
2324 u32 pkts_acked = 0;
2325 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2326 = icsk->icsk_ca_ops->rtt_sample;
2327 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2328
2329 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2330 skb != sk->sk_send_head) {
2331 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2332 __u8 sacked = scb->sacked;
2333
2334 /* If our packet is before the ack sequence we can
2335 * discard it as it's confirmed to have arrived at
2336 * the other end.
2337 */
2338 if (after(scb->end_seq, tp->snd_una)) {
2339 if (tcp_skb_pcount(skb) > 1 &&
2340 after(tp->snd_una, scb->seq))
2341 acked |= tcp_tso_acked(sk, skb,
2342 now, &seq_rtt);
2343 break;
2344 }
2345
2346 /* Initial outgoing SYN's get put onto the write_queue
2347 * just like anything else we transmit. It is not
2348 * true data, and if we misinform our callers that
2349 * this ACK acks real data, we will erroneously exit
2350 * connection startup slow start one packet too
2351 * quickly. This is severely frowned upon behavior.
2352 */
2353 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2354 acked |= FLAG_DATA_ACKED;
2355 ++pkts_acked;
2356 } else {
2357 acked |= FLAG_SYN_ACKED;
2358 tp->retrans_stamp = 0;
2359 }
2360
2361 /* MTU probing checks */
2362 if (icsk->icsk_mtup.probe_size) {
2363 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2364 tcp_mtup_probe_success(sk, skb);
2365 }
2366 }
2367
2368 if (sacked) {
2369 if (sacked & TCPCB_RETRANS) {
2370 if(sacked & TCPCB_SACKED_RETRANS)
2371 tp->retrans_out -= tcp_skb_pcount(skb);
2372 acked |= FLAG_RETRANS_DATA_ACKED;
2373 seq_rtt = -1;
2374 } else if (seq_rtt < 0) {
2375 seq_rtt = now - scb->when;
2376 skb_get_timestamp(skb, &tv);
2377 }
2378 if (sacked & TCPCB_SACKED_ACKED)
2379 tp->sacked_out -= tcp_skb_pcount(skb);
2380 if (sacked & TCPCB_LOST)
2381 tp->lost_out -= tcp_skb_pcount(skb);
2382 if (sacked & TCPCB_URG) {
2383 if (tp->urg_mode &&
2384 !before(scb->end_seq, tp->snd_up))
2385 tp->urg_mode = 0;
2386 }
2387 } else if (seq_rtt < 0) {
2388 seq_rtt = now - scb->when;
2389 skb_get_timestamp(skb, &tv);
2390 }
2391 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2392 tcp_packets_out_dec(tp, skb);
2393 __skb_unlink(skb, &sk->sk_write_queue);
2394 sk_stream_free_skb(sk, skb);
2395 clear_all_retrans_hints(tp);
2396 }
2397
2398 if (acked&FLAG_ACKED) {
2399 tcp_ack_update_rtt(sk, acked, seq_rtt);
2400 tcp_ack_packets_out(sk, tp);
2401 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2402 (*rtt_sample)(sk, tcp_usrtt(&tv));
2403
2404 if (icsk->icsk_ca_ops->pkts_acked)
2405 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2406 }
2407
2408 #if FASTRETRANS_DEBUG > 0
2409 BUG_TRAP((int)tp->sacked_out >= 0);
2410 BUG_TRAP((int)tp->lost_out >= 0);
2411 BUG_TRAP((int)tp->retrans_out >= 0);
2412 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2413 const struct inet_connection_sock *icsk = inet_csk(sk);
2414 if (tp->lost_out) {
2415 printk(KERN_DEBUG "Leak l=%u %d\n",
2416 tp->lost_out, icsk->icsk_ca_state);
2417 tp->lost_out = 0;
2418 }
2419 if (tp->sacked_out) {
2420 printk(KERN_DEBUG "Leak s=%u %d\n",
2421 tp->sacked_out, icsk->icsk_ca_state);
2422 tp->sacked_out = 0;
2423 }
2424 if (tp->retrans_out) {
2425 printk(KERN_DEBUG "Leak r=%u %d\n",
2426 tp->retrans_out, icsk->icsk_ca_state);
2427 tp->retrans_out = 0;
2428 }
2429 }
2430 #endif
2431 *seq_rtt_p = seq_rtt;
2432 return acked;
2433 }
2434
2435 static void tcp_ack_probe(struct sock *sk)
2436 {
2437 const struct tcp_sock *tp = tcp_sk(sk);
2438 struct inet_connection_sock *icsk = inet_csk(sk);
2439
2440 /* Was it a usable window open? */
2441
2442 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2443 tp->snd_una + tp->snd_wnd)) {
2444 icsk->icsk_backoff = 0;
2445 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2446 /* Socket must be waked up by subsequent tcp_data_snd_check().
2447 * This function is not for random using!
2448 */
2449 } else {
2450 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2451 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2452 TCP_RTO_MAX);
2453 }
2454 }
2455
2456 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2457 {
2458 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2459 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2460 }
2461
2462 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2463 {
2464 const struct tcp_sock *tp = tcp_sk(sk);
2465 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2466 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2467 }
2468
2469 /* Check that window update is acceptable.
2470 * The function assumes that snd_una<=ack<=snd_next.
2471 */
2472 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2473 const u32 ack_seq, const u32 nwin)
2474 {
2475 return (after(ack, tp->snd_una) ||
2476 after(ack_seq, tp->snd_wl1) ||
2477 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2478 }
2479
2480 /* Update our send window.
2481 *
2482 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2483 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2484 */
2485 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2486 struct sk_buff *skb, u32 ack, u32 ack_seq)
2487 {
2488 int flag = 0;
2489 u32 nwin = ntohs(skb->h.th->window);
2490
2491 if (likely(!skb->h.th->syn))
2492 nwin <<= tp->rx_opt.snd_wscale;
2493
2494 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2495 flag |= FLAG_WIN_UPDATE;
2496 tcp_update_wl(tp, ack, ack_seq);
2497
2498 if (tp->snd_wnd != nwin) {
2499 tp->snd_wnd = nwin;
2500
2501 /* Note, it is the only place, where
2502 * fast path is recovered for sending TCP.
2503 */
2504 tp->pred_flags = 0;
2505 tcp_fast_path_check(sk, tp);
2506
2507 if (nwin > tp->max_window) {
2508 tp->max_window = nwin;
2509 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2510 }
2511 }
2512 }
2513
2514 tp->snd_una = ack;
2515
2516 return flag;
2517 }
2518
2519 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2520 * continue in congestion avoidance.
2521 */
2522 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2523 {
2524 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2525 tp->snd_cwnd_cnt = 0;
2526 tcp_moderate_cwnd(tp);
2527 }
2528
2529 /* F-RTO spurious RTO detection algorithm (RFC4138)
2530 *
2531 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2532 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2533 * window (but not to or beyond highest sequence sent before RTO):
2534 * On First ACK, send two new segments out.
2535 * On Second ACK, RTO was likely spurious. Do spurious response (response
2536 * algorithm is not part of the F-RTO detection algorithm
2537 * given in RFC4138 but can be selected separately).
2538 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2539 * and TCP falls back to conventional RTO recovery.
2540 *
2541 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2542 * original window even after we transmit two new data segments.
2543 *
2544 * F-RTO is implemented (mainly) in four functions:
2545 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2546 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2547 * called when tcp_use_frto() showed green light
2548 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2549 * - tcp_enter_frto_loss() is called if there is not enough evidence
2550 * to prove that the RTO is indeed spurious. It transfers the control
2551 * from F-RTO to the conventional RTO recovery
2552 */
2553 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2554 {
2555 struct tcp_sock *tp = tcp_sk(sk);
2556
2557 tcp_sync_left_out(tp);
2558
2559 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2560 if (flag&FLAG_DATA_ACKED)
2561 inet_csk(sk)->icsk_retransmits = 0;
2562
2563 if (!before(tp->snd_una, tp->frto_highmark)) {
2564 tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2565 return 1;
2566 }
2567
2568 /* RFC4138 shortcoming in step 2; should also have case c): ACK isn't
2569 * duplicate nor advances window, e.g., opposite dir data, winupdate
2570 */
2571 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2572 !(flag&FLAG_FORWARD_PROGRESS))
2573 return 1;
2574
2575 if (!(flag&FLAG_DATA_ACKED)) {
2576 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), flag);
2577 return 1;
2578 }
2579
2580 if (tp->frto_counter == 1) {
2581 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2582 tp->frto_counter = 2;
2583 return 1;
2584 } else /* frto_counter == 2 */ {
2585 tcp_conservative_spur_to_response(tp);
2586 tp->frto_counter = 0;
2587 }
2588 return 0;
2589 }
2590
2591 /* This routine deals with incoming acks, but not outgoing ones. */
2592 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2593 {
2594 struct inet_connection_sock *icsk = inet_csk(sk);
2595 struct tcp_sock *tp = tcp_sk(sk);
2596 u32 prior_snd_una = tp->snd_una;
2597 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2598 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2599 u32 prior_in_flight;
2600 s32 seq_rtt;
2601 int prior_packets;
2602 int frto_cwnd = 0;
2603
2604 /* If the ack is newer than sent or older than previous acks
2605 * then we can probably ignore it.
2606 */
2607 if (after(ack, tp->snd_nxt))
2608 goto uninteresting_ack;
2609
2610 if (before(ack, prior_snd_una))
2611 goto old_ack;
2612
2613 if (sysctl_tcp_abc) {
2614 if (icsk->icsk_ca_state < TCP_CA_CWR)
2615 tp->bytes_acked += ack - prior_snd_una;
2616 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2617 /* we assume just one segment left network */
2618 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2619 }
2620
2621 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2622 /* Window is constant, pure forward advance.
2623 * No more checks are required.
2624 * Note, we use the fact that SND.UNA>=SND.WL2.
2625 */
2626 tcp_update_wl(tp, ack, ack_seq);
2627 tp->snd_una = ack;
2628 flag |= FLAG_WIN_UPDATE;
2629
2630 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2631
2632 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2633 } else {
2634 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2635 flag |= FLAG_DATA;
2636 else
2637 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2638
2639 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2640
2641 if (TCP_SKB_CB(skb)->sacked)
2642 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2643
2644 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2645 flag |= FLAG_ECE;
2646
2647 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2648 }
2649
2650 /* We passed data and got it acked, remove any soft error
2651 * log. Something worked...
2652 */
2653 sk->sk_err_soft = 0;
2654 tp->rcv_tstamp = tcp_time_stamp;
2655 prior_packets = tp->packets_out;
2656 if (!prior_packets)
2657 goto no_queue;
2658
2659 prior_in_flight = tcp_packets_in_flight(tp);
2660
2661 /* See if we can take anything off of the retransmit queue. */
2662 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2663
2664 if (tp->frto_counter)
2665 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2666
2667 if (tcp_ack_is_dubious(sk, flag)) {
2668 /* Advance CWND, if state allows this. */
2669 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2670 tcp_may_raise_cwnd(sk, flag))
2671 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2672 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2673 } else {
2674 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2675 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2676 }
2677
2678 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2679 dst_confirm(sk->sk_dst_cache);
2680
2681 return 1;
2682
2683 no_queue:
2684 icsk->icsk_probes_out = 0;
2685
2686 /* If this ack opens up a zero window, clear backoff. It was
2687 * being used to time the probes, and is probably far higher than
2688 * it needs to be for normal retransmission.
2689 */
2690 if (sk->sk_send_head)
2691 tcp_ack_probe(sk);
2692 return 1;
2693
2694 old_ack:
2695 if (TCP_SKB_CB(skb)->sacked)
2696 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2697
2698 uninteresting_ack:
2699 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2700 return 0;
2701 }
2702
2703
2704 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2705 * But, this can also be called on packets in the established flow when
2706 * the fast version below fails.
2707 */
2708 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2709 {
2710 unsigned char *ptr;
2711 struct tcphdr *th = skb->h.th;
2712 int length=(th->doff*4)-sizeof(struct tcphdr);
2713
2714 ptr = (unsigned char *)(th + 1);
2715 opt_rx->saw_tstamp = 0;
2716
2717 while(length>0) {
2718 int opcode=*ptr++;
2719 int opsize;
2720
2721 switch (opcode) {
2722 case TCPOPT_EOL:
2723 return;
2724 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2725 length--;
2726 continue;
2727 default:
2728 opsize=*ptr++;
2729 if (opsize < 2) /* "silly options" */
2730 return;
2731 if (opsize > length)
2732 return; /* don't parse partial options */
2733 switch(opcode) {
2734 case TCPOPT_MSS:
2735 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2736 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2737 if (in_mss) {
2738 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2739 in_mss = opt_rx->user_mss;
2740 opt_rx->mss_clamp = in_mss;
2741 }
2742 }
2743 break;
2744 case TCPOPT_WINDOW:
2745 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2746 if (sysctl_tcp_window_scaling) {
2747 __u8 snd_wscale = *(__u8 *) ptr;
2748 opt_rx->wscale_ok = 1;
2749 if (snd_wscale > 14) {
2750 if(net_ratelimit())
2751 printk(KERN_INFO "tcp_parse_options: Illegal window "
2752 "scaling value %d >14 received.\n",
2753 snd_wscale);
2754 snd_wscale = 14;
2755 }
2756 opt_rx->snd_wscale = snd_wscale;
2757 }
2758 break;
2759 case TCPOPT_TIMESTAMP:
2760 if(opsize==TCPOLEN_TIMESTAMP) {
2761 if ((estab && opt_rx->tstamp_ok) ||
2762 (!estab && sysctl_tcp_timestamps)) {
2763 opt_rx->saw_tstamp = 1;
2764 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2765 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2766 }
2767 }
2768 break;
2769 case TCPOPT_SACK_PERM:
2770 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2771 if (sysctl_tcp_sack) {
2772 opt_rx->sack_ok = 1;
2773 tcp_sack_reset(opt_rx);
2774 }
2775 }
2776 break;
2777
2778 case TCPOPT_SACK:
2779 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2780 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2781 opt_rx->sack_ok) {
2782 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2783 }
2784 #ifdef CONFIG_TCP_MD5SIG
2785 case TCPOPT_MD5SIG:
2786 /*
2787 * The MD5 Hash has already been
2788 * checked (see tcp_v{4,6}_do_rcv()).
2789 */
2790 break;
2791 #endif
2792 };
2793 ptr+=opsize-2;
2794 length-=opsize;
2795 };
2796 }
2797 }
2798
2799 /* Fast parse options. This hopes to only see timestamps.
2800 * If it is wrong it falls back on tcp_parse_options().
2801 */
2802 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2803 struct tcp_sock *tp)
2804 {
2805 if (th->doff == sizeof(struct tcphdr)>>2) {
2806 tp->rx_opt.saw_tstamp = 0;
2807 return 0;
2808 } else if (tp->rx_opt.tstamp_ok &&
2809 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2810 __be32 *ptr = (__be32 *)(th + 1);
2811 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2812 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2813 tp->rx_opt.saw_tstamp = 1;
2814 ++ptr;
2815 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2816 ++ptr;
2817 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2818 return 1;
2819 }
2820 }
2821 tcp_parse_options(skb, &tp->rx_opt, 1);
2822 return 1;
2823 }
2824
2825 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2826 {
2827 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2828 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2829 }
2830
2831 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2832 {
2833 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2834 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2835 * extra check below makes sure this can only happen
2836 * for pure ACK frames. -DaveM
2837 *
2838 * Not only, also it occurs for expired timestamps.
2839 */
2840
2841 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2842 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2843 tcp_store_ts_recent(tp);
2844 }
2845 }
2846
2847 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2848 *
2849 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2850 * it can pass through stack. So, the following predicate verifies that
2851 * this segment is not used for anything but congestion avoidance or
2852 * fast retransmit. Moreover, we even are able to eliminate most of such
2853 * second order effects, if we apply some small "replay" window (~RTO)
2854 * to timestamp space.
2855 *
2856 * All these measures still do not guarantee that we reject wrapped ACKs
2857 * on networks with high bandwidth, when sequence space is recycled fastly,
2858 * but it guarantees that such events will be very rare and do not affect
2859 * connection seriously. This doesn't look nice, but alas, PAWS is really
2860 * buggy extension.
2861 *
2862 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2863 * states that events when retransmit arrives after original data are rare.
2864 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2865 * the biggest problem on large power networks even with minor reordering.
2866 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2867 * up to bandwidth of 18Gigabit/sec. 8) ]
2868 */
2869
2870 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2871 {
2872 struct tcp_sock *tp = tcp_sk(sk);
2873 struct tcphdr *th = skb->h.th;
2874 u32 seq = TCP_SKB_CB(skb)->seq;
2875 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2876
2877 return (/* 1. Pure ACK with correct sequence number. */
2878 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2879
2880 /* 2. ... and duplicate ACK. */
2881 ack == tp->snd_una &&
2882
2883 /* 3. ... and does not update window. */
2884 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2885
2886 /* 4. ... and sits in replay window. */
2887 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2888 }
2889
2890 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2891 {
2892 const struct tcp_sock *tp = tcp_sk(sk);
2893 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2894 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2895 !tcp_disordered_ack(sk, skb));
2896 }
2897
2898 /* Check segment sequence number for validity.
2899 *
2900 * Segment controls are considered valid, if the segment
2901 * fits to the window after truncation to the window. Acceptability
2902 * of data (and SYN, FIN, of course) is checked separately.
2903 * See tcp_data_queue(), for example.
2904 *
2905 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2906 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2907 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2908 * (borrowed from freebsd)
2909 */
2910
2911 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2912 {
2913 return !before(end_seq, tp->rcv_wup) &&
2914 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2915 }
2916
2917 /* When we get a reset we do this. */
2918 static void tcp_reset(struct sock *sk)
2919 {
2920 /* We want the right error as BSD sees it (and indeed as we do). */
2921 switch (sk->sk_state) {
2922 case TCP_SYN_SENT:
2923 sk->sk_err = ECONNREFUSED;
2924 break;
2925 case TCP_CLOSE_WAIT:
2926 sk->sk_err = EPIPE;
2927 break;
2928 case TCP_CLOSE:
2929 return;
2930 default:
2931 sk->sk_err = ECONNRESET;
2932 }
2933
2934 if (!sock_flag(sk, SOCK_DEAD))
2935 sk->sk_error_report(sk);
2936
2937 tcp_done(sk);
2938 }
2939
2940 /*
2941 * Process the FIN bit. This now behaves as it is supposed to work
2942 * and the FIN takes effect when it is validly part of sequence
2943 * space. Not before when we get holes.
2944 *
2945 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2946 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2947 * TIME-WAIT)
2948 *
2949 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2950 * close and we go into CLOSING (and later onto TIME-WAIT)
2951 *
2952 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2953 */
2954 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2955 {
2956 struct tcp_sock *tp = tcp_sk(sk);
2957
2958 inet_csk_schedule_ack(sk);
2959
2960 sk->sk_shutdown |= RCV_SHUTDOWN;
2961 sock_set_flag(sk, SOCK_DONE);
2962
2963 switch (sk->sk_state) {
2964 case TCP_SYN_RECV:
2965 case TCP_ESTABLISHED:
2966 /* Move to CLOSE_WAIT */
2967 tcp_set_state(sk, TCP_CLOSE_WAIT);
2968 inet_csk(sk)->icsk_ack.pingpong = 1;
2969 break;
2970
2971 case TCP_CLOSE_WAIT:
2972 case TCP_CLOSING:
2973 /* Received a retransmission of the FIN, do
2974 * nothing.
2975 */
2976 break;
2977 case TCP_LAST_ACK:
2978 /* RFC793: Remain in the LAST-ACK state. */
2979 break;
2980
2981 case TCP_FIN_WAIT1:
2982 /* This case occurs when a simultaneous close
2983 * happens, we must ack the received FIN and
2984 * enter the CLOSING state.
2985 */
2986 tcp_send_ack(sk);
2987 tcp_set_state(sk, TCP_CLOSING);
2988 break;
2989 case TCP_FIN_WAIT2:
2990 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2991 tcp_send_ack(sk);
2992 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2993 break;
2994 default:
2995 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2996 * cases we should never reach this piece of code.
2997 */
2998 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2999 __FUNCTION__, sk->sk_state);
3000 break;
3001 };
3002
3003 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3004 * Probably, we should reset in this case. For now drop them.
3005 */
3006 __skb_queue_purge(&tp->out_of_order_queue);
3007 if (tp->rx_opt.sack_ok)
3008 tcp_sack_reset(&tp->rx_opt);
3009 sk_stream_mem_reclaim(sk);
3010
3011 if (!sock_flag(sk, SOCK_DEAD)) {
3012 sk->sk_state_change(sk);
3013
3014 /* Do not send POLL_HUP for half duplex close. */
3015 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3016 sk->sk_state == TCP_CLOSE)
3017 sk_wake_async(sk, 1, POLL_HUP);
3018 else
3019 sk_wake_async(sk, 1, POLL_IN);
3020 }
3021 }
3022
3023 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3024 {
3025 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3026 if (before(seq, sp->start_seq))
3027 sp->start_seq = seq;
3028 if (after(end_seq, sp->end_seq))
3029 sp->end_seq = end_seq;
3030 return 1;
3031 }
3032 return 0;
3033 }
3034
3035 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3036 {
3037 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3038 if (before(seq, tp->rcv_nxt))
3039 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3040 else
3041 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3042
3043 tp->rx_opt.dsack = 1;
3044 tp->duplicate_sack[0].start_seq = seq;
3045 tp->duplicate_sack[0].end_seq = end_seq;
3046 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3047 }
3048 }
3049
3050 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3051 {
3052 if (!tp->rx_opt.dsack)
3053 tcp_dsack_set(tp, seq, end_seq);
3054 else
3055 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3056 }
3057
3058 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3059 {
3060 struct tcp_sock *tp = tcp_sk(sk);
3061
3062 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3063 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3064 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3065 tcp_enter_quickack_mode(sk);
3066
3067 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3068 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3069
3070 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3071 end_seq = tp->rcv_nxt;
3072 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3073 }
3074 }
3075
3076 tcp_send_ack(sk);
3077 }
3078
3079 /* These routines update the SACK block as out-of-order packets arrive or
3080 * in-order packets close up the sequence space.
3081 */
3082 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3083 {
3084 int this_sack;
3085 struct tcp_sack_block *sp = &tp->selective_acks[0];
3086 struct tcp_sack_block *swalk = sp+1;
3087
3088 /* See if the recent change to the first SACK eats into
3089 * or hits the sequence space of other SACK blocks, if so coalesce.
3090 */
3091 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3092 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3093 int i;
3094
3095 /* Zap SWALK, by moving every further SACK up by one slot.
3096 * Decrease num_sacks.
3097 */
3098 tp->rx_opt.num_sacks--;
3099 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3100 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3101 sp[i] = sp[i+1];
3102 continue;
3103 }
3104 this_sack++, swalk++;
3105 }
3106 }
3107
3108 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3109 {
3110 __u32 tmp;
3111
3112 tmp = sack1->start_seq;
3113 sack1->start_seq = sack2->start_seq;
3114 sack2->start_seq = tmp;
3115
3116 tmp = sack1->end_seq;
3117 sack1->end_seq = sack2->end_seq;
3118 sack2->end_seq = tmp;
3119 }
3120
3121 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3122 {
3123 struct tcp_sock *tp = tcp_sk(sk);
3124 struct tcp_sack_block *sp = &tp->selective_acks[0];
3125 int cur_sacks = tp->rx_opt.num_sacks;
3126 int this_sack;
3127
3128 if (!cur_sacks)
3129 goto new_sack;
3130
3131 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3132 if (tcp_sack_extend(sp, seq, end_seq)) {
3133 /* Rotate this_sack to the first one. */
3134 for (; this_sack>0; this_sack--, sp--)
3135 tcp_sack_swap(sp, sp-1);
3136 if (cur_sacks > 1)
3137 tcp_sack_maybe_coalesce(tp);
3138 return;
3139 }
3140 }
3141
3142 /* Could not find an adjacent existing SACK, build a new one,
3143 * put it at the front, and shift everyone else down. We
3144 * always know there is at least one SACK present already here.
3145 *
3146 * If the sack array is full, forget about the last one.
3147 */
3148 if (this_sack >= 4) {
3149 this_sack--;
3150 tp->rx_opt.num_sacks--;
3151 sp--;
3152 }
3153 for(; this_sack > 0; this_sack--, sp--)
3154 *sp = *(sp-1);
3155
3156 new_sack:
3157 /* Build the new head SACK, and we're done. */
3158 sp->start_seq = seq;
3159 sp->end_seq = end_seq;
3160 tp->rx_opt.num_sacks++;
3161 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3162 }
3163
3164 /* RCV.NXT advances, some SACKs should be eaten. */
3165
3166 static void tcp_sack_remove(struct tcp_sock *tp)
3167 {
3168 struct tcp_sack_block *sp = &tp->selective_acks[0];
3169 int num_sacks = tp->rx_opt.num_sacks;
3170 int this_sack;
3171
3172 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3173 if (skb_queue_empty(&tp->out_of_order_queue)) {
3174 tp->rx_opt.num_sacks = 0;
3175 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3176 return;
3177 }
3178
3179 for(this_sack = 0; this_sack < num_sacks; ) {
3180 /* Check if the start of the sack is covered by RCV.NXT. */
3181 if (!before(tp->rcv_nxt, sp->start_seq)) {
3182 int i;
3183
3184 /* RCV.NXT must cover all the block! */
3185 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3186
3187 /* Zap this SACK, by moving forward any other SACKS. */
3188 for (i=this_sack+1; i < num_sacks; i++)
3189 tp->selective_acks[i-1] = tp->selective_acks[i];
3190 num_sacks--;
3191 continue;
3192 }
3193 this_sack++;
3194 sp++;
3195 }
3196 if (num_sacks != tp->rx_opt.num_sacks) {
3197 tp->rx_opt.num_sacks = num_sacks;
3198 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3199 }
3200 }
3201
3202 /* This one checks to see if we can put data from the
3203 * out_of_order queue into the receive_queue.
3204 */
3205 static void tcp_ofo_queue(struct sock *sk)
3206 {
3207 struct tcp_sock *tp = tcp_sk(sk);
3208 __u32 dsack_high = tp->rcv_nxt;
3209 struct sk_buff *skb;
3210
3211 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3212 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3213 break;
3214
3215 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3216 __u32 dsack = dsack_high;
3217 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3218 dsack_high = TCP_SKB_CB(skb)->end_seq;
3219 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3220 }
3221
3222 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3223 SOCK_DEBUG(sk, "ofo packet was already received \n");
3224 __skb_unlink(skb, &tp->out_of_order_queue);
3225 __kfree_skb(skb);
3226 continue;
3227 }
3228 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3229 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3230 TCP_SKB_CB(skb)->end_seq);
3231
3232 __skb_unlink(skb, &tp->out_of_order_queue);
3233 __skb_queue_tail(&sk->sk_receive_queue, skb);
3234 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3235 if(skb->h.th->fin)
3236 tcp_fin(skb, sk, skb->h.th);
3237 }
3238 }
3239
3240 static int tcp_prune_queue(struct sock *sk);
3241
3242 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3243 {
3244 struct tcphdr *th = skb->h.th;
3245 struct tcp_sock *tp = tcp_sk(sk);
3246 int eaten = -1;
3247
3248 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3249 goto drop;
3250
3251 __skb_pull(skb, th->doff*4);
3252
3253 TCP_ECN_accept_cwr(tp, skb);
3254
3255 if (tp->rx_opt.dsack) {
3256 tp->rx_opt.dsack = 0;
3257 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3258 4 - tp->rx_opt.tstamp_ok);
3259 }
3260
3261 /* Queue data for delivery to the user.
3262 * Packets in sequence go to the receive queue.
3263 * Out of sequence packets to the out_of_order_queue.
3264 */
3265 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3266 if (tcp_receive_window(tp) == 0)
3267 goto out_of_window;
3268
3269 /* Ok. In sequence. In window. */
3270 if (tp->ucopy.task == current &&
3271 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3272 sock_owned_by_user(sk) && !tp->urg_data) {
3273 int chunk = min_t(unsigned int, skb->len,
3274 tp->ucopy.len);
3275
3276 __set_current_state(TASK_RUNNING);
3277
3278 local_bh_enable();
3279 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3280 tp->ucopy.len -= chunk;
3281 tp->copied_seq += chunk;
3282 eaten = (chunk == skb->len && !th->fin);
3283 tcp_rcv_space_adjust(sk);
3284 }
3285 local_bh_disable();
3286 }
3287
3288 if (eaten <= 0) {
3289 queue_and_out:
3290 if (eaten < 0 &&
3291 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3292 !sk_stream_rmem_schedule(sk, skb))) {
3293 if (tcp_prune_queue(sk) < 0 ||
3294 !sk_stream_rmem_schedule(sk, skb))
3295 goto drop;
3296 }
3297 sk_stream_set_owner_r(skb, sk);
3298 __skb_queue_tail(&sk->sk_receive_queue, skb);
3299 }
3300 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3301 if(skb->len)
3302 tcp_event_data_recv(sk, tp, skb);
3303 if(th->fin)
3304 tcp_fin(skb, sk, th);
3305
3306 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3307 tcp_ofo_queue(sk);
3308
3309 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3310 * gap in queue is filled.
3311 */
3312 if (skb_queue_empty(&tp->out_of_order_queue))
3313 inet_csk(sk)->icsk_ack.pingpong = 0;
3314 }
3315
3316 if (tp->rx_opt.num_sacks)
3317 tcp_sack_remove(tp);
3318
3319 tcp_fast_path_check(sk, tp);
3320
3321 if (eaten > 0)
3322 __kfree_skb(skb);
3323 else if (!sock_flag(sk, SOCK_DEAD))
3324 sk->sk_data_ready(sk, 0);
3325 return;
3326 }
3327
3328 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3329 /* A retransmit, 2nd most common case. Force an immediate ack. */
3330 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3331 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3332
3333 out_of_window:
3334 tcp_enter_quickack_mode(sk);
3335 inet_csk_schedule_ack(sk);
3336 drop:
3337 __kfree_skb(skb);
3338 return;
3339 }
3340
3341 /* Out of window. F.e. zero window probe. */
3342 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3343 goto out_of_window;
3344
3345 tcp_enter_quickack_mode(sk);
3346
3347 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3348 /* Partial packet, seq < rcv_next < end_seq */
3349 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3350 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3351 TCP_SKB_CB(skb)->end_seq);
3352
3353 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3354
3355 /* If window is closed, drop tail of packet. But after
3356 * remembering D-SACK for its head made in previous line.
3357 */
3358 if (!tcp_receive_window(tp))
3359 goto out_of_window;
3360 goto queue_and_out;
3361 }
3362
3363 TCP_ECN_check_ce(tp, skb);
3364
3365 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3366 !sk_stream_rmem_schedule(sk, skb)) {
3367 if (tcp_prune_queue(sk) < 0 ||
3368 !sk_stream_rmem_schedule(sk, skb))
3369 goto drop;
3370 }
3371
3372 /* Disable header prediction. */
3373 tp->pred_flags = 0;
3374 inet_csk_schedule_ack(sk);
3375
3376 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3377 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3378
3379 sk_stream_set_owner_r(skb, sk);
3380
3381 if (!skb_peek(&tp->out_of_order_queue)) {
3382 /* Initial out of order segment, build 1 SACK. */
3383 if (tp->rx_opt.sack_ok) {
3384 tp->rx_opt.num_sacks = 1;
3385 tp->rx_opt.dsack = 0;
3386 tp->rx_opt.eff_sacks = 1;
3387 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3388 tp->selective_acks[0].end_seq =
3389 TCP_SKB_CB(skb)->end_seq;
3390 }
3391 __skb_queue_head(&tp->out_of_order_queue,skb);
3392 } else {
3393 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3394 u32 seq = TCP_SKB_CB(skb)->seq;
3395 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3396
3397 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3398 __skb_append(skb1, skb, &tp->out_of_order_queue);
3399
3400 if (!tp->rx_opt.num_sacks ||
3401 tp->selective_acks[0].end_seq != seq)
3402 goto add_sack;
3403
3404 /* Common case: data arrive in order after hole. */
3405 tp->selective_acks[0].end_seq = end_seq;
3406 return;
3407 }
3408
3409 /* Find place to insert this segment. */
3410 do {
3411 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3412 break;
3413 } while ((skb1 = skb1->prev) !=
3414 (struct sk_buff*)&tp->out_of_order_queue);
3415
3416 /* Do skb overlap to previous one? */
3417 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3418 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3419 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3420 /* All the bits are present. Drop. */
3421 __kfree_skb(skb);
3422 tcp_dsack_set(tp, seq, end_seq);
3423 goto add_sack;
3424 }
3425 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3426 /* Partial overlap. */
3427 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3428 } else {
3429 skb1 = skb1->prev;
3430 }
3431 }
3432 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3433
3434 /* And clean segments covered by new one as whole. */
3435 while ((skb1 = skb->next) !=
3436 (struct sk_buff*)&tp->out_of_order_queue &&
3437 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3438 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3439 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3440 break;
3441 }
3442 __skb_unlink(skb1, &tp->out_of_order_queue);
3443 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3444 __kfree_skb(skb1);
3445 }
3446
3447 add_sack:
3448 if (tp->rx_opt.sack_ok)
3449 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3450 }
3451 }
3452
3453 /* Collapse contiguous sequence of skbs head..tail with
3454 * sequence numbers start..end.
3455 * Segments with FIN/SYN are not collapsed (only because this
3456 * simplifies code)
3457 */
3458 static void
3459 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3460 struct sk_buff *head, struct sk_buff *tail,
3461 u32 start, u32 end)
3462 {
3463 struct sk_buff *skb;
3464
3465 /* First, check that queue is collapsible and find
3466 * the point where collapsing can be useful. */
3467 for (skb = head; skb != tail; ) {
3468 /* No new bits? It is possible on ofo queue. */
3469 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3470 struct sk_buff *next = skb->next;
3471 __skb_unlink(skb, list);
3472 __kfree_skb(skb);
3473 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3474 skb = next;
3475 continue;
3476 }
3477
3478 /* The first skb to collapse is:
3479 * - not SYN/FIN and
3480 * - bloated or contains data before "start" or
3481 * overlaps to the next one.
3482 */
3483 if (!skb->h.th->syn && !skb->h.th->fin &&
3484 (tcp_win_from_space(skb->truesize) > skb->len ||
3485 before(TCP_SKB_CB(skb)->seq, start) ||
3486 (skb->next != tail &&
3487 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3488 break;
3489
3490 /* Decided to skip this, advance start seq. */
3491 start = TCP_SKB_CB(skb)->end_seq;
3492 skb = skb->next;
3493 }
3494 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3495 return;
3496
3497 while (before(start, end)) {
3498 struct sk_buff *nskb;
3499 int header = skb_headroom(skb);
3500 int copy = SKB_MAX_ORDER(header, 0);
3501
3502 /* Too big header? This can happen with IPv6. */
3503 if (copy < 0)
3504 return;
3505 if (end-start < copy)
3506 copy = end-start;
3507 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3508 if (!nskb)
3509 return;
3510 skb_reserve(nskb, header);
3511 memcpy(nskb->head, skb->head, header);
3512 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3513 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3514 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3515 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3516 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3517 __skb_insert(nskb, skb->prev, skb, list);
3518 sk_stream_set_owner_r(nskb, sk);
3519
3520 /* Copy data, releasing collapsed skbs. */
3521 while (copy > 0) {
3522 int offset = start - TCP_SKB_CB(skb)->seq;
3523 int size = TCP_SKB_CB(skb)->end_seq - start;
3524
3525 BUG_ON(offset < 0);
3526 if (size > 0) {
3527 size = min(copy, size);
3528 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3529 BUG();
3530 TCP_SKB_CB(nskb)->end_seq += size;
3531 copy -= size;
3532 start += size;
3533 }
3534 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3535 struct sk_buff *next = skb->next;
3536 __skb_unlink(skb, list);
3537 __kfree_skb(skb);
3538 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3539 skb = next;
3540 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3541 return;
3542 }
3543 }
3544 }
3545 }
3546
3547 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3548 * and tcp_collapse() them until all the queue is collapsed.
3549 */
3550 static void tcp_collapse_ofo_queue(struct sock *sk)
3551 {
3552 struct tcp_sock *tp = tcp_sk(sk);
3553 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3554 struct sk_buff *head;
3555 u32 start, end;
3556
3557 if (skb == NULL)
3558 return;
3559
3560 start = TCP_SKB_CB(skb)->seq;
3561 end = TCP_SKB_CB(skb)->end_seq;
3562 head = skb;
3563
3564 for (;;) {
3565 skb = skb->next;
3566
3567 /* Segment is terminated when we see gap or when
3568 * we are at the end of all the queue. */
3569 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3570 after(TCP_SKB_CB(skb)->seq, end) ||
3571 before(TCP_SKB_CB(skb)->end_seq, start)) {
3572 tcp_collapse(sk, &tp->out_of_order_queue,
3573 head, skb, start, end);
3574 head = skb;
3575 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3576 break;
3577 /* Start new segment */
3578 start = TCP_SKB_CB(skb)->seq;
3579 end = TCP_SKB_CB(skb)->end_seq;
3580 } else {
3581 if (before(TCP_SKB_CB(skb)->seq, start))
3582 start = TCP_SKB_CB(skb)->seq;
3583 if (after(TCP_SKB_CB(skb)->end_seq, end))
3584 end = TCP_SKB_CB(skb)->end_seq;
3585 }
3586 }
3587 }
3588
3589 /* Reduce allocated memory if we can, trying to get
3590 * the socket within its memory limits again.
3591 *
3592 * Return less than zero if we should start dropping frames
3593 * until the socket owning process reads some of the data
3594 * to stabilize the situation.
3595 */
3596 static int tcp_prune_queue(struct sock *sk)
3597 {
3598 struct tcp_sock *tp = tcp_sk(sk);
3599
3600 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3601
3602 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3603
3604 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3605 tcp_clamp_window(sk, tp);
3606 else if (tcp_memory_pressure)
3607 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3608
3609 tcp_collapse_ofo_queue(sk);
3610 tcp_collapse(sk, &sk->sk_receive_queue,
3611 sk->sk_receive_queue.next,
3612 (struct sk_buff*)&sk->sk_receive_queue,
3613 tp->copied_seq, tp->rcv_nxt);
3614 sk_stream_mem_reclaim(sk);
3615
3616 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3617 return 0;
3618
3619 /* Collapsing did not help, destructive actions follow.
3620 * This must not ever occur. */
3621
3622 /* First, purge the out_of_order queue. */
3623 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3624 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3625 __skb_queue_purge(&tp->out_of_order_queue);
3626
3627 /* Reset SACK state. A conforming SACK implementation will
3628 * do the same at a timeout based retransmit. When a connection
3629 * is in a sad state like this, we care only about integrity
3630 * of the connection not performance.
3631 */
3632 if (tp->rx_opt.sack_ok)
3633 tcp_sack_reset(&tp->rx_opt);
3634 sk_stream_mem_reclaim(sk);
3635 }
3636
3637 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3638 return 0;
3639
3640 /* If we are really being abused, tell the caller to silently
3641 * drop receive data on the floor. It will get retransmitted
3642 * and hopefully then we'll have sufficient space.
3643 */
3644 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3645
3646 /* Massive buffer overcommit. */
3647 tp->pred_flags = 0;
3648 return -1;
3649 }
3650
3651
3652 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3653 * As additional protections, we do not touch cwnd in retransmission phases,
3654 * and if application hit its sndbuf limit recently.
3655 */
3656 void tcp_cwnd_application_limited(struct sock *sk)
3657 {
3658 struct tcp_sock *tp = tcp_sk(sk);
3659
3660 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3661 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3662 /* Limited by application or receiver window. */
3663 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3664 u32 win_used = max(tp->snd_cwnd_used, init_win);
3665 if (win_used < tp->snd_cwnd) {
3666 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3667 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3668 }
3669 tp->snd_cwnd_used = 0;
3670 }
3671 tp->snd_cwnd_stamp = tcp_time_stamp;
3672 }
3673
3674 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3675 {
3676 /* If the user specified a specific send buffer setting, do
3677 * not modify it.
3678 */
3679 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3680 return 0;
3681
3682 /* If we are under global TCP memory pressure, do not expand. */
3683 if (tcp_memory_pressure)
3684 return 0;
3685
3686 /* If we are under soft global TCP memory pressure, do not expand. */
3687 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3688 return 0;
3689
3690 /* If we filled the congestion window, do not expand. */
3691 if (tp->packets_out >= tp->snd_cwnd)
3692 return 0;
3693
3694 return 1;
3695 }
3696
3697 /* When incoming ACK allowed to free some skb from write_queue,
3698 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3699 * on the exit from tcp input handler.
3700 *
3701 * PROBLEM: sndbuf expansion does not work well with largesend.
3702 */
3703 static void tcp_new_space(struct sock *sk)
3704 {
3705 struct tcp_sock *tp = tcp_sk(sk);
3706
3707 if (tcp_should_expand_sndbuf(sk, tp)) {
3708 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3709 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3710 demanded = max_t(unsigned int, tp->snd_cwnd,
3711 tp->reordering + 1);
3712 sndmem *= 2*demanded;
3713 if (sndmem > sk->sk_sndbuf)
3714 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3715 tp->snd_cwnd_stamp = tcp_time_stamp;
3716 }
3717
3718 sk->sk_write_space(sk);
3719 }
3720
3721 static void tcp_check_space(struct sock *sk)
3722 {
3723 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3724 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3725 if (sk->sk_socket &&
3726 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3727 tcp_new_space(sk);
3728 }
3729 }
3730
3731 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3732 {
3733 tcp_push_pending_frames(sk, tp);
3734 tcp_check_space(sk);
3735 }
3736
3737 /*
3738 * Check if sending an ack is needed.
3739 */
3740 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3741 {
3742 struct tcp_sock *tp = tcp_sk(sk);
3743
3744 /* More than one full frame received... */
3745 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3746 /* ... and right edge of window advances far enough.
3747 * (tcp_recvmsg() will send ACK otherwise). Or...
3748 */
3749 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3750 /* We ACK each frame or... */
3751 tcp_in_quickack_mode(sk) ||
3752 /* We have out of order data. */
3753 (ofo_possible &&
3754 skb_peek(&tp->out_of_order_queue))) {
3755 /* Then ack it now */
3756 tcp_send_ack(sk);
3757 } else {
3758 /* Else, send delayed ack. */
3759 tcp_send_delayed_ack(sk);
3760 }
3761 }
3762
3763 static inline void tcp_ack_snd_check(struct sock *sk)
3764 {
3765 if (!inet_csk_ack_scheduled(sk)) {
3766 /* We sent a data segment already. */
3767 return;
3768 }
3769 __tcp_ack_snd_check(sk, 1);
3770 }
3771
3772 /*
3773 * This routine is only called when we have urgent data
3774 * signaled. Its the 'slow' part of tcp_urg. It could be
3775 * moved inline now as tcp_urg is only called from one
3776 * place. We handle URGent data wrong. We have to - as
3777 * BSD still doesn't use the correction from RFC961.
3778 * For 1003.1g we should support a new option TCP_STDURG to permit
3779 * either form (or just set the sysctl tcp_stdurg).
3780 */
3781
3782 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3783 {
3784 struct tcp_sock *tp = tcp_sk(sk);
3785 u32 ptr = ntohs(th->urg_ptr);
3786
3787 if (ptr && !sysctl_tcp_stdurg)
3788 ptr--;
3789 ptr += ntohl(th->seq);
3790
3791 /* Ignore urgent data that we've already seen and read. */
3792 if (after(tp->copied_seq, ptr))
3793 return;
3794
3795 /* Do not replay urg ptr.
3796 *
3797 * NOTE: interesting situation not covered by specs.
3798 * Misbehaving sender may send urg ptr, pointing to segment,
3799 * which we already have in ofo queue. We are not able to fetch
3800 * such data and will stay in TCP_URG_NOTYET until will be eaten
3801 * by recvmsg(). Seems, we are not obliged to handle such wicked
3802 * situations. But it is worth to think about possibility of some
3803 * DoSes using some hypothetical application level deadlock.
3804 */
3805 if (before(ptr, tp->rcv_nxt))
3806 return;
3807
3808 /* Do we already have a newer (or duplicate) urgent pointer? */
3809 if (tp->urg_data && !after(ptr, tp->urg_seq))
3810 return;
3811
3812 /* Tell the world about our new urgent pointer. */
3813 sk_send_sigurg(sk);
3814
3815 /* We may be adding urgent data when the last byte read was
3816 * urgent. To do this requires some care. We cannot just ignore
3817 * tp->copied_seq since we would read the last urgent byte again
3818 * as data, nor can we alter copied_seq until this data arrives
3819 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3820 *
3821 * NOTE. Double Dutch. Rendering to plain English: author of comment
3822 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3823 * and expect that both A and B disappear from stream. This is _wrong_.
3824 * Though this happens in BSD with high probability, this is occasional.
3825 * Any application relying on this is buggy. Note also, that fix "works"
3826 * only in this artificial test. Insert some normal data between A and B and we will
3827 * decline of BSD again. Verdict: it is better to remove to trap
3828 * buggy users.
3829 */
3830 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3831 !sock_flag(sk, SOCK_URGINLINE) &&
3832 tp->copied_seq != tp->rcv_nxt) {
3833 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3834 tp->copied_seq++;
3835 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3836 __skb_unlink(skb, &sk->sk_receive_queue);
3837 __kfree_skb(skb);
3838 }
3839 }
3840
3841 tp->urg_data = TCP_URG_NOTYET;
3842 tp->urg_seq = ptr;
3843
3844 /* Disable header prediction. */
3845 tp->pred_flags = 0;
3846 }
3847
3848 /* This is the 'fast' part of urgent handling. */
3849 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3850 {
3851 struct tcp_sock *tp = tcp_sk(sk);
3852
3853 /* Check if we get a new urgent pointer - normally not. */
3854 if (th->urg)
3855 tcp_check_urg(sk,th);
3856
3857 /* Do we wait for any urgent data? - normally not... */
3858 if (tp->urg_data == TCP_URG_NOTYET) {
3859 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3860 th->syn;
3861
3862 /* Is the urgent pointer pointing into this packet? */
3863 if (ptr < skb->len) {
3864 u8 tmp;
3865 if (skb_copy_bits(skb, ptr, &tmp, 1))
3866 BUG();
3867 tp->urg_data = TCP_URG_VALID | tmp;
3868 if (!sock_flag(sk, SOCK_DEAD))
3869 sk->sk_data_ready(sk, 0);
3870 }
3871 }
3872 }
3873
3874 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3875 {
3876 struct tcp_sock *tp = tcp_sk(sk);
3877 int chunk = skb->len - hlen;
3878 int err;
3879
3880 local_bh_enable();
3881 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3882 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3883 else
3884 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3885 tp->ucopy.iov);
3886
3887 if (!err) {
3888 tp->ucopy.len -= chunk;
3889 tp->copied_seq += chunk;
3890 tcp_rcv_space_adjust(sk);
3891 }
3892
3893 local_bh_disable();
3894 return err;
3895 }
3896
3897 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3898 {
3899 __sum16 result;
3900
3901 if (sock_owned_by_user(sk)) {
3902 local_bh_enable();
3903 result = __tcp_checksum_complete(skb);
3904 local_bh_disable();
3905 } else {
3906 result = __tcp_checksum_complete(skb);
3907 }
3908 return result;
3909 }
3910
3911 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3912 {
3913 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3914 __tcp_checksum_complete_user(sk, skb);
3915 }
3916
3917 #ifdef CONFIG_NET_DMA
3918 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3919 {
3920 struct tcp_sock *tp = tcp_sk(sk);
3921 int chunk = skb->len - hlen;
3922 int dma_cookie;
3923 int copied_early = 0;
3924
3925 if (tp->ucopy.wakeup)
3926 return 0;
3927
3928 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3929 tp->ucopy.dma_chan = get_softnet_dma();
3930
3931 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3932
3933 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3934 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3935
3936 if (dma_cookie < 0)
3937 goto out;
3938
3939 tp->ucopy.dma_cookie = dma_cookie;
3940 copied_early = 1;
3941
3942 tp->ucopy.len -= chunk;
3943 tp->copied_seq += chunk;
3944 tcp_rcv_space_adjust(sk);
3945
3946 if ((tp->ucopy.len == 0) ||
3947 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3948 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3949 tp->ucopy.wakeup = 1;
3950 sk->sk_data_ready(sk, 0);
3951 }
3952 } else if (chunk > 0) {
3953 tp->ucopy.wakeup = 1;
3954 sk->sk_data_ready(sk, 0);
3955 }
3956 out:
3957 return copied_early;
3958 }
3959 #endif /* CONFIG_NET_DMA */
3960
3961 /*
3962 * TCP receive function for the ESTABLISHED state.
3963 *
3964 * It is split into a fast path and a slow path. The fast path is
3965 * disabled when:
3966 * - A zero window was announced from us - zero window probing
3967 * is only handled properly in the slow path.
3968 * - Out of order segments arrived.
3969 * - Urgent data is expected.
3970 * - There is no buffer space left
3971 * - Unexpected TCP flags/window values/header lengths are received
3972 * (detected by checking the TCP header against pred_flags)
3973 * - Data is sent in both directions. Fast path only supports pure senders
3974 * or pure receivers (this means either the sequence number or the ack
3975 * value must stay constant)
3976 * - Unexpected TCP option.
3977 *
3978 * When these conditions are not satisfied it drops into a standard
3979 * receive procedure patterned after RFC793 to handle all cases.
3980 * The first three cases are guaranteed by proper pred_flags setting,
3981 * the rest is checked inline. Fast processing is turned on in
3982 * tcp_data_queue when everything is OK.
3983 */
3984 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3985 struct tcphdr *th, unsigned len)
3986 {
3987 struct tcp_sock *tp = tcp_sk(sk);
3988
3989 /*
3990 * Header prediction.
3991 * The code loosely follows the one in the famous
3992 * "30 instruction TCP receive" Van Jacobson mail.
3993 *
3994 * Van's trick is to deposit buffers into socket queue
3995 * on a device interrupt, to call tcp_recv function
3996 * on the receive process context and checksum and copy
3997 * the buffer to user space. smart...
3998 *
3999 * Our current scheme is not silly either but we take the
4000 * extra cost of the net_bh soft interrupt processing...
4001 * We do checksum and copy also but from device to kernel.
4002 */
4003
4004 tp->rx_opt.saw_tstamp = 0;
4005
4006 /* pred_flags is 0xS?10 << 16 + snd_wnd
4007 * if header_prediction is to be made
4008 * 'S' will always be tp->tcp_header_len >> 2
4009 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4010 * turn it off (when there are holes in the receive
4011 * space for instance)
4012 * PSH flag is ignored.
4013 */
4014
4015 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4016 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4017 int tcp_header_len = tp->tcp_header_len;
4018
4019 /* Timestamp header prediction: tcp_header_len
4020 * is automatically equal to th->doff*4 due to pred_flags
4021 * match.
4022 */
4023
4024 /* Check timestamp */
4025 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4026 __be32 *ptr = (__be32 *)(th + 1);
4027
4028 /* No? Slow path! */
4029 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4030 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4031 goto slow_path;
4032
4033 tp->rx_opt.saw_tstamp = 1;
4034 ++ptr;
4035 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4036 ++ptr;
4037 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4038
4039 /* If PAWS failed, check it more carefully in slow path */
4040 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4041 goto slow_path;
4042
4043 /* DO NOT update ts_recent here, if checksum fails
4044 * and timestamp was corrupted part, it will result
4045 * in a hung connection since we will drop all
4046 * future packets due to the PAWS test.
4047 */
4048 }
4049
4050 if (len <= tcp_header_len) {
4051 /* Bulk data transfer: sender */
4052 if (len == tcp_header_len) {
4053 /* Predicted packet is in window by definition.
4054 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4055 * Hence, check seq<=rcv_wup reduces to:
4056 */
4057 if (tcp_header_len ==
4058 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4059 tp->rcv_nxt == tp->rcv_wup)
4060 tcp_store_ts_recent(tp);
4061
4062 /* We know that such packets are checksummed
4063 * on entry.
4064 */
4065 tcp_ack(sk, skb, 0);
4066 __kfree_skb(skb);
4067 tcp_data_snd_check(sk, tp);
4068 return 0;
4069 } else { /* Header too small */
4070 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4071 goto discard;
4072 }
4073 } else {
4074 int eaten = 0;
4075 int copied_early = 0;
4076
4077 if (tp->copied_seq == tp->rcv_nxt &&
4078 len - tcp_header_len <= tp->ucopy.len) {
4079 #ifdef CONFIG_NET_DMA
4080 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4081 copied_early = 1;
4082 eaten = 1;
4083 }
4084 #endif
4085 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4086 __set_current_state(TASK_RUNNING);
4087
4088 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4089 eaten = 1;
4090 }
4091 if (eaten) {
4092 /* Predicted packet is in window by definition.
4093 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4094 * Hence, check seq<=rcv_wup reduces to:
4095 */
4096 if (tcp_header_len ==
4097 (sizeof(struct tcphdr) +
4098 TCPOLEN_TSTAMP_ALIGNED) &&
4099 tp->rcv_nxt == tp->rcv_wup)
4100 tcp_store_ts_recent(tp);
4101
4102 tcp_rcv_rtt_measure_ts(sk, skb);
4103
4104 __skb_pull(skb, tcp_header_len);
4105 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4106 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4107 }
4108 if (copied_early)
4109 tcp_cleanup_rbuf(sk, skb->len);
4110 }
4111 if (!eaten) {
4112 if (tcp_checksum_complete_user(sk, skb))
4113 goto csum_error;
4114
4115 /* Predicted packet is in window by definition.
4116 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4117 * Hence, check seq<=rcv_wup reduces to:
4118 */
4119 if (tcp_header_len ==
4120 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4121 tp->rcv_nxt == tp->rcv_wup)
4122 tcp_store_ts_recent(tp);
4123
4124 tcp_rcv_rtt_measure_ts(sk, skb);
4125
4126 if ((int)skb->truesize > sk->sk_forward_alloc)
4127 goto step5;
4128
4129 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4130
4131 /* Bulk data transfer: receiver */
4132 __skb_pull(skb,tcp_header_len);
4133 __skb_queue_tail(&sk->sk_receive_queue, skb);
4134 sk_stream_set_owner_r(skb, sk);
4135 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4136 }
4137
4138 tcp_event_data_recv(sk, tp, skb);
4139
4140 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4141 /* Well, only one small jumplet in fast path... */
4142 tcp_ack(sk, skb, FLAG_DATA);
4143 tcp_data_snd_check(sk, tp);
4144 if (!inet_csk_ack_scheduled(sk))
4145 goto no_ack;
4146 }
4147
4148 __tcp_ack_snd_check(sk, 0);
4149 no_ack:
4150 #ifdef CONFIG_NET_DMA
4151 if (copied_early)
4152 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4153 else
4154 #endif
4155 if (eaten)
4156 __kfree_skb(skb);
4157 else
4158 sk->sk_data_ready(sk, 0);
4159 return 0;
4160 }
4161 }
4162
4163 slow_path:
4164 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4165 goto csum_error;
4166
4167 /*
4168 * RFC1323: H1. Apply PAWS check first.
4169 */
4170 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4171 tcp_paws_discard(sk, skb)) {
4172 if (!th->rst) {
4173 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4174 tcp_send_dupack(sk, skb);
4175 goto discard;
4176 }
4177 /* Resets are accepted even if PAWS failed.
4178
4179 ts_recent update must be made after we are sure
4180 that the packet is in window.
4181 */
4182 }
4183
4184 /*
4185 * Standard slow path.
4186 */
4187
4188 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4189 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4190 * (RST) segments are validated by checking their SEQ-fields."
4191 * And page 69: "If an incoming segment is not acceptable,
4192 * an acknowledgment should be sent in reply (unless the RST bit
4193 * is set, if so drop the segment and return)".
4194 */
4195 if (!th->rst)
4196 tcp_send_dupack(sk, skb);
4197 goto discard;
4198 }
4199
4200 if(th->rst) {
4201 tcp_reset(sk);
4202 goto discard;
4203 }
4204
4205 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4206
4207 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4208 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4209 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4210 tcp_reset(sk);
4211 return 1;
4212 }
4213
4214 step5:
4215 if(th->ack)
4216 tcp_ack(sk, skb, FLAG_SLOWPATH);
4217
4218 tcp_rcv_rtt_measure_ts(sk, skb);
4219
4220 /* Process urgent data. */
4221 tcp_urg(sk, skb, th);
4222
4223 /* step 7: process the segment text */
4224 tcp_data_queue(sk, skb);
4225
4226 tcp_data_snd_check(sk, tp);
4227 tcp_ack_snd_check(sk);
4228 return 0;
4229
4230 csum_error:
4231 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4232
4233 discard:
4234 __kfree_skb(skb);
4235 return 0;
4236 }
4237
4238 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4239 struct tcphdr *th, unsigned len)
4240 {
4241 struct tcp_sock *tp = tcp_sk(sk);
4242 struct inet_connection_sock *icsk = inet_csk(sk);
4243 int saved_clamp = tp->rx_opt.mss_clamp;
4244
4245 tcp_parse_options(skb, &tp->rx_opt, 0);
4246
4247 if (th->ack) {
4248 /* rfc793:
4249 * "If the state is SYN-SENT then
4250 * first check the ACK bit
4251 * If the ACK bit is set
4252 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4253 * a reset (unless the RST bit is set, if so drop
4254 * the segment and return)"
4255 *
4256 * We do not send data with SYN, so that RFC-correct
4257 * test reduces to:
4258 */
4259 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4260 goto reset_and_undo;
4261
4262 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4263 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4264 tcp_time_stamp)) {
4265 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4266 goto reset_and_undo;
4267 }
4268
4269 /* Now ACK is acceptable.
4270 *
4271 * "If the RST bit is set
4272 * If the ACK was acceptable then signal the user "error:
4273 * connection reset", drop the segment, enter CLOSED state,
4274 * delete TCB, and return."
4275 */
4276
4277 if (th->rst) {
4278 tcp_reset(sk);
4279 goto discard;
4280 }
4281
4282 /* rfc793:
4283 * "fifth, if neither of the SYN or RST bits is set then
4284 * drop the segment and return."
4285 *
4286 * See note below!
4287 * --ANK(990513)
4288 */
4289 if (!th->syn)
4290 goto discard_and_undo;
4291
4292 /* rfc793:
4293 * "If the SYN bit is on ...
4294 * are acceptable then ...
4295 * (our SYN has been ACKed), change the connection
4296 * state to ESTABLISHED..."
4297 */
4298
4299 TCP_ECN_rcv_synack(tp, th);
4300
4301 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4302 tcp_ack(sk, skb, FLAG_SLOWPATH);
4303
4304 /* Ok.. it's good. Set up sequence numbers and
4305 * move to established.
4306 */
4307 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4308 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4309
4310 /* RFC1323: The window in SYN & SYN/ACK segments is
4311 * never scaled.
4312 */
4313 tp->snd_wnd = ntohs(th->window);
4314 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4315
4316 if (!tp->rx_opt.wscale_ok) {
4317 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4318 tp->window_clamp = min(tp->window_clamp, 65535U);
4319 }
4320
4321 if (tp->rx_opt.saw_tstamp) {
4322 tp->rx_opt.tstamp_ok = 1;
4323 tp->tcp_header_len =
4324 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4325 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4326 tcp_store_ts_recent(tp);
4327 } else {
4328 tp->tcp_header_len = sizeof(struct tcphdr);
4329 }
4330
4331 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4332 tp->rx_opt.sack_ok |= 2;
4333
4334 tcp_mtup_init(sk);
4335 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4336 tcp_initialize_rcv_mss(sk);
4337
4338 /* Remember, tcp_poll() does not lock socket!
4339 * Change state from SYN-SENT only after copied_seq
4340 * is initialized. */
4341 tp->copied_seq = tp->rcv_nxt;
4342 smp_mb();
4343 tcp_set_state(sk, TCP_ESTABLISHED);
4344
4345 security_inet_conn_established(sk, skb);
4346
4347 /* Make sure socket is routed, for correct metrics. */
4348 icsk->icsk_af_ops->rebuild_header(sk);
4349
4350 tcp_init_metrics(sk);
4351
4352 tcp_init_congestion_control(sk);
4353
4354 /* Prevent spurious tcp_cwnd_restart() on first data
4355 * packet.
4356 */
4357 tp->lsndtime = tcp_time_stamp;
4358
4359 tcp_init_buffer_space(sk);
4360
4361 if (sock_flag(sk, SOCK_KEEPOPEN))
4362 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4363
4364 if (!tp->rx_opt.snd_wscale)
4365 __tcp_fast_path_on(tp, tp->snd_wnd);
4366 else
4367 tp->pred_flags = 0;
4368
4369 if (!sock_flag(sk, SOCK_DEAD)) {
4370 sk->sk_state_change(sk);
4371 sk_wake_async(sk, 0, POLL_OUT);
4372 }
4373
4374 if (sk->sk_write_pending ||
4375 icsk->icsk_accept_queue.rskq_defer_accept ||
4376 icsk->icsk_ack.pingpong) {
4377 /* Save one ACK. Data will be ready after
4378 * several ticks, if write_pending is set.
4379 *
4380 * It may be deleted, but with this feature tcpdumps
4381 * look so _wonderfully_ clever, that I was not able
4382 * to stand against the temptation 8) --ANK
4383 */
4384 inet_csk_schedule_ack(sk);
4385 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4386 icsk->icsk_ack.ato = TCP_ATO_MIN;
4387 tcp_incr_quickack(sk);
4388 tcp_enter_quickack_mode(sk);
4389 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4390 TCP_DELACK_MAX, TCP_RTO_MAX);
4391
4392 discard:
4393 __kfree_skb(skb);
4394 return 0;
4395 } else {
4396 tcp_send_ack(sk);
4397 }
4398 return -1;
4399 }
4400
4401 /* No ACK in the segment */
4402
4403 if (th->rst) {
4404 /* rfc793:
4405 * "If the RST bit is set
4406 *
4407 * Otherwise (no ACK) drop the segment and return."
4408 */
4409
4410 goto discard_and_undo;
4411 }
4412
4413 /* PAWS check. */
4414 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4415 goto discard_and_undo;
4416
4417 if (th->syn) {
4418 /* We see SYN without ACK. It is attempt of
4419 * simultaneous connect with crossed SYNs.
4420 * Particularly, it can be connect to self.
4421 */
4422 tcp_set_state(sk, TCP_SYN_RECV);
4423
4424 if (tp->rx_opt.saw_tstamp) {
4425 tp->rx_opt.tstamp_ok = 1;
4426 tcp_store_ts_recent(tp);
4427 tp->tcp_header_len =
4428 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4429 } else {
4430 tp->tcp_header_len = sizeof(struct tcphdr);
4431 }
4432
4433 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4434 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4435
4436 /* RFC1323: The window in SYN & SYN/ACK segments is
4437 * never scaled.
4438 */
4439 tp->snd_wnd = ntohs(th->window);
4440 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4441 tp->max_window = tp->snd_wnd;
4442
4443 TCP_ECN_rcv_syn(tp, th);
4444
4445 tcp_mtup_init(sk);
4446 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4447 tcp_initialize_rcv_mss(sk);
4448
4449
4450 tcp_send_synack(sk);
4451 #if 0
4452 /* Note, we could accept data and URG from this segment.
4453 * There are no obstacles to make this.
4454 *
4455 * However, if we ignore data in ACKless segments sometimes,
4456 * we have no reasons to accept it sometimes.
4457 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4458 * is not flawless. So, discard packet for sanity.
4459 * Uncomment this return to process the data.
4460 */
4461 return -1;
4462 #else
4463 goto discard;
4464 #endif
4465 }
4466 /* "fifth, if neither of the SYN or RST bits is set then
4467 * drop the segment and return."
4468 */
4469
4470 discard_and_undo:
4471 tcp_clear_options(&tp->rx_opt);
4472 tp->rx_opt.mss_clamp = saved_clamp;
4473 goto discard;
4474
4475 reset_and_undo:
4476 tcp_clear_options(&tp->rx_opt);
4477 tp->rx_opt.mss_clamp = saved_clamp;
4478 return 1;
4479 }
4480
4481
4482 /*
4483 * This function implements the receiving procedure of RFC 793 for
4484 * all states except ESTABLISHED and TIME_WAIT.
4485 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4486 * address independent.
4487 */
4488
4489 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4490 struct tcphdr *th, unsigned len)
4491 {
4492 struct tcp_sock *tp = tcp_sk(sk);
4493 struct inet_connection_sock *icsk = inet_csk(sk);
4494 int queued = 0;
4495
4496 tp->rx_opt.saw_tstamp = 0;
4497
4498 switch (sk->sk_state) {
4499 case TCP_CLOSE:
4500 goto discard;
4501
4502 case TCP_LISTEN:
4503 if(th->ack)
4504 return 1;
4505
4506 if(th->rst)
4507 goto discard;
4508
4509 if(th->syn) {
4510 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4511 return 1;
4512
4513 /* Now we have several options: In theory there is
4514 * nothing else in the frame. KA9Q has an option to
4515 * send data with the syn, BSD accepts data with the
4516 * syn up to the [to be] advertised window and
4517 * Solaris 2.1 gives you a protocol error. For now
4518 * we just ignore it, that fits the spec precisely
4519 * and avoids incompatibilities. It would be nice in
4520 * future to drop through and process the data.
4521 *
4522 * Now that TTCP is starting to be used we ought to
4523 * queue this data.
4524 * But, this leaves one open to an easy denial of
4525 * service attack, and SYN cookies can't defend
4526 * against this problem. So, we drop the data
4527 * in the interest of security over speed unless
4528 * it's still in use.
4529 */
4530 kfree_skb(skb);
4531 return 0;
4532 }
4533 goto discard;
4534
4535 case TCP_SYN_SENT:
4536 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4537 if (queued >= 0)
4538 return queued;
4539
4540 /* Do step6 onward by hand. */
4541 tcp_urg(sk, skb, th);
4542 __kfree_skb(skb);
4543 tcp_data_snd_check(sk, tp);
4544 return 0;
4545 }
4546
4547 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4548 tcp_paws_discard(sk, skb)) {
4549 if (!th->rst) {
4550 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4551 tcp_send_dupack(sk, skb);
4552 goto discard;
4553 }
4554 /* Reset is accepted even if it did not pass PAWS. */
4555 }
4556
4557 /* step 1: check sequence number */
4558 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4559 if (!th->rst)
4560 tcp_send_dupack(sk, skb);
4561 goto discard;
4562 }
4563
4564 /* step 2: check RST bit */
4565 if(th->rst) {
4566 tcp_reset(sk);
4567 goto discard;
4568 }
4569
4570 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4571
4572 /* step 3: check security and precedence [ignored] */
4573
4574 /* step 4:
4575 *
4576 * Check for a SYN in window.
4577 */
4578 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4579 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4580 tcp_reset(sk);
4581 return 1;
4582 }
4583
4584 /* step 5: check the ACK field */
4585 if (th->ack) {
4586 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4587
4588 switch(sk->sk_state) {
4589 case TCP_SYN_RECV:
4590 if (acceptable) {
4591 tp->copied_seq = tp->rcv_nxt;
4592 smp_mb();
4593 tcp_set_state(sk, TCP_ESTABLISHED);
4594 sk->sk_state_change(sk);
4595
4596 /* Note, that this wakeup is only for marginal
4597 * crossed SYN case. Passively open sockets
4598 * are not waked up, because sk->sk_sleep ==
4599 * NULL and sk->sk_socket == NULL.
4600 */
4601 if (sk->sk_socket) {
4602 sk_wake_async(sk,0,POLL_OUT);
4603 }
4604
4605 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4606 tp->snd_wnd = ntohs(th->window) <<
4607 tp->rx_opt.snd_wscale;
4608 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4609 TCP_SKB_CB(skb)->seq);
4610
4611 /* tcp_ack considers this ACK as duplicate
4612 * and does not calculate rtt.
4613 * Fix it at least with timestamps.
4614 */
4615 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4616 !tp->srtt)
4617 tcp_ack_saw_tstamp(sk, 0);
4618
4619 if (tp->rx_opt.tstamp_ok)
4620 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4621
4622 /* Make sure socket is routed, for
4623 * correct metrics.
4624 */
4625 icsk->icsk_af_ops->rebuild_header(sk);
4626
4627 tcp_init_metrics(sk);
4628
4629 tcp_init_congestion_control(sk);
4630
4631 /* Prevent spurious tcp_cwnd_restart() on
4632 * first data packet.
4633 */
4634 tp->lsndtime = tcp_time_stamp;
4635
4636 tcp_mtup_init(sk);
4637 tcp_initialize_rcv_mss(sk);
4638 tcp_init_buffer_space(sk);
4639 tcp_fast_path_on(tp);
4640 } else {
4641 return 1;
4642 }
4643 break;
4644
4645 case TCP_FIN_WAIT1:
4646 if (tp->snd_una == tp->write_seq) {
4647 tcp_set_state(sk, TCP_FIN_WAIT2);
4648 sk->sk_shutdown |= SEND_SHUTDOWN;
4649 dst_confirm(sk->sk_dst_cache);
4650
4651 if (!sock_flag(sk, SOCK_DEAD))
4652 /* Wake up lingering close() */
4653 sk->sk_state_change(sk);
4654 else {
4655 int tmo;
4656
4657 if (tp->linger2 < 0 ||
4658 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4659 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4660 tcp_done(sk);
4661 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4662 return 1;
4663 }
4664
4665 tmo = tcp_fin_time(sk);
4666 if (tmo > TCP_TIMEWAIT_LEN) {
4667 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4668 } else if (th->fin || sock_owned_by_user(sk)) {
4669 /* Bad case. We could lose such FIN otherwise.
4670 * It is not a big problem, but it looks confusing
4671 * and not so rare event. We still can lose it now,
4672 * if it spins in bh_lock_sock(), but it is really
4673 * marginal case.
4674 */
4675 inet_csk_reset_keepalive_timer(sk, tmo);
4676 } else {
4677 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4678 goto discard;
4679 }
4680 }
4681 }
4682 break;
4683
4684 case TCP_CLOSING:
4685 if (tp->snd_una == tp->write_seq) {
4686 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4687 goto discard;
4688 }
4689 break;
4690
4691 case TCP_LAST_ACK:
4692 if (tp->snd_una == tp->write_seq) {
4693 tcp_update_metrics(sk);
4694 tcp_done(sk);
4695 goto discard;
4696 }
4697 break;
4698 }
4699 } else
4700 goto discard;
4701
4702 /* step 6: check the URG bit */
4703 tcp_urg(sk, skb, th);
4704
4705 /* step 7: process the segment text */
4706 switch (sk->sk_state) {
4707 case TCP_CLOSE_WAIT:
4708 case TCP_CLOSING:
4709 case TCP_LAST_ACK:
4710 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4711 break;
4712 case TCP_FIN_WAIT1:
4713 case TCP_FIN_WAIT2:
4714 /* RFC 793 says to queue data in these states,
4715 * RFC 1122 says we MUST send a reset.
4716 * BSD 4.4 also does reset.
4717 */
4718 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4719 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4720 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4721 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4722 tcp_reset(sk);
4723 return 1;
4724 }
4725 }
4726 /* Fall through */
4727 case TCP_ESTABLISHED:
4728 tcp_data_queue(sk, skb);
4729 queued = 1;
4730 break;
4731 }
4732
4733 /* tcp_data could move socket to TIME-WAIT */
4734 if (sk->sk_state != TCP_CLOSE) {
4735 tcp_data_snd_check(sk, tp);
4736 tcp_ack_snd_check(sk);
4737 }
4738
4739 if (!queued) {
4740 discard:
4741 __kfree_skb(skb);
4742 }
4743 return 0;
4744 }
4745
4746 EXPORT_SYMBOL(sysctl_tcp_ecn);
4747 EXPORT_SYMBOL(sysctl_tcp_reordering);
4748 EXPORT_SYMBOL(tcp_parse_options);
4749 EXPORT_SYMBOL(tcp_rcv_established);
4750 EXPORT_SYMBOL(tcp_rcv_state_process);
4751 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.125918 seconds and 6 git commands to generate.