Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
339
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
345 }
346 }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353 u32 mss = tcp_sk(sk)->advmss;
354 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355 int rcvmem;
356
357 /* Limit to 10 segments if mss <= 1460,
358 * or 14600/mss segments, with a minimum of two segments.
359 */
360 if (mss > 1460)
361 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362
363 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364
365 rcvmem *= icwnd;
366
367 if (sk->sk_rcvbuf < rcvmem)
368 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
369 }
370
371 /* 4. Try to fixup all. It is made immediately after connection enters
372 * established state.
373 */
374 void tcp_init_buffer_space(struct sock *sk)
375 {
376 struct tcp_sock *tp = tcp_sk(sk);
377 int maxwin;
378
379 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
380 tcp_fixup_rcvbuf(sk);
381 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
382 tcp_fixup_sndbuf(sk);
383
384 tp->rcvq_space.space = tp->rcv_wnd;
385
386 maxwin = tcp_full_space(sk);
387
388 if (tp->window_clamp >= maxwin) {
389 tp->window_clamp = maxwin;
390
391 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
392 tp->window_clamp = max(maxwin -
393 (maxwin >> sysctl_tcp_app_win),
394 4 * tp->advmss);
395 }
396
397 /* Force reservation of one segment. */
398 if (sysctl_tcp_app_win &&
399 tp->window_clamp > 2 * tp->advmss &&
400 tp->window_clamp + tp->advmss > maxwin)
401 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
402
403 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
404 tp->snd_cwnd_stamp = tcp_time_stamp;
405 }
406
407 /* 5. Recalculate window clamp after socket hit its memory bounds. */
408 static void tcp_clamp_window(struct sock *sk)
409 {
410 struct tcp_sock *tp = tcp_sk(sk);
411 struct inet_connection_sock *icsk = inet_csk(sk);
412
413 icsk->icsk_ack.quick = 0;
414
415 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
416 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
417 !sk_under_memory_pressure(sk) &&
418 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
419 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
420 sysctl_tcp_rmem[2]);
421 }
422 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
423 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
424 }
425
426 /* Initialize RCV_MSS value.
427 * RCV_MSS is an our guess about MSS used by the peer.
428 * We haven't any direct information about the MSS.
429 * It's better to underestimate the RCV_MSS rather than overestimate.
430 * Overestimations make us ACKing less frequently than needed.
431 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
432 */
433 void tcp_initialize_rcv_mss(struct sock *sk)
434 {
435 const struct tcp_sock *tp = tcp_sk(sk);
436 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
437
438 hint = min(hint, tp->rcv_wnd / 2);
439 hint = min(hint, TCP_MSS_DEFAULT);
440 hint = max(hint, TCP_MIN_MSS);
441
442 inet_csk(sk)->icsk_ack.rcv_mss = hint;
443 }
444 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
445
446 /* Receiver "autotuning" code.
447 *
448 * The algorithm for RTT estimation w/o timestamps is based on
449 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
450 * <http://public.lanl.gov/radiant/pubs.html#DRS>
451 *
452 * More detail on this code can be found at
453 * <http://staff.psc.edu/jheffner/>,
454 * though this reference is out of date. A new paper
455 * is pending.
456 */
457 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
458 {
459 u32 new_sample = tp->rcv_rtt_est.rtt;
460 long m = sample;
461
462 if (m == 0)
463 m = 1;
464
465 if (new_sample != 0) {
466 /* If we sample in larger samples in the non-timestamp
467 * case, we could grossly overestimate the RTT especially
468 * with chatty applications or bulk transfer apps which
469 * are stalled on filesystem I/O.
470 *
471 * Also, since we are only going for a minimum in the
472 * non-timestamp case, we do not smooth things out
473 * else with timestamps disabled convergence takes too
474 * long.
475 */
476 if (!win_dep) {
477 m -= (new_sample >> 3);
478 new_sample += m;
479 } else {
480 m <<= 3;
481 if (m < new_sample)
482 new_sample = m;
483 }
484 } else {
485 /* No previous measure. */
486 new_sample = m << 3;
487 }
488
489 if (tp->rcv_rtt_est.rtt != new_sample)
490 tp->rcv_rtt_est.rtt = new_sample;
491 }
492
493 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
494 {
495 if (tp->rcv_rtt_est.time == 0)
496 goto new_measure;
497 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
498 return;
499 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
500
501 new_measure:
502 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
503 tp->rcv_rtt_est.time = tcp_time_stamp;
504 }
505
506 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
507 const struct sk_buff *skb)
508 {
509 struct tcp_sock *tp = tcp_sk(sk);
510 if (tp->rx_opt.rcv_tsecr &&
511 (TCP_SKB_CB(skb)->end_seq -
512 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
513 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
514 }
515
516 /*
517 * This function should be called every time data is copied to user space.
518 * It calculates the appropriate TCP receive buffer space.
519 */
520 void tcp_rcv_space_adjust(struct sock *sk)
521 {
522 struct tcp_sock *tp = tcp_sk(sk);
523 int time;
524 int space;
525
526 if (tp->rcvq_space.time == 0)
527 goto new_measure;
528
529 time = tcp_time_stamp - tp->rcvq_space.time;
530 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
531 return;
532
533 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
534
535 space = max(tp->rcvq_space.space, space);
536
537 if (tp->rcvq_space.space != space) {
538 int rcvmem;
539
540 tp->rcvq_space.space = space;
541
542 if (sysctl_tcp_moderate_rcvbuf &&
543 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
544 int new_clamp = space;
545
546 /* Receive space grows, normalize in order to
547 * take into account packet headers and sk_buff
548 * structure overhead.
549 */
550 space /= tp->advmss;
551 if (!space)
552 space = 1;
553 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
554 while (tcp_win_from_space(rcvmem) < tp->advmss)
555 rcvmem += 128;
556 space *= rcvmem;
557 space = min(space, sysctl_tcp_rmem[2]);
558 if (space > sk->sk_rcvbuf) {
559 sk->sk_rcvbuf = space;
560
561 /* Make the window clamp follow along. */
562 tp->window_clamp = new_clamp;
563 }
564 }
565 }
566
567 new_measure:
568 tp->rcvq_space.seq = tp->copied_seq;
569 tp->rcvq_space.time = tcp_time_stamp;
570 }
571
572 /* There is something which you must keep in mind when you analyze the
573 * behavior of the tp->ato delayed ack timeout interval. When a
574 * connection starts up, we want to ack as quickly as possible. The
575 * problem is that "good" TCP's do slow start at the beginning of data
576 * transmission. The means that until we send the first few ACK's the
577 * sender will sit on his end and only queue most of his data, because
578 * he can only send snd_cwnd unacked packets at any given time. For
579 * each ACK we send, he increments snd_cwnd and transmits more of his
580 * queue. -DaveM
581 */
582 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
583 {
584 struct tcp_sock *tp = tcp_sk(sk);
585 struct inet_connection_sock *icsk = inet_csk(sk);
586 u32 now;
587
588 inet_csk_schedule_ack(sk);
589
590 tcp_measure_rcv_mss(sk, skb);
591
592 tcp_rcv_rtt_measure(tp);
593
594 now = tcp_time_stamp;
595
596 if (!icsk->icsk_ack.ato) {
597 /* The _first_ data packet received, initialize
598 * delayed ACK engine.
599 */
600 tcp_incr_quickack(sk);
601 icsk->icsk_ack.ato = TCP_ATO_MIN;
602 } else {
603 int m = now - icsk->icsk_ack.lrcvtime;
604
605 if (m <= TCP_ATO_MIN / 2) {
606 /* The fastest case is the first. */
607 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
608 } else if (m < icsk->icsk_ack.ato) {
609 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
610 if (icsk->icsk_ack.ato > icsk->icsk_rto)
611 icsk->icsk_ack.ato = icsk->icsk_rto;
612 } else if (m > icsk->icsk_rto) {
613 /* Too long gap. Apparently sender failed to
614 * restart window, so that we send ACKs quickly.
615 */
616 tcp_incr_quickack(sk);
617 sk_mem_reclaim(sk);
618 }
619 }
620 icsk->icsk_ack.lrcvtime = now;
621
622 TCP_ECN_check_ce(tp, skb);
623
624 if (skb->len >= 128)
625 tcp_grow_window(sk, skb);
626 }
627
628 /* Called to compute a smoothed rtt estimate. The data fed to this
629 * routine either comes from timestamps, or from segments that were
630 * known _not_ to have been retransmitted [see Karn/Partridge
631 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
632 * piece by Van Jacobson.
633 * NOTE: the next three routines used to be one big routine.
634 * To save cycles in the RFC 1323 implementation it was better to break
635 * it up into three procedures. -- erics
636 */
637 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
638 {
639 struct tcp_sock *tp = tcp_sk(sk);
640 long m = mrtt; /* RTT */
641
642 /* The following amusing code comes from Jacobson's
643 * article in SIGCOMM '88. Note that rtt and mdev
644 * are scaled versions of rtt and mean deviation.
645 * This is designed to be as fast as possible
646 * m stands for "measurement".
647 *
648 * On a 1990 paper the rto value is changed to:
649 * RTO = rtt + 4 * mdev
650 *
651 * Funny. This algorithm seems to be very broken.
652 * These formulae increase RTO, when it should be decreased, increase
653 * too slowly, when it should be increased quickly, decrease too quickly
654 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
655 * does not matter how to _calculate_ it. Seems, it was trap
656 * that VJ failed to avoid. 8)
657 */
658 if (m == 0)
659 m = 1;
660 if (tp->srtt != 0) {
661 m -= (tp->srtt >> 3); /* m is now error in rtt est */
662 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
663 if (m < 0) {
664 m = -m; /* m is now abs(error) */
665 m -= (tp->mdev >> 2); /* similar update on mdev */
666 /* This is similar to one of Eifel findings.
667 * Eifel blocks mdev updates when rtt decreases.
668 * This solution is a bit different: we use finer gain
669 * for mdev in this case (alpha*beta).
670 * Like Eifel it also prevents growth of rto,
671 * but also it limits too fast rto decreases,
672 * happening in pure Eifel.
673 */
674 if (m > 0)
675 m >>= 3;
676 } else {
677 m -= (tp->mdev >> 2); /* similar update on mdev */
678 }
679 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
680 if (tp->mdev > tp->mdev_max) {
681 tp->mdev_max = tp->mdev;
682 if (tp->mdev_max > tp->rttvar)
683 tp->rttvar = tp->mdev_max;
684 }
685 if (after(tp->snd_una, tp->rtt_seq)) {
686 if (tp->mdev_max < tp->rttvar)
687 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
688 tp->rtt_seq = tp->snd_nxt;
689 tp->mdev_max = tcp_rto_min(sk);
690 }
691 } else {
692 /* no previous measure. */
693 tp->srtt = m << 3; /* take the measured time to be rtt */
694 tp->mdev = m << 1; /* make sure rto = 3*rtt */
695 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
696 tp->rtt_seq = tp->snd_nxt;
697 }
698 }
699
700 /* Calculate rto without backoff. This is the second half of Van Jacobson's
701 * routine referred to above.
702 */
703 void tcp_set_rto(struct sock *sk)
704 {
705 const struct tcp_sock *tp = tcp_sk(sk);
706 /* Old crap is replaced with new one. 8)
707 *
708 * More seriously:
709 * 1. If rtt variance happened to be less 50msec, it is hallucination.
710 * It cannot be less due to utterly erratic ACK generation made
711 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
712 * to do with delayed acks, because at cwnd>2 true delack timeout
713 * is invisible. Actually, Linux-2.4 also generates erratic
714 * ACKs in some circumstances.
715 */
716 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
717
718 /* 2. Fixups made earlier cannot be right.
719 * If we do not estimate RTO correctly without them,
720 * all the algo is pure shit and should be replaced
721 * with correct one. It is exactly, which we pretend to do.
722 */
723
724 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
725 * guarantees that rto is higher.
726 */
727 tcp_bound_rto(sk);
728 }
729
730 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
731 {
732 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
733
734 if (!cwnd)
735 cwnd = TCP_INIT_CWND;
736 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
737 }
738
739 /*
740 * Packet counting of FACK is based on in-order assumptions, therefore TCP
741 * disables it when reordering is detected
742 */
743 void tcp_disable_fack(struct tcp_sock *tp)
744 {
745 /* RFC3517 uses different metric in lost marker => reset on change */
746 if (tcp_is_fack(tp))
747 tp->lost_skb_hint = NULL;
748 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
749 }
750
751 /* Take a notice that peer is sending D-SACKs */
752 static void tcp_dsack_seen(struct tcp_sock *tp)
753 {
754 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
755 }
756
757 static void tcp_update_reordering(struct sock *sk, const int metric,
758 const int ts)
759 {
760 struct tcp_sock *tp = tcp_sk(sk);
761 if (metric > tp->reordering) {
762 int mib_idx;
763
764 tp->reordering = min(TCP_MAX_REORDERING, metric);
765
766 /* This exciting event is worth to be remembered. 8) */
767 if (ts)
768 mib_idx = LINUX_MIB_TCPTSREORDER;
769 else if (tcp_is_reno(tp))
770 mib_idx = LINUX_MIB_TCPRENOREORDER;
771 else if (tcp_is_fack(tp))
772 mib_idx = LINUX_MIB_TCPFACKREORDER;
773 else
774 mib_idx = LINUX_MIB_TCPSACKREORDER;
775
776 NET_INC_STATS_BH(sock_net(sk), mib_idx);
777 #if FASTRETRANS_DEBUG > 1
778 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
779 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
780 tp->reordering,
781 tp->fackets_out,
782 tp->sacked_out,
783 tp->undo_marker ? tp->undo_retrans : 0);
784 #endif
785 tcp_disable_fack(tp);
786 }
787
788 if (metric > 0)
789 tcp_disable_early_retrans(tp);
790 }
791
792 /* This must be called before lost_out is incremented */
793 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
794 {
795 if ((tp->retransmit_skb_hint == NULL) ||
796 before(TCP_SKB_CB(skb)->seq,
797 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
798 tp->retransmit_skb_hint = skb;
799
800 if (!tp->lost_out ||
801 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
802 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
803 }
804
805 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
806 {
807 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
808 tcp_verify_retransmit_hint(tp, skb);
809
810 tp->lost_out += tcp_skb_pcount(skb);
811 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
812 }
813 }
814
815 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
816 struct sk_buff *skb)
817 {
818 tcp_verify_retransmit_hint(tp, skb);
819
820 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
821 tp->lost_out += tcp_skb_pcount(skb);
822 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
823 }
824 }
825
826 /* This procedure tags the retransmission queue when SACKs arrive.
827 *
828 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
829 * Packets in queue with these bits set are counted in variables
830 * sacked_out, retrans_out and lost_out, correspondingly.
831 *
832 * Valid combinations are:
833 * Tag InFlight Description
834 * 0 1 - orig segment is in flight.
835 * S 0 - nothing flies, orig reached receiver.
836 * L 0 - nothing flies, orig lost by net.
837 * R 2 - both orig and retransmit are in flight.
838 * L|R 1 - orig is lost, retransmit is in flight.
839 * S|R 1 - orig reached receiver, retrans is still in flight.
840 * (L|S|R is logically valid, it could occur when L|R is sacked,
841 * but it is equivalent to plain S and code short-curcuits it to S.
842 * L|S is logically invalid, it would mean -1 packet in flight 8))
843 *
844 * These 6 states form finite state machine, controlled by the following events:
845 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
846 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
847 * 3. Loss detection event of two flavors:
848 * A. Scoreboard estimator decided the packet is lost.
849 * A'. Reno "three dupacks" marks head of queue lost.
850 * A''. Its FACK modification, head until snd.fack is lost.
851 * B. SACK arrives sacking SND.NXT at the moment, when the
852 * segment was retransmitted.
853 * 4. D-SACK added new rule: D-SACK changes any tag to S.
854 *
855 * It is pleasant to note, that state diagram turns out to be commutative,
856 * so that we are allowed not to be bothered by order of our actions,
857 * when multiple events arrive simultaneously. (see the function below).
858 *
859 * Reordering detection.
860 * --------------------
861 * Reordering metric is maximal distance, which a packet can be displaced
862 * in packet stream. With SACKs we can estimate it:
863 *
864 * 1. SACK fills old hole and the corresponding segment was not
865 * ever retransmitted -> reordering. Alas, we cannot use it
866 * when segment was retransmitted.
867 * 2. The last flaw is solved with D-SACK. D-SACK arrives
868 * for retransmitted and already SACKed segment -> reordering..
869 * Both of these heuristics are not used in Loss state, when we cannot
870 * account for retransmits accurately.
871 *
872 * SACK block validation.
873 * ----------------------
874 *
875 * SACK block range validation checks that the received SACK block fits to
876 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
877 * Note that SND.UNA is not included to the range though being valid because
878 * it means that the receiver is rather inconsistent with itself reporting
879 * SACK reneging when it should advance SND.UNA. Such SACK block this is
880 * perfectly valid, however, in light of RFC2018 which explicitly states
881 * that "SACK block MUST reflect the newest segment. Even if the newest
882 * segment is going to be discarded ...", not that it looks very clever
883 * in case of head skb. Due to potentional receiver driven attacks, we
884 * choose to avoid immediate execution of a walk in write queue due to
885 * reneging and defer head skb's loss recovery to standard loss recovery
886 * procedure that will eventually trigger (nothing forbids us doing this).
887 *
888 * Implements also blockage to start_seq wrap-around. Problem lies in the
889 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
890 * there's no guarantee that it will be before snd_nxt (n). The problem
891 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
892 * wrap (s_w):
893 *
894 * <- outs wnd -> <- wrapzone ->
895 * u e n u_w e_w s n_w
896 * | | | | | | |
897 * |<------------+------+----- TCP seqno space --------------+---------->|
898 * ...-- <2^31 ->| |<--------...
899 * ...---- >2^31 ------>| |<--------...
900 *
901 * Current code wouldn't be vulnerable but it's better still to discard such
902 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
903 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
904 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
905 * equal to the ideal case (infinite seqno space without wrap caused issues).
906 *
907 * With D-SACK the lower bound is extended to cover sequence space below
908 * SND.UNA down to undo_marker, which is the last point of interest. Yet
909 * again, D-SACK block must not to go across snd_una (for the same reason as
910 * for the normal SACK blocks, explained above). But there all simplicity
911 * ends, TCP might receive valid D-SACKs below that. As long as they reside
912 * fully below undo_marker they do not affect behavior in anyway and can
913 * therefore be safely ignored. In rare cases (which are more or less
914 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
915 * fragmentation and packet reordering past skb's retransmission. To consider
916 * them correctly, the acceptable range must be extended even more though
917 * the exact amount is rather hard to quantify. However, tp->max_window can
918 * be used as an exaggerated estimate.
919 */
920 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
921 u32 start_seq, u32 end_seq)
922 {
923 /* Too far in future, or reversed (interpretation is ambiguous) */
924 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
925 return false;
926
927 /* Nasty start_seq wrap-around check (see comments above) */
928 if (!before(start_seq, tp->snd_nxt))
929 return false;
930
931 /* In outstanding window? ...This is valid exit for D-SACKs too.
932 * start_seq == snd_una is non-sensical (see comments above)
933 */
934 if (after(start_seq, tp->snd_una))
935 return true;
936
937 if (!is_dsack || !tp->undo_marker)
938 return false;
939
940 /* ...Then it's D-SACK, and must reside below snd_una completely */
941 if (after(end_seq, tp->snd_una))
942 return false;
943
944 if (!before(start_seq, tp->undo_marker))
945 return true;
946
947 /* Too old */
948 if (!after(end_seq, tp->undo_marker))
949 return false;
950
951 /* Undo_marker boundary crossing (overestimates a lot). Known already:
952 * start_seq < undo_marker and end_seq >= undo_marker.
953 */
954 return !before(start_seq, end_seq - tp->max_window);
955 }
956
957 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
958 * Event "B". Later note: FACK people cheated me again 8), we have to account
959 * for reordering! Ugly, but should help.
960 *
961 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
962 * less than what is now known to be received by the other end (derived from
963 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
964 * retransmitted skbs to avoid some costly processing per ACKs.
965 */
966 static void tcp_mark_lost_retrans(struct sock *sk)
967 {
968 const struct inet_connection_sock *icsk = inet_csk(sk);
969 struct tcp_sock *tp = tcp_sk(sk);
970 struct sk_buff *skb;
971 int cnt = 0;
972 u32 new_low_seq = tp->snd_nxt;
973 u32 received_upto = tcp_highest_sack_seq(tp);
974
975 if (!tcp_is_fack(tp) || !tp->retrans_out ||
976 !after(received_upto, tp->lost_retrans_low) ||
977 icsk->icsk_ca_state != TCP_CA_Recovery)
978 return;
979
980 tcp_for_write_queue(skb, sk) {
981 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
982
983 if (skb == tcp_send_head(sk))
984 break;
985 if (cnt == tp->retrans_out)
986 break;
987 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
988 continue;
989
990 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
991 continue;
992
993 /* TODO: We would like to get rid of tcp_is_fack(tp) only
994 * constraint here (see above) but figuring out that at
995 * least tp->reordering SACK blocks reside between ack_seq
996 * and received_upto is not easy task to do cheaply with
997 * the available datastructures.
998 *
999 * Whether FACK should check here for tp->reordering segs
1000 * in-between one could argue for either way (it would be
1001 * rather simple to implement as we could count fack_count
1002 * during the walk and do tp->fackets_out - fack_count).
1003 */
1004 if (after(received_upto, ack_seq)) {
1005 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1006 tp->retrans_out -= tcp_skb_pcount(skb);
1007
1008 tcp_skb_mark_lost_uncond_verify(tp, skb);
1009 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1010 } else {
1011 if (before(ack_seq, new_low_seq))
1012 new_low_seq = ack_seq;
1013 cnt += tcp_skb_pcount(skb);
1014 }
1015 }
1016
1017 if (tp->retrans_out)
1018 tp->lost_retrans_low = new_low_seq;
1019 }
1020
1021 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1022 struct tcp_sack_block_wire *sp, int num_sacks,
1023 u32 prior_snd_una)
1024 {
1025 struct tcp_sock *tp = tcp_sk(sk);
1026 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1027 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1028 bool dup_sack = false;
1029
1030 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1031 dup_sack = true;
1032 tcp_dsack_seen(tp);
1033 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1034 } else if (num_sacks > 1) {
1035 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1036 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1037
1038 if (!after(end_seq_0, end_seq_1) &&
1039 !before(start_seq_0, start_seq_1)) {
1040 dup_sack = true;
1041 tcp_dsack_seen(tp);
1042 NET_INC_STATS_BH(sock_net(sk),
1043 LINUX_MIB_TCPDSACKOFORECV);
1044 }
1045 }
1046
1047 /* D-SACK for already forgotten data... Do dumb counting. */
1048 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1049 !after(end_seq_0, prior_snd_una) &&
1050 after(end_seq_0, tp->undo_marker))
1051 tp->undo_retrans--;
1052
1053 return dup_sack;
1054 }
1055
1056 struct tcp_sacktag_state {
1057 int reord;
1058 int fack_count;
1059 int flag;
1060 };
1061
1062 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1063 * the incoming SACK may not exactly match but we can find smaller MSS
1064 * aligned portion of it that matches. Therefore we might need to fragment
1065 * which may fail and creates some hassle (caller must handle error case
1066 * returns).
1067 *
1068 * FIXME: this could be merged to shift decision code
1069 */
1070 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1071 u32 start_seq, u32 end_seq)
1072 {
1073 int err;
1074 bool in_sack;
1075 unsigned int pkt_len;
1076 unsigned int mss;
1077
1078 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1079 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1080
1081 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1082 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1083 mss = tcp_skb_mss(skb);
1084 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1085
1086 if (!in_sack) {
1087 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1088 if (pkt_len < mss)
1089 pkt_len = mss;
1090 } else {
1091 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1092 if (pkt_len < mss)
1093 return -EINVAL;
1094 }
1095
1096 /* Round if necessary so that SACKs cover only full MSSes
1097 * and/or the remaining small portion (if present)
1098 */
1099 if (pkt_len > mss) {
1100 unsigned int new_len = (pkt_len / mss) * mss;
1101 if (!in_sack && new_len < pkt_len) {
1102 new_len += mss;
1103 if (new_len > skb->len)
1104 return 0;
1105 }
1106 pkt_len = new_len;
1107 }
1108 err = tcp_fragment(sk, skb, pkt_len, mss);
1109 if (err < 0)
1110 return err;
1111 }
1112
1113 return in_sack;
1114 }
1115
1116 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1117 static u8 tcp_sacktag_one(struct sock *sk,
1118 struct tcp_sacktag_state *state, u8 sacked,
1119 u32 start_seq, u32 end_seq,
1120 bool dup_sack, int pcount)
1121 {
1122 struct tcp_sock *tp = tcp_sk(sk);
1123 int fack_count = state->fack_count;
1124
1125 /* Account D-SACK for retransmitted packet. */
1126 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1127 if (tp->undo_marker && tp->undo_retrans &&
1128 after(end_seq, tp->undo_marker))
1129 tp->undo_retrans--;
1130 if (sacked & TCPCB_SACKED_ACKED)
1131 state->reord = min(fack_count, state->reord);
1132 }
1133
1134 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1135 if (!after(end_seq, tp->snd_una))
1136 return sacked;
1137
1138 if (!(sacked & TCPCB_SACKED_ACKED)) {
1139 if (sacked & TCPCB_SACKED_RETRANS) {
1140 /* If the segment is not tagged as lost,
1141 * we do not clear RETRANS, believing
1142 * that retransmission is still in flight.
1143 */
1144 if (sacked & TCPCB_LOST) {
1145 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1146 tp->lost_out -= pcount;
1147 tp->retrans_out -= pcount;
1148 }
1149 } else {
1150 if (!(sacked & TCPCB_RETRANS)) {
1151 /* New sack for not retransmitted frame,
1152 * which was in hole. It is reordering.
1153 */
1154 if (before(start_seq,
1155 tcp_highest_sack_seq(tp)))
1156 state->reord = min(fack_count,
1157 state->reord);
1158 if (!after(end_seq, tp->high_seq))
1159 state->flag |= FLAG_ORIG_SACK_ACKED;
1160 }
1161
1162 if (sacked & TCPCB_LOST) {
1163 sacked &= ~TCPCB_LOST;
1164 tp->lost_out -= pcount;
1165 }
1166 }
1167
1168 sacked |= TCPCB_SACKED_ACKED;
1169 state->flag |= FLAG_DATA_SACKED;
1170 tp->sacked_out += pcount;
1171
1172 fack_count += pcount;
1173
1174 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1175 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1176 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1177 tp->lost_cnt_hint += pcount;
1178
1179 if (fack_count > tp->fackets_out)
1180 tp->fackets_out = fack_count;
1181 }
1182
1183 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1184 * frames and clear it. undo_retrans is decreased above, L|R frames
1185 * are accounted above as well.
1186 */
1187 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1188 sacked &= ~TCPCB_SACKED_RETRANS;
1189 tp->retrans_out -= pcount;
1190 }
1191
1192 return sacked;
1193 }
1194
1195 /* Shift newly-SACKed bytes from this skb to the immediately previous
1196 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1197 */
1198 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1199 struct tcp_sacktag_state *state,
1200 unsigned int pcount, int shifted, int mss,
1201 bool dup_sack)
1202 {
1203 struct tcp_sock *tp = tcp_sk(sk);
1204 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1205 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1206 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1207
1208 BUG_ON(!pcount);
1209
1210 /* Adjust counters and hints for the newly sacked sequence
1211 * range but discard the return value since prev is already
1212 * marked. We must tag the range first because the seq
1213 * advancement below implicitly advances
1214 * tcp_highest_sack_seq() when skb is highest_sack.
1215 */
1216 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1217 start_seq, end_seq, dup_sack, pcount);
1218
1219 if (skb == tp->lost_skb_hint)
1220 tp->lost_cnt_hint += pcount;
1221
1222 TCP_SKB_CB(prev)->end_seq += shifted;
1223 TCP_SKB_CB(skb)->seq += shifted;
1224
1225 skb_shinfo(prev)->gso_segs += pcount;
1226 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1227 skb_shinfo(skb)->gso_segs -= pcount;
1228
1229 /* When we're adding to gso_segs == 1, gso_size will be zero,
1230 * in theory this shouldn't be necessary but as long as DSACK
1231 * code can come after this skb later on it's better to keep
1232 * setting gso_size to something.
1233 */
1234 if (!skb_shinfo(prev)->gso_size) {
1235 skb_shinfo(prev)->gso_size = mss;
1236 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1237 }
1238
1239 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1240 if (skb_shinfo(skb)->gso_segs <= 1) {
1241 skb_shinfo(skb)->gso_size = 0;
1242 skb_shinfo(skb)->gso_type = 0;
1243 }
1244
1245 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1246 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1247
1248 if (skb->len > 0) {
1249 BUG_ON(!tcp_skb_pcount(skb));
1250 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1251 return false;
1252 }
1253
1254 /* Whole SKB was eaten :-) */
1255
1256 if (skb == tp->retransmit_skb_hint)
1257 tp->retransmit_skb_hint = prev;
1258 if (skb == tp->lost_skb_hint) {
1259 tp->lost_skb_hint = prev;
1260 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1261 }
1262
1263 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1264 if (skb == tcp_highest_sack(sk))
1265 tcp_advance_highest_sack(sk, skb);
1266
1267 tcp_unlink_write_queue(skb, sk);
1268 sk_wmem_free_skb(sk, skb);
1269
1270 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1271
1272 return true;
1273 }
1274
1275 /* I wish gso_size would have a bit more sane initialization than
1276 * something-or-zero which complicates things
1277 */
1278 static int tcp_skb_seglen(const struct sk_buff *skb)
1279 {
1280 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1281 }
1282
1283 /* Shifting pages past head area doesn't work */
1284 static int skb_can_shift(const struct sk_buff *skb)
1285 {
1286 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1287 }
1288
1289 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1290 * skb.
1291 */
1292 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1293 struct tcp_sacktag_state *state,
1294 u32 start_seq, u32 end_seq,
1295 bool dup_sack)
1296 {
1297 struct tcp_sock *tp = tcp_sk(sk);
1298 struct sk_buff *prev;
1299 int mss;
1300 int pcount = 0;
1301 int len;
1302 int in_sack;
1303
1304 if (!sk_can_gso(sk))
1305 goto fallback;
1306
1307 /* Normally R but no L won't result in plain S */
1308 if (!dup_sack &&
1309 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1310 goto fallback;
1311 if (!skb_can_shift(skb))
1312 goto fallback;
1313 /* This frame is about to be dropped (was ACKed). */
1314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1315 goto fallback;
1316
1317 /* Can only happen with delayed DSACK + discard craziness */
1318 if (unlikely(skb == tcp_write_queue_head(sk)))
1319 goto fallback;
1320 prev = tcp_write_queue_prev(sk, skb);
1321
1322 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1323 goto fallback;
1324
1325 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1326 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1327
1328 if (in_sack) {
1329 len = skb->len;
1330 pcount = tcp_skb_pcount(skb);
1331 mss = tcp_skb_seglen(skb);
1332
1333 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1334 * drop this restriction as unnecessary
1335 */
1336 if (mss != tcp_skb_seglen(prev))
1337 goto fallback;
1338 } else {
1339 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1340 goto noop;
1341 /* CHECKME: This is non-MSS split case only?, this will
1342 * cause skipped skbs due to advancing loop btw, original
1343 * has that feature too
1344 */
1345 if (tcp_skb_pcount(skb) <= 1)
1346 goto noop;
1347
1348 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1349 if (!in_sack) {
1350 /* TODO: head merge to next could be attempted here
1351 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1352 * though it might not be worth of the additional hassle
1353 *
1354 * ...we can probably just fallback to what was done
1355 * previously. We could try merging non-SACKed ones
1356 * as well but it probably isn't going to buy off
1357 * because later SACKs might again split them, and
1358 * it would make skb timestamp tracking considerably
1359 * harder problem.
1360 */
1361 goto fallback;
1362 }
1363
1364 len = end_seq - TCP_SKB_CB(skb)->seq;
1365 BUG_ON(len < 0);
1366 BUG_ON(len > skb->len);
1367
1368 /* MSS boundaries should be honoured or else pcount will
1369 * severely break even though it makes things bit trickier.
1370 * Optimize common case to avoid most of the divides
1371 */
1372 mss = tcp_skb_mss(skb);
1373
1374 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1375 * drop this restriction as unnecessary
1376 */
1377 if (mss != tcp_skb_seglen(prev))
1378 goto fallback;
1379
1380 if (len == mss) {
1381 pcount = 1;
1382 } else if (len < mss) {
1383 goto noop;
1384 } else {
1385 pcount = len / mss;
1386 len = pcount * mss;
1387 }
1388 }
1389
1390 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1391 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1392 goto fallback;
1393
1394 if (!skb_shift(prev, skb, len))
1395 goto fallback;
1396 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1397 goto out;
1398
1399 /* Hole filled allows collapsing with the next as well, this is very
1400 * useful when hole on every nth skb pattern happens
1401 */
1402 if (prev == tcp_write_queue_tail(sk))
1403 goto out;
1404 skb = tcp_write_queue_next(sk, prev);
1405
1406 if (!skb_can_shift(skb) ||
1407 (skb == tcp_send_head(sk)) ||
1408 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1409 (mss != tcp_skb_seglen(skb)))
1410 goto out;
1411
1412 len = skb->len;
1413 if (skb_shift(prev, skb, len)) {
1414 pcount += tcp_skb_pcount(skb);
1415 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1416 }
1417
1418 out:
1419 state->fack_count += pcount;
1420 return prev;
1421
1422 noop:
1423 return skb;
1424
1425 fallback:
1426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1427 return NULL;
1428 }
1429
1430 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1431 struct tcp_sack_block *next_dup,
1432 struct tcp_sacktag_state *state,
1433 u32 start_seq, u32 end_seq,
1434 bool dup_sack_in)
1435 {
1436 struct tcp_sock *tp = tcp_sk(sk);
1437 struct sk_buff *tmp;
1438
1439 tcp_for_write_queue_from(skb, sk) {
1440 int in_sack = 0;
1441 bool dup_sack = dup_sack_in;
1442
1443 if (skb == tcp_send_head(sk))
1444 break;
1445
1446 /* queue is in-order => we can short-circuit the walk early */
1447 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1448 break;
1449
1450 if ((next_dup != NULL) &&
1451 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1452 in_sack = tcp_match_skb_to_sack(sk, skb,
1453 next_dup->start_seq,
1454 next_dup->end_seq);
1455 if (in_sack > 0)
1456 dup_sack = true;
1457 }
1458
1459 /* skb reference here is a bit tricky to get right, since
1460 * shifting can eat and free both this skb and the next,
1461 * so not even _safe variant of the loop is enough.
1462 */
1463 if (in_sack <= 0) {
1464 tmp = tcp_shift_skb_data(sk, skb, state,
1465 start_seq, end_seq, dup_sack);
1466 if (tmp != NULL) {
1467 if (tmp != skb) {
1468 skb = tmp;
1469 continue;
1470 }
1471
1472 in_sack = 0;
1473 } else {
1474 in_sack = tcp_match_skb_to_sack(sk, skb,
1475 start_seq,
1476 end_seq);
1477 }
1478 }
1479
1480 if (unlikely(in_sack < 0))
1481 break;
1482
1483 if (in_sack) {
1484 TCP_SKB_CB(skb)->sacked =
1485 tcp_sacktag_one(sk,
1486 state,
1487 TCP_SKB_CB(skb)->sacked,
1488 TCP_SKB_CB(skb)->seq,
1489 TCP_SKB_CB(skb)->end_seq,
1490 dup_sack,
1491 tcp_skb_pcount(skb));
1492
1493 if (!before(TCP_SKB_CB(skb)->seq,
1494 tcp_highest_sack_seq(tp)))
1495 tcp_advance_highest_sack(sk, skb);
1496 }
1497
1498 state->fack_count += tcp_skb_pcount(skb);
1499 }
1500 return skb;
1501 }
1502
1503 /* Avoid all extra work that is being done by sacktag while walking in
1504 * a normal way
1505 */
1506 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1507 struct tcp_sacktag_state *state,
1508 u32 skip_to_seq)
1509 {
1510 tcp_for_write_queue_from(skb, sk) {
1511 if (skb == tcp_send_head(sk))
1512 break;
1513
1514 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1515 break;
1516
1517 state->fack_count += tcp_skb_pcount(skb);
1518 }
1519 return skb;
1520 }
1521
1522 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1523 struct sock *sk,
1524 struct tcp_sack_block *next_dup,
1525 struct tcp_sacktag_state *state,
1526 u32 skip_to_seq)
1527 {
1528 if (next_dup == NULL)
1529 return skb;
1530
1531 if (before(next_dup->start_seq, skip_to_seq)) {
1532 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1533 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1534 next_dup->start_seq, next_dup->end_seq,
1535 1);
1536 }
1537
1538 return skb;
1539 }
1540
1541 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1542 {
1543 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1544 }
1545
1546 static int
1547 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1548 u32 prior_snd_una)
1549 {
1550 struct tcp_sock *tp = tcp_sk(sk);
1551 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1552 TCP_SKB_CB(ack_skb)->sacked);
1553 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1554 struct tcp_sack_block sp[TCP_NUM_SACKS];
1555 struct tcp_sack_block *cache;
1556 struct tcp_sacktag_state state;
1557 struct sk_buff *skb;
1558 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1559 int used_sacks;
1560 bool found_dup_sack = false;
1561 int i, j;
1562 int first_sack_index;
1563
1564 state.flag = 0;
1565 state.reord = tp->packets_out;
1566
1567 if (!tp->sacked_out) {
1568 if (WARN_ON(tp->fackets_out))
1569 tp->fackets_out = 0;
1570 tcp_highest_sack_reset(sk);
1571 }
1572
1573 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1574 num_sacks, prior_snd_una);
1575 if (found_dup_sack)
1576 state.flag |= FLAG_DSACKING_ACK;
1577
1578 /* Eliminate too old ACKs, but take into
1579 * account more or less fresh ones, they can
1580 * contain valid SACK info.
1581 */
1582 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1583 return 0;
1584
1585 if (!tp->packets_out)
1586 goto out;
1587
1588 used_sacks = 0;
1589 first_sack_index = 0;
1590 for (i = 0; i < num_sacks; i++) {
1591 bool dup_sack = !i && found_dup_sack;
1592
1593 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1594 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1595
1596 if (!tcp_is_sackblock_valid(tp, dup_sack,
1597 sp[used_sacks].start_seq,
1598 sp[used_sacks].end_seq)) {
1599 int mib_idx;
1600
1601 if (dup_sack) {
1602 if (!tp->undo_marker)
1603 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1604 else
1605 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1606 } else {
1607 /* Don't count olds caused by ACK reordering */
1608 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1609 !after(sp[used_sacks].end_seq, tp->snd_una))
1610 continue;
1611 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1612 }
1613
1614 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1615 if (i == 0)
1616 first_sack_index = -1;
1617 continue;
1618 }
1619
1620 /* Ignore very old stuff early */
1621 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1622 continue;
1623
1624 used_sacks++;
1625 }
1626
1627 /* order SACK blocks to allow in order walk of the retrans queue */
1628 for (i = used_sacks - 1; i > 0; i--) {
1629 for (j = 0; j < i; j++) {
1630 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1631 swap(sp[j], sp[j + 1]);
1632
1633 /* Track where the first SACK block goes to */
1634 if (j == first_sack_index)
1635 first_sack_index = j + 1;
1636 }
1637 }
1638 }
1639
1640 skb = tcp_write_queue_head(sk);
1641 state.fack_count = 0;
1642 i = 0;
1643
1644 if (!tp->sacked_out) {
1645 /* It's already past, so skip checking against it */
1646 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1647 } else {
1648 cache = tp->recv_sack_cache;
1649 /* Skip empty blocks in at head of the cache */
1650 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1651 !cache->end_seq)
1652 cache++;
1653 }
1654
1655 while (i < used_sacks) {
1656 u32 start_seq = sp[i].start_seq;
1657 u32 end_seq = sp[i].end_seq;
1658 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1659 struct tcp_sack_block *next_dup = NULL;
1660
1661 if (found_dup_sack && ((i + 1) == first_sack_index))
1662 next_dup = &sp[i + 1];
1663
1664 /* Skip too early cached blocks */
1665 while (tcp_sack_cache_ok(tp, cache) &&
1666 !before(start_seq, cache->end_seq))
1667 cache++;
1668
1669 /* Can skip some work by looking recv_sack_cache? */
1670 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1671 after(end_seq, cache->start_seq)) {
1672
1673 /* Head todo? */
1674 if (before(start_seq, cache->start_seq)) {
1675 skb = tcp_sacktag_skip(skb, sk, &state,
1676 start_seq);
1677 skb = tcp_sacktag_walk(skb, sk, next_dup,
1678 &state,
1679 start_seq,
1680 cache->start_seq,
1681 dup_sack);
1682 }
1683
1684 /* Rest of the block already fully processed? */
1685 if (!after(end_seq, cache->end_seq))
1686 goto advance_sp;
1687
1688 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1689 &state,
1690 cache->end_seq);
1691
1692 /* ...tail remains todo... */
1693 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1694 /* ...but better entrypoint exists! */
1695 skb = tcp_highest_sack(sk);
1696 if (skb == NULL)
1697 break;
1698 state.fack_count = tp->fackets_out;
1699 cache++;
1700 goto walk;
1701 }
1702
1703 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1704 /* Check overlap against next cached too (past this one already) */
1705 cache++;
1706 continue;
1707 }
1708
1709 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1710 skb = tcp_highest_sack(sk);
1711 if (skb == NULL)
1712 break;
1713 state.fack_count = tp->fackets_out;
1714 }
1715 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1716
1717 walk:
1718 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1719 start_seq, end_seq, dup_sack);
1720
1721 advance_sp:
1722 i++;
1723 }
1724
1725 /* Clear the head of the cache sack blocks so we can skip it next time */
1726 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1727 tp->recv_sack_cache[i].start_seq = 0;
1728 tp->recv_sack_cache[i].end_seq = 0;
1729 }
1730 for (j = 0; j < used_sacks; j++)
1731 tp->recv_sack_cache[i++] = sp[j];
1732
1733 tcp_mark_lost_retrans(sk);
1734
1735 tcp_verify_left_out(tp);
1736
1737 if ((state.reord < tp->fackets_out) &&
1738 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1739 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1740
1741 out:
1742
1743 #if FASTRETRANS_DEBUG > 0
1744 WARN_ON((int)tp->sacked_out < 0);
1745 WARN_ON((int)tp->lost_out < 0);
1746 WARN_ON((int)tp->retrans_out < 0);
1747 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1748 #endif
1749 return state.flag;
1750 }
1751
1752 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1753 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1754 */
1755 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1756 {
1757 u32 holes;
1758
1759 holes = max(tp->lost_out, 1U);
1760 holes = min(holes, tp->packets_out);
1761
1762 if ((tp->sacked_out + holes) > tp->packets_out) {
1763 tp->sacked_out = tp->packets_out - holes;
1764 return true;
1765 }
1766 return false;
1767 }
1768
1769 /* If we receive more dupacks than we expected counting segments
1770 * in assumption of absent reordering, interpret this as reordering.
1771 * The only another reason could be bug in receiver TCP.
1772 */
1773 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1774 {
1775 struct tcp_sock *tp = tcp_sk(sk);
1776 if (tcp_limit_reno_sacked(tp))
1777 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1778 }
1779
1780 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1781
1782 static void tcp_add_reno_sack(struct sock *sk)
1783 {
1784 struct tcp_sock *tp = tcp_sk(sk);
1785 tp->sacked_out++;
1786 tcp_check_reno_reordering(sk, 0);
1787 tcp_verify_left_out(tp);
1788 }
1789
1790 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1791
1792 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1793 {
1794 struct tcp_sock *tp = tcp_sk(sk);
1795
1796 if (acked > 0) {
1797 /* One ACK acked hole. The rest eat duplicate ACKs. */
1798 if (acked - 1 >= tp->sacked_out)
1799 tp->sacked_out = 0;
1800 else
1801 tp->sacked_out -= acked - 1;
1802 }
1803 tcp_check_reno_reordering(sk, acked);
1804 tcp_verify_left_out(tp);
1805 }
1806
1807 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1808 {
1809 tp->sacked_out = 0;
1810 }
1811
1812 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1813 {
1814 tp->retrans_out = 0;
1815 tp->lost_out = 0;
1816
1817 tp->undo_marker = 0;
1818 tp->undo_retrans = 0;
1819 }
1820
1821 void tcp_clear_retrans(struct tcp_sock *tp)
1822 {
1823 tcp_clear_retrans_partial(tp);
1824
1825 tp->fackets_out = 0;
1826 tp->sacked_out = 0;
1827 }
1828
1829 /* Enter Loss state. If "how" is not zero, forget all SACK information
1830 * and reset tags completely, otherwise preserve SACKs. If receiver
1831 * dropped its ofo queue, we will know this due to reneging detection.
1832 */
1833 void tcp_enter_loss(struct sock *sk, int how)
1834 {
1835 const struct inet_connection_sock *icsk = inet_csk(sk);
1836 struct tcp_sock *tp = tcp_sk(sk);
1837 struct sk_buff *skb;
1838 bool new_recovery = false;
1839
1840 /* Reduce ssthresh if it has not yet been made inside this window. */
1841 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1842 !after(tp->high_seq, tp->snd_una) ||
1843 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1844 new_recovery = true;
1845 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1846 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1847 tcp_ca_event(sk, CA_EVENT_LOSS);
1848 }
1849 tp->snd_cwnd = 1;
1850 tp->snd_cwnd_cnt = 0;
1851 tp->snd_cwnd_stamp = tcp_time_stamp;
1852
1853 tcp_clear_retrans_partial(tp);
1854
1855 if (tcp_is_reno(tp))
1856 tcp_reset_reno_sack(tp);
1857
1858 tp->undo_marker = tp->snd_una;
1859 if (how) {
1860 tp->sacked_out = 0;
1861 tp->fackets_out = 0;
1862 }
1863 tcp_clear_all_retrans_hints(tp);
1864
1865 tcp_for_write_queue(skb, sk) {
1866 if (skb == tcp_send_head(sk))
1867 break;
1868
1869 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1870 tp->undo_marker = 0;
1871 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1872 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1873 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1874 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1875 tp->lost_out += tcp_skb_pcount(skb);
1876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1877 }
1878 }
1879 tcp_verify_left_out(tp);
1880
1881 tp->reordering = min_t(unsigned int, tp->reordering,
1882 sysctl_tcp_reordering);
1883 tcp_set_ca_state(sk, TCP_CA_Loss);
1884 tp->high_seq = tp->snd_nxt;
1885 TCP_ECN_queue_cwr(tp);
1886
1887 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1888 * loss recovery is underway except recurring timeout(s) on
1889 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1890 */
1891 tp->frto = sysctl_tcp_frto &&
1892 (new_recovery || icsk->icsk_retransmits) &&
1893 !inet_csk(sk)->icsk_mtup.probe_size;
1894 }
1895
1896 /* If ACK arrived pointing to a remembered SACK, it means that our
1897 * remembered SACKs do not reflect real state of receiver i.e.
1898 * receiver _host_ is heavily congested (or buggy).
1899 *
1900 * Do processing similar to RTO timeout.
1901 */
1902 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1903 {
1904 if (flag & FLAG_SACK_RENEGING) {
1905 struct inet_connection_sock *icsk = inet_csk(sk);
1906 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1907
1908 tcp_enter_loss(sk, 1);
1909 icsk->icsk_retransmits++;
1910 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1911 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1912 icsk->icsk_rto, TCP_RTO_MAX);
1913 return true;
1914 }
1915 return false;
1916 }
1917
1918 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1919 {
1920 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1921 }
1922
1923 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1924 * counter when SACK is enabled (without SACK, sacked_out is used for
1925 * that purpose).
1926 *
1927 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1928 * segments up to the highest received SACK block so far and holes in
1929 * between them.
1930 *
1931 * With reordering, holes may still be in flight, so RFC3517 recovery
1932 * uses pure sacked_out (total number of SACKed segments) even though
1933 * it violates the RFC that uses duplicate ACKs, often these are equal
1934 * but when e.g. out-of-window ACKs or packet duplication occurs,
1935 * they differ. Since neither occurs due to loss, TCP should really
1936 * ignore them.
1937 */
1938 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1939 {
1940 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1941 }
1942
1943 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1944 {
1945 struct tcp_sock *tp = tcp_sk(sk);
1946 unsigned long delay;
1947
1948 /* Delay early retransmit and entering fast recovery for
1949 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1950 * available, or RTO is scheduled to fire first.
1951 */
1952 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1953 (flag & FLAG_ECE) || !tp->srtt)
1954 return false;
1955
1956 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1957 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1958 return false;
1959
1960 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1961 TCP_RTO_MAX);
1962 return true;
1963 }
1964
1965 /* Linux NewReno/SACK/FACK/ECN state machine.
1966 * --------------------------------------
1967 *
1968 * "Open" Normal state, no dubious events, fast path.
1969 * "Disorder" In all the respects it is "Open",
1970 * but requires a bit more attention. It is entered when
1971 * we see some SACKs or dupacks. It is split of "Open"
1972 * mainly to move some processing from fast path to slow one.
1973 * "CWR" CWND was reduced due to some Congestion Notification event.
1974 * It can be ECN, ICMP source quench, local device congestion.
1975 * "Recovery" CWND was reduced, we are fast-retransmitting.
1976 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1977 *
1978 * tcp_fastretrans_alert() is entered:
1979 * - each incoming ACK, if state is not "Open"
1980 * - when arrived ACK is unusual, namely:
1981 * * SACK
1982 * * Duplicate ACK.
1983 * * ECN ECE.
1984 *
1985 * Counting packets in flight is pretty simple.
1986 *
1987 * in_flight = packets_out - left_out + retrans_out
1988 *
1989 * packets_out is SND.NXT-SND.UNA counted in packets.
1990 *
1991 * retrans_out is number of retransmitted segments.
1992 *
1993 * left_out is number of segments left network, but not ACKed yet.
1994 *
1995 * left_out = sacked_out + lost_out
1996 *
1997 * sacked_out: Packets, which arrived to receiver out of order
1998 * and hence not ACKed. With SACKs this number is simply
1999 * amount of SACKed data. Even without SACKs
2000 * it is easy to give pretty reliable estimate of this number,
2001 * counting duplicate ACKs.
2002 *
2003 * lost_out: Packets lost by network. TCP has no explicit
2004 * "loss notification" feedback from network (for now).
2005 * It means that this number can be only _guessed_.
2006 * Actually, it is the heuristics to predict lossage that
2007 * distinguishes different algorithms.
2008 *
2009 * F.e. after RTO, when all the queue is considered as lost,
2010 * lost_out = packets_out and in_flight = retrans_out.
2011 *
2012 * Essentially, we have now two algorithms counting
2013 * lost packets.
2014 *
2015 * FACK: It is the simplest heuristics. As soon as we decided
2016 * that something is lost, we decide that _all_ not SACKed
2017 * packets until the most forward SACK are lost. I.e.
2018 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2019 * It is absolutely correct estimate, if network does not reorder
2020 * packets. And it loses any connection to reality when reordering
2021 * takes place. We use FACK by default until reordering
2022 * is suspected on the path to this destination.
2023 *
2024 * NewReno: when Recovery is entered, we assume that one segment
2025 * is lost (classic Reno). While we are in Recovery and
2026 * a partial ACK arrives, we assume that one more packet
2027 * is lost (NewReno). This heuristics are the same in NewReno
2028 * and SACK.
2029 *
2030 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2031 * deflation etc. CWND is real congestion window, never inflated, changes
2032 * only according to classic VJ rules.
2033 *
2034 * Really tricky (and requiring careful tuning) part of algorithm
2035 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2036 * The first determines the moment _when_ we should reduce CWND and,
2037 * hence, slow down forward transmission. In fact, it determines the moment
2038 * when we decide that hole is caused by loss, rather than by a reorder.
2039 *
2040 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2041 * holes, caused by lost packets.
2042 *
2043 * And the most logically complicated part of algorithm is undo
2044 * heuristics. We detect false retransmits due to both too early
2045 * fast retransmit (reordering) and underestimated RTO, analyzing
2046 * timestamps and D-SACKs. When we detect that some segments were
2047 * retransmitted by mistake and CWND reduction was wrong, we undo
2048 * window reduction and abort recovery phase. This logic is hidden
2049 * inside several functions named tcp_try_undo_<something>.
2050 */
2051
2052 /* This function decides, when we should leave Disordered state
2053 * and enter Recovery phase, reducing congestion window.
2054 *
2055 * Main question: may we further continue forward transmission
2056 * with the same cwnd?
2057 */
2058 static bool tcp_time_to_recover(struct sock *sk, int flag)
2059 {
2060 struct tcp_sock *tp = tcp_sk(sk);
2061 __u32 packets_out;
2062
2063 /* Trick#1: The loss is proven. */
2064 if (tp->lost_out)
2065 return true;
2066
2067 /* Not-A-Trick#2 : Classic rule... */
2068 if (tcp_dupack_heuristics(tp) > tp->reordering)
2069 return true;
2070
2071 /* Trick#4: It is still not OK... But will it be useful to delay
2072 * recovery more?
2073 */
2074 packets_out = tp->packets_out;
2075 if (packets_out <= tp->reordering &&
2076 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2077 !tcp_may_send_now(sk)) {
2078 /* We have nothing to send. This connection is limited
2079 * either by receiver window or by application.
2080 */
2081 return true;
2082 }
2083
2084 /* If a thin stream is detected, retransmit after first
2085 * received dupack. Employ only if SACK is supported in order
2086 * to avoid possible corner-case series of spurious retransmissions
2087 * Use only if there are no unsent data.
2088 */
2089 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2090 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2091 tcp_is_sack(tp) && !tcp_send_head(sk))
2092 return true;
2093
2094 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2095 * retransmissions due to small network reorderings, we implement
2096 * Mitigation A.3 in the RFC and delay the retransmission for a short
2097 * interval if appropriate.
2098 */
2099 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2100 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2101 !tcp_may_send_now(sk))
2102 return !tcp_pause_early_retransmit(sk, flag);
2103
2104 return false;
2105 }
2106
2107 /* Detect loss in event "A" above by marking head of queue up as lost.
2108 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2109 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2110 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2111 * the maximum SACKed segments to pass before reaching this limit.
2112 */
2113 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2114 {
2115 struct tcp_sock *tp = tcp_sk(sk);
2116 struct sk_buff *skb;
2117 int cnt, oldcnt;
2118 int err;
2119 unsigned int mss;
2120 /* Use SACK to deduce losses of new sequences sent during recovery */
2121 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2122
2123 WARN_ON(packets > tp->packets_out);
2124 if (tp->lost_skb_hint) {
2125 skb = tp->lost_skb_hint;
2126 cnt = tp->lost_cnt_hint;
2127 /* Head already handled? */
2128 if (mark_head && skb != tcp_write_queue_head(sk))
2129 return;
2130 } else {
2131 skb = tcp_write_queue_head(sk);
2132 cnt = 0;
2133 }
2134
2135 tcp_for_write_queue_from(skb, sk) {
2136 if (skb == tcp_send_head(sk))
2137 break;
2138 /* TODO: do this better */
2139 /* this is not the most efficient way to do this... */
2140 tp->lost_skb_hint = skb;
2141 tp->lost_cnt_hint = cnt;
2142
2143 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2144 break;
2145
2146 oldcnt = cnt;
2147 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2148 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2149 cnt += tcp_skb_pcount(skb);
2150
2151 if (cnt > packets) {
2152 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2153 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2154 (oldcnt >= packets))
2155 break;
2156
2157 mss = skb_shinfo(skb)->gso_size;
2158 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2159 if (err < 0)
2160 break;
2161 cnt = packets;
2162 }
2163
2164 tcp_skb_mark_lost(tp, skb);
2165
2166 if (mark_head)
2167 break;
2168 }
2169 tcp_verify_left_out(tp);
2170 }
2171
2172 /* Account newly detected lost packet(s) */
2173
2174 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2175 {
2176 struct tcp_sock *tp = tcp_sk(sk);
2177
2178 if (tcp_is_reno(tp)) {
2179 tcp_mark_head_lost(sk, 1, 1);
2180 } else if (tcp_is_fack(tp)) {
2181 int lost = tp->fackets_out - tp->reordering;
2182 if (lost <= 0)
2183 lost = 1;
2184 tcp_mark_head_lost(sk, lost, 0);
2185 } else {
2186 int sacked_upto = tp->sacked_out - tp->reordering;
2187 if (sacked_upto >= 0)
2188 tcp_mark_head_lost(sk, sacked_upto, 0);
2189 else if (fast_rexmit)
2190 tcp_mark_head_lost(sk, 1, 1);
2191 }
2192 }
2193
2194 /* CWND moderation, preventing bursts due to too big ACKs
2195 * in dubious situations.
2196 */
2197 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2198 {
2199 tp->snd_cwnd = min(tp->snd_cwnd,
2200 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2201 tp->snd_cwnd_stamp = tcp_time_stamp;
2202 }
2203
2204 /* Nothing was retransmitted or returned timestamp is less
2205 * than timestamp of the first retransmission.
2206 */
2207 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2208 {
2209 return !tp->retrans_stamp ||
2210 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2211 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2212 }
2213
2214 /* Undo procedures. */
2215
2216 #if FASTRETRANS_DEBUG > 1
2217 static void DBGUNDO(struct sock *sk, const char *msg)
2218 {
2219 struct tcp_sock *tp = tcp_sk(sk);
2220 struct inet_sock *inet = inet_sk(sk);
2221
2222 if (sk->sk_family == AF_INET) {
2223 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2224 msg,
2225 &inet->inet_daddr, ntohs(inet->inet_dport),
2226 tp->snd_cwnd, tcp_left_out(tp),
2227 tp->snd_ssthresh, tp->prior_ssthresh,
2228 tp->packets_out);
2229 }
2230 #if IS_ENABLED(CONFIG_IPV6)
2231 else if (sk->sk_family == AF_INET6) {
2232 struct ipv6_pinfo *np = inet6_sk(sk);
2233 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2234 msg,
2235 &np->daddr, ntohs(inet->inet_dport),
2236 tp->snd_cwnd, tcp_left_out(tp),
2237 tp->snd_ssthresh, tp->prior_ssthresh,
2238 tp->packets_out);
2239 }
2240 #endif
2241 }
2242 #else
2243 #define DBGUNDO(x...) do { } while (0)
2244 #endif
2245
2246 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2247 {
2248 struct tcp_sock *tp = tcp_sk(sk);
2249
2250 if (tp->prior_ssthresh) {
2251 const struct inet_connection_sock *icsk = inet_csk(sk);
2252
2253 if (icsk->icsk_ca_ops->undo_cwnd)
2254 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2255 else
2256 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2257
2258 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2259 tp->snd_ssthresh = tp->prior_ssthresh;
2260 TCP_ECN_withdraw_cwr(tp);
2261 }
2262 } else {
2263 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2264 }
2265 tp->snd_cwnd_stamp = tcp_time_stamp;
2266 }
2267
2268 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2269 {
2270 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2271 }
2272
2273 /* People celebrate: "We love our President!" */
2274 static bool tcp_try_undo_recovery(struct sock *sk)
2275 {
2276 struct tcp_sock *tp = tcp_sk(sk);
2277
2278 if (tcp_may_undo(tp)) {
2279 int mib_idx;
2280
2281 /* Happy end! We did not retransmit anything
2282 * or our original transmission succeeded.
2283 */
2284 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2285 tcp_undo_cwr(sk, true);
2286 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2287 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2288 else
2289 mib_idx = LINUX_MIB_TCPFULLUNDO;
2290
2291 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2292 tp->undo_marker = 0;
2293 }
2294 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2295 /* Hold old state until something *above* high_seq
2296 * is ACKed. For Reno it is MUST to prevent false
2297 * fast retransmits (RFC2582). SACK TCP is safe. */
2298 tcp_moderate_cwnd(tp);
2299 return true;
2300 }
2301 tcp_set_ca_state(sk, TCP_CA_Open);
2302 return false;
2303 }
2304
2305 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2306 static void tcp_try_undo_dsack(struct sock *sk)
2307 {
2308 struct tcp_sock *tp = tcp_sk(sk);
2309
2310 if (tp->undo_marker && !tp->undo_retrans) {
2311 DBGUNDO(sk, "D-SACK");
2312 tcp_undo_cwr(sk, true);
2313 tp->undo_marker = 0;
2314 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2315 }
2316 }
2317
2318 /* We can clear retrans_stamp when there are no retransmissions in the
2319 * window. It would seem that it is trivially available for us in
2320 * tp->retrans_out, however, that kind of assumptions doesn't consider
2321 * what will happen if errors occur when sending retransmission for the
2322 * second time. ...It could the that such segment has only
2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324 * the head skb is enough except for some reneging corner cases that
2325 * are not worth the effort.
2326 *
2327 * Main reason for all this complexity is the fact that connection dying
2328 * time now depends on the validity of the retrans_stamp, in particular,
2329 * that successive retransmissions of a segment must not advance
2330 * retrans_stamp under any conditions.
2331 */
2332 static bool tcp_any_retrans_done(const struct sock *sk)
2333 {
2334 const struct tcp_sock *tp = tcp_sk(sk);
2335 struct sk_buff *skb;
2336
2337 if (tp->retrans_out)
2338 return true;
2339
2340 skb = tcp_write_queue_head(sk);
2341 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342 return true;
2343
2344 return false;
2345 }
2346
2347 /* Undo during fast recovery after partial ACK. */
2348
2349 static int tcp_try_undo_partial(struct sock *sk, int acked)
2350 {
2351 struct tcp_sock *tp = tcp_sk(sk);
2352 /* Partial ACK arrived. Force Hoe's retransmit. */
2353 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2354
2355 if (tcp_may_undo(tp)) {
2356 /* Plain luck! Hole if filled with delayed
2357 * packet, rather than with a retransmit.
2358 */
2359 if (!tcp_any_retrans_done(sk))
2360 tp->retrans_stamp = 0;
2361
2362 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2363
2364 DBGUNDO(sk, "Hoe");
2365 tcp_undo_cwr(sk, false);
2366 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2367
2368 /* So... Do not make Hoe's retransmit yet.
2369 * If the first packet was delayed, the rest
2370 * ones are most probably delayed as well.
2371 */
2372 failed = 0;
2373 }
2374 return failed;
2375 }
2376
2377 /* Undo during loss recovery after partial ACK or using F-RTO. */
2378 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2379 {
2380 struct tcp_sock *tp = tcp_sk(sk);
2381
2382 if (frto_undo || tcp_may_undo(tp)) {
2383 struct sk_buff *skb;
2384 tcp_for_write_queue(skb, sk) {
2385 if (skb == tcp_send_head(sk))
2386 break;
2387 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2388 }
2389
2390 tcp_clear_all_retrans_hints(tp);
2391
2392 DBGUNDO(sk, "partial loss");
2393 tp->lost_out = 0;
2394 tcp_undo_cwr(sk, true);
2395 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2396 if (frto_undo)
2397 NET_INC_STATS_BH(sock_net(sk),
2398 LINUX_MIB_TCPSPURIOUSRTOS);
2399 inet_csk(sk)->icsk_retransmits = 0;
2400 tp->undo_marker = 0;
2401 if (frto_undo || tcp_is_sack(tp))
2402 tcp_set_ca_state(sk, TCP_CA_Open);
2403 return true;
2404 }
2405 return false;
2406 }
2407
2408 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2409 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2410 * It computes the number of packets to send (sndcnt) based on packets newly
2411 * delivered:
2412 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2413 * cwnd reductions across a full RTT.
2414 * 2) If packets in flight is lower than ssthresh (such as due to excess
2415 * losses and/or application stalls), do not perform any further cwnd
2416 * reductions, but instead slow start up to ssthresh.
2417 */
2418 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2419 {
2420 struct tcp_sock *tp = tcp_sk(sk);
2421
2422 tp->high_seq = tp->snd_nxt;
2423 tp->tlp_high_seq = 0;
2424 tp->snd_cwnd_cnt = 0;
2425 tp->prior_cwnd = tp->snd_cwnd;
2426 tp->prr_delivered = 0;
2427 tp->prr_out = 0;
2428 if (set_ssthresh)
2429 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2430 TCP_ECN_queue_cwr(tp);
2431 }
2432
2433 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2434 int fast_rexmit)
2435 {
2436 struct tcp_sock *tp = tcp_sk(sk);
2437 int sndcnt = 0;
2438 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2439
2440 tp->prr_delivered += newly_acked_sacked;
2441 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2442 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2443 tp->prior_cwnd - 1;
2444 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2445 } else {
2446 sndcnt = min_t(int, delta,
2447 max_t(int, tp->prr_delivered - tp->prr_out,
2448 newly_acked_sacked) + 1);
2449 }
2450
2451 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2452 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2453 }
2454
2455 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2456 {
2457 struct tcp_sock *tp = tcp_sk(sk);
2458
2459 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2460 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2461 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2462 tp->snd_cwnd = tp->snd_ssthresh;
2463 tp->snd_cwnd_stamp = tcp_time_stamp;
2464 }
2465 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2466 }
2467
2468 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2469 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2470 {
2471 struct tcp_sock *tp = tcp_sk(sk);
2472
2473 tp->prior_ssthresh = 0;
2474 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2475 tp->undo_marker = 0;
2476 tcp_init_cwnd_reduction(sk, set_ssthresh);
2477 tcp_set_ca_state(sk, TCP_CA_CWR);
2478 }
2479 }
2480
2481 static void tcp_try_keep_open(struct sock *sk)
2482 {
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 int state = TCP_CA_Open;
2485
2486 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2487 state = TCP_CA_Disorder;
2488
2489 if (inet_csk(sk)->icsk_ca_state != state) {
2490 tcp_set_ca_state(sk, state);
2491 tp->high_seq = tp->snd_nxt;
2492 }
2493 }
2494
2495 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2496 {
2497 struct tcp_sock *tp = tcp_sk(sk);
2498
2499 tcp_verify_left_out(tp);
2500
2501 if (!tcp_any_retrans_done(sk))
2502 tp->retrans_stamp = 0;
2503
2504 if (flag & FLAG_ECE)
2505 tcp_enter_cwr(sk, 1);
2506
2507 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2508 tcp_try_keep_open(sk);
2509 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2510 tcp_moderate_cwnd(tp);
2511 } else {
2512 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2513 }
2514 }
2515
2516 static void tcp_mtup_probe_failed(struct sock *sk)
2517 {
2518 struct inet_connection_sock *icsk = inet_csk(sk);
2519
2520 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2521 icsk->icsk_mtup.probe_size = 0;
2522 }
2523
2524 static void tcp_mtup_probe_success(struct sock *sk)
2525 {
2526 struct tcp_sock *tp = tcp_sk(sk);
2527 struct inet_connection_sock *icsk = inet_csk(sk);
2528
2529 /* FIXME: breaks with very large cwnd */
2530 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2531 tp->snd_cwnd = tp->snd_cwnd *
2532 tcp_mss_to_mtu(sk, tp->mss_cache) /
2533 icsk->icsk_mtup.probe_size;
2534 tp->snd_cwnd_cnt = 0;
2535 tp->snd_cwnd_stamp = tcp_time_stamp;
2536 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2537
2538 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2539 icsk->icsk_mtup.probe_size = 0;
2540 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2541 }
2542
2543 /* Do a simple retransmit without using the backoff mechanisms in
2544 * tcp_timer. This is used for path mtu discovery.
2545 * The socket is already locked here.
2546 */
2547 void tcp_simple_retransmit(struct sock *sk)
2548 {
2549 const struct inet_connection_sock *icsk = inet_csk(sk);
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 struct sk_buff *skb;
2552 unsigned int mss = tcp_current_mss(sk);
2553 u32 prior_lost = tp->lost_out;
2554
2555 tcp_for_write_queue(skb, sk) {
2556 if (skb == tcp_send_head(sk))
2557 break;
2558 if (tcp_skb_seglen(skb) > mss &&
2559 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2560 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2561 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2562 tp->retrans_out -= tcp_skb_pcount(skb);
2563 }
2564 tcp_skb_mark_lost_uncond_verify(tp, skb);
2565 }
2566 }
2567
2568 tcp_clear_retrans_hints_partial(tp);
2569
2570 if (prior_lost == tp->lost_out)
2571 return;
2572
2573 if (tcp_is_reno(tp))
2574 tcp_limit_reno_sacked(tp);
2575
2576 tcp_verify_left_out(tp);
2577
2578 /* Don't muck with the congestion window here.
2579 * Reason is that we do not increase amount of _data_
2580 * in network, but units changed and effective
2581 * cwnd/ssthresh really reduced now.
2582 */
2583 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2584 tp->high_seq = tp->snd_nxt;
2585 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2586 tp->prior_ssthresh = 0;
2587 tp->undo_marker = 0;
2588 tcp_set_ca_state(sk, TCP_CA_Loss);
2589 }
2590 tcp_xmit_retransmit_queue(sk);
2591 }
2592 EXPORT_SYMBOL(tcp_simple_retransmit);
2593
2594 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2595 {
2596 struct tcp_sock *tp = tcp_sk(sk);
2597 int mib_idx;
2598
2599 if (tcp_is_reno(tp))
2600 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2601 else
2602 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2603
2604 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2605
2606 tp->prior_ssthresh = 0;
2607 tp->undo_marker = tp->snd_una;
2608 tp->undo_retrans = tp->retrans_out;
2609
2610 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2611 if (!ece_ack)
2612 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2613 tcp_init_cwnd_reduction(sk, true);
2614 }
2615 tcp_set_ca_state(sk, TCP_CA_Recovery);
2616 }
2617
2618 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2619 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2620 */
2621 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2622 {
2623 struct inet_connection_sock *icsk = inet_csk(sk);
2624 struct tcp_sock *tp = tcp_sk(sk);
2625 bool recovered = !before(tp->snd_una, tp->high_seq);
2626
2627 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2628 if (flag & FLAG_ORIG_SACK_ACKED) {
2629 /* Step 3.b. A timeout is spurious if not all data are
2630 * lost, i.e., never-retransmitted data are (s)acked.
2631 */
2632 tcp_try_undo_loss(sk, true);
2633 return;
2634 }
2635 if (after(tp->snd_nxt, tp->high_seq) &&
2636 (flag & FLAG_DATA_SACKED || is_dupack)) {
2637 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2638 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2639 tp->high_seq = tp->snd_nxt;
2640 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2641 TCP_NAGLE_OFF);
2642 if (after(tp->snd_nxt, tp->high_seq))
2643 return; /* Step 2.b */
2644 tp->frto = 0;
2645 }
2646 }
2647
2648 if (recovered) {
2649 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2650 icsk->icsk_retransmits = 0;
2651 tcp_try_undo_recovery(sk);
2652 return;
2653 }
2654 if (flag & FLAG_DATA_ACKED)
2655 icsk->icsk_retransmits = 0;
2656 if (tcp_is_reno(tp)) {
2657 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2658 * delivered. Lower inflight to clock out (re)tranmissions.
2659 */
2660 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2661 tcp_add_reno_sack(sk);
2662 else if (flag & FLAG_SND_UNA_ADVANCED)
2663 tcp_reset_reno_sack(tp);
2664 }
2665 if (tcp_try_undo_loss(sk, false))
2666 return;
2667 tcp_xmit_retransmit_queue(sk);
2668 }
2669
2670 /* Process an event, which can update packets-in-flight not trivially.
2671 * Main goal of this function is to calculate new estimate for left_out,
2672 * taking into account both packets sitting in receiver's buffer and
2673 * packets lost by network.
2674 *
2675 * Besides that it does CWND reduction, when packet loss is detected
2676 * and changes state of machine.
2677 *
2678 * It does _not_ decide what to send, it is made in function
2679 * tcp_xmit_retransmit_queue().
2680 */
2681 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2682 int prior_sacked, int prior_packets,
2683 bool is_dupack, int flag)
2684 {
2685 struct inet_connection_sock *icsk = inet_csk(sk);
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2688 (tcp_fackets_out(tp) > tp->reordering));
2689 int newly_acked_sacked = 0;
2690 int fast_rexmit = 0;
2691
2692 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2693 tp->sacked_out = 0;
2694 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2695 tp->fackets_out = 0;
2696
2697 /* Now state machine starts.
2698 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2699 if (flag & FLAG_ECE)
2700 tp->prior_ssthresh = 0;
2701
2702 /* B. In all the states check for reneging SACKs. */
2703 if (tcp_check_sack_reneging(sk, flag))
2704 return;
2705
2706 /* C. Check consistency of the current state. */
2707 tcp_verify_left_out(tp);
2708
2709 /* D. Check state exit conditions. State can be terminated
2710 * when high_seq is ACKed. */
2711 if (icsk->icsk_ca_state == TCP_CA_Open) {
2712 WARN_ON(tp->retrans_out != 0);
2713 tp->retrans_stamp = 0;
2714 } else if (!before(tp->snd_una, tp->high_seq)) {
2715 switch (icsk->icsk_ca_state) {
2716 case TCP_CA_CWR:
2717 /* CWR is to be held something *above* high_seq
2718 * is ACKed for CWR bit to reach receiver. */
2719 if (tp->snd_una != tp->high_seq) {
2720 tcp_end_cwnd_reduction(sk);
2721 tcp_set_ca_state(sk, TCP_CA_Open);
2722 }
2723 break;
2724
2725 case TCP_CA_Recovery:
2726 if (tcp_is_reno(tp))
2727 tcp_reset_reno_sack(tp);
2728 if (tcp_try_undo_recovery(sk))
2729 return;
2730 tcp_end_cwnd_reduction(sk);
2731 break;
2732 }
2733 }
2734
2735 /* E. Process state. */
2736 switch (icsk->icsk_ca_state) {
2737 case TCP_CA_Recovery:
2738 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2739 if (tcp_is_reno(tp) && is_dupack)
2740 tcp_add_reno_sack(sk);
2741 } else
2742 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2743 newly_acked_sacked = prior_packets - tp->packets_out +
2744 tp->sacked_out - prior_sacked;
2745 break;
2746 case TCP_CA_Loss:
2747 tcp_process_loss(sk, flag, is_dupack);
2748 if (icsk->icsk_ca_state != TCP_CA_Open)
2749 return;
2750 /* Fall through to processing in Open state. */
2751 default:
2752 if (tcp_is_reno(tp)) {
2753 if (flag & FLAG_SND_UNA_ADVANCED)
2754 tcp_reset_reno_sack(tp);
2755 if (is_dupack)
2756 tcp_add_reno_sack(sk);
2757 }
2758 newly_acked_sacked = prior_packets - tp->packets_out +
2759 tp->sacked_out - prior_sacked;
2760
2761 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2762 tcp_try_undo_dsack(sk);
2763
2764 if (!tcp_time_to_recover(sk, flag)) {
2765 tcp_try_to_open(sk, flag, newly_acked_sacked);
2766 return;
2767 }
2768
2769 /* MTU probe failure: don't reduce cwnd */
2770 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2771 icsk->icsk_mtup.probe_size &&
2772 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2773 tcp_mtup_probe_failed(sk);
2774 /* Restores the reduction we did in tcp_mtup_probe() */
2775 tp->snd_cwnd++;
2776 tcp_simple_retransmit(sk);
2777 return;
2778 }
2779
2780 /* Otherwise enter Recovery state */
2781 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2782 fast_rexmit = 1;
2783 }
2784
2785 if (do_lost)
2786 tcp_update_scoreboard(sk, fast_rexmit);
2787 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2788 tcp_xmit_retransmit_queue(sk);
2789 }
2790
2791 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2792 {
2793 tcp_rtt_estimator(sk, seq_rtt);
2794 tcp_set_rto(sk);
2795 inet_csk(sk)->icsk_backoff = 0;
2796 }
2797 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2798
2799 /* Read draft-ietf-tcplw-high-performance before mucking
2800 * with this code. (Supersedes RFC1323)
2801 */
2802 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2803 {
2804 /* RTTM Rule: A TSecr value received in a segment is used to
2805 * update the averaged RTT measurement only if the segment
2806 * acknowledges some new data, i.e., only if it advances the
2807 * left edge of the send window.
2808 *
2809 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2810 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2811 *
2812 * Changed: reset backoff as soon as we see the first valid sample.
2813 * If we do not, we get strongly overestimated rto. With timestamps
2814 * samples are accepted even from very old segments: f.e., when rtt=1
2815 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2816 * answer arrives rto becomes 120 seconds! If at least one of segments
2817 * in window is lost... Voila. --ANK (010210)
2818 */
2819 struct tcp_sock *tp = tcp_sk(sk);
2820
2821 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2822 }
2823
2824 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2825 {
2826 /* We don't have a timestamp. Can only use
2827 * packets that are not retransmitted to determine
2828 * rtt estimates. Also, we must not reset the
2829 * backoff for rto until we get a non-retransmitted
2830 * packet. This allows us to deal with a situation
2831 * where the network delay has increased suddenly.
2832 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2833 */
2834
2835 if (flag & FLAG_RETRANS_DATA_ACKED)
2836 return;
2837
2838 tcp_valid_rtt_meas(sk, seq_rtt);
2839 }
2840
2841 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2842 const s32 seq_rtt)
2843 {
2844 const struct tcp_sock *tp = tcp_sk(sk);
2845 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2846 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2847 tcp_ack_saw_tstamp(sk, flag);
2848 else if (seq_rtt >= 0)
2849 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2850 }
2851
2852 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2853 {
2854 const struct inet_connection_sock *icsk = inet_csk(sk);
2855 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2856 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2857 }
2858
2859 /* Restart timer after forward progress on connection.
2860 * RFC2988 recommends to restart timer to now+rto.
2861 */
2862 void tcp_rearm_rto(struct sock *sk)
2863 {
2864 const struct inet_connection_sock *icsk = inet_csk(sk);
2865 struct tcp_sock *tp = tcp_sk(sk);
2866
2867 /* If the retrans timer is currently being used by Fast Open
2868 * for SYN-ACK retrans purpose, stay put.
2869 */
2870 if (tp->fastopen_rsk)
2871 return;
2872
2873 if (!tp->packets_out) {
2874 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2875 } else {
2876 u32 rto = inet_csk(sk)->icsk_rto;
2877 /* Offset the time elapsed after installing regular RTO */
2878 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2879 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2880 struct sk_buff *skb = tcp_write_queue_head(sk);
2881 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2882 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2883 /* delta may not be positive if the socket is locked
2884 * when the retrans timer fires and is rescheduled.
2885 */
2886 if (delta > 0)
2887 rto = delta;
2888 }
2889 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2890 TCP_RTO_MAX);
2891 }
2892 }
2893
2894 /* This function is called when the delayed ER timer fires. TCP enters
2895 * fast recovery and performs fast-retransmit.
2896 */
2897 void tcp_resume_early_retransmit(struct sock *sk)
2898 {
2899 struct tcp_sock *tp = tcp_sk(sk);
2900
2901 tcp_rearm_rto(sk);
2902
2903 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2904 if (!tp->do_early_retrans)
2905 return;
2906
2907 tcp_enter_recovery(sk, false);
2908 tcp_update_scoreboard(sk, 1);
2909 tcp_xmit_retransmit_queue(sk);
2910 }
2911
2912 /* If we get here, the whole TSO packet has not been acked. */
2913 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2914 {
2915 struct tcp_sock *tp = tcp_sk(sk);
2916 u32 packets_acked;
2917
2918 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2919
2920 packets_acked = tcp_skb_pcount(skb);
2921 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2922 return 0;
2923 packets_acked -= tcp_skb_pcount(skb);
2924
2925 if (packets_acked) {
2926 BUG_ON(tcp_skb_pcount(skb) == 0);
2927 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2928 }
2929
2930 return packets_acked;
2931 }
2932
2933 /* Remove acknowledged frames from the retransmission queue. If our packet
2934 * is before the ack sequence we can discard it as it's confirmed to have
2935 * arrived at the other end.
2936 */
2937 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2938 u32 prior_snd_una)
2939 {
2940 struct tcp_sock *tp = tcp_sk(sk);
2941 const struct inet_connection_sock *icsk = inet_csk(sk);
2942 struct sk_buff *skb;
2943 u32 now = tcp_time_stamp;
2944 int fully_acked = true;
2945 int flag = 0;
2946 u32 pkts_acked = 0;
2947 u32 reord = tp->packets_out;
2948 u32 prior_sacked = tp->sacked_out;
2949 s32 seq_rtt = -1;
2950 s32 ca_seq_rtt = -1;
2951 ktime_t last_ackt = net_invalid_timestamp();
2952
2953 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2954 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2955 u32 acked_pcount;
2956 u8 sacked = scb->sacked;
2957
2958 /* Determine how many packets and what bytes were acked, tso and else */
2959 if (after(scb->end_seq, tp->snd_una)) {
2960 if (tcp_skb_pcount(skb) == 1 ||
2961 !after(tp->snd_una, scb->seq))
2962 break;
2963
2964 acked_pcount = tcp_tso_acked(sk, skb);
2965 if (!acked_pcount)
2966 break;
2967
2968 fully_acked = false;
2969 } else {
2970 acked_pcount = tcp_skb_pcount(skb);
2971 }
2972
2973 if (sacked & TCPCB_RETRANS) {
2974 if (sacked & TCPCB_SACKED_RETRANS)
2975 tp->retrans_out -= acked_pcount;
2976 flag |= FLAG_RETRANS_DATA_ACKED;
2977 ca_seq_rtt = -1;
2978 seq_rtt = -1;
2979 } else {
2980 ca_seq_rtt = now - scb->when;
2981 last_ackt = skb->tstamp;
2982 if (seq_rtt < 0) {
2983 seq_rtt = ca_seq_rtt;
2984 }
2985 if (!(sacked & TCPCB_SACKED_ACKED))
2986 reord = min(pkts_acked, reord);
2987 if (!after(scb->end_seq, tp->high_seq))
2988 flag |= FLAG_ORIG_SACK_ACKED;
2989 }
2990
2991 if (sacked & TCPCB_SACKED_ACKED)
2992 tp->sacked_out -= acked_pcount;
2993 if (sacked & TCPCB_LOST)
2994 tp->lost_out -= acked_pcount;
2995
2996 tp->packets_out -= acked_pcount;
2997 pkts_acked += acked_pcount;
2998
2999 /* Initial outgoing SYN's get put onto the write_queue
3000 * just like anything else we transmit. It is not
3001 * true data, and if we misinform our callers that
3002 * this ACK acks real data, we will erroneously exit
3003 * connection startup slow start one packet too
3004 * quickly. This is severely frowned upon behavior.
3005 */
3006 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3007 flag |= FLAG_DATA_ACKED;
3008 } else {
3009 flag |= FLAG_SYN_ACKED;
3010 tp->retrans_stamp = 0;
3011 }
3012
3013 if (!fully_acked)
3014 break;
3015
3016 tcp_unlink_write_queue(skb, sk);
3017 sk_wmem_free_skb(sk, skb);
3018 if (skb == tp->retransmit_skb_hint)
3019 tp->retransmit_skb_hint = NULL;
3020 if (skb == tp->lost_skb_hint)
3021 tp->lost_skb_hint = NULL;
3022 }
3023
3024 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3025 tp->snd_up = tp->snd_una;
3026
3027 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3028 flag |= FLAG_SACK_RENEGING;
3029
3030 if (flag & FLAG_ACKED) {
3031 const struct tcp_congestion_ops *ca_ops
3032 = inet_csk(sk)->icsk_ca_ops;
3033
3034 if (unlikely(icsk->icsk_mtup.probe_size &&
3035 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3036 tcp_mtup_probe_success(sk);
3037 }
3038
3039 tcp_ack_update_rtt(sk, flag, seq_rtt);
3040 tcp_rearm_rto(sk);
3041
3042 if (tcp_is_reno(tp)) {
3043 tcp_remove_reno_sacks(sk, pkts_acked);
3044 } else {
3045 int delta;
3046
3047 /* Non-retransmitted hole got filled? That's reordering */
3048 if (reord < prior_fackets)
3049 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3050
3051 delta = tcp_is_fack(tp) ? pkts_acked :
3052 prior_sacked - tp->sacked_out;
3053 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3054 }
3055
3056 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3057
3058 if (ca_ops->pkts_acked) {
3059 s32 rtt_us = -1;
3060
3061 /* Is the ACK triggering packet unambiguous? */
3062 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3063 /* High resolution needed and available? */
3064 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3065 !ktime_equal(last_ackt,
3066 net_invalid_timestamp()))
3067 rtt_us = ktime_us_delta(ktime_get_real(),
3068 last_ackt);
3069 else if (ca_seq_rtt >= 0)
3070 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3071 }
3072
3073 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3074 }
3075 }
3076
3077 #if FASTRETRANS_DEBUG > 0
3078 WARN_ON((int)tp->sacked_out < 0);
3079 WARN_ON((int)tp->lost_out < 0);
3080 WARN_ON((int)tp->retrans_out < 0);
3081 if (!tp->packets_out && tcp_is_sack(tp)) {
3082 icsk = inet_csk(sk);
3083 if (tp->lost_out) {
3084 pr_debug("Leak l=%u %d\n",
3085 tp->lost_out, icsk->icsk_ca_state);
3086 tp->lost_out = 0;
3087 }
3088 if (tp->sacked_out) {
3089 pr_debug("Leak s=%u %d\n",
3090 tp->sacked_out, icsk->icsk_ca_state);
3091 tp->sacked_out = 0;
3092 }
3093 if (tp->retrans_out) {
3094 pr_debug("Leak r=%u %d\n",
3095 tp->retrans_out, icsk->icsk_ca_state);
3096 tp->retrans_out = 0;
3097 }
3098 }
3099 #endif
3100 return flag;
3101 }
3102
3103 static void tcp_ack_probe(struct sock *sk)
3104 {
3105 const struct tcp_sock *tp = tcp_sk(sk);
3106 struct inet_connection_sock *icsk = inet_csk(sk);
3107
3108 /* Was it a usable window open? */
3109
3110 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3111 icsk->icsk_backoff = 0;
3112 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3113 /* Socket must be waked up by subsequent tcp_data_snd_check().
3114 * This function is not for random using!
3115 */
3116 } else {
3117 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3118 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3119 TCP_RTO_MAX);
3120 }
3121 }
3122
3123 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3124 {
3125 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3126 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3127 }
3128
3129 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3130 {
3131 const struct tcp_sock *tp = tcp_sk(sk);
3132 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3133 !tcp_in_cwnd_reduction(sk);
3134 }
3135
3136 /* Check that window update is acceptable.
3137 * The function assumes that snd_una<=ack<=snd_next.
3138 */
3139 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3140 const u32 ack, const u32 ack_seq,
3141 const u32 nwin)
3142 {
3143 return after(ack, tp->snd_una) ||
3144 after(ack_seq, tp->snd_wl1) ||
3145 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3146 }
3147
3148 /* Update our send window.
3149 *
3150 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3151 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3152 */
3153 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3154 u32 ack_seq)
3155 {
3156 struct tcp_sock *tp = tcp_sk(sk);
3157 int flag = 0;
3158 u32 nwin = ntohs(tcp_hdr(skb)->window);
3159
3160 if (likely(!tcp_hdr(skb)->syn))
3161 nwin <<= tp->rx_opt.snd_wscale;
3162
3163 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3164 flag |= FLAG_WIN_UPDATE;
3165 tcp_update_wl(tp, ack_seq);
3166
3167 if (tp->snd_wnd != nwin) {
3168 tp->snd_wnd = nwin;
3169
3170 /* Note, it is the only place, where
3171 * fast path is recovered for sending TCP.
3172 */
3173 tp->pred_flags = 0;
3174 tcp_fast_path_check(sk);
3175
3176 if (nwin > tp->max_window) {
3177 tp->max_window = nwin;
3178 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3179 }
3180 }
3181 }
3182
3183 tp->snd_una = ack;
3184
3185 return flag;
3186 }
3187
3188 /* RFC 5961 7 [ACK Throttling] */
3189 static void tcp_send_challenge_ack(struct sock *sk)
3190 {
3191 /* unprotected vars, we dont care of overwrites */
3192 static u32 challenge_timestamp;
3193 static unsigned int challenge_count;
3194 u32 now = jiffies / HZ;
3195
3196 if (now != challenge_timestamp) {
3197 challenge_timestamp = now;
3198 challenge_count = 0;
3199 }
3200 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3201 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3202 tcp_send_ack(sk);
3203 }
3204 }
3205
3206 static void tcp_store_ts_recent(struct tcp_sock *tp)
3207 {
3208 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3209 tp->rx_opt.ts_recent_stamp = get_seconds();
3210 }
3211
3212 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3213 {
3214 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3215 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3216 * extra check below makes sure this can only happen
3217 * for pure ACK frames. -DaveM
3218 *
3219 * Not only, also it occurs for expired timestamps.
3220 */
3221
3222 if (tcp_paws_check(&tp->rx_opt, 0))
3223 tcp_store_ts_recent(tp);
3224 }
3225 }
3226
3227 /* This routine deals with acks during a TLP episode.
3228 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3229 */
3230 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3231 {
3232 struct tcp_sock *tp = tcp_sk(sk);
3233 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3234 !(flag & (FLAG_SND_UNA_ADVANCED |
3235 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3236
3237 /* Mark the end of TLP episode on receiving TLP dupack or when
3238 * ack is after tlp_high_seq.
3239 */
3240 if (is_tlp_dupack) {
3241 tp->tlp_high_seq = 0;
3242 return;
3243 }
3244
3245 if (after(ack, tp->tlp_high_seq)) {
3246 tp->tlp_high_seq = 0;
3247 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3248 if (!(flag & FLAG_DSACKING_ACK)) {
3249 tcp_init_cwnd_reduction(sk, true);
3250 tcp_set_ca_state(sk, TCP_CA_CWR);
3251 tcp_end_cwnd_reduction(sk);
3252 tcp_set_ca_state(sk, TCP_CA_Open);
3253 NET_INC_STATS_BH(sock_net(sk),
3254 LINUX_MIB_TCPLOSSPROBERECOVERY);
3255 }
3256 }
3257 }
3258
3259 /* This routine deals with incoming acks, but not outgoing ones. */
3260 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3261 {
3262 struct inet_connection_sock *icsk = inet_csk(sk);
3263 struct tcp_sock *tp = tcp_sk(sk);
3264 u32 prior_snd_una = tp->snd_una;
3265 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3266 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3267 bool is_dupack = false;
3268 u32 prior_in_flight;
3269 u32 prior_fackets;
3270 int prior_packets = tp->packets_out;
3271 int prior_sacked = tp->sacked_out;
3272 int pkts_acked = 0;
3273 int previous_packets_out = 0;
3274
3275 /* If the ack is older than previous acks
3276 * then we can probably ignore it.
3277 */
3278 if (before(ack, prior_snd_una)) {
3279 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3280 if (before(ack, prior_snd_una - tp->max_window)) {
3281 tcp_send_challenge_ack(sk);
3282 return -1;
3283 }
3284 goto old_ack;
3285 }
3286
3287 /* If the ack includes data we haven't sent yet, discard
3288 * this segment (RFC793 Section 3.9).
3289 */
3290 if (after(ack, tp->snd_nxt))
3291 goto invalid_ack;
3292
3293 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3294 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3295 tcp_rearm_rto(sk);
3296
3297 if (after(ack, prior_snd_una))
3298 flag |= FLAG_SND_UNA_ADVANCED;
3299
3300 prior_fackets = tp->fackets_out;
3301 prior_in_flight = tcp_packets_in_flight(tp);
3302
3303 /* ts_recent update must be made after we are sure that the packet
3304 * is in window.
3305 */
3306 if (flag & FLAG_UPDATE_TS_RECENT)
3307 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3308
3309 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3310 /* Window is constant, pure forward advance.
3311 * No more checks are required.
3312 * Note, we use the fact that SND.UNA>=SND.WL2.
3313 */
3314 tcp_update_wl(tp, ack_seq);
3315 tp->snd_una = ack;
3316 flag |= FLAG_WIN_UPDATE;
3317
3318 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3319
3320 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3321 } else {
3322 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3323 flag |= FLAG_DATA;
3324 else
3325 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3326
3327 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3328
3329 if (TCP_SKB_CB(skb)->sacked)
3330 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3331
3332 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3333 flag |= FLAG_ECE;
3334
3335 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3336 }
3337
3338 /* We passed data and got it acked, remove any soft error
3339 * log. Something worked...
3340 */
3341 sk->sk_err_soft = 0;
3342 icsk->icsk_probes_out = 0;
3343 tp->rcv_tstamp = tcp_time_stamp;
3344 if (!prior_packets)
3345 goto no_queue;
3346
3347 /* See if we can take anything off of the retransmit queue. */
3348 previous_packets_out = tp->packets_out;
3349 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3350
3351 pkts_acked = previous_packets_out - tp->packets_out;
3352
3353 if (tcp_ack_is_dubious(sk, flag)) {
3354 /* Advance CWND, if state allows this. */
3355 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3356 tcp_cong_avoid(sk, ack, prior_in_flight);
3357 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3358 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3359 prior_packets, is_dupack, flag);
3360 } else {
3361 if (flag & FLAG_DATA_ACKED)
3362 tcp_cong_avoid(sk, ack, prior_in_flight);
3363 }
3364
3365 if (tp->tlp_high_seq)
3366 tcp_process_tlp_ack(sk, ack, flag);
3367
3368 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3369 struct dst_entry *dst = __sk_dst_get(sk);
3370 if (dst)
3371 dst_confirm(dst);
3372 }
3373
3374 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3375 tcp_schedule_loss_probe(sk);
3376 return 1;
3377
3378 no_queue:
3379 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3380 if (flag & FLAG_DSACKING_ACK)
3381 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3382 prior_packets, is_dupack, flag);
3383 /* If this ack opens up a zero window, clear backoff. It was
3384 * being used to time the probes, and is probably far higher than
3385 * it needs to be for normal retransmission.
3386 */
3387 if (tcp_send_head(sk))
3388 tcp_ack_probe(sk);
3389
3390 if (tp->tlp_high_seq)
3391 tcp_process_tlp_ack(sk, ack, flag);
3392 return 1;
3393
3394 invalid_ack:
3395 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3396 return -1;
3397
3398 old_ack:
3399 /* If data was SACKed, tag it and see if we should send more data.
3400 * If data was DSACKed, see if we can undo a cwnd reduction.
3401 */
3402 if (TCP_SKB_CB(skb)->sacked) {
3403 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3404 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3405 prior_packets, is_dupack, flag);
3406 }
3407
3408 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3409 return 0;
3410 }
3411
3412 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3413 * But, this can also be called on packets in the established flow when
3414 * the fast version below fails.
3415 */
3416 void tcp_parse_options(const struct sk_buff *skb,
3417 struct tcp_options_received *opt_rx, int estab,
3418 struct tcp_fastopen_cookie *foc)
3419 {
3420 const unsigned char *ptr;
3421 const struct tcphdr *th = tcp_hdr(skb);
3422 int length = (th->doff * 4) - sizeof(struct tcphdr);
3423
3424 ptr = (const unsigned char *)(th + 1);
3425 opt_rx->saw_tstamp = 0;
3426
3427 while (length > 0) {
3428 int opcode = *ptr++;
3429 int opsize;
3430
3431 switch (opcode) {
3432 case TCPOPT_EOL:
3433 return;
3434 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3435 length--;
3436 continue;
3437 default:
3438 opsize = *ptr++;
3439 if (opsize < 2) /* "silly options" */
3440 return;
3441 if (opsize > length)
3442 return; /* don't parse partial options */
3443 switch (opcode) {
3444 case TCPOPT_MSS:
3445 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3446 u16 in_mss = get_unaligned_be16(ptr);
3447 if (in_mss) {
3448 if (opt_rx->user_mss &&
3449 opt_rx->user_mss < in_mss)
3450 in_mss = opt_rx->user_mss;
3451 opt_rx->mss_clamp = in_mss;
3452 }
3453 }
3454 break;
3455 case TCPOPT_WINDOW:
3456 if (opsize == TCPOLEN_WINDOW && th->syn &&
3457 !estab && sysctl_tcp_window_scaling) {
3458 __u8 snd_wscale = *(__u8 *)ptr;
3459 opt_rx->wscale_ok = 1;
3460 if (snd_wscale > 14) {
3461 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3462 __func__,
3463 snd_wscale);
3464 snd_wscale = 14;
3465 }
3466 opt_rx->snd_wscale = snd_wscale;
3467 }
3468 break;
3469 case TCPOPT_TIMESTAMP:
3470 if ((opsize == TCPOLEN_TIMESTAMP) &&
3471 ((estab && opt_rx->tstamp_ok) ||
3472 (!estab && sysctl_tcp_timestamps))) {
3473 opt_rx->saw_tstamp = 1;
3474 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3475 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3476 }
3477 break;
3478 case TCPOPT_SACK_PERM:
3479 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3480 !estab && sysctl_tcp_sack) {
3481 opt_rx->sack_ok = TCP_SACK_SEEN;
3482 tcp_sack_reset(opt_rx);
3483 }
3484 break;
3485
3486 case TCPOPT_SACK:
3487 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3488 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3489 opt_rx->sack_ok) {
3490 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3491 }
3492 break;
3493 #ifdef CONFIG_TCP_MD5SIG
3494 case TCPOPT_MD5SIG:
3495 /*
3496 * The MD5 Hash has already been
3497 * checked (see tcp_v{4,6}_do_rcv()).
3498 */
3499 break;
3500 #endif
3501 case TCPOPT_EXP:
3502 /* Fast Open option shares code 254 using a
3503 * 16 bits magic number. It's valid only in
3504 * SYN or SYN-ACK with an even size.
3505 */
3506 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3507 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3508 foc == NULL || !th->syn || (opsize & 1))
3509 break;
3510 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3511 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3512 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3513 memcpy(foc->val, ptr + 2, foc->len);
3514 else if (foc->len != 0)
3515 foc->len = -1;
3516 break;
3517
3518 }
3519 ptr += opsize-2;
3520 length -= opsize;
3521 }
3522 }
3523 }
3524 EXPORT_SYMBOL(tcp_parse_options);
3525
3526 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3527 {
3528 const __be32 *ptr = (const __be32 *)(th + 1);
3529
3530 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3531 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3532 tp->rx_opt.saw_tstamp = 1;
3533 ++ptr;
3534 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3535 ++ptr;
3536 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3537 return true;
3538 }
3539 return false;
3540 }
3541
3542 /* Fast parse options. This hopes to only see timestamps.
3543 * If it is wrong it falls back on tcp_parse_options().
3544 */
3545 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3546 const struct tcphdr *th, struct tcp_sock *tp)
3547 {
3548 /* In the spirit of fast parsing, compare doff directly to constant
3549 * values. Because equality is used, short doff can be ignored here.
3550 */
3551 if (th->doff == (sizeof(*th) / 4)) {
3552 tp->rx_opt.saw_tstamp = 0;
3553 return false;
3554 } else if (tp->rx_opt.tstamp_ok &&
3555 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3556 if (tcp_parse_aligned_timestamp(tp, th))
3557 return true;
3558 }
3559
3560 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3561 if (tp->rx_opt.saw_tstamp)
3562 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3563
3564 return true;
3565 }
3566
3567 #ifdef CONFIG_TCP_MD5SIG
3568 /*
3569 * Parse MD5 Signature option
3570 */
3571 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3572 {
3573 int length = (th->doff << 2) - sizeof(*th);
3574 const u8 *ptr = (const u8 *)(th + 1);
3575
3576 /* If the TCP option is too short, we can short cut */
3577 if (length < TCPOLEN_MD5SIG)
3578 return NULL;
3579
3580 while (length > 0) {
3581 int opcode = *ptr++;
3582 int opsize;
3583
3584 switch(opcode) {
3585 case TCPOPT_EOL:
3586 return NULL;
3587 case TCPOPT_NOP:
3588 length--;
3589 continue;
3590 default:
3591 opsize = *ptr++;
3592 if (opsize < 2 || opsize > length)
3593 return NULL;
3594 if (opcode == TCPOPT_MD5SIG)
3595 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3596 }
3597 ptr += opsize - 2;
3598 length -= opsize;
3599 }
3600 return NULL;
3601 }
3602 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3603 #endif
3604
3605 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3606 *
3607 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3608 * it can pass through stack. So, the following predicate verifies that
3609 * this segment is not used for anything but congestion avoidance or
3610 * fast retransmit. Moreover, we even are able to eliminate most of such
3611 * second order effects, if we apply some small "replay" window (~RTO)
3612 * to timestamp space.
3613 *
3614 * All these measures still do not guarantee that we reject wrapped ACKs
3615 * on networks with high bandwidth, when sequence space is recycled fastly,
3616 * but it guarantees that such events will be very rare and do not affect
3617 * connection seriously. This doesn't look nice, but alas, PAWS is really
3618 * buggy extension.
3619 *
3620 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3621 * states that events when retransmit arrives after original data are rare.
3622 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3623 * the biggest problem on large power networks even with minor reordering.
3624 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3625 * up to bandwidth of 18Gigabit/sec. 8) ]
3626 */
3627
3628 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3629 {
3630 const struct tcp_sock *tp = tcp_sk(sk);
3631 const struct tcphdr *th = tcp_hdr(skb);
3632 u32 seq = TCP_SKB_CB(skb)->seq;
3633 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3634
3635 return (/* 1. Pure ACK with correct sequence number. */
3636 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3637
3638 /* 2. ... and duplicate ACK. */
3639 ack == tp->snd_una &&
3640
3641 /* 3. ... and does not update window. */
3642 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3643
3644 /* 4. ... and sits in replay window. */
3645 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3646 }
3647
3648 static inline bool tcp_paws_discard(const struct sock *sk,
3649 const struct sk_buff *skb)
3650 {
3651 const struct tcp_sock *tp = tcp_sk(sk);
3652
3653 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3654 !tcp_disordered_ack(sk, skb);
3655 }
3656
3657 /* Check segment sequence number for validity.
3658 *
3659 * Segment controls are considered valid, if the segment
3660 * fits to the window after truncation to the window. Acceptability
3661 * of data (and SYN, FIN, of course) is checked separately.
3662 * See tcp_data_queue(), for example.
3663 *
3664 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3665 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3666 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3667 * (borrowed from freebsd)
3668 */
3669
3670 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3671 {
3672 return !before(end_seq, tp->rcv_wup) &&
3673 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3674 }
3675
3676 /* When we get a reset we do this. */
3677 void tcp_reset(struct sock *sk)
3678 {
3679 /* We want the right error as BSD sees it (and indeed as we do). */
3680 switch (sk->sk_state) {
3681 case TCP_SYN_SENT:
3682 sk->sk_err = ECONNREFUSED;
3683 break;
3684 case TCP_CLOSE_WAIT:
3685 sk->sk_err = EPIPE;
3686 break;
3687 case TCP_CLOSE:
3688 return;
3689 default:
3690 sk->sk_err = ECONNRESET;
3691 }
3692 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3693 smp_wmb();
3694
3695 if (!sock_flag(sk, SOCK_DEAD))
3696 sk->sk_error_report(sk);
3697
3698 tcp_done(sk);
3699 }
3700
3701 /*
3702 * Process the FIN bit. This now behaves as it is supposed to work
3703 * and the FIN takes effect when it is validly part of sequence
3704 * space. Not before when we get holes.
3705 *
3706 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3707 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3708 * TIME-WAIT)
3709 *
3710 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3711 * close and we go into CLOSING (and later onto TIME-WAIT)
3712 *
3713 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3714 */
3715 static void tcp_fin(struct sock *sk)
3716 {
3717 struct tcp_sock *tp = tcp_sk(sk);
3718
3719 inet_csk_schedule_ack(sk);
3720
3721 sk->sk_shutdown |= RCV_SHUTDOWN;
3722 sock_set_flag(sk, SOCK_DONE);
3723
3724 switch (sk->sk_state) {
3725 case TCP_SYN_RECV:
3726 case TCP_ESTABLISHED:
3727 /* Move to CLOSE_WAIT */
3728 tcp_set_state(sk, TCP_CLOSE_WAIT);
3729 inet_csk(sk)->icsk_ack.pingpong = 1;
3730 break;
3731
3732 case TCP_CLOSE_WAIT:
3733 case TCP_CLOSING:
3734 /* Received a retransmission of the FIN, do
3735 * nothing.
3736 */
3737 break;
3738 case TCP_LAST_ACK:
3739 /* RFC793: Remain in the LAST-ACK state. */
3740 break;
3741
3742 case TCP_FIN_WAIT1:
3743 /* This case occurs when a simultaneous close
3744 * happens, we must ack the received FIN and
3745 * enter the CLOSING state.
3746 */
3747 tcp_send_ack(sk);
3748 tcp_set_state(sk, TCP_CLOSING);
3749 break;
3750 case TCP_FIN_WAIT2:
3751 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3752 tcp_send_ack(sk);
3753 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3754 break;
3755 default:
3756 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3757 * cases we should never reach this piece of code.
3758 */
3759 pr_err("%s: Impossible, sk->sk_state=%d\n",
3760 __func__, sk->sk_state);
3761 break;
3762 }
3763
3764 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3765 * Probably, we should reset in this case. For now drop them.
3766 */
3767 __skb_queue_purge(&tp->out_of_order_queue);
3768 if (tcp_is_sack(tp))
3769 tcp_sack_reset(&tp->rx_opt);
3770 sk_mem_reclaim(sk);
3771
3772 if (!sock_flag(sk, SOCK_DEAD)) {
3773 sk->sk_state_change(sk);
3774
3775 /* Do not send POLL_HUP for half duplex close. */
3776 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3777 sk->sk_state == TCP_CLOSE)
3778 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3779 else
3780 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3781 }
3782 }
3783
3784 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3785 u32 end_seq)
3786 {
3787 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3788 if (before(seq, sp->start_seq))
3789 sp->start_seq = seq;
3790 if (after(end_seq, sp->end_seq))
3791 sp->end_seq = end_seq;
3792 return true;
3793 }
3794 return false;
3795 }
3796
3797 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3798 {
3799 struct tcp_sock *tp = tcp_sk(sk);
3800
3801 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3802 int mib_idx;
3803
3804 if (before(seq, tp->rcv_nxt))
3805 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3806 else
3807 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3808
3809 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3810
3811 tp->rx_opt.dsack = 1;
3812 tp->duplicate_sack[0].start_seq = seq;
3813 tp->duplicate_sack[0].end_seq = end_seq;
3814 }
3815 }
3816
3817 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3818 {
3819 struct tcp_sock *tp = tcp_sk(sk);
3820
3821 if (!tp->rx_opt.dsack)
3822 tcp_dsack_set(sk, seq, end_seq);
3823 else
3824 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3825 }
3826
3827 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3828 {
3829 struct tcp_sock *tp = tcp_sk(sk);
3830
3831 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3832 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3833 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3834 tcp_enter_quickack_mode(sk);
3835
3836 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3837 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3838
3839 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3840 end_seq = tp->rcv_nxt;
3841 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3842 }
3843 }
3844
3845 tcp_send_ack(sk);
3846 }
3847
3848 /* These routines update the SACK block as out-of-order packets arrive or
3849 * in-order packets close up the sequence space.
3850 */
3851 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3852 {
3853 int this_sack;
3854 struct tcp_sack_block *sp = &tp->selective_acks[0];
3855 struct tcp_sack_block *swalk = sp + 1;
3856
3857 /* See if the recent change to the first SACK eats into
3858 * or hits the sequence space of other SACK blocks, if so coalesce.
3859 */
3860 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3861 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3862 int i;
3863
3864 /* Zap SWALK, by moving every further SACK up by one slot.
3865 * Decrease num_sacks.
3866 */
3867 tp->rx_opt.num_sacks--;
3868 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3869 sp[i] = sp[i + 1];
3870 continue;
3871 }
3872 this_sack++, swalk++;
3873 }
3874 }
3875
3876 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3877 {
3878 struct tcp_sock *tp = tcp_sk(sk);
3879 struct tcp_sack_block *sp = &tp->selective_acks[0];
3880 int cur_sacks = tp->rx_opt.num_sacks;
3881 int this_sack;
3882
3883 if (!cur_sacks)
3884 goto new_sack;
3885
3886 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3887 if (tcp_sack_extend(sp, seq, end_seq)) {
3888 /* Rotate this_sack to the first one. */
3889 for (; this_sack > 0; this_sack--, sp--)
3890 swap(*sp, *(sp - 1));
3891 if (cur_sacks > 1)
3892 tcp_sack_maybe_coalesce(tp);
3893 return;
3894 }
3895 }
3896
3897 /* Could not find an adjacent existing SACK, build a new one,
3898 * put it at the front, and shift everyone else down. We
3899 * always know there is at least one SACK present already here.
3900 *
3901 * If the sack array is full, forget about the last one.
3902 */
3903 if (this_sack >= TCP_NUM_SACKS) {
3904 this_sack--;
3905 tp->rx_opt.num_sacks--;
3906 sp--;
3907 }
3908 for (; this_sack > 0; this_sack--, sp--)
3909 *sp = *(sp - 1);
3910
3911 new_sack:
3912 /* Build the new head SACK, and we're done. */
3913 sp->start_seq = seq;
3914 sp->end_seq = end_seq;
3915 tp->rx_opt.num_sacks++;
3916 }
3917
3918 /* RCV.NXT advances, some SACKs should be eaten. */
3919
3920 static void tcp_sack_remove(struct tcp_sock *tp)
3921 {
3922 struct tcp_sack_block *sp = &tp->selective_acks[0];
3923 int num_sacks = tp->rx_opt.num_sacks;
3924 int this_sack;
3925
3926 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3927 if (skb_queue_empty(&tp->out_of_order_queue)) {
3928 tp->rx_opt.num_sacks = 0;
3929 return;
3930 }
3931
3932 for (this_sack = 0; this_sack < num_sacks;) {
3933 /* Check if the start of the sack is covered by RCV.NXT. */
3934 if (!before(tp->rcv_nxt, sp->start_seq)) {
3935 int i;
3936
3937 /* RCV.NXT must cover all the block! */
3938 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3939
3940 /* Zap this SACK, by moving forward any other SACKS. */
3941 for (i=this_sack+1; i < num_sacks; i++)
3942 tp->selective_acks[i-1] = tp->selective_acks[i];
3943 num_sacks--;
3944 continue;
3945 }
3946 this_sack++;
3947 sp++;
3948 }
3949 tp->rx_opt.num_sacks = num_sacks;
3950 }
3951
3952 /* This one checks to see if we can put data from the
3953 * out_of_order queue into the receive_queue.
3954 */
3955 static void tcp_ofo_queue(struct sock *sk)
3956 {
3957 struct tcp_sock *tp = tcp_sk(sk);
3958 __u32 dsack_high = tp->rcv_nxt;
3959 struct sk_buff *skb;
3960
3961 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3962 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3963 break;
3964
3965 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3966 __u32 dsack = dsack_high;
3967 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3968 dsack_high = TCP_SKB_CB(skb)->end_seq;
3969 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3970 }
3971
3972 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3973 SOCK_DEBUG(sk, "ofo packet was already received\n");
3974 __skb_unlink(skb, &tp->out_of_order_queue);
3975 __kfree_skb(skb);
3976 continue;
3977 }
3978 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3979 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3980 TCP_SKB_CB(skb)->end_seq);
3981
3982 __skb_unlink(skb, &tp->out_of_order_queue);
3983 __skb_queue_tail(&sk->sk_receive_queue, skb);
3984 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3985 if (tcp_hdr(skb)->fin)
3986 tcp_fin(sk);
3987 }
3988 }
3989
3990 static bool tcp_prune_ofo_queue(struct sock *sk);
3991 static int tcp_prune_queue(struct sock *sk);
3992
3993 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
3994 unsigned int size)
3995 {
3996 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3997 !sk_rmem_schedule(sk, skb, size)) {
3998
3999 if (tcp_prune_queue(sk) < 0)
4000 return -1;
4001
4002 if (!sk_rmem_schedule(sk, skb, size)) {
4003 if (!tcp_prune_ofo_queue(sk))
4004 return -1;
4005
4006 if (!sk_rmem_schedule(sk, skb, size))
4007 return -1;
4008 }
4009 }
4010 return 0;
4011 }
4012
4013 /**
4014 * tcp_try_coalesce - try to merge skb to prior one
4015 * @sk: socket
4016 * @to: prior buffer
4017 * @from: buffer to add in queue
4018 * @fragstolen: pointer to boolean
4019 *
4020 * Before queueing skb @from after @to, try to merge them
4021 * to reduce overall memory use and queue lengths, if cost is small.
4022 * Packets in ofo or receive queues can stay a long time.
4023 * Better try to coalesce them right now to avoid future collapses.
4024 * Returns true if caller should free @from instead of queueing it
4025 */
4026 static bool tcp_try_coalesce(struct sock *sk,
4027 struct sk_buff *to,
4028 struct sk_buff *from,
4029 bool *fragstolen)
4030 {
4031 int delta;
4032
4033 *fragstolen = false;
4034
4035 if (tcp_hdr(from)->fin)
4036 return false;
4037
4038 /* Its possible this segment overlaps with prior segment in queue */
4039 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4040 return false;
4041
4042 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4043 return false;
4044
4045 atomic_add(delta, &sk->sk_rmem_alloc);
4046 sk_mem_charge(sk, delta);
4047 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4048 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4049 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4050 return true;
4051 }
4052
4053 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4054 {
4055 struct tcp_sock *tp = tcp_sk(sk);
4056 struct sk_buff *skb1;
4057 u32 seq, end_seq;
4058
4059 TCP_ECN_check_ce(tp, skb);
4060
4061 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4062 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4063 __kfree_skb(skb);
4064 return;
4065 }
4066
4067 /* Disable header prediction. */
4068 tp->pred_flags = 0;
4069 inet_csk_schedule_ack(sk);
4070
4071 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4072 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4073 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4074
4075 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4076 if (!skb1) {
4077 /* Initial out of order segment, build 1 SACK. */
4078 if (tcp_is_sack(tp)) {
4079 tp->rx_opt.num_sacks = 1;
4080 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4081 tp->selective_acks[0].end_seq =
4082 TCP_SKB_CB(skb)->end_seq;
4083 }
4084 __skb_queue_head(&tp->out_of_order_queue, skb);
4085 goto end;
4086 }
4087
4088 seq = TCP_SKB_CB(skb)->seq;
4089 end_seq = TCP_SKB_CB(skb)->end_seq;
4090
4091 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4092 bool fragstolen;
4093
4094 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4095 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4096 } else {
4097 kfree_skb_partial(skb, fragstolen);
4098 skb = NULL;
4099 }
4100
4101 if (!tp->rx_opt.num_sacks ||
4102 tp->selective_acks[0].end_seq != seq)
4103 goto add_sack;
4104
4105 /* Common case: data arrive in order after hole. */
4106 tp->selective_acks[0].end_seq = end_seq;
4107 goto end;
4108 }
4109
4110 /* Find place to insert this segment. */
4111 while (1) {
4112 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4113 break;
4114 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4115 skb1 = NULL;
4116 break;
4117 }
4118 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4119 }
4120
4121 /* Do skb overlap to previous one? */
4122 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4123 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4124 /* All the bits are present. Drop. */
4125 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4126 __kfree_skb(skb);
4127 skb = NULL;
4128 tcp_dsack_set(sk, seq, end_seq);
4129 goto add_sack;
4130 }
4131 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4132 /* Partial overlap. */
4133 tcp_dsack_set(sk, seq,
4134 TCP_SKB_CB(skb1)->end_seq);
4135 } else {
4136 if (skb_queue_is_first(&tp->out_of_order_queue,
4137 skb1))
4138 skb1 = NULL;
4139 else
4140 skb1 = skb_queue_prev(
4141 &tp->out_of_order_queue,
4142 skb1);
4143 }
4144 }
4145 if (!skb1)
4146 __skb_queue_head(&tp->out_of_order_queue, skb);
4147 else
4148 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4149
4150 /* And clean segments covered by new one as whole. */
4151 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4152 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4153
4154 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4155 break;
4156 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4157 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4158 end_seq);
4159 break;
4160 }
4161 __skb_unlink(skb1, &tp->out_of_order_queue);
4162 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4163 TCP_SKB_CB(skb1)->end_seq);
4164 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4165 __kfree_skb(skb1);
4166 }
4167
4168 add_sack:
4169 if (tcp_is_sack(tp))
4170 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4171 end:
4172 if (skb)
4173 skb_set_owner_r(skb, sk);
4174 }
4175
4176 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4177 bool *fragstolen)
4178 {
4179 int eaten;
4180 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4181
4182 __skb_pull(skb, hdrlen);
4183 eaten = (tail &&
4184 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4185 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4186 if (!eaten) {
4187 __skb_queue_tail(&sk->sk_receive_queue, skb);
4188 skb_set_owner_r(skb, sk);
4189 }
4190 return eaten;
4191 }
4192
4193 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4194 {
4195 struct sk_buff *skb = NULL;
4196 struct tcphdr *th;
4197 bool fragstolen;
4198
4199 if (size == 0)
4200 return 0;
4201
4202 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4203 if (!skb)
4204 goto err;
4205
4206 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4207 goto err_free;
4208
4209 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4210 skb_reset_transport_header(skb);
4211 memset(th, 0, sizeof(*th));
4212
4213 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4214 goto err_free;
4215
4216 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4217 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4218 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4219
4220 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4221 WARN_ON_ONCE(fragstolen); /* should not happen */
4222 __kfree_skb(skb);
4223 }
4224 return size;
4225
4226 err_free:
4227 kfree_skb(skb);
4228 err:
4229 return -ENOMEM;
4230 }
4231
4232 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4233 {
4234 const struct tcphdr *th = tcp_hdr(skb);
4235 struct tcp_sock *tp = tcp_sk(sk);
4236 int eaten = -1;
4237 bool fragstolen = false;
4238
4239 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4240 goto drop;
4241
4242 skb_dst_drop(skb);
4243 __skb_pull(skb, th->doff * 4);
4244
4245 TCP_ECN_accept_cwr(tp, skb);
4246
4247 tp->rx_opt.dsack = 0;
4248
4249 /* Queue data for delivery to the user.
4250 * Packets in sequence go to the receive queue.
4251 * Out of sequence packets to the out_of_order_queue.
4252 */
4253 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4254 if (tcp_receive_window(tp) == 0)
4255 goto out_of_window;
4256
4257 /* Ok. In sequence. In window. */
4258 if (tp->ucopy.task == current &&
4259 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4260 sock_owned_by_user(sk) && !tp->urg_data) {
4261 int chunk = min_t(unsigned int, skb->len,
4262 tp->ucopy.len);
4263
4264 __set_current_state(TASK_RUNNING);
4265
4266 local_bh_enable();
4267 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4268 tp->ucopy.len -= chunk;
4269 tp->copied_seq += chunk;
4270 eaten = (chunk == skb->len);
4271 tcp_rcv_space_adjust(sk);
4272 }
4273 local_bh_disable();
4274 }
4275
4276 if (eaten <= 0) {
4277 queue_and_out:
4278 if (eaten < 0 &&
4279 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4280 goto drop;
4281
4282 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4283 }
4284 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4285 if (skb->len)
4286 tcp_event_data_recv(sk, skb);
4287 if (th->fin)
4288 tcp_fin(sk);
4289
4290 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4291 tcp_ofo_queue(sk);
4292
4293 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4294 * gap in queue is filled.
4295 */
4296 if (skb_queue_empty(&tp->out_of_order_queue))
4297 inet_csk(sk)->icsk_ack.pingpong = 0;
4298 }
4299
4300 if (tp->rx_opt.num_sacks)
4301 tcp_sack_remove(tp);
4302
4303 tcp_fast_path_check(sk);
4304
4305 if (eaten > 0)
4306 kfree_skb_partial(skb, fragstolen);
4307 if (!sock_flag(sk, SOCK_DEAD))
4308 sk->sk_data_ready(sk, 0);
4309 return;
4310 }
4311
4312 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4313 /* A retransmit, 2nd most common case. Force an immediate ack. */
4314 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4315 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4316
4317 out_of_window:
4318 tcp_enter_quickack_mode(sk);
4319 inet_csk_schedule_ack(sk);
4320 drop:
4321 __kfree_skb(skb);
4322 return;
4323 }
4324
4325 /* Out of window. F.e. zero window probe. */
4326 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4327 goto out_of_window;
4328
4329 tcp_enter_quickack_mode(sk);
4330
4331 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4332 /* Partial packet, seq < rcv_next < end_seq */
4333 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4334 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4335 TCP_SKB_CB(skb)->end_seq);
4336
4337 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4338
4339 /* If window is closed, drop tail of packet. But after
4340 * remembering D-SACK for its head made in previous line.
4341 */
4342 if (!tcp_receive_window(tp))
4343 goto out_of_window;
4344 goto queue_and_out;
4345 }
4346
4347 tcp_data_queue_ofo(sk, skb);
4348 }
4349
4350 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4351 struct sk_buff_head *list)
4352 {
4353 struct sk_buff *next = NULL;
4354
4355 if (!skb_queue_is_last(list, skb))
4356 next = skb_queue_next(list, skb);
4357
4358 __skb_unlink(skb, list);
4359 __kfree_skb(skb);
4360 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4361
4362 return next;
4363 }
4364
4365 /* Collapse contiguous sequence of skbs head..tail with
4366 * sequence numbers start..end.
4367 *
4368 * If tail is NULL, this means until the end of the list.
4369 *
4370 * Segments with FIN/SYN are not collapsed (only because this
4371 * simplifies code)
4372 */
4373 static void
4374 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4375 struct sk_buff *head, struct sk_buff *tail,
4376 u32 start, u32 end)
4377 {
4378 struct sk_buff *skb, *n;
4379 bool end_of_skbs;
4380
4381 /* First, check that queue is collapsible and find
4382 * the point where collapsing can be useful. */
4383 skb = head;
4384 restart:
4385 end_of_skbs = true;
4386 skb_queue_walk_from_safe(list, skb, n) {
4387 if (skb == tail)
4388 break;
4389 /* No new bits? It is possible on ofo queue. */
4390 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4391 skb = tcp_collapse_one(sk, skb, list);
4392 if (!skb)
4393 break;
4394 goto restart;
4395 }
4396
4397 /* The first skb to collapse is:
4398 * - not SYN/FIN and
4399 * - bloated or contains data before "start" or
4400 * overlaps to the next one.
4401 */
4402 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4403 (tcp_win_from_space(skb->truesize) > skb->len ||
4404 before(TCP_SKB_CB(skb)->seq, start))) {
4405 end_of_skbs = false;
4406 break;
4407 }
4408
4409 if (!skb_queue_is_last(list, skb)) {
4410 struct sk_buff *next = skb_queue_next(list, skb);
4411 if (next != tail &&
4412 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4413 end_of_skbs = false;
4414 break;
4415 }
4416 }
4417
4418 /* Decided to skip this, advance start seq. */
4419 start = TCP_SKB_CB(skb)->end_seq;
4420 }
4421 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4422 return;
4423
4424 while (before(start, end)) {
4425 struct sk_buff *nskb;
4426 unsigned int header = skb_headroom(skb);
4427 int copy = SKB_MAX_ORDER(header, 0);
4428
4429 /* Too big header? This can happen with IPv6. */
4430 if (copy < 0)
4431 return;
4432 if (end - start < copy)
4433 copy = end - start;
4434 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4435 if (!nskb)
4436 return;
4437
4438 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4439 skb_set_network_header(nskb, (skb_network_header(skb) -
4440 skb->head));
4441 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4442 skb->head));
4443 skb_reserve(nskb, header);
4444 memcpy(nskb->head, skb->head, header);
4445 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4446 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4447 __skb_queue_before(list, skb, nskb);
4448 skb_set_owner_r(nskb, sk);
4449
4450 /* Copy data, releasing collapsed skbs. */
4451 while (copy > 0) {
4452 int offset = start - TCP_SKB_CB(skb)->seq;
4453 int size = TCP_SKB_CB(skb)->end_seq - start;
4454
4455 BUG_ON(offset < 0);
4456 if (size > 0) {
4457 size = min(copy, size);
4458 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4459 BUG();
4460 TCP_SKB_CB(nskb)->end_seq += size;
4461 copy -= size;
4462 start += size;
4463 }
4464 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4465 skb = tcp_collapse_one(sk, skb, list);
4466 if (!skb ||
4467 skb == tail ||
4468 tcp_hdr(skb)->syn ||
4469 tcp_hdr(skb)->fin)
4470 return;
4471 }
4472 }
4473 }
4474 }
4475
4476 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4477 * and tcp_collapse() them until all the queue is collapsed.
4478 */
4479 static void tcp_collapse_ofo_queue(struct sock *sk)
4480 {
4481 struct tcp_sock *tp = tcp_sk(sk);
4482 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4483 struct sk_buff *head;
4484 u32 start, end;
4485
4486 if (skb == NULL)
4487 return;
4488
4489 start = TCP_SKB_CB(skb)->seq;
4490 end = TCP_SKB_CB(skb)->end_seq;
4491 head = skb;
4492
4493 for (;;) {
4494 struct sk_buff *next = NULL;
4495
4496 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4497 next = skb_queue_next(&tp->out_of_order_queue, skb);
4498 skb = next;
4499
4500 /* Segment is terminated when we see gap or when
4501 * we are at the end of all the queue. */
4502 if (!skb ||
4503 after(TCP_SKB_CB(skb)->seq, end) ||
4504 before(TCP_SKB_CB(skb)->end_seq, start)) {
4505 tcp_collapse(sk, &tp->out_of_order_queue,
4506 head, skb, start, end);
4507 head = skb;
4508 if (!skb)
4509 break;
4510 /* Start new segment */
4511 start = TCP_SKB_CB(skb)->seq;
4512 end = TCP_SKB_CB(skb)->end_seq;
4513 } else {
4514 if (before(TCP_SKB_CB(skb)->seq, start))
4515 start = TCP_SKB_CB(skb)->seq;
4516 if (after(TCP_SKB_CB(skb)->end_seq, end))
4517 end = TCP_SKB_CB(skb)->end_seq;
4518 }
4519 }
4520 }
4521
4522 /*
4523 * Purge the out-of-order queue.
4524 * Return true if queue was pruned.
4525 */
4526 static bool tcp_prune_ofo_queue(struct sock *sk)
4527 {
4528 struct tcp_sock *tp = tcp_sk(sk);
4529 bool res = false;
4530
4531 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4532 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4533 __skb_queue_purge(&tp->out_of_order_queue);
4534
4535 /* Reset SACK state. A conforming SACK implementation will
4536 * do the same at a timeout based retransmit. When a connection
4537 * is in a sad state like this, we care only about integrity
4538 * of the connection not performance.
4539 */
4540 if (tp->rx_opt.sack_ok)
4541 tcp_sack_reset(&tp->rx_opt);
4542 sk_mem_reclaim(sk);
4543 res = true;
4544 }
4545 return res;
4546 }
4547
4548 /* Reduce allocated memory if we can, trying to get
4549 * the socket within its memory limits again.
4550 *
4551 * Return less than zero if we should start dropping frames
4552 * until the socket owning process reads some of the data
4553 * to stabilize the situation.
4554 */
4555 static int tcp_prune_queue(struct sock *sk)
4556 {
4557 struct tcp_sock *tp = tcp_sk(sk);
4558
4559 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4560
4561 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4562
4563 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4564 tcp_clamp_window(sk);
4565 else if (sk_under_memory_pressure(sk))
4566 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4567
4568 tcp_collapse_ofo_queue(sk);
4569 if (!skb_queue_empty(&sk->sk_receive_queue))
4570 tcp_collapse(sk, &sk->sk_receive_queue,
4571 skb_peek(&sk->sk_receive_queue),
4572 NULL,
4573 tp->copied_seq, tp->rcv_nxt);
4574 sk_mem_reclaim(sk);
4575
4576 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4577 return 0;
4578
4579 /* Collapsing did not help, destructive actions follow.
4580 * This must not ever occur. */
4581
4582 tcp_prune_ofo_queue(sk);
4583
4584 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4585 return 0;
4586
4587 /* If we are really being abused, tell the caller to silently
4588 * drop receive data on the floor. It will get retransmitted
4589 * and hopefully then we'll have sufficient space.
4590 */
4591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4592
4593 /* Massive buffer overcommit. */
4594 tp->pred_flags = 0;
4595 return -1;
4596 }
4597
4598 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4599 * As additional protections, we do not touch cwnd in retransmission phases,
4600 * and if application hit its sndbuf limit recently.
4601 */
4602 void tcp_cwnd_application_limited(struct sock *sk)
4603 {
4604 struct tcp_sock *tp = tcp_sk(sk);
4605
4606 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4607 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4608 /* Limited by application or receiver window. */
4609 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4610 u32 win_used = max(tp->snd_cwnd_used, init_win);
4611 if (win_used < tp->snd_cwnd) {
4612 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4613 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4614 }
4615 tp->snd_cwnd_used = 0;
4616 }
4617 tp->snd_cwnd_stamp = tcp_time_stamp;
4618 }
4619
4620 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4621 {
4622 const struct tcp_sock *tp = tcp_sk(sk);
4623
4624 /* If the user specified a specific send buffer setting, do
4625 * not modify it.
4626 */
4627 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4628 return false;
4629
4630 /* If we are under global TCP memory pressure, do not expand. */
4631 if (sk_under_memory_pressure(sk))
4632 return false;
4633
4634 /* If we are under soft global TCP memory pressure, do not expand. */
4635 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4636 return false;
4637
4638 /* If we filled the congestion window, do not expand. */
4639 if (tp->packets_out >= tp->snd_cwnd)
4640 return false;
4641
4642 return true;
4643 }
4644
4645 /* When incoming ACK allowed to free some skb from write_queue,
4646 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4647 * on the exit from tcp input handler.
4648 *
4649 * PROBLEM: sndbuf expansion does not work well with largesend.
4650 */
4651 static void tcp_new_space(struct sock *sk)
4652 {
4653 struct tcp_sock *tp = tcp_sk(sk);
4654
4655 if (tcp_should_expand_sndbuf(sk)) {
4656 int sndmem = SKB_TRUESIZE(max_t(u32,
4657 tp->rx_opt.mss_clamp,
4658 tp->mss_cache) +
4659 MAX_TCP_HEADER);
4660 int demanded = max_t(unsigned int, tp->snd_cwnd,
4661 tp->reordering + 1);
4662 sndmem *= 2 * demanded;
4663 if (sndmem > sk->sk_sndbuf)
4664 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4665 tp->snd_cwnd_stamp = tcp_time_stamp;
4666 }
4667
4668 sk->sk_write_space(sk);
4669 }
4670
4671 static void tcp_check_space(struct sock *sk)
4672 {
4673 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4674 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4675 if (sk->sk_socket &&
4676 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4677 tcp_new_space(sk);
4678 }
4679 }
4680
4681 static inline void tcp_data_snd_check(struct sock *sk)
4682 {
4683 tcp_push_pending_frames(sk);
4684 tcp_check_space(sk);
4685 }
4686
4687 /*
4688 * Check if sending an ack is needed.
4689 */
4690 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4691 {
4692 struct tcp_sock *tp = tcp_sk(sk);
4693
4694 /* More than one full frame received... */
4695 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4696 /* ... and right edge of window advances far enough.
4697 * (tcp_recvmsg() will send ACK otherwise). Or...
4698 */
4699 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4700 /* We ACK each frame or... */
4701 tcp_in_quickack_mode(sk) ||
4702 /* We have out of order data. */
4703 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4704 /* Then ack it now */
4705 tcp_send_ack(sk);
4706 } else {
4707 /* Else, send delayed ack. */
4708 tcp_send_delayed_ack(sk);
4709 }
4710 }
4711
4712 static inline void tcp_ack_snd_check(struct sock *sk)
4713 {
4714 if (!inet_csk_ack_scheduled(sk)) {
4715 /* We sent a data segment already. */
4716 return;
4717 }
4718 __tcp_ack_snd_check(sk, 1);
4719 }
4720
4721 /*
4722 * This routine is only called when we have urgent data
4723 * signaled. Its the 'slow' part of tcp_urg. It could be
4724 * moved inline now as tcp_urg is only called from one
4725 * place. We handle URGent data wrong. We have to - as
4726 * BSD still doesn't use the correction from RFC961.
4727 * For 1003.1g we should support a new option TCP_STDURG to permit
4728 * either form (or just set the sysctl tcp_stdurg).
4729 */
4730
4731 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4732 {
4733 struct tcp_sock *tp = tcp_sk(sk);
4734 u32 ptr = ntohs(th->urg_ptr);
4735
4736 if (ptr && !sysctl_tcp_stdurg)
4737 ptr--;
4738 ptr += ntohl(th->seq);
4739
4740 /* Ignore urgent data that we've already seen and read. */
4741 if (after(tp->copied_seq, ptr))
4742 return;
4743
4744 /* Do not replay urg ptr.
4745 *
4746 * NOTE: interesting situation not covered by specs.
4747 * Misbehaving sender may send urg ptr, pointing to segment,
4748 * which we already have in ofo queue. We are not able to fetch
4749 * such data and will stay in TCP_URG_NOTYET until will be eaten
4750 * by recvmsg(). Seems, we are not obliged to handle such wicked
4751 * situations. But it is worth to think about possibility of some
4752 * DoSes using some hypothetical application level deadlock.
4753 */
4754 if (before(ptr, tp->rcv_nxt))
4755 return;
4756
4757 /* Do we already have a newer (or duplicate) urgent pointer? */
4758 if (tp->urg_data && !after(ptr, tp->urg_seq))
4759 return;
4760
4761 /* Tell the world about our new urgent pointer. */
4762 sk_send_sigurg(sk);
4763
4764 /* We may be adding urgent data when the last byte read was
4765 * urgent. To do this requires some care. We cannot just ignore
4766 * tp->copied_seq since we would read the last urgent byte again
4767 * as data, nor can we alter copied_seq until this data arrives
4768 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4769 *
4770 * NOTE. Double Dutch. Rendering to plain English: author of comment
4771 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4772 * and expect that both A and B disappear from stream. This is _wrong_.
4773 * Though this happens in BSD with high probability, this is occasional.
4774 * Any application relying on this is buggy. Note also, that fix "works"
4775 * only in this artificial test. Insert some normal data between A and B and we will
4776 * decline of BSD again. Verdict: it is better to remove to trap
4777 * buggy users.
4778 */
4779 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4780 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4781 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4782 tp->copied_seq++;
4783 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4784 __skb_unlink(skb, &sk->sk_receive_queue);
4785 __kfree_skb(skb);
4786 }
4787 }
4788
4789 tp->urg_data = TCP_URG_NOTYET;
4790 tp->urg_seq = ptr;
4791
4792 /* Disable header prediction. */
4793 tp->pred_flags = 0;
4794 }
4795
4796 /* This is the 'fast' part of urgent handling. */
4797 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4798 {
4799 struct tcp_sock *tp = tcp_sk(sk);
4800
4801 /* Check if we get a new urgent pointer - normally not. */
4802 if (th->urg)
4803 tcp_check_urg(sk, th);
4804
4805 /* Do we wait for any urgent data? - normally not... */
4806 if (tp->urg_data == TCP_URG_NOTYET) {
4807 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4808 th->syn;
4809
4810 /* Is the urgent pointer pointing into this packet? */
4811 if (ptr < skb->len) {
4812 u8 tmp;
4813 if (skb_copy_bits(skb, ptr, &tmp, 1))
4814 BUG();
4815 tp->urg_data = TCP_URG_VALID | tmp;
4816 if (!sock_flag(sk, SOCK_DEAD))
4817 sk->sk_data_ready(sk, 0);
4818 }
4819 }
4820 }
4821
4822 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4823 {
4824 struct tcp_sock *tp = tcp_sk(sk);
4825 int chunk = skb->len - hlen;
4826 int err;
4827
4828 local_bh_enable();
4829 if (skb_csum_unnecessary(skb))
4830 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4831 else
4832 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4833 tp->ucopy.iov);
4834
4835 if (!err) {
4836 tp->ucopy.len -= chunk;
4837 tp->copied_seq += chunk;
4838 tcp_rcv_space_adjust(sk);
4839 }
4840
4841 local_bh_disable();
4842 return err;
4843 }
4844
4845 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4846 struct sk_buff *skb)
4847 {
4848 __sum16 result;
4849
4850 if (sock_owned_by_user(sk)) {
4851 local_bh_enable();
4852 result = __tcp_checksum_complete(skb);
4853 local_bh_disable();
4854 } else {
4855 result = __tcp_checksum_complete(skb);
4856 }
4857 return result;
4858 }
4859
4860 static inline bool tcp_checksum_complete_user(struct sock *sk,
4861 struct sk_buff *skb)
4862 {
4863 return !skb_csum_unnecessary(skb) &&
4864 __tcp_checksum_complete_user(sk, skb);
4865 }
4866
4867 #ifdef CONFIG_NET_DMA
4868 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4869 int hlen)
4870 {
4871 struct tcp_sock *tp = tcp_sk(sk);
4872 int chunk = skb->len - hlen;
4873 int dma_cookie;
4874 bool copied_early = false;
4875
4876 if (tp->ucopy.wakeup)
4877 return false;
4878
4879 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4880 tp->ucopy.dma_chan = net_dma_find_channel();
4881
4882 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4883
4884 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4885 skb, hlen,
4886 tp->ucopy.iov, chunk,
4887 tp->ucopy.pinned_list);
4888
4889 if (dma_cookie < 0)
4890 goto out;
4891
4892 tp->ucopy.dma_cookie = dma_cookie;
4893 copied_early = true;
4894
4895 tp->ucopy.len -= chunk;
4896 tp->copied_seq += chunk;
4897 tcp_rcv_space_adjust(sk);
4898
4899 if ((tp->ucopy.len == 0) ||
4900 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4901 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4902 tp->ucopy.wakeup = 1;
4903 sk->sk_data_ready(sk, 0);
4904 }
4905 } else if (chunk > 0) {
4906 tp->ucopy.wakeup = 1;
4907 sk->sk_data_ready(sk, 0);
4908 }
4909 out:
4910 return copied_early;
4911 }
4912 #endif /* CONFIG_NET_DMA */
4913
4914 /* Does PAWS and seqno based validation of an incoming segment, flags will
4915 * play significant role here.
4916 */
4917 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4918 const struct tcphdr *th, int syn_inerr)
4919 {
4920 struct tcp_sock *tp = tcp_sk(sk);
4921
4922 /* RFC1323: H1. Apply PAWS check first. */
4923 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4924 tcp_paws_discard(sk, skb)) {
4925 if (!th->rst) {
4926 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4927 tcp_send_dupack(sk, skb);
4928 goto discard;
4929 }
4930 /* Reset is accepted even if it did not pass PAWS. */
4931 }
4932
4933 /* Step 1: check sequence number */
4934 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4935 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4936 * (RST) segments are validated by checking their SEQ-fields."
4937 * And page 69: "If an incoming segment is not acceptable,
4938 * an acknowledgment should be sent in reply (unless the RST
4939 * bit is set, if so drop the segment and return)".
4940 */
4941 if (!th->rst) {
4942 if (th->syn)
4943 goto syn_challenge;
4944 tcp_send_dupack(sk, skb);
4945 }
4946 goto discard;
4947 }
4948
4949 /* Step 2: check RST bit */
4950 if (th->rst) {
4951 /* RFC 5961 3.2 :
4952 * If sequence number exactly matches RCV.NXT, then
4953 * RESET the connection
4954 * else
4955 * Send a challenge ACK
4956 */
4957 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
4958 tcp_reset(sk);
4959 else
4960 tcp_send_challenge_ack(sk);
4961 goto discard;
4962 }
4963
4964 /* step 3: check security and precedence [ignored] */
4965
4966 /* step 4: Check for a SYN
4967 * RFC 5691 4.2 : Send a challenge ack
4968 */
4969 if (th->syn) {
4970 syn_challenge:
4971 if (syn_inerr)
4972 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4973 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
4974 tcp_send_challenge_ack(sk);
4975 goto discard;
4976 }
4977
4978 return true;
4979
4980 discard:
4981 __kfree_skb(skb);
4982 return false;
4983 }
4984
4985 /*
4986 * TCP receive function for the ESTABLISHED state.
4987 *
4988 * It is split into a fast path and a slow path. The fast path is
4989 * disabled when:
4990 * - A zero window was announced from us - zero window probing
4991 * is only handled properly in the slow path.
4992 * - Out of order segments arrived.
4993 * - Urgent data is expected.
4994 * - There is no buffer space left
4995 * - Unexpected TCP flags/window values/header lengths are received
4996 * (detected by checking the TCP header against pred_flags)
4997 * - Data is sent in both directions. Fast path only supports pure senders
4998 * or pure receivers (this means either the sequence number or the ack
4999 * value must stay constant)
5000 * - Unexpected TCP option.
5001 *
5002 * When these conditions are not satisfied it drops into a standard
5003 * receive procedure patterned after RFC793 to handle all cases.
5004 * The first three cases are guaranteed by proper pred_flags setting,
5005 * the rest is checked inline. Fast processing is turned on in
5006 * tcp_data_queue when everything is OK.
5007 */
5008 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5009 const struct tcphdr *th, unsigned int len)
5010 {
5011 struct tcp_sock *tp = tcp_sk(sk);
5012
5013 if (unlikely(sk->sk_rx_dst == NULL))
5014 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5015 /*
5016 * Header prediction.
5017 * The code loosely follows the one in the famous
5018 * "30 instruction TCP receive" Van Jacobson mail.
5019 *
5020 * Van's trick is to deposit buffers into socket queue
5021 * on a device interrupt, to call tcp_recv function
5022 * on the receive process context and checksum and copy
5023 * the buffer to user space. smart...
5024 *
5025 * Our current scheme is not silly either but we take the
5026 * extra cost of the net_bh soft interrupt processing...
5027 * We do checksum and copy also but from device to kernel.
5028 */
5029
5030 tp->rx_opt.saw_tstamp = 0;
5031
5032 /* pred_flags is 0xS?10 << 16 + snd_wnd
5033 * if header_prediction is to be made
5034 * 'S' will always be tp->tcp_header_len >> 2
5035 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5036 * turn it off (when there are holes in the receive
5037 * space for instance)
5038 * PSH flag is ignored.
5039 */
5040
5041 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5042 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5043 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5044 int tcp_header_len = tp->tcp_header_len;
5045
5046 /* Timestamp header prediction: tcp_header_len
5047 * is automatically equal to th->doff*4 due to pred_flags
5048 * match.
5049 */
5050
5051 /* Check timestamp */
5052 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5053 /* No? Slow path! */
5054 if (!tcp_parse_aligned_timestamp(tp, th))
5055 goto slow_path;
5056
5057 /* If PAWS failed, check it more carefully in slow path */
5058 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5059 goto slow_path;
5060
5061 /* DO NOT update ts_recent here, if checksum fails
5062 * and timestamp was corrupted part, it will result
5063 * in a hung connection since we will drop all
5064 * future packets due to the PAWS test.
5065 */
5066 }
5067
5068 if (len <= tcp_header_len) {
5069 /* Bulk data transfer: sender */
5070 if (len == tcp_header_len) {
5071 /* Predicted packet is in window by definition.
5072 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5073 * Hence, check seq<=rcv_wup reduces to:
5074 */
5075 if (tcp_header_len ==
5076 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5077 tp->rcv_nxt == tp->rcv_wup)
5078 tcp_store_ts_recent(tp);
5079
5080 /* We know that such packets are checksummed
5081 * on entry.
5082 */
5083 tcp_ack(sk, skb, 0);
5084 __kfree_skb(skb);
5085 tcp_data_snd_check(sk);
5086 return 0;
5087 } else { /* Header too small */
5088 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5089 goto discard;
5090 }
5091 } else {
5092 int eaten = 0;
5093 int copied_early = 0;
5094 bool fragstolen = false;
5095
5096 if (tp->copied_seq == tp->rcv_nxt &&
5097 len - tcp_header_len <= tp->ucopy.len) {
5098 #ifdef CONFIG_NET_DMA
5099 if (tp->ucopy.task == current &&
5100 sock_owned_by_user(sk) &&
5101 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5102 copied_early = 1;
5103 eaten = 1;
5104 }
5105 #endif
5106 if (tp->ucopy.task == current &&
5107 sock_owned_by_user(sk) && !copied_early) {
5108 __set_current_state(TASK_RUNNING);
5109
5110 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5111 eaten = 1;
5112 }
5113 if (eaten) {
5114 /* Predicted packet is in window by definition.
5115 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5116 * Hence, check seq<=rcv_wup reduces to:
5117 */
5118 if (tcp_header_len ==
5119 (sizeof(struct tcphdr) +
5120 TCPOLEN_TSTAMP_ALIGNED) &&
5121 tp->rcv_nxt == tp->rcv_wup)
5122 tcp_store_ts_recent(tp);
5123
5124 tcp_rcv_rtt_measure_ts(sk, skb);
5125
5126 __skb_pull(skb, tcp_header_len);
5127 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5128 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5129 }
5130 if (copied_early)
5131 tcp_cleanup_rbuf(sk, skb->len);
5132 }
5133 if (!eaten) {
5134 if (tcp_checksum_complete_user(sk, skb))
5135 goto csum_error;
5136
5137 if ((int)skb->truesize > sk->sk_forward_alloc)
5138 goto step5;
5139
5140 /* Predicted packet is in window by definition.
5141 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5142 * Hence, check seq<=rcv_wup reduces to:
5143 */
5144 if (tcp_header_len ==
5145 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5146 tp->rcv_nxt == tp->rcv_wup)
5147 tcp_store_ts_recent(tp);
5148
5149 tcp_rcv_rtt_measure_ts(sk, skb);
5150
5151 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5152
5153 /* Bulk data transfer: receiver */
5154 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5155 &fragstolen);
5156 }
5157
5158 tcp_event_data_recv(sk, skb);
5159
5160 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5161 /* Well, only one small jumplet in fast path... */
5162 tcp_ack(sk, skb, FLAG_DATA);
5163 tcp_data_snd_check(sk);
5164 if (!inet_csk_ack_scheduled(sk))
5165 goto no_ack;
5166 }
5167
5168 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5169 __tcp_ack_snd_check(sk, 0);
5170 no_ack:
5171 #ifdef CONFIG_NET_DMA
5172 if (copied_early)
5173 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5174 else
5175 #endif
5176 if (eaten)
5177 kfree_skb_partial(skb, fragstolen);
5178 sk->sk_data_ready(sk, 0);
5179 return 0;
5180 }
5181 }
5182
5183 slow_path:
5184 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5185 goto csum_error;
5186
5187 if (!th->ack && !th->rst)
5188 goto discard;
5189
5190 /*
5191 * Standard slow path.
5192 */
5193
5194 if (!tcp_validate_incoming(sk, skb, th, 1))
5195 return 0;
5196
5197 step5:
5198 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5199 goto discard;
5200
5201 tcp_rcv_rtt_measure_ts(sk, skb);
5202
5203 /* Process urgent data. */
5204 tcp_urg(sk, skb, th);
5205
5206 /* step 7: process the segment text */
5207 tcp_data_queue(sk, skb);
5208
5209 tcp_data_snd_check(sk);
5210 tcp_ack_snd_check(sk);
5211 return 0;
5212
5213 csum_error:
5214 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5215 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5216
5217 discard:
5218 __kfree_skb(skb);
5219 return 0;
5220 }
5221 EXPORT_SYMBOL(tcp_rcv_established);
5222
5223 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5224 {
5225 struct tcp_sock *tp = tcp_sk(sk);
5226 struct inet_connection_sock *icsk = inet_csk(sk);
5227
5228 tcp_set_state(sk, TCP_ESTABLISHED);
5229
5230 if (skb != NULL) {
5231 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5232 security_inet_conn_established(sk, skb);
5233 }
5234
5235 /* Make sure socket is routed, for correct metrics. */
5236 icsk->icsk_af_ops->rebuild_header(sk);
5237
5238 tcp_init_metrics(sk);
5239
5240 tcp_init_congestion_control(sk);
5241
5242 /* Prevent spurious tcp_cwnd_restart() on first data
5243 * packet.
5244 */
5245 tp->lsndtime = tcp_time_stamp;
5246
5247 tcp_init_buffer_space(sk);
5248
5249 if (sock_flag(sk, SOCK_KEEPOPEN))
5250 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5251
5252 if (!tp->rx_opt.snd_wscale)
5253 __tcp_fast_path_on(tp, tp->snd_wnd);
5254 else
5255 tp->pred_flags = 0;
5256
5257 if (!sock_flag(sk, SOCK_DEAD)) {
5258 sk->sk_state_change(sk);
5259 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5260 }
5261 }
5262
5263 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5264 struct tcp_fastopen_cookie *cookie)
5265 {
5266 struct tcp_sock *tp = tcp_sk(sk);
5267 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5268 u16 mss = tp->rx_opt.mss_clamp;
5269 bool syn_drop;
5270
5271 if (mss == tp->rx_opt.user_mss) {
5272 struct tcp_options_received opt;
5273
5274 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5275 tcp_clear_options(&opt);
5276 opt.user_mss = opt.mss_clamp = 0;
5277 tcp_parse_options(synack, &opt, 0, NULL);
5278 mss = opt.mss_clamp;
5279 }
5280
5281 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5282 cookie->len = -1;
5283
5284 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5285 * the remote receives only the retransmitted (regular) SYNs: either
5286 * the original SYN-data or the corresponding SYN-ACK is lost.
5287 */
5288 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5289
5290 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5291
5292 if (data) { /* Retransmit unacked data in SYN */
5293 tcp_for_write_queue_from(data, sk) {
5294 if (data == tcp_send_head(sk) ||
5295 __tcp_retransmit_skb(sk, data))
5296 break;
5297 }
5298 tcp_rearm_rto(sk);
5299 return true;
5300 }
5301 tp->syn_data_acked = tp->syn_data;
5302 return false;
5303 }
5304
5305 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5306 const struct tcphdr *th, unsigned int len)
5307 {
5308 struct inet_connection_sock *icsk = inet_csk(sk);
5309 struct tcp_sock *tp = tcp_sk(sk);
5310 struct tcp_fastopen_cookie foc = { .len = -1 };
5311 int saved_clamp = tp->rx_opt.mss_clamp;
5312
5313 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5314 if (tp->rx_opt.saw_tstamp)
5315 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5316
5317 if (th->ack) {
5318 /* rfc793:
5319 * "If the state is SYN-SENT then
5320 * first check the ACK bit
5321 * If the ACK bit is set
5322 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5323 * a reset (unless the RST bit is set, if so drop
5324 * the segment and return)"
5325 */
5326 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5327 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5328 goto reset_and_undo;
5329
5330 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5331 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5332 tcp_time_stamp)) {
5333 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5334 goto reset_and_undo;
5335 }
5336
5337 /* Now ACK is acceptable.
5338 *
5339 * "If the RST bit is set
5340 * If the ACK was acceptable then signal the user "error:
5341 * connection reset", drop the segment, enter CLOSED state,
5342 * delete TCB, and return."
5343 */
5344
5345 if (th->rst) {
5346 tcp_reset(sk);
5347 goto discard;
5348 }
5349
5350 /* rfc793:
5351 * "fifth, if neither of the SYN or RST bits is set then
5352 * drop the segment and return."
5353 *
5354 * See note below!
5355 * --ANK(990513)
5356 */
5357 if (!th->syn)
5358 goto discard_and_undo;
5359
5360 /* rfc793:
5361 * "If the SYN bit is on ...
5362 * are acceptable then ...
5363 * (our SYN has been ACKed), change the connection
5364 * state to ESTABLISHED..."
5365 */
5366
5367 TCP_ECN_rcv_synack(tp, th);
5368
5369 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5370 tcp_ack(sk, skb, FLAG_SLOWPATH);
5371
5372 /* Ok.. it's good. Set up sequence numbers and
5373 * move to established.
5374 */
5375 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5376 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5377
5378 /* RFC1323: The window in SYN & SYN/ACK segments is
5379 * never scaled.
5380 */
5381 tp->snd_wnd = ntohs(th->window);
5382
5383 if (!tp->rx_opt.wscale_ok) {
5384 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5385 tp->window_clamp = min(tp->window_clamp, 65535U);
5386 }
5387
5388 if (tp->rx_opt.saw_tstamp) {
5389 tp->rx_opt.tstamp_ok = 1;
5390 tp->tcp_header_len =
5391 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5392 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5393 tcp_store_ts_recent(tp);
5394 } else {
5395 tp->tcp_header_len = sizeof(struct tcphdr);
5396 }
5397
5398 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5399 tcp_enable_fack(tp);
5400
5401 tcp_mtup_init(sk);
5402 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5403 tcp_initialize_rcv_mss(sk);
5404
5405 /* Remember, tcp_poll() does not lock socket!
5406 * Change state from SYN-SENT only after copied_seq
5407 * is initialized. */
5408 tp->copied_seq = tp->rcv_nxt;
5409
5410 smp_mb();
5411
5412 tcp_finish_connect(sk, skb);
5413
5414 if ((tp->syn_fastopen || tp->syn_data) &&
5415 tcp_rcv_fastopen_synack(sk, skb, &foc))
5416 return -1;
5417
5418 if (sk->sk_write_pending ||
5419 icsk->icsk_accept_queue.rskq_defer_accept ||
5420 icsk->icsk_ack.pingpong) {
5421 /* Save one ACK. Data will be ready after
5422 * several ticks, if write_pending is set.
5423 *
5424 * It may be deleted, but with this feature tcpdumps
5425 * look so _wonderfully_ clever, that I was not able
5426 * to stand against the temptation 8) --ANK
5427 */
5428 inet_csk_schedule_ack(sk);
5429 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5430 tcp_enter_quickack_mode(sk);
5431 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5432 TCP_DELACK_MAX, TCP_RTO_MAX);
5433
5434 discard:
5435 __kfree_skb(skb);
5436 return 0;
5437 } else {
5438 tcp_send_ack(sk);
5439 }
5440 return -1;
5441 }
5442
5443 /* No ACK in the segment */
5444
5445 if (th->rst) {
5446 /* rfc793:
5447 * "If the RST bit is set
5448 *
5449 * Otherwise (no ACK) drop the segment and return."
5450 */
5451
5452 goto discard_and_undo;
5453 }
5454
5455 /* PAWS check. */
5456 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5457 tcp_paws_reject(&tp->rx_opt, 0))
5458 goto discard_and_undo;
5459
5460 if (th->syn) {
5461 /* We see SYN without ACK. It is attempt of
5462 * simultaneous connect with crossed SYNs.
5463 * Particularly, it can be connect to self.
5464 */
5465 tcp_set_state(sk, TCP_SYN_RECV);
5466
5467 if (tp->rx_opt.saw_tstamp) {
5468 tp->rx_opt.tstamp_ok = 1;
5469 tcp_store_ts_recent(tp);
5470 tp->tcp_header_len =
5471 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5472 } else {
5473 tp->tcp_header_len = sizeof(struct tcphdr);
5474 }
5475
5476 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5477 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5478
5479 /* RFC1323: The window in SYN & SYN/ACK segments is
5480 * never scaled.
5481 */
5482 tp->snd_wnd = ntohs(th->window);
5483 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5484 tp->max_window = tp->snd_wnd;
5485
5486 TCP_ECN_rcv_syn(tp, th);
5487
5488 tcp_mtup_init(sk);
5489 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5490 tcp_initialize_rcv_mss(sk);
5491
5492 tcp_send_synack(sk);
5493 #if 0
5494 /* Note, we could accept data and URG from this segment.
5495 * There are no obstacles to make this (except that we must
5496 * either change tcp_recvmsg() to prevent it from returning data
5497 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5498 *
5499 * However, if we ignore data in ACKless segments sometimes,
5500 * we have no reasons to accept it sometimes.
5501 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5502 * is not flawless. So, discard packet for sanity.
5503 * Uncomment this return to process the data.
5504 */
5505 return -1;
5506 #else
5507 goto discard;
5508 #endif
5509 }
5510 /* "fifth, if neither of the SYN or RST bits is set then
5511 * drop the segment and return."
5512 */
5513
5514 discard_and_undo:
5515 tcp_clear_options(&tp->rx_opt);
5516 tp->rx_opt.mss_clamp = saved_clamp;
5517 goto discard;
5518
5519 reset_and_undo:
5520 tcp_clear_options(&tp->rx_opt);
5521 tp->rx_opt.mss_clamp = saved_clamp;
5522 return 1;
5523 }
5524
5525 /*
5526 * This function implements the receiving procedure of RFC 793 for
5527 * all states except ESTABLISHED and TIME_WAIT.
5528 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5529 * address independent.
5530 */
5531
5532 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5533 const struct tcphdr *th, unsigned int len)
5534 {
5535 struct tcp_sock *tp = tcp_sk(sk);
5536 struct inet_connection_sock *icsk = inet_csk(sk);
5537 struct request_sock *req;
5538 int queued = 0;
5539
5540 tp->rx_opt.saw_tstamp = 0;
5541
5542 switch (sk->sk_state) {
5543 case TCP_CLOSE:
5544 goto discard;
5545
5546 case TCP_LISTEN:
5547 if (th->ack)
5548 return 1;
5549
5550 if (th->rst)
5551 goto discard;
5552
5553 if (th->syn) {
5554 if (th->fin)
5555 goto discard;
5556 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5557 return 1;
5558
5559 /* Now we have several options: In theory there is
5560 * nothing else in the frame. KA9Q has an option to
5561 * send data with the syn, BSD accepts data with the
5562 * syn up to the [to be] advertised window and
5563 * Solaris 2.1 gives you a protocol error. For now
5564 * we just ignore it, that fits the spec precisely
5565 * and avoids incompatibilities. It would be nice in
5566 * future to drop through and process the data.
5567 *
5568 * Now that TTCP is starting to be used we ought to
5569 * queue this data.
5570 * But, this leaves one open to an easy denial of
5571 * service attack, and SYN cookies can't defend
5572 * against this problem. So, we drop the data
5573 * in the interest of security over speed unless
5574 * it's still in use.
5575 */
5576 kfree_skb(skb);
5577 return 0;
5578 }
5579 goto discard;
5580
5581 case TCP_SYN_SENT:
5582 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5583 if (queued >= 0)
5584 return queued;
5585
5586 /* Do step6 onward by hand. */
5587 tcp_urg(sk, skb, th);
5588 __kfree_skb(skb);
5589 tcp_data_snd_check(sk);
5590 return 0;
5591 }
5592
5593 req = tp->fastopen_rsk;
5594 if (req != NULL) {
5595 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5596 sk->sk_state != TCP_FIN_WAIT1);
5597
5598 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5599 goto discard;
5600 }
5601
5602 if (!th->ack && !th->rst)
5603 goto discard;
5604
5605 if (!tcp_validate_incoming(sk, skb, th, 0))
5606 return 0;
5607
5608 /* step 5: check the ACK field */
5609 if (true) {
5610 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5611 FLAG_UPDATE_TS_RECENT) > 0;
5612
5613 switch (sk->sk_state) {
5614 case TCP_SYN_RECV:
5615 if (acceptable) {
5616 /* Once we leave TCP_SYN_RECV, we no longer
5617 * need req so release it.
5618 */
5619 if (req) {
5620 tcp_synack_rtt_meas(sk, req);
5621 tp->total_retrans = req->num_retrans;
5622
5623 reqsk_fastopen_remove(sk, req, false);
5624 } else {
5625 /* Make sure socket is routed, for
5626 * correct metrics.
5627 */
5628 icsk->icsk_af_ops->rebuild_header(sk);
5629 tcp_init_congestion_control(sk);
5630
5631 tcp_mtup_init(sk);
5632 tcp_init_buffer_space(sk);
5633 tp->copied_seq = tp->rcv_nxt;
5634 }
5635 smp_mb();
5636 tcp_set_state(sk, TCP_ESTABLISHED);
5637 sk->sk_state_change(sk);
5638
5639 /* Note, that this wakeup is only for marginal
5640 * crossed SYN case. Passively open sockets
5641 * are not waked up, because sk->sk_sleep ==
5642 * NULL and sk->sk_socket == NULL.
5643 */
5644 if (sk->sk_socket)
5645 sk_wake_async(sk,
5646 SOCK_WAKE_IO, POLL_OUT);
5647
5648 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5649 tp->snd_wnd = ntohs(th->window) <<
5650 tp->rx_opt.snd_wscale;
5651 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5652
5653 if (tp->rx_opt.tstamp_ok)
5654 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5655
5656 if (req) {
5657 /* Re-arm the timer because data may
5658 * have been sent out. This is similar
5659 * to the regular data transmission case
5660 * when new data has just been ack'ed.
5661 *
5662 * (TFO) - we could try to be more
5663 * aggressive and retranmitting any data
5664 * sooner based on when they were sent
5665 * out.
5666 */
5667 tcp_rearm_rto(sk);
5668 } else
5669 tcp_init_metrics(sk);
5670
5671 /* Prevent spurious tcp_cwnd_restart() on
5672 * first data packet.
5673 */
5674 tp->lsndtime = tcp_time_stamp;
5675
5676 tcp_initialize_rcv_mss(sk);
5677 tcp_fast_path_on(tp);
5678 } else {
5679 return 1;
5680 }
5681 break;
5682
5683 case TCP_FIN_WAIT1:
5684 /* If we enter the TCP_FIN_WAIT1 state and we are a
5685 * Fast Open socket and this is the first acceptable
5686 * ACK we have received, this would have acknowledged
5687 * our SYNACK so stop the SYNACK timer.
5688 */
5689 if (req != NULL) {
5690 /* Return RST if ack_seq is invalid.
5691 * Note that RFC793 only says to generate a
5692 * DUPACK for it but for TCP Fast Open it seems
5693 * better to treat this case like TCP_SYN_RECV
5694 * above.
5695 */
5696 if (!acceptable)
5697 return 1;
5698 /* We no longer need the request sock. */
5699 reqsk_fastopen_remove(sk, req, false);
5700 tcp_rearm_rto(sk);
5701 }
5702 if (tp->snd_una == tp->write_seq) {
5703 struct dst_entry *dst;
5704
5705 tcp_set_state(sk, TCP_FIN_WAIT2);
5706 sk->sk_shutdown |= SEND_SHUTDOWN;
5707
5708 dst = __sk_dst_get(sk);
5709 if (dst)
5710 dst_confirm(dst);
5711
5712 if (!sock_flag(sk, SOCK_DEAD))
5713 /* Wake up lingering close() */
5714 sk->sk_state_change(sk);
5715 else {
5716 int tmo;
5717
5718 if (tp->linger2 < 0 ||
5719 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5720 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5721 tcp_done(sk);
5722 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5723 return 1;
5724 }
5725
5726 tmo = tcp_fin_time(sk);
5727 if (tmo > TCP_TIMEWAIT_LEN) {
5728 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5729 } else if (th->fin || sock_owned_by_user(sk)) {
5730 /* Bad case. We could lose such FIN otherwise.
5731 * It is not a big problem, but it looks confusing
5732 * and not so rare event. We still can lose it now,
5733 * if it spins in bh_lock_sock(), but it is really
5734 * marginal case.
5735 */
5736 inet_csk_reset_keepalive_timer(sk, tmo);
5737 } else {
5738 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5739 goto discard;
5740 }
5741 }
5742 }
5743 break;
5744
5745 case TCP_CLOSING:
5746 if (tp->snd_una == tp->write_seq) {
5747 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5748 goto discard;
5749 }
5750 break;
5751
5752 case TCP_LAST_ACK:
5753 if (tp->snd_una == tp->write_seq) {
5754 tcp_update_metrics(sk);
5755 tcp_done(sk);
5756 goto discard;
5757 }
5758 break;
5759 }
5760 }
5761
5762 /* step 6: check the URG bit */
5763 tcp_urg(sk, skb, th);
5764
5765 /* step 7: process the segment text */
5766 switch (sk->sk_state) {
5767 case TCP_CLOSE_WAIT:
5768 case TCP_CLOSING:
5769 case TCP_LAST_ACK:
5770 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5771 break;
5772 case TCP_FIN_WAIT1:
5773 case TCP_FIN_WAIT2:
5774 /* RFC 793 says to queue data in these states,
5775 * RFC 1122 says we MUST send a reset.
5776 * BSD 4.4 also does reset.
5777 */
5778 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5779 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5780 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5781 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5782 tcp_reset(sk);
5783 return 1;
5784 }
5785 }
5786 /* Fall through */
5787 case TCP_ESTABLISHED:
5788 tcp_data_queue(sk, skb);
5789 queued = 1;
5790 break;
5791 }
5792
5793 /* tcp_data could move socket to TIME-WAIT */
5794 if (sk->sk_state != TCP_CLOSE) {
5795 tcp_data_snd_check(sk);
5796 tcp_ack_snd_check(sk);
5797 }
5798
5799 if (!queued) {
5800 discard:
5801 __kfree_skb(skb);
5802 }
5803 return 0;
5804 }
5805 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.143327 seconds and 6 git commands to generate.