[TCP]: Two fixes to new sacktag code
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 /* RFC3517 uses different metric in lost marker => reset on change */
867 if (tcp_is_fack(tp))
868 tp->lost_skb_hint = NULL;
869 tp->rx_opt.sack_ok &= ~2;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 tp->rx_opt.sack_ok |= 4;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882 struct tcp_sock *tp = tcp_sk(sk);
883 struct dst_entry *dst = __sk_dst_get(sk);
884
885 if (dst == NULL)
886 goto reset;
887
888 dst_confirm(dst);
889
890 if (dst_metric_locked(dst, RTAX_CWND))
891 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892 if (dst_metric(dst, RTAX_SSTHRESH)) {
893 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 }
897 if (dst_metric(dst, RTAX_REORDERING) &&
898 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899 tcp_disable_fack(tp);
900 tp->reordering = dst_metric(dst, RTAX_REORDERING);
901 }
902
903 if (dst_metric(dst, RTAX_RTT) == 0)
904 goto reset;
905
906 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907 goto reset;
908
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
913 *
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
922 */
923 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
926 }
927 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 }
931 tcp_set_rto(sk);
932 tcp_bound_rto(sk);
933 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934 goto reset;
935 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936 tp->snd_cwnd_stamp = tcp_time_stamp;
937 return;
938
939 reset:
940 /* Play conservative. If timestamps are not
941 * supported, TCP will fail to recalculate correct
942 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 */
944 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945 tp->srtt = 0;
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948 }
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952 const int ts)
953 {
954 struct tcp_sock *tp = tcp_sk(sk);
955 if (metric > tp->reordering) {
956 tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958 /* This exciting event is worth to be remembered. 8) */
959 if (ts)
960 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961 else if (tcp_is_reno(tp))
962 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963 else if (tcp_is_fack(tp))
964 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965 else
966 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970 tp->reordering,
971 tp->fackets_out,
972 tp->sacked_out,
973 tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975 tcp_disable_fack(tp);
976 }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980 *
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
984 *
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
996 *
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modfication, head until snd.fack is lost.
1004 * B. SACK arrives sacking data transmitted after never retransmitted
1005 * hole was sent out.
1006 * C. SACK arrives sacking SND.NXT at the moment, when the
1007 * segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009 *
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1013 *
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1018 *
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 * ever retransmitted -> reordering. Alas, we cannot use it
1021 * when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 * for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1026 *
1027 * SACK block validation.
1028 * ----------------------
1029 *
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment. Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1042 *
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * wrap (s_w):
1048 *
1049 * <- outs wnd -> <- wrapzone ->
1050 * u e n u_w e_w s n_w
1051 * | | | | | | |
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->| |<--------...
1054 * ...---- >2^31 ------>| |<--------...
1055 *
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1061 *
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1074 */
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076 u32 start_seq, u32 end_seq)
1077 {
1078 /* Too far in future, or reversed (interpretation is ambiguous) */
1079 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080 return 0;
1081
1082 /* Nasty start_seq wrap-around check (see comments above) */
1083 if (!before(start_seq, tp->snd_nxt))
1084 return 0;
1085
1086 /* In outstanding window? ...This is valid exit for D-SACKs too.
1087 * start_seq == snd_una is non-sensical (see comments above)
1088 */
1089 if (after(start_seq, tp->snd_una))
1090 return 1;
1091
1092 if (!is_dsack || !tp->undo_marker)
1093 return 0;
1094
1095 /* ...Then it's D-SACK, and must reside below snd_una completely */
1096 if (!after(end_seq, tp->snd_una))
1097 return 0;
1098
1099 if (!before(start_seq, tp->undo_marker))
1100 return 1;
1101
1102 /* Too old */
1103 if (!after(end_seq, tp->undo_marker))
1104 return 0;
1105
1106 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107 * start_seq < undo_marker and end_seq >= undo_marker.
1108 */
1109 return !before(start_seq, end_seq - tp->max_window);
1110 }
1111
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1115 *
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119 * retransmitted skbs to avoid some costly processing per ACKs.
1120 */
1121 static int tcp_mark_lost_retrans(struct sock *sk)
1122 {
1123 const struct inet_connection_sock *icsk = inet_csk(sk);
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 struct sk_buff *skb;
1126 int flag = 0;
1127 int cnt = 0;
1128 u32 new_low_seq = tp->snd_nxt;
1129 u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
1130
1131 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1132 !after(received_upto, tp->lost_retrans_low) ||
1133 icsk->icsk_ca_state != TCP_CA_Recovery)
1134 return flag;
1135
1136 tcp_for_write_queue(skb, sk) {
1137 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1138
1139 if (skb == tcp_send_head(sk))
1140 break;
1141 if (cnt == tp->retrans_out)
1142 break;
1143 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1144 continue;
1145
1146 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1147 continue;
1148
1149 if (after(received_upto, ack_seq) &&
1150 (tcp_is_fack(tp) ||
1151 !before(received_upto,
1152 ack_seq + tp->reordering * tp->mss_cache))) {
1153 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1154 tp->retrans_out -= tcp_skb_pcount(skb);
1155
1156 /* clear lost hint */
1157 tp->retransmit_skb_hint = NULL;
1158
1159 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1160 tp->lost_out += tcp_skb_pcount(skb);
1161 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1162 flag |= FLAG_DATA_SACKED;
1163 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1164 }
1165 } else {
1166 if (before(ack_seq, new_low_seq))
1167 new_low_seq = ack_seq;
1168 cnt += tcp_skb_pcount(skb);
1169 }
1170 }
1171
1172 if (tp->retrans_out)
1173 tp->lost_retrans_low = new_low_seq;
1174
1175 return flag;
1176 }
1177
1178 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1179 struct tcp_sack_block_wire *sp, int num_sacks,
1180 u32 prior_snd_una)
1181 {
1182 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1183 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1184 int dup_sack = 0;
1185
1186 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1187 dup_sack = 1;
1188 tcp_dsack_seen(tp);
1189 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1190 } else if (num_sacks > 1) {
1191 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1192 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1193
1194 if (!after(end_seq_0, end_seq_1) &&
1195 !before(start_seq_0, start_seq_1)) {
1196 dup_sack = 1;
1197 tcp_dsack_seen(tp);
1198 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1199 }
1200 }
1201
1202 /* D-SACK for already forgotten data... Do dumb counting. */
1203 if (dup_sack &&
1204 !after(end_seq_0, prior_snd_una) &&
1205 after(end_seq_0, tp->undo_marker))
1206 tp->undo_retrans--;
1207
1208 return dup_sack;
1209 }
1210
1211 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1212 * the incoming SACK may not exactly match but we can find smaller MSS
1213 * aligned portion of it that matches. Therefore we might need to fragment
1214 * which may fail and creates some hassle (caller must handle error case
1215 * returns).
1216 */
1217 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1218 u32 start_seq, u32 end_seq)
1219 {
1220 int in_sack, err;
1221 unsigned int pkt_len;
1222
1223 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1224 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1225
1226 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1227 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1228
1229 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1230
1231 if (!in_sack)
1232 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1233 else
1234 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1235 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1236 if (err < 0)
1237 return err;
1238 }
1239
1240 return in_sack;
1241 }
1242
1243 static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
1244 int *reord, int dup_sack, int fack_count)
1245 {
1246 u8 sacked = TCP_SKB_CB(skb)->sacked;
1247 int flag = 0;
1248
1249 /* Account D-SACK for retransmitted packet. */
1250 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1251 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1252 tp->undo_retrans--;
1253 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una) &&
1254 (sacked & TCPCB_SACKED_ACKED))
1255 *reord = min(fack_count, *reord);
1256 }
1257
1258 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1259 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1260 return flag;
1261
1262 if (!(sacked & TCPCB_SACKED_ACKED)) {
1263 if (sacked & TCPCB_SACKED_RETRANS) {
1264 /* If the segment is not tagged as lost,
1265 * we do not clear RETRANS, believing
1266 * that retransmission is still in flight.
1267 */
1268 if (sacked & TCPCB_LOST) {
1269 TCP_SKB_CB(skb)->sacked &=
1270 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1271 tp->lost_out -= tcp_skb_pcount(skb);
1272 tp->retrans_out -= tcp_skb_pcount(skb);
1273
1274 /* clear lost hint */
1275 tp->retransmit_skb_hint = NULL;
1276 }
1277 } else {
1278 if (!(sacked & TCPCB_RETRANS)) {
1279 /* New sack for not retransmitted frame,
1280 * which was in hole. It is reordering.
1281 */
1282 if (before(TCP_SKB_CB(skb)->seq,
1283 tcp_highest_sack_seq(tp)))
1284 *reord = min(fack_count, *reord);
1285
1286 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1287 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1288 flag |= FLAG_ONLY_ORIG_SACKED;
1289 }
1290
1291 if (sacked & TCPCB_LOST) {
1292 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1293 tp->lost_out -= tcp_skb_pcount(skb);
1294
1295 /* clear lost hint */
1296 tp->retransmit_skb_hint = NULL;
1297 }
1298 }
1299
1300 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1301 flag |= FLAG_DATA_SACKED;
1302 tp->sacked_out += tcp_skb_pcount(skb);
1303
1304 fack_count += tcp_skb_pcount(skb);
1305
1306 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1307 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1308 before(TCP_SKB_CB(skb)->seq,
1309 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1310 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1311
1312 if (fack_count > tp->fackets_out)
1313 tp->fackets_out = fack_count;
1314
1315 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1316 tp->highest_sack = skb;
1317
1318 } else {
1319 if (dup_sack && (sacked & TCPCB_RETRANS))
1320 *reord = min(fack_count, *reord);
1321 }
1322
1323 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1324 * frames and clear it. undo_retrans is decreased above, L|R frames
1325 * are accounted above as well.
1326 */
1327 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1328 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1329 tp->retrans_out -= tcp_skb_pcount(skb);
1330 tp->retransmit_skb_hint = NULL;
1331 }
1332
1333 return flag;
1334 }
1335
1336 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1337 struct tcp_sack_block *next_dup,
1338 u32 start_seq, u32 end_seq,
1339 int dup_sack_in, int *fack_count,
1340 int *reord, int *flag)
1341 {
1342 struct tcp_sock *tp = tcp_sk(sk);
1343
1344 tcp_for_write_queue_from(skb, sk) {
1345 int in_sack = 0;
1346 int dup_sack = dup_sack_in;
1347
1348 if (skb == tcp_send_head(sk))
1349 break;
1350
1351 /* queue is in-order => we can short-circuit the walk early */
1352 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1353 break;
1354
1355 if ((next_dup != NULL) &&
1356 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1357 in_sack = tcp_match_skb_to_sack(sk, skb,
1358 next_dup->start_seq,
1359 next_dup->end_seq);
1360 if (in_sack > 0)
1361 dup_sack = 1;
1362 }
1363
1364 if (in_sack <= 0)
1365 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1366 if (unlikely(in_sack < 0))
1367 break;
1368
1369 if (in_sack)
1370 *flag |= tcp_sacktag_one(skb, tp, reord, dup_sack, *fack_count);
1371
1372 *fack_count += tcp_skb_pcount(skb);
1373 }
1374 return skb;
1375 }
1376
1377 /* Avoid all extra work that is being done by sacktag while walking in
1378 * a normal way
1379 */
1380 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1381 u32 skip_to_seq)
1382 {
1383 tcp_for_write_queue_from(skb, sk) {
1384 if (skb == tcp_send_head(sk))
1385 break;
1386
1387 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1388 break;
1389 }
1390 return skb;
1391 }
1392
1393 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1394 struct sock *sk,
1395 struct tcp_sack_block *next_dup,
1396 u32 skip_to_seq,
1397 int *fack_count, int *reord,
1398 int *flag)
1399 {
1400 if (next_dup == NULL)
1401 return skb;
1402
1403 if (before(next_dup->start_seq, skip_to_seq)) {
1404 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1405 tcp_sacktag_walk(skb, sk, NULL,
1406 next_dup->start_seq, next_dup->end_seq,
1407 1, fack_count, reord, flag);
1408 }
1409
1410 return skb;
1411 }
1412
1413 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1414 {
1415 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1416 }
1417
1418 static int
1419 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1420 {
1421 const struct inet_connection_sock *icsk = inet_csk(sk);
1422 struct tcp_sock *tp = tcp_sk(sk);
1423 unsigned char *ptr = (skb_transport_header(ack_skb) +
1424 TCP_SKB_CB(ack_skb)->sacked);
1425 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1426 struct tcp_sack_block sp[4];
1427 struct tcp_sack_block *cache;
1428 struct sk_buff *skb;
1429 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1430 int used_sacks;
1431 int reord = tp->packets_out;
1432 int flag = 0;
1433 int found_dup_sack = 0;
1434 int fack_count;
1435 int i, j;
1436 int first_sack_index;
1437
1438 if (!tp->sacked_out) {
1439 if (WARN_ON(tp->fackets_out))
1440 tp->fackets_out = 0;
1441 tp->highest_sack = tcp_write_queue_head(sk);
1442 }
1443
1444 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1445 num_sacks, prior_snd_una);
1446 if (found_dup_sack)
1447 flag |= FLAG_DSACKING_ACK;
1448
1449 /* Eliminate too old ACKs, but take into
1450 * account more or less fresh ones, they can
1451 * contain valid SACK info.
1452 */
1453 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1454 return 0;
1455
1456 if (!tp->packets_out)
1457 goto out;
1458
1459 used_sacks = 0;
1460 first_sack_index = 0;
1461 for (i = 0; i < num_sacks; i++) {
1462 int dup_sack = !i && found_dup_sack;
1463
1464 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1465 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1466
1467 if (!tcp_is_sackblock_valid(tp, dup_sack,
1468 sp[used_sacks].start_seq,
1469 sp[used_sacks].end_seq)) {
1470 if (dup_sack) {
1471 if (!tp->undo_marker)
1472 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1473 else
1474 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1475 } else {
1476 /* Don't count olds caused by ACK reordering */
1477 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1478 !after(sp[used_sacks].end_seq, tp->snd_una))
1479 continue;
1480 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1481 }
1482 if (i == 0)
1483 first_sack_index = -1;
1484 continue;
1485 }
1486
1487 /* Ignore very old stuff early */
1488 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1489 continue;
1490
1491 used_sacks++;
1492 }
1493
1494 /* order SACK blocks to allow in order walk of the retrans queue */
1495 for (i = used_sacks - 1; i > 0; i--) {
1496 for (j = 0; j < i; j++){
1497 if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1498 struct tcp_sack_block tmp;
1499
1500 tmp = sp[j];
1501 sp[j] = sp[j+1];
1502 sp[j+1] = tmp;
1503
1504 /* Track where the first SACK block goes to */
1505 if (j == first_sack_index)
1506 first_sack_index = j+1;
1507 }
1508 }
1509 }
1510
1511 skb = tcp_write_queue_head(sk);
1512 fack_count = 0;
1513 i = 0;
1514
1515 if (!tp->sacked_out) {
1516 /* It's already past, so skip checking against it */
1517 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1518 } else {
1519 cache = tp->recv_sack_cache;
1520 /* Skip empty blocks in at head of the cache */
1521 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1522 !cache->end_seq)
1523 cache++;
1524 }
1525
1526 while (i < used_sacks) {
1527 u32 start_seq = sp[i].start_seq;
1528 u32 end_seq = sp[i].end_seq;
1529 int dup_sack = (found_dup_sack && (i == first_sack_index));
1530 struct tcp_sack_block *next_dup = NULL;
1531
1532 if (found_dup_sack && ((i + 1) == first_sack_index))
1533 next_dup = &sp[i + 1];
1534
1535 /* Event "B" in the comment above. */
1536 if (after(end_seq, tp->high_seq))
1537 flag |= FLAG_DATA_LOST;
1538
1539 /* Skip too early cached blocks */
1540 while (tcp_sack_cache_ok(tp, cache) &&
1541 !before(start_seq, cache->end_seq))
1542 cache++;
1543
1544 /* Can skip some work by looking recv_sack_cache? */
1545 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1546 after(end_seq, cache->start_seq)) {
1547
1548 /* Head todo? */
1549 if (before(start_seq, cache->start_seq)) {
1550 skb = tcp_sacktag_skip(skb, sk, start_seq);
1551 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1552 cache->start_seq, dup_sack,
1553 &fack_count, &reord, &flag);
1554 }
1555
1556 /* Rest of the block already fully processed? */
1557 if (!after(end_seq, cache->end_seq))
1558 goto advance_sp;
1559
1560 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1561 &fack_count, &reord, &flag);
1562
1563 /* ...tail remains todo... */
1564 if (TCP_SKB_CB(tp->highest_sack)->end_seq == cache->end_seq) {
1565 /* ...but better entrypoint exists! */
1566 skb = tcp_write_queue_next(sk, tp->highest_sack);
1567 fack_count = tp->fackets_out;
1568 cache++;
1569 goto walk;
1570 }
1571
1572 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1573 /* Check overlap against next cached too (past this one already) */
1574 cache++;
1575 continue;
1576 }
1577
1578 if (tp->sacked_out && !before(start_seq, tcp_highest_sack_seq(tp))) {
1579 skb = tcp_write_queue_next(sk, tp->highest_sack);
1580 fack_count = tp->fackets_out;
1581 }
1582 skb = tcp_sacktag_skip(skb, sk, start_seq);
1583
1584 walk:
1585 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1586 dup_sack, &fack_count, &reord, &flag);
1587
1588 advance_sp:
1589 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1590 * due to in-order walk
1591 */
1592 if (after(end_seq, tp->frto_highmark))
1593 flag &= ~FLAG_ONLY_ORIG_SACKED;
1594
1595 i++;
1596 }
1597
1598 /* Clear the head of the cache sack blocks so we can skip it next time */
1599 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1600 tp->recv_sack_cache[i].start_seq = 0;
1601 tp->recv_sack_cache[i].end_seq = 0;
1602 }
1603 for (j = 0; j < used_sacks; j++)
1604 tp->recv_sack_cache[i++] = sp[j];
1605
1606 flag |= tcp_mark_lost_retrans(sk);
1607
1608 tcp_verify_left_out(tp);
1609
1610 if ((reord < tp->fackets_out) &&
1611 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1612 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1613 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1614
1615 out:
1616
1617 #if FASTRETRANS_DEBUG > 0
1618 BUG_TRAP((int)tp->sacked_out >= 0);
1619 BUG_TRAP((int)tp->lost_out >= 0);
1620 BUG_TRAP((int)tp->retrans_out >= 0);
1621 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1622 #endif
1623 return flag;
1624 }
1625
1626 /* If we receive more dupacks than we expected counting segments
1627 * in assumption of absent reordering, interpret this as reordering.
1628 * The only another reason could be bug in receiver TCP.
1629 */
1630 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1631 {
1632 struct tcp_sock *tp = tcp_sk(sk);
1633 u32 holes;
1634
1635 holes = max(tp->lost_out, 1U);
1636 holes = min(holes, tp->packets_out);
1637
1638 if ((tp->sacked_out + holes) > tp->packets_out) {
1639 tp->sacked_out = tp->packets_out - holes;
1640 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1641 }
1642 }
1643
1644 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1645
1646 static void tcp_add_reno_sack(struct sock *sk)
1647 {
1648 struct tcp_sock *tp = tcp_sk(sk);
1649 tp->sacked_out++;
1650 tcp_check_reno_reordering(sk, 0);
1651 tcp_verify_left_out(tp);
1652 }
1653
1654 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1655
1656 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1657 {
1658 struct tcp_sock *tp = tcp_sk(sk);
1659
1660 if (acked > 0) {
1661 /* One ACK acked hole. The rest eat duplicate ACKs. */
1662 if (acked-1 >= tp->sacked_out)
1663 tp->sacked_out = 0;
1664 else
1665 tp->sacked_out -= acked-1;
1666 }
1667 tcp_check_reno_reordering(sk, acked);
1668 tcp_verify_left_out(tp);
1669 }
1670
1671 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1672 {
1673 tp->sacked_out = 0;
1674 }
1675
1676 /* F-RTO can only be used if TCP has never retransmitted anything other than
1677 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1678 */
1679 int tcp_use_frto(struct sock *sk)
1680 {
1681 const struct tcp_sock *tp = tcp_sk(sk);
1682 struct sk_buff *skb;
1683
1684 if (!sysctl_tcp_frto)
1685 return 0;
1686
1687 if (IsSackFrto())
1688 return 1;
1689
1690 /* Avoid expensive walking of rexmit queue if possible */
1691 if (tp->retrans_out > 1)
1692 return 0;
1693
1694 skb = tcp_write_queue_head(sk);
1695 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1696 tcp_for_write_queue_from(skb, sk) {
1697 if (skb == tcp_send_head(sk))
1698 break;
1699 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1700 return 0;
1701 /* Short-circuit when first non-SACKed skb has been checked */
1702 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1703 break;
1704 }
1705 return 1;
1706 }
1707
1708 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1709 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1710 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1711 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1712 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1713 * bits are handled if the Loss state is really to be entered (in
1714 * tcp_enter_frto_loss).
1715 *
1716 * Do like tcp_enter_loss() would; when RTO expires the second time it
1717 * does:
1718 * "Reduce ssthresh if it has not yet been made inside this window."
1719 */
1720 void tcp_enter_frto(struct sock *sk)
1721 {
1722 const struct inet_connection_sock *icsk = inet_csk(sk);
1723 struct tcp_sock *tp = tcp_sk(sk);
1724 struct sk_buff *skb;
1725
1726 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1727 tp->snd_una == tp->high_seq ||
1728 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1729 !icsk->icsk_retransmits)) {
1730 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1731 /* Our state is too optimistic in ssthresh() call because cwnd
1732 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1733 * recovery has not yet completed. Pattern would be this: RTO,
1734 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1735 * up here twice).
1736 * RFC4138 should be more specific on what to do, even though
1737 * RTO is quite unlikely to occur after the first Cumulative ACK
1738 * due to back-off and complexity of triggering events ...
1739 */
1740 if (tp->frto_counter) {
1741 u32 stored_cwnd;
1742 stored_cwnd = tp->snd_cwnd;
1743 tp->snd_cwnd = 2;
1744 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1745 tp->snd_cwnd = stored_cwnd;
1746 } else {
1747 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1748 }
1749 /* ... in theory, cong.control module could do "any tricks" in
1750 * ssthresh(), which means that ca_state, lost bits and lost_out
1751 * counter would have to be faked before the call occurs. We
1752 * consider that too expensive, unlikely and hacky, so modules
1753 * using these in ssthresh() must deal these incompatibility
1754 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1755 */
1756 tcp_ca_event(sk, CA_EVENT_FRTO);
1757 }
1758
1759 tp->undo_marker = tp->snd_una;
1760 tp->undo_retrans = 0;
1761
1762 skb = tcp_write_queue_head(sk);
1763 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1764 tp->undo_marker = 0;
1765 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1766 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1767 tp->retrans_out -= tcp_skb_pcount(skb);
1768 }
1769 tcp_verify_left_out(tp);
1770
1771 /* Too bad if TCP was application limited */
1772 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1773
1774 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1775 * The last condition is necessary at least in tp->frto_counter case.
1776 */
1777 if (IsSackFrto() && (tp->frto_counter ||
1778 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1779 after(tp->high_seq, tp->snd_una)) {
1780 tp->frto_highmark = tp->high_seq;
1781 } else {
1782 tp->frto_highmark = tp->snd_nxt;
1783 }
1784 tcp_set_ca_state(sk, TCP_CA_Disorder);
1785 tp->high_seq = tp->snd_nxt;
1786 tp->frto_counter = 1;
1787 }
1788
1789 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1790 * which indicates that we should follow the traditional RTO recovery,
1791 * i.e. mark everything lost and do go-back-N retransmission.
1792 */
1793 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1794 {
1795 struct tcp_sock *tp = tcp_sk(sk);
1796 struct sk_buff *skb;
1797
1798 tp->lost_out = 0;
1799 tp->retrans_out = 0;
1800 if (tcp_is_reno(tp))
1801 tcp_reset_reno_sack(tp);
1802
1803 tcp_for_write_queue(skb, sk) {
1804 if (skb == tcp_send_head(sk))
1805 break;
1806
1807 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1808 /*
1809 * Count the retransmission made on RTO correctly (only when
1810 * waiting for the first ACK and did not get it)...
1811 */
1812 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1813 /* For some reason this R-bit might get cleared? */
1814 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1815 tp->retrans_out += tcp_skb_pcount(skb);
1816 /* ...enter this if branch just for the first segment */
1817 flag |= FLAG_DATA_ACKED;
1818 } else {
1819 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1820 tp->undo_marker = 0;
1821 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1822 }
1823
1824 /* Don't lost mark skbs that were fwd transmitted after RTO */
1825 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1826 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1827 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1828 tp->lost_out += tcp_skb_pcount(skb);
1829 }
1830 }
1831 tcp_verify_left_out(tp);
1832
1833 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1834 tp->snd_cwnd_cnt = 0;
1835 tp->snd_cwnd_stamp = tcp_time_stamp;
1836 tp->frto_counter = 0;
1837 tp->bytes_acked = 0;
1838
1839 tp->reordering = min_t(unsigned int, tp->reordering,
1840 sysctl_tcp_reordering);
1841 tcp_set_ca_state(sk, TCP_CA_Loss);
1842 tp->high_seq = tp->frto_highmark;
1843 TCP_ECN_queue_cwr(tp);
1844
1845 tcp_clear_retrans_hints_partial(tp);
1846 }
1847
1848 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1849 {
1850 tp->retrans_out = 0;
1851 tp->lost_out = 0;
1852
1853 tp->undo_marker = 0;
1854 tp->undo_retrans = 0;
1855 }
1856
1857 void tcp_clear_retrans(struct tcp_sock *tp)
1858 {
1859 tcp_clear_retrans_partial(tp);
1860
1861 tp->fackets_out = 0;
1862 tp->sacked_out = 0;
1863 }
1864
1865 /* Enter Loss state. If "how" is not zero, forget all SACK information
1866 * and reset tags completely, otherwise preserve SACKs. If receiver
1867 * dropped its ofo queue, we will know this due to reneging detection.
1868 */
1869 void tcp_enter_loss(struct sock *sk, int how)
1870 {
1871 const struct inet_connection_sock *icsk = inet_csk(sk);
1872 struct tcp_sock *tp = tcp_sk(sk);
1873 struct sk_buff *skb;
1874
1875 /* Reduce ssthresh if it has not yet been made inside this window. */
1876 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1877 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1878 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1879 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1880 tcp_ca_event(sk, CA_EVENT_LOSS);
1881 }
1882 tp->snd_cwnd = 1;
1883 tp->snd_cwnd_cnt = 0;
1884 tp->snd_cwnd_stamp = tcp_time_stamp;
1885
1886 tp->bytes_acked = 0;
1887 tcp_clear_retrans_partial(tp);
1888
1889 if (tcp_is_reno(tp))
1890 tcp_reset_reno_sack(tp);
1891
1892 if (!how) {
1893 /* Push undo marker, if it was plain RTO and nothing
1894 * was retransmitted. */
1895 tp->undo_marker = tp->snd_una;
1896 tcp_clear_retrans_hints_partial(tp);
1897 } else {
1898 tp->sacked_out = 0;
1899 tp->fackets_out = 0;
1900 tcp_clear_all_retrans_hints(tp);
1901 }
1902
1903 tcp_for_write_queue(skb, sk) {
1904 if (skb == tcp_send_head(sk))
1905 break;
1906
1907 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1908 tp->undo_marker = 0;
1909 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1910 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1911 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1912 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1913 tp->lost_out += tcp_skb_pcount(skb);
1914 }
1915 }
1916 tcp_verify_left_out(tp);
1917
1918 tp->reordering = min_t(unsigned int, tp->reordering,
1919 sysctl_tcp_reordering);
1920 tcp_set_ca_state(sk, TCP_CA_Loss);
1921 tp->high_seq = tp->snd_nxt;
1922 TCP_ECN_queue_cwr(tp);
1923 /* Abort F-RTO algorithm if one is in progress */
1924 tp->frto_counter = 0;
1925 }
1926
1927 static int tcp_check_sack_reneging(struct sock *sk)
1928 {
1929 struct sk_buff *skb;
1930
1931 /* If ACK arrived pointing to a remembered SACK,
1932 * it means that our remembered SACKs do not reflect
1933 * real state of receiver i.e.
1934 * receiver _host_ is heavily congested (or buggy).
1935 * Do processing similar to RTO timeout.
1936 */
1937 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1938 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1939 struct inet_connection_sock *icsk = inet_csk(sk);
1940 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1941
1942 tcp_enter_loss(sk, 1);
1943 icsk->icsk_retransmits++;
1944 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1945 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1946 icsk->icsk_rto, TCP_RTO_MAX);
1947 return 1;
1948 }
1949 return 0;
1950 }
1951
1952 static inline int tcp_fackets_out(struct tcp_sock *tp)
1953 {
1954 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1955 }
1956
1957 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1958 * counter when SACK is enabled (without SACK, sacked_out is used for
1959 * that purpose).
1960 *
1961 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1962 * segments up to the highest received SACK block so far and holes in
1963 * between them.
1964 *
1965 * With reordering, holes may still be in flight, so RFC3517 recovery
1966 * uses pure sacked_out (total number of SACKed segments) even though
1967 * it violates the RFC that uses duplicate ACKs, often these are equal
1968 * but when e.g. out-of-window ACKs or packet duplication occurs,
1969 * they differ. Since neither occurs due to loss, TCP should really
1970 * ignore them.
1971 */
1972 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1973 {
1974 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1975 }
1976
1977 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1978 {
1979 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1980 }
1981
1982 static inline int tcp_head_timedout(struct sock *sk)
1983 {
1984 struct tcp_sock *tp = tcp_sk(sk);
1985
1986 return tp->packets_out &&
1987 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1988 }
1989
1990 /* Linux NewReno/SACK/FACK/ECN state machine.
1991 * --------------------------------------
1992 *
1993 * "Open" Normal state, no dubious events, fast path.
1994 * "Disorder" In all the respects it is "Open",
1995 * but requires a bit more attention. It is entered when
1996 * we see some SACKs or dupacks. It is split of "Open"
1997 * mainly to move some processing from fast path to slow one.
1998 * "CWR" CWND was reduced due to some Congestion Notification event.
1999 * It can be ECN, ICMP source quench, local device congestion.
2000 * "Recovery" CWND was reduced, we are fast-retransmitting.
2001 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2002 *
2003 * tcp_fastretrans_alert() is entered:
2004 * - each incoming ACK, if state is not "Open"
2005 * - when arrived ACK is unusual, namely:
2006 * * SACK
2007 * * Duplicate ACK.
2008 * * ECN ECE.
2009 *
2010 * Counting packets in flight is pretty simple.
2011 *
2012 * in_flight = packets_out - left_out + retrans_out
2013 *
2014 * packets_out is SND.NXT-SND.UNA counted in packets.
2015 *
2016 * retrans_out is number of retransmitted segments.
2017 *
2018 * left_out is number of segments left network, but not ACKed yet.
2019 *
2020 * left_out = sacked_out + lost_out
2021 *
2022 * sacked_out: Packets, which arrived to receiver out of order
2023 * and hence not ACKed. With SACKs this number is simply
2024 * amount of SACKed data. Even without SACKs
2025 * it is easy to give pretty reliable estimate of this number,
2026 * counting duplicate ACKs.
2027 *
2028 * lost_out: Packets lost by network. TCP has no explicit
2029 * "loss notification" feedback from network (for now).
2030 * It means that this number can be only _guessed_.
2031 * Actually, it is the heuristics to predict lossage that
2032 * distinguishes different algorithms.
2033 *
2034 * F.e. after RTO, when all the queue is considered as lost,
2035 * lost_out = packets_out and in_flight = retrans_out.
2036 *
2037 * Essentially, we have now two algorithms counting
2038 * lost packets.
2039 *
2040 * FACK: It is the simplest heuristics. As soon as we decided
2041 * that something is lost, we decide that _all_ not SACKed
2042 * packets until the most forward SACK are lost. I.e.
2043 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2044 * It is absolutely correct estimate, if network does not reorder
2045 * packets. And it loses any connection to reality when reordering
2046 * takes place. We use FACK by default until reordering
2047 * is suspected on the path to this destination.
2048 *
2049 * NewReno: when Recovery is entered, we assume that one segment
2050 * is lost (classic Reno). While we are in Recovery and
2051 * a partial ACK arrives, we assume that one more packet
2052 * is lost (NewReno). This heuristics are the same in NewReno
2053 * and SACK.
2054 *
2055 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2056 * deflation etc. CWND is real congestion window, never inflated, changes
2057 * only according to classic VJ rules.
2058 *
2059 * Really tricky (and requiring careful tuning) part of algorithm
2060 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2061 * The first determines the moment _when_ we should reduce CWND and,
2062 * hence, slow down forward transmission. In fact, it determines the moment
2063 * when we decide that hole is caused by loss, rather than by a reorder.
2064 *
2065 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2066 * holes, caused by lost packets.
2067 *
2068 * And the most logically complicated part of algorithm is undo
2069 * heuristics. We detect false retransmits due to both too early
2070 * fast retransmit (reordering) and underestimated RTO, analyzing
2071 * timestamps and D-SACKs. When we detect that some segments were
2072 * retransmitted by mistake and CWND reduction was wrong, we undo
2073 * window reduction and abort recovery phase. This logic is hidden
2074 * inside several functions named tcp_try_undo_<something>.
2075 */
2076
2077 /* This function decides, when we should leave Disordered state
2078 * and enter Recovery phase, reducing congestion window.
2079 *
2080 * Main question: may we further continue forward transmission
2081 * with the same cwnd?
2082 */
2083 static int tcp_time_to_recover(struct sock *sk)
2084 {
2085 struct tcp_sock *tp = tcp_sk(sk);
2086 __u32 packets_out;
2087
2088 /* Do not perform any recovery during F-RTO algorithm */
2089 if (tp->frto_counter)
2090 return 0;
2091
2092 /* Trick#1: The loss is proven. */
2093 if (tp->lost_out)
2094 return 1;
2095
2096 /* Not-A-Trick#2 : Classic rule... */
2097 if (tcp_dupack_heurestics(tp) > tp->reordering)
2098 return 1;
2099
2100 /* Trick#3 : when we use RFC2988 timer restart, fast
2101 * retransmit can be triggered by timeout of queue head.
2102 */
2103 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2104 return 1;
2105
2106 /* Trick#4: It is still not OK... But will it be useful to delay
2107 * recovery more?
2108 */
2109 packets_out = tp->packets_out;
2110 if (packets_out <= tp->reordering &&
2111 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2112 !tcp_may_send_now(sk)) {
2113 /* We have nothing to send. This connection is limited
2114 * either by receiver window or by application.
2115 */
2116 return 1;
2117 }
2118
2119 return 0;
2120 }
2121
2122 /* RFC: This is from the original, I doubt that this is necessary at all:
2123 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2124 * retransmitted past LOST markings in the first place? I'm not fully sure
2125 * about undo and end of connection cases, which can cause R without L?
2126 */
2127 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2128 struct sk_buff *skb)
2129 {
2130 if ((tp->retransmit_skb_hint != NULL) &&
2131 before(TCP_SKB_CB(skb)->seq,
2132 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2133 tp->retransmit_skb_hint = NULL;
2134 }
2135
2136 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2137 * is against sacked "cnt", otherwise it's against facked "cnt"
2138 */
2139 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2140 {
2141 struct tcp_sock *tp = tcp_sk(sk);
2142 struct sk_buff *skb;
2143 int cnt;
2144
2145 BUG_TRAP(packets <= tp->packets_out);
2146 if (tp->lost_skb_hint) {
2147 skb = tp->lost_skb_hint;
2148 cnt = tp->lost_cnt_hint;
2149 } else {
2150 skb = tcp_write_queue_head(sk);
2151 cnt = 0;
2152 }
2153
2154 tcp_for_write_queue_from(skb, sk) {
2155 if (skb == tcp_send_head(sk))
2156 break;
2157 /* TODO: do this better */
2158 /* this is not the most efficient way to do this... */
2159 tp->lost_skb_hint = skb;
2160 tp->lost_cnt_hint = cnt;
2161
2162 if (tcp_is_fack(tp) ||
2163 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2164 cnt += tcp_skb_pcount(skb);
2165
2166 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2167 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2168 break;
2169 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2170 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2171 tp->lost_out += tcp_skb_pcount(skb);
2172 tcp_verify_retransmit_hint(tp, skb);
2173 }
2174 }
2175 tcp_verify_left_out(tp);
2176 }
2177
2178 /* Account newly detected lost packet(s) */
2179
2180 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2181 {
2182 struct tcp_sock *tp = tcp_sk(sk);
2183
2184 if (tcp_is_reno(tp)) {
2185 tcp_mark_head_lost(sk, 1, fast_rexmit);
2186 } else if (tcp_is_fack(tp)) {
2187 int lost = tp->fackets_out - tp->reordering;
2188 if (lost <= 0)
2189 lost = 1;
2190 tcp_mark_head_lost(sk, lost, fast_rexmit);
2191 } else {
2192 int sacked_upto = tp->sacked_out - tp->reordering;
2193 if (sacked_upto < 0)
2194 sacked_upto = 0;
2195 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2196 }
2197
2198 /* New heuristics: it is possible only after we switched
2199 * to restart timer each time when something is ACKed.
2200 * Hence, we can detect timed out packets during fast
2201 * retransmit without falling to slow start.
2202 */
2203 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2204 struct sk_buff *skb;
2205
2206 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2207 : tcp_write_queue_head(sk);
2208
2209 tcp_for_write_queue_from(skb, sk) {
2210 if (skb == tcp_send_head(sk))
2211 break;
2212 if (!tcp_skb_timedout(sk, skb))
2213 break;
2214
2215 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2216 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2217 tp->lost_out += tcp_skb_pcount(skb);
2218 tcp_verify_retransmit_hint(tp, skb);
2219 }
2220 }
2221
2222 tp->scoreboard_skb_hint = skb;
2223
2224 tcp_verify_left_out(tp);
2225 }
2226 }
2227
2228 /* CWND moderation, preventing bursts due to too big ACKs
2229 * in dubious situations.
2230 */
2231 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2232 {
2233 tp->snd_cwnd = min(tp->snd_cwnd,
2234 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2235 tp->snd_cwnd_stamp = tcp_time_stamp;
2236 }
2237
2238 /* Lower bound on congestion window is slow start threshold
2239 * unless congestion avoidance choice decides to overide it.
2240 */
2241 static inline u32 tcp_cwnd_min(const struct sock *sk)
2242 {
2243 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2244
2245 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2246 }
2247
2248 /* Decrease cwnd each second ack. */
2249 static void tcp_cwnd_down(struct sock *sk, int flag)
2250 {
2251 struct tcp_sock *tp = tcp_sk(sk);
2252 int decr = tp->snd_cwnd_cnt + 1;
2253
2254 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2255 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2256 tp->snd_cwnd_cnt = decr&1;
2257 decr >>= 1;
2258
2259 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2260 tp->snd_cwnd -= decr;
2261
2262 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2263 tp->snd_cwnd_stamp = tcp_time_stamp;
2264 }
2265 }
2266
2267 /* Nothing was retransmitted or returned timestamp is less
2268 * than timestamp of the first retransmission.
2269 */
2270 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2271 {
2272 return !tp->retrans_stamp ||
2273 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2274 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2275 }
2276
2277 /* Undo procedures. */
2278
2279 #if FASTRETRANS_DEBUG > 1
2280 static void DBGUNDO(struct sock *sk, const char *msg)
2281 {
2282 struct tcp_sock *tp = tcp_sk(sk);
2283 struct inet_sock *inet = inet_sk(sk);
2284
2285 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2286 msg,
2287 NIPQUAD(inet->daddr), ntohs(inet->dport),
2288 tp->snd_cwnd, tcp_left_out(tp),
2289 tp->snd_ssthresh, tp->prior_ssthresh,
2290 tp->packets_out);
2291 }
2292 #else
2293 #define DBGUNDO(x...) do { } while (0)
2294 #endif
2295
2296 static void tcp_undo_cwr(struct sock *sk, const int undo)
2297 {
2298 struct tcp_sock *tp = tcp_sk(sk);
2299
2300 if (tp->prior_ssthresh) {
2301 const struct inet_connection_sock *icsk = inet_csk(sk);
2302
2303 if (icsk->icsk_ca_ops->undo_cwnd)
2304 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2305 else
2306 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2307
2308 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2309 tp->snd_ssthresh = tp->prior_ssthresh;
2310 TCP_ECN_withdraw_cwr(tp);
2311 }
2312 } else {
2313 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2314 }
2315 tcp_moderate_cwnd(tp);
2316 tp->snd_cwnd_stamp = tcp_time_stamp;
2317
2318 /* There is something screwy going on with the retrans hints after
2319 an undo */
2320 tcp_clear_all_retrans_hints(tp);
2321 }
2322
2323 static inline int tcp_may_undo(struct tcp_sock *tp)
2324 {
2325 return tp->undo_marker &&
2326 (!tp->undo_retrans || tcp_packet_delayed(tp));
2327 }
2328
2329 /* People celebrate: "We love our President!" */
2330 static int tcp_try_undo_recovery(struct sock *sk)
2331 {
2332 struct tcp_sock *tp = tcp_sk(sk);
2333
2334 if (tcp_may_undo(tp)) {
2335 /* Happy end! We did not retransmit anything
2336 * or our original transmission succeeded.
2337 */
2338 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2339 tcp_undo_cwr(sk, 1);
2340 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2341 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2342 else
2343 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2344 tp->undo_marker = 0;
2345 }
2346 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2347 /* Hold old state until something *above* high_seq
2348 * is ACKed. For Reno it is MUST to prevent false
2349 * fast retransmits (RFC2582). SACK TCP is safe. */
2350 tcp_moderate_cwnd(tp);
2351 return 1;
2352 }
2353 tcp_set_ca_state(sk, TCP_CA_Open);
2354 return 0;
2355 }
2356
2357 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2358 static void tcp_try_undo_dsack(struct sock *sk)
2359 {
2360 struct tcp_sock *tp = tcp_sk(sk);
2361
2362 if (tp->undo_marker && !tp->undo_retrans) {
2363 DBGUNDO(sk, "D-SACK");
2364 tcp_undo_cwr(sk, 1);
2365 tp->undo_marker = 0;
2366 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2367 }
2368 }
2369
2370 /* Undo during fast recovery after partial ACK. */
2371
2372 static int tcp_try_undo_partial(struct sock *sk, int acked)
2373 {
2374 struct tcp_sock *tp = tcp_sk(sk);
2375 /* Partial ACK arrived. Force Hoe's retransmit. */
2376 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2377
2378 if (tcp_may_undo(tp)) {
2379 /* Plain luck! Hole if filled with delayed
2380 * packet, rather than with a retransmit.
2381 */
2382 if (tp->retrans_out == 0)
2383 tp->retrans_stamp = 0;
2384
2385 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2386
2387 DBGUNDO(sk, "Hoe");
2388 tcp_undo_cwr(sk, 0);
2389 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2390
2391 /* So... Do not make Hoe's retransmit yet.
2392 * If the first packet was delayed, the rest
2393 * ones are most probably delayed as well.
2394 */
2395 failed = 0;
2396 }
2397 return failed;
2398 }
2399
2400 /* Undo during loss recovery after partial ACK. */
2401 static int tcp_try_undo_loss(struct sock *sk)
2402 {
2403 struct tcp_sock *tp = tcp_sk(sk);
2404
2405 if (tcp_may_undo(tp)) {
2406 struct sk_buff *skb;
2407 tcp_for_write_queue(skb, sk) {
2408 if (skb == tcp_send_head(sk))
2409 break;
2410 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2411 }
2412
2413 tcp_clear_all_retrans_hints(tp);
2414
2415 DBGUNDO(sk, "partial loss");
2416 tp->lost_out = 0;
2417 tcp_undo_cwr(sk, 1);
2418 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2419 inet_csk(sk)->icsk_retransmits = 0;
2420 tp->undo_marker = 0;
2421 if (tcp_is_sack(tp))
2422 tcp_set_ca_state(sk, TCP_CA_Open);
2423 return 1;
2424 }
2425 return 0;
2426 }
2427
2428 static inline void tcp_complete_cwr(struct sock *sk)
2429 {
2430 struct tcp_sock *tp = tcp_sk(sk);
2431 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2432 tp->snd_cwnd_stamp = tcp_time_stamp;
2433 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2434 }
2435
2436 static void tcp_try_to_open(struct sock *sk, int flag)
2437 {
2438 struct tcp_sock *tp = tcp_sk(sk);
2439
2440 tcp_verify_left_out(tp);
2441
2442 if (tp->retrans_out == 0)
2443 tp->retrans_stamp = 0;
2444
2445 if (flag&FLAG_ECE)
2446 tcp_enter_cwr(sk, 1);
2447
2448 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2449 int state = TCP_CA_Open;
2450
2451 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2452 state = TCP_CA_Disorder;
2453
2454 if (inet_csk(sk)->icsk_ca_state != state) {
2455 tcp_set_ca_state(sk, state);
2456 tp->high_seq = tp->snd_nxt;
2457 }
2458 tcp_moderate_cwnd(tp);
2459 } else {
2460 tcp_cwnd_down(sk, flag);
2461 }
2462 }
2463
2464 static void tcp_mtup_probe_failed(struct sock *sk)
2465 {
2466 struct inet_connection_sock *icsk = inet_csk(sk);
2467
2468 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2469 icsk->icsk_mtup.probe_size = 0;
2470 }
2471
2472 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2473 {
2474 struct tcp_sock *tp = tcp_sk(sk);
2475 struct inet_connection_sock *icsk = inet_csk(sk);
2476
2477 /* FIXME: breaks with very large cwnd */
2478 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2479 tp->snd_cwnd = tp->snd_cwnd *
2480 tcp_mss_to_mtu(sk, tp->mss_cache) /
2481 icsk->icsk_mtup.probe_size;
2482 tp->snd_cwnd_cnt = 0;
2483 tp->snd_cwnd_stamp = tcp_time_stamp;
2484 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2485
2486 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2487 icsk->icsk_mtup.probe_size = 0;
2488 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2489 }
2490
2491
2492 /* Process an event, which can update packets-in-flight not trivially.
2493 * Main goal of this function is to calculate new estimate for left_out,
2494 * taking into account both packets sitting in receiver's buffer and
2495 * packets lost by network.
2496 *
2497 * Besides that it does CWND reduction, when packet loss is detected
2498 * and changes state of machine.
2499 *
2500 * It does _not_ decide what to send, it is made in function
2501 * tcp_xmit_retransmit_queue().
2502 */
2503 static void
2504 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2505 {
2506 struct inet_connection_sock *icsk = inet_csk(sk);
2507 struct tcp_sock *tp = tcp_sk(sk);
2508 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2509 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2510 (tcp_fackets_out(tp) > tp->reordering));
2511 int fast_rexmit = 0;
2512
2513 /* Some technical things:
2514 * 1. Reno does not count dupacks (sacked_out) automatically. */
2515 if (!tp->packets_out)
2516 tp->sacked_out = 0;
2517
2518 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2519 tp->fackets_out = 0;
2520
2521 /* Now state machine starts.
2522 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2523 if (flag&FLAG_ECE)
2524 tp->prior_ssthresh = 0;
2525
2526 /* B. In all the states check for reneging SACKs. */
2527 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2528 return;
2529
2530 /* C. Process data loss notification, provided it is valid. */
2531 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2532 before(tp->snd_una, tp->high_seq) &&
2533 icsk->icsk_ca_state != TCP_CA_Open &&
2534 tp->fackets_out > tp->reordering) {
2535 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2536 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2537 }
2538
2539 /* D. Check consistency of the current state. */
2540 tcp_verify_left_out(tp);
2541
2542 /* E. Check state exit conditions. State can be terminated
2543 * when high_seq is ACKed. */
2544 if (icsk->icsk_ca_state == TCP_CA_Open) {
2545 BUG_TRAP(tp->retrans_out == 0);
2546 tp->retrans_stamp = 0;
2547 } else if (!before(tp->snd_una, tp->high_seq)) {
2548 switch (icsk->icsk_ca_state) {
2549 case TCP_CA_Loss:
2550 icsk->icsk_retransmits = 0;
2551 if (tcp_try_undo_recovery(sk))
2552 return;
2553 break;
2554
2555 case TCP_CA_CWR:
2556 /* CWR is to be held something *above* high_seq
2557 * is ACKed for CWR bit to reach receiver. */
2558 if (tp->snd_una != tp->high_seq) {
2559 tcp_complete_cwr(sk);
2560 tcp_set_ca_state(sk, TCP_CA_Open);
2561 }
2562 break;
2563
2564 case TCP_CA_Disorder:
2565 tcp_try_undo_dsack(sk);
2566 if (!tp->undo_marker ||
2567 /* For SACK case do not Open to allow to undo
2568 * catching for all duplicate ACKs. */
2569 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2570 tp->undo_marker = 0;
2571 tcp_set_ca_state(sk, TCP_CA_Open);
2572 }
2573 break;
2574
2575 case TCP_CA_Recovery:
2576 if (tcp_is_reno(tp))
2577 tcp_reset_reno_sack(tp);
2578 if (tcp_try_undo_recovery(sk))
2579 return;
2580 tcp_complete_cwr(sk);
2581 break;
2582 }
2583 }
2584
2585 /* F. Process state. */
2586 switch (icsk->icsk_ca_state) {
2587 case TCP_CA_Recovery:
2588 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2589 if (tcp_is_reno(tp) && is_dupack)
2590 tcp_add_reno_sack(sk);
2591 } else
2592 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2593 break;
2594 case TCP_CA_Loss:
2595 if (flag&FLAG_DATA_ACKED)
2596 icsk->icsk_retransmits = 0;
2597 if (!tcp_try_undo_loss(sk)) {
2598 tcp_moderate_cwnd(tp);
2599 tcp_xmit_retransmit_queue(sk);
2600 return;
2601 }
2602 if (icsk->icsk_ca_state != TCP_CA_Open)
2603 return;
2604 /* Loss is undone; fall through to processing in Open state. */
2605 default:
2606 if (tcp_is_reno(tp)) {
2607 if (flag & FLAG_SND_UNA_ADVANCED)
2608 tcp_reset_reno_sack(tp);
2609 if (is_dupack)
2610 tcp_add_reno_sack(sk);
2611 }
2612
2613 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2614 tcp_try_undo_dsack(sk);
2615
2616 if (!tcp_time_to_recover(sk)) {
2617 tcp_try_to_open(sk, flag);
2618 return;
2619 }
2620
2621 /* MTU probe failure: don't reduce cwnd */
2622 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2623 icsk->icsk_mtup.probe_size &&
2624 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2625 tcp_mtup_probe_failed(sk);
2626 /* Restores the reduction we did in tcp_mtup_probe() */
2627 tp->snd_cwnd++;
2628 tcp_simple_retransmit(sk);
2629 return;
2630 }
2631
2632 /* Otherwise enter Recovery state */
2633
2634 if (tcp_is_reno(tp))
2635 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2636 else
2637 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2638
2639 tp->high_seq = tp->snd_nxt;
2640 tp->prior_ssthresh = 0;
2641 tp->undo_marker = tp->snd_una;
2642 tp->undo_retrans = tp->retrans_out;
2643
2644 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2645 if (!(flag&FLAG_ECE))
2646 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2647 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2648 TCP_ECN_queue_cwr(tp);
2649 }
2650
2651 tp->bytes_acked = 0;
2652 tp->snd_cwnd_cnt = 0;
2653 tcp_set_ca_state(sk, TCP_CA_Recovery);
2654 fast_rexmit = 1;
2655 }
2656
2657 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2658 tcp_update_scoreboard(sk, fast_rexmit);
2659 tcp_cwnd_down(sk, flag);
2660 tcp_xmit_retransmit_queue(sk);
2661 }
2662
2663 /* Read draft-ietf-tcplw-high-performance before mucking
2664 * with this code. (Supersedes RFC1323)
2665 */
2666 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2667 {
2668 /* RTTM Rule: A TSecr value received in a segment is used to
2669 * update the averaged RTT measurement only if the segment
2670 * acknowledges some new data, i.e., only if it advances the
2671 * left edge of the send window.
2672 *
2673 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2674 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2675 *
2676 * Changed: reset backoff as soon as we see the first valid sample.
2677 * If we do not, we get strongly overestimated rto. With timestamps
2678 * samples are accepted even from very old segments: f.e., when rtt=1
2679 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2680 * answer arrives rto becomes 120 seconds! If at least one of segments
2681 * in window is lost... Voila. --ANK (010210)
2682 */
2683 struct tcp_sock *tp = tcp_sk(sk);
2684 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2685 tcp_rtt_estimator(sk, seq_rtt);
2686 tcp_set_rto(sk);
2687 inet_csk(sk)->icsk_backoff = 0;
2688 tcp_bound_rto(sk);
2689 }
2690
2691 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2692 {
2693 /* We don't have a timestamp. Can only use
2694 * packets that are not retransmitted to determine
2695 * rtt estimates. Also, we must not reset the
2696 * backoff for rto until we get a non-retransmitted
2697 * packet. This allows us to deal with a situation
2698 * where the network delay has increased suddenly.
2699 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2700 */
2701
2702 if (flag & FLAG_RETRANS_DATA_ACKED)
2703 return;
2704
2705 tcp_rtt_estimator(sk, seq_rtt);
2706 tcp_set_rto(sk);
2707 inet_csk(sk)->icsk_backoff = 0;
2708 tcp_bound_rto(sk);
2709 }
2710
2711 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2712 const s32 seq_rtt)
2713 {
2714 const struct tcp_sock *tp = tcp_sk(sk);
2715 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2716 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2717 tcp_ack_saw_tstamp(sk, flag);
2718 else if (seq_rtt >= 0)
2719 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2720 }
2721
2722 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2723 u32 in_flight, int good)
2724 {
2725 const struct inet_connection_sock *icsk = inet_csk(sk);
2726 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2727 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2728 }
2729
2730 /* Restart timer after forward progress on connection.
2731 * RFC2988 recommends to restart timer to now+rto.
2732 */
2733 static void tcp_rearm_rto(struct sock *sk)
2734 {
2735 struct tcp_sock *tp = tcp_sk(sk);
2736
2737 if (!tp->packets_out) {
2738 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2739 } else {
2740 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2741 }
2742 }
2743
2744 /* If we get here, the whole TSO packet has not been acked. */
2745 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2746 {
2747 struct tcp_sock *tp = tcp_sk(sk);
2748 u32 packets_acked;
2749
2750 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2751
2752 packets_acked = tcp_skb_pcount(skb);
2753 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2754 return 0;
2755 packets_acked -= tcp_skb_pcount(skb);
2756
2757 if (packets_acked) {
2758 BUG_ON(tcp_skb_pcount(skb) == 0);
2759 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2760 }
2761
2762 return packets_acked;
2763 }
2764
2765 /* Remove acknowledged frames from the retransmission queue. If our packet
2766 * is before the ack sequence we can discard it as it's confirmed to have
2767 * arrived at the other end.
2768 */
2769 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2770 int prior_fackets)
2771 {
2772 struct tcp_sock *tp = tcp_sk(sk);
2773 const struct inet_connection_sock *icsk = inet_csk(sk);
2774 struct sk_buff *skb;
2775 u32 now = tcp_time_stamp;
2776 int fully_acked = 1;
2777 int flag = 0;
2778 int prior_packets = tp->packets_out;
2779 u32 cnt = 0;
2780 u32 reord = tp->packets_out;
2781 s32 seq_rtt = -1;
2782 s32 ca_seq_rtt = -1;
2783 ktime_t last_ackt = net_invalid_timestamp();
2784
2785 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2786 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2787 u32 end_seq;
2788 u32 packets_acked;
2789 u8 sacked = scb->sacked;
2790
2791 /* Determine how many packets and what bytes were acked, tso and else */
2792 if (after(scb->end_seq, tp->snd_una)) {
2793 if (tcp_skb_pcount(skb) == 1 ||
2794 !after(tp->snd_una, scb->seq))
2795 break;
2796
2797 packets_acked = tcp_tso_acked(sk, skb);
2798 if (!packets_acked)
2799 break;
2800
2801 fully_acked = 0;
2802 end_seq = tp->snd_una;
2803 } else {
2804 packets_acked = tcp_skb_pcount(skb);
2805 end_seq = scb->end_seq;
2806 }
2807
2808 /* MTU probing checks */
2809 if (fully_acked && icsk->icsk_mtup.probe_size &&
2810 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2811 tcp_mtup_probe_success(sk, skb);
2812 }
2813
2814 if (sacked) {
2815 if (sacked & TCPCB_RETRANS) {
2816 if (sacked & TCPCB_SACKED_RETRANS)
2817 tp->retrans_out -= packets_acked;
2818 flag |= FLAG_RETRANS_DATA_ACKED;
2819 ca_seq_rtt = -1;
2820 seq_rtt = -1;
2821 if ((flag & FLAG_DATA_ACKED) ||
2822 (packets_acked > 1))
2823 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2824 } else {
2825 ca_seq_rtt = now - scb->when;
2826 last_ackt = skb->tstamp;
2827 if (seq_rtt < 0) {
2828 seq_rtt = ca_seq_rtt;
2829 }
2830 if (!(sacked & TCPCB_SACKED_ACKED))
2831 reord = min(cnt, reord);
2832 }
2833
2834 if (sacked & TCPCB_SACKED_ACKED)
2835 tp->sacked_out -= packets_acked;
2836 if (sacked & TCPCB_LOST)
2837 tp->lost_out -= packets_acked;
2838
2839 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2840 !before(end_seq, tp->snd_up))
2841 tp->urg_mode = 0;
2842 } else {
2843 ca_seq_rtt = now - scb->when;
2844 last_ackt = skb->tstamp;
2845 if (seq_rtt < 0) {
2846 seq_rtt = ca_seq_rtt;
2847 }
2848 reord = min(cnt, reord);
2849 }
2850 tp->packets_out -= packets_acked;
2851 cnt += packets_acked;
2852
2853 /* Initial outgoing SYN's get put onto the write_queue
2854 * just like anything else we transmit. It is not
2855 * true data, and if we misinform our callers that
2856 * this ACK acks real data, we will erroneously exit
2857 * connection startup slow start one packet too
2858 * quickly. This is severely frowned upon behavior.
2859 */
2860 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2861 flag |= FLAG_DATA_ACKED;
2862 } else {
2863 flag |= FLAG_SYN_ACKED;
2864 tp->retrans_stamp = 0;
2865 }
2866
2867 if (!fully_acked)
2868 break;
2869
2870 tcp_unlink_write_queue(skb, sk);
2871 sk_stream_free_skb(sk, skb);
2872 tcp_clear_all_retrans_hints(tp);
2873 }
2874
2875 if (flag & FLAG_ACKED) {
2876 u32 pkts_acked = prior_packets - tp->packets_out;
2877 const struct tcp_congestion_ops *ca_ops
2878 = inet_csk(sk)->icsk_ca_ops;
2879
2880 tcp_ack_update_rtt(sk, flag, seq_rtt);
2881 tcp_rearm_rto(sk);
2882
2883 if (tcp_is_reno(tp)) {
2884 tcp_remove_reno_sacks(sk, pkts_acked);
2885 } else {
2886 /* Non-retransmitted hole got filled? That's reordering */
2887 if (reord < prior_fackets)
2888 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2889 }
2890
2891 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2892
2893 if (ca_ops->pkts_acked) {
2894 s32 rtt_us = -1;
2895
2896 /* Is the ACK triggering packet unambiguous? */
2897 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2898 /* High resolution needed and available? */
2899 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2900 !ktime_equal(last_ackt,
2901 net_invalid_timestamp()))
2902 rtt_us = ktime_us_delta(ktime_get_real(),
2903 last_ackt);
2904 else if (ca_seq_rtt > 0)
2905 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2906 }
2907
2908 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2909 }
2910 }
2911
2912 #if FASTRETRANS_DEBUG > 0
2913 BUG_TRAP((int)tp->sacked_out >= 0);
2914 BUG_TRAP((int)tp->lost_out >= 0);
2915 BUG_TRAP((int)tp->retrans_out >= 0);
2916 if (!tp->packets_out && tcp_is_sack(tp)) {
2917 icsk = inet_csk(sk);
2918 if (tp->lost_out) {
2919 printk(KERN_DEBUG "Leak l=%u %d\n",
2920 tp->lost_out, icsk->icsk_ca_state);
2921 tp->lost_out = 0;
2922 }
2923 if (tp->sacked_out) {
2924 printk(KERN_DEBUG "Leak s=%u %d\n",
2925 tp->sacked_out, icsk->icsk_ca_state);
2926 tp->sacked_out = 0;
2927 }
2928 if (tp->retrans_out) {
2929 printk(KERN_DEBUG "Leak r=%u %d\n",
2930 tp->retrans_out, icsk->icsk_ca_state);
2931 tp->retrans_out = 0;
2932 }
2933 }
2934 #endif
2935 *seq_rtt_p = seq_rtt;
2936 return flag;
2937 }
2938
2939 static void tcp_ack_probe(struct sock *sk)
2940 {
2941 const struct tcp_sock *tp = tcp_sk(sk);
2942 struct inet_connection_sock *icsk = inet_csk(sk);
2943
2944 /* Was it a usable window open? */
2945
2946 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2947 tp->snd_una + tp->snd_wnd)) {
2948 icsk->icsk_backoff = 0;
2949 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2950 /* Socket must be waked up by subsequent tcp_data_snd_check().
2951 * This function is not for random using!
2952 */
2953 } else {
2954 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2955 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2956 TCP_RTO_MAX);
2957 }
2958 }
2959
2960 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2961 {
2962 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2963 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2964 }
2965
2966 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2967 {
2968 const struct tcp_sock *tp = tcp_sk(sk);
2969 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2970 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2971 }
2972
2973 /* Check that window update is acceptable.
2974 * The function assumes that snd_una<=ack<=snd_next.
2975 */
2976 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2977 const u32 ack_seq, const u32 nwin)
2978 {
2979 return (after(ack, tp->snd_una) ||
2980 after(ack_seq, tp->snd_wl1) ||
2981 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2982 }
2983
2984 /* Update our send window.
2985 *
2986 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2987 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2988 */
2989 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2990 u32 ack_seq)
2991 {
2992 struct tcp_sock *tp = tcp_sk(sk);
2993 int flag = 0;
2994 u32 nwin = ntohs(tcp_hdr(skb)->window);
2995
2996 if (likely(!tcp_hdr(skb)->syn))
2997 nwin <<= tp->rx_opt.snd_wscale;
2998
2999 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3000 flag |= FLAG_WIN_UPDATE;
3001 tcp_update_wl(tp, ack, ack_seq);
3002
3003 if (tp->snd_wnd != nwin) {
3004 tp->snd_wnd = nwin;
3005
3006 /* Note, it is the only place, where
3007 * fast path is recovered for sending TCP.
3008 */
3009 tp->pred_flags = 0;
3010 tcp_fast_path_check(sk);
3011
3012 if (nwin > tp->max_window) {
3013 tp->max_window = nwin;
3014 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3015 }
3016 }
3017 }
3018
3019 tp->snd_una = ack;
3020
3021 return flag;
3022 }
3023
3024 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3025 * continue in congestion avoidance.
3026 */
3027 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3028 {
3029 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3030 tp->snd_cwnd_cnt = 0;
3031 tp->bytes_acked = 0;
3032 TCP_ECN_queue_cwr(tp);
3033 tcp_moderate_cwnd(tp);
3034 }
3035
3036 /* A conservative spurious RTO response algorithm: reduce cwnd using
3037 * rate halving and continue in congestion avoidance.
3038 */
3039 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3040 {
3041 tcp_enter_cwr(sk, 0);
3042 }
3043
3044 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3045 {
3046 if (flag&FLAG_ECE)
3047 tcp_ratehalving_spur_to_response(sk);
3048 else
3049 tcp_undo_cwr(sk, 1);
3050 }
3051
3052 /* F-RTO spurious RTO detection algorithm (RFC4138)
3053 *
3054 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3055 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3056 * window (but not to or beyond highest sequence sent before RTO):
3057 * On First ACK, send two new segments out.
3058 * On Second ACK, RTO was likely spurious. Do spurious response (response
3059 * algorithm is not part of the F-RTO detection algorithm
3060 * given in RFC4138 but can be selected separately).
3061 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3062 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3063 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3064 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3065 *
3066 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3067 * original window even after we transmit two new data segments.
3068 *
3069 * SACK version:
3070 * on first step, wait until first cumulative ACK arrives, then move to
3071 * the second step. In second step, the next ACK decides.
3072 *
3073 * F-RTO is implemented (mainly) in four functions:
3074 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3075 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3076 * called when tcp_use_frto() showed green light
3077 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3078 * - tcp_enter_frto_loss() is called if there is not enough evidence
3079 * to prove that the RTO is indeed spurious. It transfers the control
3080 * from F-RTO to the conventional RTO recovery
3081 */
3082 static int tcp_process_frto(struct sock *sk, int flag)
3083 {
3084 struct tcp_sock *tp = tcp_sk(sk);
3085
3086 tcp_verify_left_out(tp);
3087
3088 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3089 if (flag&FLAG_DATA_ACKED)
3090 inet_csk(sk)->icsk_retransmits = 0;
3091
3092 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3093 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3094 tp->undo_marker = 0;
3095
3096 if (!before(tp->snd_una, tp->frto_highmark)) {
3097 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3098 return 1;
3099 }
3100
3101 if (!IsSackFrto() || tcp_is_reno(tp)) {
3102 /* RFC4138 shortcoming in step 2; should also have case c):
3103 * ACK isn't duplicate nor advances window, e.g., opposite dir
3104 * data, winupdate
3105 */
3106 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3107 return 1;
3108
3109 if (!(flag&FLAG_DATA_ACKED)) {
3110 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3111 flag);
3112 return 1;
3113 }
3114 } else {
3115 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3116 /* Prevent sending of new data. */
3117 tp->snd_cwnd = min(tp->snd_cwnd,
3118 tcp_packets_in_flight(tp));
3119 return 1;
3120 }
3121
3122 if ((tp->frto_counter >= 2) &&
3123 (!(flag&FLAG_FORWARD_PROGRESS) ||
3124 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3125 /* RFC4138 shortcoming (see comment above) */
3126 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3127 return 1;
3128
3129 tcp_enter_frto_loss(sk, 3, flag);
3130 return 1;
3131 }
3132 }
3133
3134 if (tp->frto_counter == 1) {
3135 /* tcp_may_send_now needs to see updated state */
3136 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3137 tp->frto_counter = 2;
3138
3139 if (!tcp_may_send_now(sk))
3140 tcp_enter_frto_loss(sk, 2, flag);
3141
3142 return 1;
3143 } else {
3144 switch (sysctl_tcp_frto_response) {
3145 case 2:
3146 tcp_undo_spur_to_response(sk, flag);
3147 break;
3148 case 1:
3149 tcp_conservative_spur_to_response(tp);
3150 break;
3151 default:
3152 tcp_ratehalving_spur_to_response(sk);
3153 break;
3154 }
3155 tp->frto_counter = 0;
3156 tp->undo_marker = 0;
3157 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3158 }
3159 return 0;
3160 }
3161
3162 /* This routine deals with incoming acks, but not outgoing ones. */
3163 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3164 {
3165 struct inet_connection_sock *icsk = inet_csk(sk);
3166 struct tcp_sock *tp = tcp_sk(sk);
3167 u32 prior_snd_una = tp->snd_una;
3168 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3169 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3170 u32 prior_in_flight;
3171 u32 prior_fackets;
3172 s32 seq_rtt;
3173 int prior_packets;
3174 int frto_cwnd = 0;
3175
3176 /* If the ack is newer than sent or older than previous acks
3177 * then we can probably ignore it.
3178 */
3179 if (after(ack, tp->snd_nxt))
3180 goto uninteresting_ack;
3181
3182 if (before(ack, prior_snd_una))
3183 goto old_ack;
3184
3185 if (after(ack, prior_snd_una))
3186 flag |= FLAG_SND_UNA_ADVANCED;
3187
3188 if (sysctl_tcp_abc) {
3189 if (icsk->icsk_ca_state < TCP_CA_CWR)
3190 tp->bytes_acked += ack - prior_snd_una;
3191 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3192 /* we assume just one segment left network */
3193 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3194 }
3195
3196 prior_fackets = tp->fackets_out;
3197 prior_in_flight = tcp_packets_in_flight(tp);
3198
3199 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3200 /* Window is constant, pure forward advance.
3201 * No more checks are required.
3202 * Note, we use the fact that SND.UNA>=SND.WL2.
3203 */
3204 tcp_update_wl(tp, ack, ack_seq);
3205 tp->snd_una = ack;
3206 flag |= FLAG_WIN_UPDATE;
3207
3208 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3209
3210 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3211 } else {
3212 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3213 flag |= FLAG_DATA;
3214 else
3215 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3216
3217 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3218
3219 if (TCP_SKB_CB(skb)->sacked)
3220 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3221
3222 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3223 flag |= FLAG_ECE;
3224
3225 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3226 }
3227
3228 /* We passed data and got it acked, remove any soft error
3229 * log. Something worked...
3230 */
3231 sk->sk_err_soft = 0;
3232 tp->rcv_tstamp = tcp_time_stamp;
3233 prior_packets = tp->packets_out;
3234 if (!prior_packets)
3235 goto no_queue;
3236
3237 /* See if we can take anything off of the retransmit queue. */
3238 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3239
3240 if (tp->frto_counter)
3241 frto_cwnd = tcp_process_frto(sk, flag);
3242 /* Guarantee sacktag reordering detection against wrap-arounds */
3243 if (before(tp->frto_highmark, tp->snd_una))
3244 tp->frto_highmark = 0;
3245
3246 if (tcp_ack_is_dubious(sk, flag)) {
3247 /* Advance CWND, if state allows this. */
3248 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3249 tcp_may_raise_cwnd(sk, flag))
3250 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3251 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3252 } else {
3253 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3254 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3255 }
3256
3257 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3258 dst_confirm(sk->sk_dst_cache);
3259
3260 return 1;
3261
3262 no_queue:
3263 icsk->icsk_probes_out = 0;
3264
3265 /* If this ack opens up a zero window, clear backoff. It was
3266 * being used to time the probes, and is probably far higher than
3267 * it needs to be for normal retransmission.
3268 */
3269 if (tcp_send_head(sk))
3270 tcp_ack_probe(sk);
3271 return 1;
3272
3273 old_ack:
3274 if (TCP_SKB_CB(skb)->sacked)
3275 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3276
3277 uninteresting_ack:
3278 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3279 return 0;
3280 }
3281
3282
3283 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3284 * But, this can also be called on packets in the established flow when
3285 * the fast version below fails.
3286 */
3287 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3288 {
3289 unsigned char *ptr;
3290 struct tcphdr *th = tcp_hdr(skb);
3291 int length=(th->doff*4)-sizeof(struct tcphdr);
3292
3293 ptr = (unsigned char *)(th + 1);
3294 opt_rx->saw_tstamp = 0;
3295
3296 while (length > 0) {
3297 int opcode=*ptr++;
3298 int opsize;
3299
3300 switch (opcode) {
3301 case TCPOPT_EOL:
3302 return;
3303 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3304 length--;
3305 continue;
3306 default:
3307 opsize=*ptr++;
3308 if (opsize < 2) /* "silly options" */
3309 return;
3310 if (opsize > length)
3311 return; /* don't parse partial options */
3312 switch (opcode) {
3313 case TCPOPT_MSS:
3314 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3315 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3316 if (in_mss) {
3317 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3318 in_mss = opt_rx->user_mss;
3319 opt_rx->mss_clamp = in_mss;
3320 }
3321 }
3322 break;
3323 case TCPOPT_WINDOW:
3324 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3325 if (sysctl_tcp_window_scaling) {
3326 __u8 snd_wscale = *(__u8 *) ptr;
3327 opt_rx->wscale_ok = 1;
3328 if (snd_wscale > 14) {
3329 if (net_ratelimit())
3330 printk(KERN_INFO "tcp_parse_options: Illegal window "
3331 "scaling value %d >14 received.\n",
3332 snd_wscale);
3333 snd_wscale = 14;
3334 }
3335 opt_rx->snd_wscale = snd_wscale;
3336 }
3337 break;
3338 case TCPOPT_TIMESTAMP:
3339 if (opsize==TCPOLEN_TIMESTAMP) {
3340 if ((estab && opt_rx->tstamp_ok) ||
3341 (!estab && sysctl_tcp_timestamps)) {
3342 opt_rx->saw_tstamp = 1;
3343 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3344 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3345 }
3346 }
3347 break;
3348 case TCPOPT_SACK_PERM:
3349 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3350 if (sysctl_tcp_sack) {
3351 opt_rx->sack_ok = 1;
3352 tcp_sack_reset(opt_rx);
3353 }
3354 }
3355 break;
3356
3357 case TCPOPT_SACK:
3358 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3359 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3360 opt_rx->sack_ok) {
3361 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3362 }
3363 break;
3364 #ifdef CONFIG_TCP_MD5SIG
3365 case TCPOPT_MD5SIG:
3366 /*
3367 * The MD5 Hash has already been
3368 * checked (see tcp_v{4,6}_do_rcv()).
3369 */
3370 break;
3371 #endif
3372 }
3373
3374 ptr+=opsize-2;
3375 length-=opsize;
3376 }
3377 }
3378 }
3379
3380 /* Fast parse options. This hopes to only see timestamps.
3381 * If it is wrong it falls back on tcp_parse_options().
3382 */
3383 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3384 struct tcp_sock *tp)
3385 {
3386 if (th->doff == sizeof(struct tcphdr)>>2) {
3387 tp->rx_opt.saw_tstamp = 0;
3388 return 0;
3389 } else if (tp->rx_opt.tstamp_ok &&
3390 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3391 __be32 *ptr = (__be32 *)(th + 1);
3392 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3393 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3394 tp->rx_opt.saw_tstamp = 1;
3395 ++ptr;
3396 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3397 ++ptr;
3398 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3399 return 1;
3400 }
3401 }
3402 tcp_parse_options(skb, &tp->rx_opt, 1);
3403 return 1;
3404 }
3405
3406 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3407 {
3408 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3409 tp->rx_opt.ts_recent_stamp = get_seconds();
3410 }
3411
3412 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3413 {
3414 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3415 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3416 * extra check below makes sure this can only happen
3417 * for pure ACK frames. -DaveM
3418 *
3419 * Not only, also it occurs for expired timestamps.
3420 */
3421
3422 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3423 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3424 tcp_store_ts_recent(tp);
3425 }
3426 }
3427
3428 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3429 *
3430 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3431 * it can pass through stack. So, the following predicate verifies that
3432 * this segment is not used for anything but congestion avoidance or
3433 * fast retransmit. Moreover, we even are able to eliminate most of such
3434 * second order effects, if we apply some small "replay" window (~RTO)
3435 * to timestamp space.
3436 *
3437 * All these measures still do not guarantee that we reject wrapped ACKs
3438 * on networks with high bandwidth, when sequence space is recycled fastly,
3439 * but it guarantees that such events will be very rare and do not affect
3440 * connection seriously. This doesn't look nice, but alas, PAWS is really
3441 * buggy extension.
3442 *
3443 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3444 * states that events when retransmit arrives after original data are rare.
3445 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3446 * the biggest problem on large power networks even with minor reordering.
3447 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3448 * up to bandwidth of 18Gigabit/sec. 8) ]
3449 */
3450
3451 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3452 {
3453 struct tcp_sock *tp = tcp_sk(sk);
3454 struct tcphdr *th = tcp_hdr(skb);
3455 u32 seq = TCP_SKB_CB(skb)->seq;
3456 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3457
3458 return (/* 1. Pure ACK with correct sequence number. */
3459 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3460
3461 /* 2. ... and duplicate ACK. */
3462 ack == tp->snd_una &&
3463
3464 /* 3. ... and does not update window. */
3465 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3466
3467 /* 4. ... and sits in replay window. */
3468 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3469 }
3470
3471 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3472 {
3473 const struct tcp_sock *tp = tcp_sk(sk);
3474 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3475 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3476 !tcp_disordered_ack(sk, skb));
3477 }
3478
3479 /* Check segment sequence number for validity.
3480 *
3481 * Segment controls are considered valid, if the segment
3482 * fits to the window after truncation to the window. Acceptability
3483 * of data (and SYN, FIN, of course) is checked separately.
3484 * See tcp_data_queue(), for example.
3485 *
3486 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3487 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3488 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3489 * (borrowed from freebsd)
3490 */
3491
3492 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3493 {
3494 return !before(end_seq, tp->rcv_wup) &&
3495 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3496 }
3497
3498 /* When we get a reset we do this. */
3499 static void tcp_reset(struct sock *sk)
3500 {
3501 /* We want the right error as BSD sees it (and indeed as we do). */
3502 switch (sk->sk_state) {
3503 case TCP_SYN_SENT:
3504 sk->sk_err = ECONNREFUSED;
3505 break;
3506 case TCP_CLOSE_WAIT:
3507 sk->sk_err = EPIPE;
3508 break;
3509 case TCP_CLOSE:
3510 return;
3511 default:
3512 sk->sk_err = ECONNRESET;
3513 }
3514
3515 if (!sock_flag(sk, SOCK_DEAD))
3516 sk->sk_error_report(sk);
3517
3518 tcp_done(sk);
3519 }
3520
3521 /*
3522 * Process the FIN bit. This now behaves as it is supposed to work
3523 * and the FIN takes effect when it is validly part of sequence
3524 * space. Not before when we get holes.
3525 *
3526 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3527 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3528 * TIME-WAIT)
3529 *
3530 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3531 * close and we go into CLOSING (and later onto TIME-WAIT)
3532 *
3533 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3534 */
3535 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3536 {
3537 struct tcp_sock *tp = tcp_sk(sk);
3538
3539 inet_csk_schedule_ack(sk);
3540
3541 sk->sk_shutdown |= RCV_SHUTDOWN;
3542 sock_set_flag(sk, SOCK_DONE);
3543
3544 switch (sk->sk_state) {
3545 case TCP_SYN_RECV:
3546 case TCP_ESTABLISHED:
3547 /* Move to CLOSE_WAIT */
3548 tcp_set_state(sk, TCP_CLOSE_WAIT);
3549 inet_csk(sk)->icsk_ack.pingpong = 1;
3550 break;
3551
3552 case TCP_CLOSE_WAIT:
3553 case TCP_CLOSING:
3554 /* Received a retransmission of the FIN, do
3555 * nothing.
3556 */
3557 break;
3558 case TCP_LAST_ACK:
3559 /* RFC793: Remain in the LAST-ACK state. */
3560 break;
3561
3562 case TCP_FIN_WAIT1:
3563 /* This case occurs when a simultaneous close
3564 * happens, we must ack the received FIN and
3565 * enter the CLOSING state.
3566 */
3567 tcp_send_ack(sk);
3568 tcp_set_state(sk, TCP_CLOSING);
3569 break;
3570 case TCP_FIN_WAIT2:
3571 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3572 tcp_send_ack(sk);
3573 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3574 break;
3575 default:
3576 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3577 * cases we should never reach this piece of code.
3578 */
3579 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3580 __FUNCTION__, sk->sk_state);
3581 break;
3582 }
3583
3584 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3585 * Probably, we should reset in this case. For now drop them.
3586 */
3587 __skb_queue_purge(&tp->out_of_order_queue);
3588 if (tcp_is_sack(tp))
3589 tcp_sack_reset(&tp->rx_opt);
3590 sk_stream_mem_reclaim(sk);
3591
3592 if (!sock_flag(sk, SOCK_DEAD)) {
3593 sk->sk_state_change(sk);
3594
3595 /* Do not send POLL_HUP for half duplex close. */
3596 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3597 sk->sk_state == TCP_CLOSE)
3598 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3599 else
3600 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3601 }
3602 }
3603
3604 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3605 {
3606 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3607 if (before(seq, sp->start_seq))
3608 sp->start_seq = seq;
3609 if (after(end_seq, sp->end_seq))
3610 sp->end_seq = end_seq;
3611 return 1;
3612 }
3613 return 0;
3614 }
3615
3616 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3617 {
3618 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3619 if (before(seq, tp->rcv_nxt))
3620 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3621 else
3622 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3623
3624 tp->rx_opt.dsack = 1;
3625 tp->duplicate_sack[0].start_seq = seq;
3626 tp->duplicate_sack[0].end_seq = end_seq;
3627 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3628 }
3629 }
3630
3631 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3632 {
3633 if (!tp->rx_opt.dsack)
3634 tcp_dsack_set(tp, seq, end_seq);
3635 else
3636 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3637 }
3638
3639 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3640 {
3641 struct tcp_sock *tp = tcp_sk(sk);
3642
3643 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3644 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3645 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3646 tcp_enter_quickack_mode(sk);
3647
3648 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3649 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3650
3651 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3652 end_seq = tp->rcv_nxt;
3653 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3654 }
3655 }
3656
3657 tcp_send_ack(sk);
3658 }
3659
3660 /* These routines update the SACK block as out-of-order packets arrive or
3661 * in-order packets close up the sequence space.
3662 */
3663 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3664 {
3665 int this_sack;
3666 struct tcp_sack_block *sp = &tp->selective_acks[0];
3667 struct tcp_sack_block *swalk = sp+1;
3668
3669 /* See if the recent change to the first SACK eats into
3670 * or hits the sequence space of other SACK blocks, if so coalesce.
3671 */
3672 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3673 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3674 int i;
3675
3676 /* Zap SWALK, by moving every further SACK up by one slot.
3677 * Decrease num_sacks.
3678 */
3679 tp->rx_opt.num_sacks--;
3680 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3681 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3682 sp[i] = sp[i+1];
3683 continue;
3684 }
3685 this_sack++, swalk++;
3686 }
3687 }
3688
3689 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3690 {
3691 __u32 tmp;
3692
3693 tmp = sack1->start_seq;
3694 sack1->start_seq = sack2->start_seq;
3695 sack2->start_seq = tmp;
3696
3697 tmp = sack1->end_seq;
3698 sack1->end_seq = sack2->end_seq;
3699 sack2->end_seq = tmp;
3700 }
3701
3702 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3703 {
3704 struct tcp_sock *tp = tcp_sk(sk);
3705 struct tcp_sack_block *sp = &tp->selective_acks[0];
3706 int cur_sacks = tp->rx_opt.num_sacks;
3707 int this_sack;
3708
3709 if (!cur_sacks)
3710 goto new_sack;
3711
3712 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3713 if (tcp_sack_extend(sp, seq, end_seq)) {
3714 /* Rotate this_sack to the first one. */
3715 for (; this_sack>0; this_sack--, sp--)
3716 tcp_sack_swap(sp, sp-1);
3717 if (cur_sacks > 1)
3718 tcp_sack_maybe_coalesce(tp);
3719 return;
3720 }
3721 }
3722
3723 /* Could not find an adjacent existing SACK, build a new one,
3724 * put it at the front, and shift everyone else down. We
3725 * always know there is at least one SACK present already here.
3726 *
3727 * If the sack array is full, forget about the last one.
3728 */
3729 if (this_sack >= 4) {
3730 this_sack--;
3731 tp->rx_opt.num_sacks--;
3732 sp--;
3733 }
3734 for (; this_sack > 0; this_sack--, sp--)
3735 *sp = *(sp-1);
3736
3737 new_sack:
3738 /* Build the new head SACK, and we're done. */
3739 sp->start_seq = seq;
3740 sp->end_seq = end_seq;
3741 tp->rx_opt.num_sacks++;
3742 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3743 }
3744
3745 /* RCV.NXT advances, some SACKs should be eaten. */
3746
3747 static void tcp_sack_remove(struct tcp_sock *tp)
3748 {
3749 struct tcp_sack_block *sp = &tp->selective_acks[0];
3750 int num_sacks = tp->rx_opt.num_sacks;
3751 int this_sack;
3752
3753 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3754 if (skb_queue_empty(&tp->out_of_order_queue)) {
3755 tp->rx_opt.num_sacks = 0;
3756 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3757 return;
3758 }
3759
3760 for (this_sack = 0; this_sack < num_sacks; ) {
3761 /* Check if the start of the sack is covered by RCV.NXT. */
3762 if (!before(tp->rcv_nxt, sp->start_seq)) {
3763 int i;
3764
3765 /* RCV.NXT must cover all the block! */
3766 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3767
3768 /* Zap this SACK, by moving forward any other SACKS. */
3769 for (i=this_sack+1; i < num_sacks; i++)
3770 tp->selective_acks[i-1] = tp->selective_acks[i];
3771 num_sacks--;
3772 continue;
3773 }
3774 this_sack++;
3775 sp++;
3776 }
3777 if (num_sacks != tp->rx_opt.num_sacks) {
3778 tp->rx_opt.num_sacks = num_sacks;
3779 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3780 }
3781 }
3782
3783 /* This one checks to see if we can put data from the
3784 * out_of_order queue into the receive_queue.
3785 */
3786 static void tcp_ofo_queue(struct sock *sk)
3787 {
3788 struct tcp_sock *tp = tcp_sk(sk);
3789 __u32 dsack_high = tp->rcv_nxt;
3790 struct sk_buff *skb;
3791
3792 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3793 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3794 break;
3795
3796 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3797 __u32 dsack = dsack_high;
3798 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3799 dsack_high = TCP_SKB_CB(skb)->end_seq;
3800 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3801 }
3802
3803 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3804 SOCK_DEBUG(sk, "ofo packet was already received \n");
3805 __skb_unlink(skb, &tp->out_of_order_queue);
3806 __kfree_skb(skb);
3807 continue;
3808 }
3809 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3810 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3811 TCP_SKB_CB(skb)->end_seq);
3812
3813 __skb_unlink(skb, &tp->out_of_order_queue);
3814 __skb_queue_tail(&sk->sk_receive_queue, skb);
3815 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3816 if (tcp_hdr(skb)->fin)
3817 tcp_fin(skb, sk, tcp_hdr(skb));
3818 }
3819 }
3820
3821 static int tcp_prune_queue(struct sock *sk);
3822
3823 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3824 {
3825 struct tcphdr *th = tcp_hdr(skb);
3826 struct tcp_sock *tp = tcp_sk(sk);
3827 int eaten = -1;
3828
3829 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3830 goto drop;
3831
3832 __skb_pull(skb, th->doff*4);
3833
3834 TCP_ECN_accept_cwr(tp, skb);
3835
3836 if (tp->rx_opt.dsack) {
3837 tp->rx_opt.dsack = 0;
3838 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3839 4 - tp->rx_opt.tstamp_ok);
3840 }
3841
3842 /* Queue data for delivery to the user.
3843 * Packets in sequence go to the receive queue.
3844 * Out of sequence packets to the out_of_order_queue.
3845 */
3846 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3847 if (tcp_receive_window(tp) == 0)
3848 goto out_of_window;
3849
3850 /* Ok. In sequence. In window. */
3851 if (tp->ucopy.task == current &&
3852 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3853 sock_owned_by_user(sk) && !tp->urg_data) {
3854 int chunk = min_t(unsigned int, skb->len,
3855 tp->ucopy.len);
3856
3857 __set_current_state(TASK_RUNNING);
3858
3859 local_bh_enable();
3860 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3861 tp->ucopy.len -= chunk;
3862 tp->copied_seq += chunk;
3863 eaten = (chunk == skb->len && !th->fin);
3864 tcp_rcv_space_adjust(sk);
3865 }
3866 local_bh_disable();
3867 }
3868
3869 if (eaten <= 0) {
3870 queue_and_out:
3871 if (eaten < 0 &&
3872 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3873 !sk_stream_rmem_schedule(sk, skb))) {
3874 if (tcp_prune_queue(sk) < 0 ||
3875 !sk_stream_rmem_schedule(sk, skb))
3876 goto drop;
3877 }
3878 sk_stream_set_owner_r(skb, sk);
3879 __skb_queue_tail(&sk->sk_receive_queue, skb);
3880 }
3881 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3882 if (skb->len)
3883 tcp_event_data_recv(sk, skb);
3884 if (th->fin)
3885 tcp_fin(skb, sk, th);
3886
3887 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3888 tcp_ofo_queue(sk);
3889
3890 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3891 * gap in queue is filled.
3892 */
3893 if (skb_queue_empty(&tp->out_of_order_queue))
3894 inet_csk(sk)->icsk_ack.pingpong = 0;
3895 }
3896
3897 if (tp->rx_opt.num_sacks)
3898 tcp_sack_remove(tp);
3899
3900 tcp_fast_path_check(sk);
3901
3902 if (eaten > 0)
3903 __kfree_skb(skb);
3904 else if (!sock_flag(sk, SOCK_DEAD))
3905 sk->sk_data_ready(sk, 0);
3906 return;
3907 }
3908
3909 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3910 /* A retransmit, 2nd most common case. Force an immediate ack. */
3911 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3912 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3913
3914 out_of_window:
3915 tcp_enter_quickack_mode(sk);
3916 inet_csk_schedule_ack(sk);
3917 drop:
3918 __kfree_skb(skb);
3919 return;
3920 }
3921
3922 /* Out of window. F.e. zero window probe. */
3923 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3924 goto out_of_window;
3925
3926 tcp_enter_quickack_mode(sk);
3927
3928 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3929 /* Partial packet, seq < rcv_next < end_seq */
3930 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3931 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3932 TCP_SKB_CB(skb)->end_seq);
3933
3934 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3935
3936 /* If window is closed, drop tail of packet. But after
3937 * remembering D-SACK for its head made in previous line.
3938 */
3939 if (!tcp_receive_window(tp))
3940 goto out_of_window;
3941 goto queue_and_out;
3942 }
3943
3944 TCP_ECN_check_ce(tp, skb);
3945
3946 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3947 !sk_stream_rmem_schedule(sk, skb)) {
3948 if (tcp_prune_queue(sk) < 0 ||
3949 !sk_stream_rmem_schedule(sk, skb))
3950 goto drop;
3951 }
3952
3953 /* Disable header prediction. */
3954 tp->pred_flags = 0;
3955 inet_csk_schedule_ack(sk);
3956
3957 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3958 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3959
3960 sk_stream_set_owner_r(skb, sk);
3961
3962 if (!skb_peek(&tp->out_of_order_queue)) {
3963 /* Initial out of order segment, build 1 SACK. */
3964 if (tcp_is_sack(tp)) {
3965 tp->rx_opt.num_sacks = 1;
3966 tp->rx_opt.dsack = 0;
3967 tp->rx_opt.eff_sacks = 1;
3968 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3969 tp->selective_acks[0].end_seq =
3970 TCP_SKB_CB(skb)->end_seq;
3971 }
3972 __skb_queue_head(&tp->out_of_order_queue,skb);
3973 } else {
3974 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3975 u32 seq = TCP_SKB_CB(skb)->seq;
3976 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3977
3978 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3979 __skb_append(skb1, skb, &tp->out_of_order_queue);
3980
3981 if (!tp->rx_opt.num_sacks ||
3982 tp->selective_acks[0].end_seq != seq)
3983 goto add_sack;
3984
3985 /* Common case: data arrive in order after hole. */
3986 tp->selective_acks[0].end_seq = end_seq;
3987 return;
3988 }
3989
3990 /* Find place to insert this segment. */
3991 do {
3992 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3993 break;
3994 } while ((skb1 = skb1->prev) !=
3995 (struct sk_buff*)&tp->out_of_order_queue);
3996
3997 /* Do skb overlap to previous one? */
3998 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3999 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4000 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4001 /* All the bits are present. Drop. */
4002 __kfree_skb(skb);
4003 tcp_dsack_set(tp, seq, end_seq);
4004 goto add_sack;
4005 }
4006 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4007 /* Partial overlap. */
4008 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
4009 } else {
4010 skb1 = skb1->prev;
4011 }
4012 }
4013 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4014
4015 /* And clean segments covered by new one as whole. */
4016 while ((skb1 = skb->next) !=
4017 (struct sk_buff*)&tp->out_of_order_queue &&
4018 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4019 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4020 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
4021 break;
4022 }
4023 __skb_unlink(skb1, &tp->out_of_order_queue);
4024 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4025 __kfree_skb(skb1);
4026 }
4027
4028 add_sack:
4029 if (tcp_is_sack(tp))
4030 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4031 }
4032 }
4033
4034 /* Collapse contiguous sequence of skbs head..tail with
4035 * sequence numbers start..end.
4036 * Segments with FIN/SYN are not collapsed (only because this
4037 * simplifies code)
4038 */
4039 static void
4040 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4041 struct sk_buff *head, struct sk_buff *tail,
4042 u32 start, u32 end)
4043 {
4044 struct sk_buff *skb;
4045
4046 /* First, check that queue is collapsible and find
4047 * the point where collapsing can be useful. */
4048 for (skb = head; skb != tail; ) {
4049 /* No new bits? It is possible on ofo queue. */
4050 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4051 struct sk_buff *next = skb->next;
4052 __skb_unlink(skb, list);
4053 __kfree_skb(skb);
4054 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4055 skb = next;
4056 continue;
4057 }
4058
4059 /* The first skb to collapse is:
4060 * - not SYN/FIN and
4061 * - bloated or contains data before "start" or
4062 * overlaps to the next one.
4063 */
4064 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4065 (tcp_win_from_space(skb->truesize) > skb->len ||
4066 before(TCP_SKB_CB(skb)->seq, start) ||
4067 (skb->next != tail &&
4068 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4069 break;
4070
4071 /* Decided to skip this, advance start seq. */
4072 start = TCP_SKB_CB(skb)->end_seq;
4073 skb = skb->next;
4074 }
4075 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4076 return;
4077
4078 while (before(start, end)) {
4079 struct sk_buff *nskb;
4080 unsigned int header = skb_headroom(skb);
4081 int copy = SKB_MAX_ORDER(header, 0);
4082
4083 /* Too big header? This can happen with IPv6. */
4084 if (copy < 0)
4085 return;
4086 if (end-start < copy)
4087 copy = end-start;
4088 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4089 if (!nskb)
4090 return;
4091
4092 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4093 skb_set_network_header(nskb, (skb_network_header(skb) -
4094 skb->head));
4095 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4096 skb->head));
4097 skb_reserve(nskb, header);
4098 memcpy(nskb->head, skb->head, header);
4099 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4100 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4101 __skb_insert(nskb, skb->prev, skb, list);
4102 sk_stream_set_owner_r(nskb, sk);
4103
4104 /* Copy data, releasing collapsed skbs. */
4105 while (copy > 0) {
4106 int offset = start - TCP_SKB_CB(skb)->seq;
4107 int size = TCP_SKB_CB(skb)->end_seq - start;
4108
4109 BUG_ON(offset < 0);
4110 if (size > 0) {
4111 size = min(copy, size);
4112 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4113 BUG();
4114 TCP_SKB_CB(nskb)->end_seq += size;
4115 copy -= size;
4116 start += size;
4117 }
4118 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4119 struct sk_buff *next = skb->next;
4120 __skb_unlink(skb, list);
4121 __kfree_skb(skb);
4122 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4123 skb = next;
4124 if (skb == tail ||
4125 tcp_hdr(skb)->syn ||
4126 tcp_hdr(skb)->fin)
4127 return;
4128 }
4129 }
4130 }
4131 }
4132
4133 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4134 * and tcp_collapse() them until all the queue is collapsed.
4135 */
4136 static void tcp_collapse_ofo_queue(struct sock *sk)
4137 {
4138 struct tcp_sock *tp = tcp_sk(sk);
4139 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4140 struct sk_buff *head;
4141 u32 start, end;
4142
4143 if (skb == NULL)
4144 return;
4145
4146 start = TCP_SKB_CB(skb)->seq;
4147 end = TCP_SKB_CB(skb)->end_seq;
4148 head = skb;
4149
4150 for (;;) {
4151 skb = skb->next;
4152
4153 /* Segment is terminated when we see gap or when
4154 * we are at the end of all the queue. */
4155 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4156 after(TCP_SKB_CB(skb)->seq, end) ||
4157 before(TCP_SKB_CB(skb)->end_seq, start)) {
4158 tcp_collapse(sk, &tp->out_of_order_queue,
4159 head, skb, start, end);
4160 head = skb;
4161 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4162 break;
4163 /* Start new segment */
4164 start = TCP_SKB_CB(skb)->seq;
4165 end = TCP_SKB_CB(skb)->end_seq;
4166 } else {
4167 if (before(TCP_SKB_CB(skb)->seq, start))
4168 start = TCP_SKB_CB(skb)->seq;
4169 if (after(TCP_SKB_CB(skb)->end_seq, end))
4170 end = TCP_SKB_CB(skb)->end_seq;
4171 }
4172 }
4173 }
4174
4175 /* Reduce allocated memory if we can, trying to get
4176 * the socket within its memory limits again.
4177 *
4178 * Return less than zero if we should start dropping frames
4179 * until the socket owning process reads some of the data
4180 * to stabilize the situation.
4181 */
4182 static int tcp_prune_queue(struct sock *sk)
4183 {
4184 struct tcp_sock *tp = tcp_sk(sk);
4185
4186 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4187
4188 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4189
4190 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4191 tcp_clamp_window(sk);
4192 else if (tcp_memory_pressure)
4193 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4194
4195 tcp_collapse_ofo_queue(sk);
4196 tcp_collapse(sk, &sk->sk_receive_queue,
4197 sk->sk_receive_queue.next,
4198 (struct sk_buff*)&sk->sk_receive_queue,
4199 tp->copied_seq, tp->rcv_nxt);
4200 sk_stream_mem_reclaim(sk);
4201
4202 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4203 return 0;
4204
4205 /* Collapsing did not help, destructive actions follow.
4206 * This must not ever occur. */
4207
4208 /* First, purge the out_of_order queue. */
4209 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4210 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4211 __skb_queue_purge(&tp->out_of_order_queue);
4212
4213 /* Reset SACK state. A conforming SACK implementation will
4214 * do the same at a timeout based retransmit. When a connection
4215 * is in a sad state like this, we care only about integrity
4216 * of the connection not performance.
4217 */
4218 if (tcp_is_sack(tp))
4219 tcp_sack_reset(&tp->rx_opt);
4220 sk_stream_mem_reclaim(sk);
4221 }
4222
4223 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4224 return 0;
4225
4226 /* If we are really being abused, tell the caller to silently
4227 * drop receive data on the floor. It will get retransmitted
4228 * and hopefully then we'll have sufficient space.
4229 */
4230 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4231
4232 /* Massive buffer overcommit. */
4233 tp->pred_flags = 0;
4234 return -1;
4235 }
4236
4237
4238 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4239 * As additional protections, we do not touch cwnd in retransmission phases,
4240 * and if application hit its sndbuf limit recently.
4241 */
4242 void tcp_cwnd_application_limited(struct sock *sk)
4243 {
4244 struct tcp_sock *tp = tcp_sk(sk);
4245
4246 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4247 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4248 /* Limited by application or receiver window. */
4249 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4250 u32 win_used = max(tp->snd_cwnd_used, init_win);
4251 if (win_used < tp->snd_cwnd) {
4252 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4253 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4254 }
4255 tp->snd_cwnd_used = 0;
4256 }
4257 tp->snd_cwnd_stamp = tcp_time_stamp;
4258 }
4259
4260 static int tcp_should_expand_sndbuf(struct sock *sk)
4261 {
4262 struct tcp_sock *tp = tcp_sk(sk);
4263
4264 /* If the user specified a specific send buffer setting, do
4265 * not modify it.
4266 */
4267 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4268 return 0;
4269
4270 /* If we are under global TCP memory pressure, do not expand. */
4271 if (tcp_memory_pressure)
4272 return 0;
4273
4274 /* If we are under soft global TCP memory pressure, do not expand. */
4275 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4276 return 0;
4277
4278 /* If we filled the congestion window, do not expand. */
4279 if (tp->packets_out >= tp->snd_cwnd)
4280 return 0;
4281
4282 return 1;
4283 }
4284
4285 /* When incoming ACK allowed to free some skb from write_queue,
4286 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4287 * on the exit from tcp input handler.
4288 *
4289 * PROBLEM: sndbuf expansion does not work well with largesend.
4290 */
4291 static void tcp_new_space(struct sock *sk)
4292 {
4293 struct tcp_sock *tp = tcp_sk(sk);
4294
4295 if (tcp_should_expand_sndbuf(sk)) {
4296 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4297 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4298 demanded = max_t(unsigned int, tp->snd_cwnd,
4299 tp->reordering + 1);
4300 sndmem *= 2*demanded;
4301 if (sndmem > sk->sk_sndbuf)
4302 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4303 tp->snd_cwnd_stamp = tcp_time_stamp;
4304 }
4305
4306 sk->sk_write_space(sk);
4307 }
4308
4309 static void tcp_check_space(struct sock *sk)
4310 {
4311 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4312 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4313 if (sk->sk_socket &&
4314 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4315 tcp_new_space(sk);
4316 }
4317 }
4318
4319 static inline void tcp_data_snd_check(struct sock *sk)
4320 {
4321 tcp_push_pending_frames(sk);
4322 tcp_check_space(sk);
4323 }
4324
4325 /*
4326 * Check if sending an ack is needed.
4327 */
4328 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4329 {
4330 struct tcp_sock *tp = tcp_sk(sk);
4331
4332 /* More than one full frame received... */
4333 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4334 /* ... and right edge of window advances far enough.
4335 * (tcp_recvmsg() will send ACK otherwise). Or...
4336 */
4337 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4338 /* We ACK each frame or... */
4339 tcp_in_quickack_mode(sk) ||
4340 /* We have out of order data. */
4341 (ofo_possible &&
4342 skb_peek(&tp->out_of_order_queue))) {
4343 /* Then ack it now */
4344 tcp_send_ack(sk);
4345 } else {
4346 /* Else, send delayed ack. */
4347 tcp_send_delayed_ack(sk);
4348 }
4349 }
4350
4351 static inline void tcp_ack_snd_check(struct sock *sk)
4352 {
4353 if (!inet_csk_ack_scheduled(sk)) {
4354 /* We sent a data segment already. */
4355 return;
4356 }
4357 __tcp_ack_snd_check(sk, 1);
4358 }
4359
4360 /*
4361 * This routine is only called when we have urgent data
4362 * signaled. Its the 'slow' part of tcp_urg. It could be
4363 * moved inline now as tcp_urg is only called from one
4364 * place. We handle URGent data wrong. We have to - as
4365 * BSD still doesn't use the correction from RFC961.
4366 * For 1003.1g we should support a new option TCP_STDURG to permit
4367 * either form (or just set the sysctl tcp_stdurg).
4368 */
4369
4370 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4371 {
4372 struct tcp_sock *tp = tcp_sk(sk);
4373 u32 ptr = ntohs(th->urg_ptr);
4374
4375 if (ptr && !sysctl_tcp_stdurg)
4376 ptr--;
4377 ptr += ntohl(th->seq);
4378
4379 /* Ignore urgent data that we've already seen and read. */
4380 if (after(tp->copied_seq, ptr))
4381 return;
4382
4383 /* Do not replay urg ptr.
4384 *
4385 * NOTE: interesting situation not covered by specs.
4386 * Misbehaving sender may send urg ptr, pointing to segment,
4387 * which we already have in ofo queue. We are not able to fetch
4388 * such data and will stay in TCP_URG_NOTYET until will be eaten
4389 * by recvmsg(). Seems, we are not obliged to handle such wicked
4390 * situations. But it is worth to think about possibility of some
4391 * DoSes using some hypothetical application level deadlock.
4392 */
4393 if (before(ptr, tp->rcv_nxt))
4394 return;
4395
4396 /* Do we already have a newer (or duplicate) urgent pointer? */
4397 if (tp->urg_data && !after(ptr, tp->urg_seq))
4398 return;
4399
4400 /* Tell the world about our new urgent pointer. */
4401 sk_send_sigurg(sk);
4402
4403 /* We may be adding urgent data when the last byte read was
4404 * urgent. To do this requires some care. We cannot just ignore
4405 * tp->copied_seq since we would read the last urgent byte again
4406 * as data, nor can we alter copied_seq until this data arrives
4407 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4408 *
4409 * NOTE. Double Dutch. Rendering to plain English: author of comment
4410 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4411 * and expect that both A and B disappear from stream. This is _wrong_.
4412 * Though this happens in BSD with high probability, this is occasional.
4413 * Any application relying on this is buggy. Note also, that fix "works"
4414 * only in this artificial test. Insert some normal data between A and B and we will
4415 * decline of BSD again. Verdict: it is better to remove to trap
4416 * buggy users.
4417 */
4418 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4419 !sock_flag(sk, SOCK_URGINLINE) &&
4420 tp->copied_seq != tp->rcv_nxt) {
4421 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4422 tp->copied_seq++;
4423 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4424 __skb_unlink(skb, &sk->sk_receive_queue);
4425 __kfree_skb(skb);
4426 }
4427 }
4428
4429 tp->urg_data = TCP_URG_NOTYET;
4430 tp->urg_seq = ptr;
4431
4432 /* Disable header prediction. */
4433 tp->pred_flags = 0;
4434 }
4435
4436 /* This is the 'fast' part of urgent handling. */
4437 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4438 {
4439 struct tcp_sock *tp = tcp_sk(sk);
4440
4441 /* Check if we get a new urgent pointer - normally not. */
4442 if (th->urg)
4443 tcp_check_urg(sk,th);
4444
4445 /* Do we wait for any urgent data? - normally not... */
4446 if (tp->urg_data == TCP_URG_NOTYET) {
4447 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4448 th->syn;
4449
4450 /* Is the urgent pointer pointing into this packet? */
4451 if (ptr < skb->len) {
4452 u8 tmp;
4453 if (skb_copy_bits(skb, ptr, &tmp, 1))
4454 BUG();
4455 tp->urg_data = TCP_URG_VALID | tmp;
4456 if (!sock_flag(sk, SOCK_DEAD))
4457 sk->sk_data_ready(sk, 0);
4458 }
4459 }
4460 }
4461
4462 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4463 {
4464 struct tcp_sock *tp = tcp_sk(sk);
4465 int chunk = skb->len - hlen;
4466 int err;
4467
4468 local_bh_enable();
4469 if (skb_csum_unnecessary(skb))
4470 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4471 else
4472 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4473 tp->ucopy.iov);
4474
4475 if (!err) {
4476 tp->ucopy.len -= chunk;
4477 tp->copied_seq += chunk;
4478 tcp_rcv_space_adjust(sk);
4479 }
4480
4481 local_bh_disable();
4482 return err;
4483 }
4484
4485 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4486 {
4487 __sum16 result;
4488
4489 if (sock_owned_by_user(sk)) {
4490 local_bh_enable();
4491 result = __tcp_checksum_complete(skb);
4492 local_bh_disable();
4493 } else {
4494 result = __tcp_checksum_complete(skb);
4495 }
4496 return result;
4497 }
4498
4499 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4500 {
4501 return !skb_csum_unnecessary(skb) &&
4502 __tcp_checksum_complete_user(sk, skb);
4503 }
4504
4505 #ifdef CONFIG_NET_DMA
4506 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4507 {
4508 struct tcp_sock *tp = tcp_sk(sk);
4509 int chunk = skb->len - hlen;
4510 int dma_cookie;
4511 int copied_early = 0;
4512
4513 if (tp->ucopy.wakeup)
4514 return 0;
4515
4516 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4517 tp->ucopy.dma_chan = get_softnet_dma();
4518
4519 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4520
4521 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4522 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4523
4524 if (dma_cookie < 0)
4525 goto out;
4526
4527 tp->ucopy.dma_cookie = dma_cookie;
4528 copied_early = 1;
4529
4530 tp->ucopy.len -= chunk;
4531 tp->copied_seq += chunk;
4532 tcp_rcv_space_adjust(sk);
4533
4534 if ((tp->ucopy.len == 0) ||
4535 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4536 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4537 tp->ucopy.wakeup = 1;
4538 sk->sk_data_ready(sk, 0);
4539 }
4540 } else if (chunk > 0) {
4541 tp->ucopy.wakeup = 1;
4542 sk->sk_data_ready(sk, 0);
4543 }
4544 out:
4545 return copied_early;
4546 }
4547 #endif /* CONFIG_NET_DMA */
4548
4549 /*
4550 * TCP receive function for the ESTABLISHED state.
4551 *
4552 * It is split into a fast path and a slow path. The fast path is
4553 * disabled when:
4554 * - A zero window was announced from us - zero window probing
4555 * is only handled properly in the slow path.
4556 * - Out of order segments arrived.
4557 * - Urgent data is expected.
4558 * - There is no buffer space left
4559 * - Unexpected TCP flags/window values/header lengths are received
4560 * (detected by checking the TCP header against pred_flags)
4561 * - Data is sent in both directions. Fast path only supports pure senders
4562 * or pure receivers (this means either the sequence number or the ack
4563 * value must stay constant)
4564 * - Unexpected TCP option.
4565 *
4566 * When these conditions are not satisfied it drops into a standard
4567 * receive procedure patterned after RFC793 to handle all cases.
4568 * The first three cases are guaranteed by proper pred_flags setting,
4569 * the rest is checked inline. Fast processing is turned on in
4570 * tcp_data_queue when everything is OK.
4571 */
4572 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4573 struct tcphdr *th, unsigned len)
4574 {
4575 struct tcp_sock *tp = tcp_sk(sk);
4576
4577 /*
4578 * Header prediction.
4579 * The code loosely follows the one in the famous
4580 * "30 instruction TCP receive" Van Jacobson mail.
4581 *
4582 * Van's trick is to deposit buffers into socket queue
4583 * on a device interrupt, to call tcp_recv function
4584 * on the receive process context and checksum and copy
4585 * the buffer to user space. smart...
4586 *
4587 * Our current scheme is not silly either but we take the
4588 * extra cost of the net_bh soft interrupt processing...
4589 * We do checksum and copy also but from device to kernel.
4590 */
4591
4592 tp->rx_opt.saw_tstamp = 0;
4593
4594 /* pred_flags is 0xS?10 << 16 + snd_wnd
4595 * if header_prediction is to be made
4596 * 'S' will always be tp->tcp_header_len >> 2
4597 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4598 * turn it off (when there are holes in the receive
4599 * space for instance)
4600 * PSH flag is ignored.
4601 */
4602
4603 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4604 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4605 int tcp_header_len = tp->tcp_header_len;
4606
4607 /* Timestamp header prediction: tcp_header_len
4608 * is automatically equal to th->doff*4 due to pred_flags
4609 * match.
4610 */
4611
4612 /* Check timestamp */
4613 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4614 __be32 *ptr = (__be32 *)(th + 1);
4615
4616 /* No? Slow path! */
4617 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4618 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4619 goto slow_path;
4620
4621 tp->rx_opt.saw_tstamp = 1;
4622 ++ptr;
4623 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4624 ++ptr;
4625 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4626
4627 /* If PAWS failed, check it more carefully in slow path */
4628 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4629 goto slow_path;
4630
4631 /* DO NOT update ts_recent here, if checksum fails
4632 * and timestamp was corrupted part, it will result
4633 * in a hung connection since we will drop all
4634 * future packets due to the PAWS test.
4635 */
4636 }
4637
4638 if (len <= tcp_header_len) {
4639 /* Bulk data transfer: sender */
4640 if (len == tcp_header_len) {
4641 /* Predicted packet is in window by definition.
4642 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4643 * Hence, check seq<=rcv_wup reduces to:
4644 */
4645 if (tcp_header_len ==
4646 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4647 tp->rcv_nxt == tp->rcv_wup)
4648 tcp_store_ts_recent(tp);
4649
4650 /* We know that such packets are checksummed
4651 * on entry.
4652 */
4653 tcp_ack(sk, skb, 0);
4654 __kfree_skb(skb);
4655 tcp_data_snd_check(sk);
4656 return 0;
4657 } else { /* Header too small */
4658 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4659 goto discard;
4660 }
4661 } else {
4662 int eaten = 0;
4663 int copied_early = 0;
4664
4665 if (tp->copied_seq == tp->rcv_nxt &&
4666 len - tcp_header_len <= tp->ucopy.len) {
4667 #ifdef CONFIG_NET_DMA
4668 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4669 copied_early = 1;
4670 eaten = 1;
4671 }
4672 #endif
4673 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4674 __set_current_state(TASK_RUNNING);
4675
4676 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4677 eaten = 1;
4678 }
4679 if (eaten) {
4680 /* Predicted packet is in window by definition.
4681 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4682 * Hence, check seq<=rcv_wup reduces to:
4683 */
4684 if (tcp_header_len ==
4685 (sizeof(struct tcphdr) +
4686 TCPOLEN_TSTAMP_ALIGNED) &&
4687 tp->rcv_nxt == tp->rcv_wup)
4688 tcp_store_ts_recent(tp);
4689
4690 tcp_rcv_rtt_measure_ts(sk, skb);
4691
4692 __skb_pull(skb, tcp_header_len);
4693 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4694 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4695 }
4696 if (copied_early)
4697 tcp_cleanup_rbuf(sk, skb->len);
4698 }
4699 if (!eaten) {
4700 if (tcp_checksum_complete_user(sk, skb))
4701 goto csum_error;
4702
4703 /* Predicted packet is in window by definition.
4704 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4705 * Hence, check seq<=rcv_wup reduces to:
4706 */
4707 if (tcp_header_len ==
4708 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4709 tp->rcv_nxt == tp->rcv_wup)
4710 tcp_store_ts_recent(tp);
4711
4712 tcp_rcv_rtt_measure_ts(sk, skb);
4713
4714 if ((int)skb->truesize > sk->sk_forward_alloc)
4715 goto step5;
4716
4717 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4718
4719 /* Bulk data transfer: receiver */
4720 __skb_pull(skb,tcp_header_len);
4721 __skb_queue_tail(&sk->sk_receive_queue, skb);
4722 sk_stream_set_owner_r(skb, sk);
4723 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4724 }
4725
4726 tcp_event_data_recv(sk, skb);
4727
4728 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4729 /* Well, only one small jumplet in fast path... */
4730 tcp_ack(sk, skb, FLAG_DATA);
4731 tcp_data_snd_check(sk);
4732 if (!inet_csk_ack_scheduled(sk))
4733 goto no_ack;
4734 }
4735
4736 __tcp_ack_snd_check(sk, 0);
4737 no_ack:
4738 #ifdef CONFIG_NET_DMA
4739 if (copied_early)
4740 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4741 else
4742 #endif
4743 if (eaten)
4744 __kfree_skb(skb);
4745 else
4746 sk->sk_data_ready(sk, 0);
4747 return 0;
4748 }
4749 }
4750
4751 slow_path:
4752 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4753 goto csum_error;
4754
4755 /*
4756 * RFC1323: H1. Apply PAWS check first.
4757 */
4758 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4759 tcp_paws_discard(sk, skb)) {
4760 if (!th->rst) {
4761 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4762 tcp_send_dupack(sk, skb);
4763 goto discard;
4764 }
4765 /* Resets are accepted even if PAWS failed.
4766
4767 ts_recent update must be made after we are sure
4768 that the packet is in window.
4769 */
4770 }
4771
4772 /*
4773 * Standard slow path.
4774 */
4775
4776 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4777 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4778 * (RST) segments are validated by checking their SEQ-fields."
4779 * And page 69: "If an incoming segment is not acceptable,
4780 * an acknowledgment should be sent in reply (unless the RST bit
4781 * is set, if so drop the segment and return)".
4782 */
4783 if (!th->rst)
4784 tcp_send_dupack(sk, skb);
4785 goto discard;
4786 }
4787
4788 if (th->rst) {
4789 tcp_reset(sk);
4790 goto discard;
4791 }
4792
4793 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4794
4795 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4796 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4797 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4798 tcp_reset(sk);
4799 return 1;
4800 }
4801
4802 step5:
4803 if (th->ack)
4804 tcp_ack(sk, skb, FLAG_SLOWPATH);
4805
4806 tcp_rcv_rtt_measure_ts(sk, skb);
4807
4808 /* Process urgent data. */
4809 tcp_urg(sk, skb, th);
4810
4811 /* step 7: process the segment text */
4812 tcp_data_queue(sk, skb);
4813
4814 tcp_data_snd_check(sk);
4815 tcp_ack_snd_check(sk);
4816 return 0;
4817
4818 csum_error:
4819 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4820
4821 discard:
4822 __kfree_skb(skb);
4823 return 0;
4824 }
4825
4826 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4827 struct tcphdr *th, unsigned len)
4828 {
4829 struct tcp_sock *tp = tcp_sk(sk);
4830 struct inet_connection_sock *icsk = inet_csk(sk);
4831 int saved_clamp = tp->rx_opt.mss_clamp;
4832
4833 tcp_parse_options(skb, &tp->rx_opt, 0);
4834
4835 if (th->ack) {
4836 /* rfc793:
4837 * "If the state is SYN-SENT then
4838 * first check the ACK bit
4839 * If the ACK bit is set
4840 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4841 * a reset (unless the RST bit is set, if so drop
4842 * the segment and return)"
4843 *
4844 * We do not send data with SYN, so that RFC-correct
4845 * test reduces to:
4846 */
4847 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4848 goto reset_and_undo;
4849
4850 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4851 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4852 tcp_time_stamp)) {
4853 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4854 goto reset_and_undo;
4855 }
4856
4857 /* Now ACK is acceptable.
4858 *
4859 * "If the RST bit is set
4860 * If the ACK was acceptable then signal the user "error:
4861 * connection reset", drop the segment, enter CLOSED state,
4862 * delete TCB, and return."
4863 */
4864
4865 if (th->rst) {
4866 tcp_reset(sk);
4867 goto discard;
4868 }
4869
4870 /* rfc793:
4871 * "fifth, if neither of the SYN or RST bits is set then
4872 * drop the segment and return."
4873 *
4874 * See note below!
4875 * --ANK(990513)
4876 */
4877 if (!th->syn)
4878 goto discard_and_undo;
4879
4880 /* rfc793:
4881 * "If the SYN bit is on ...
4882 * are acceptable then ...
4883 * (our SYN has been ACKed), change the connection
4884 * state to ESTABLISHED..."
4885 */
4886
4887 TCP_ECN_rcv_synack(tp, th);
4888
4889 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4890 tcp_ack(sk, skb, FLAG_SLOWPATH);
4891
4892 /* Ok.. it's good. Set up sequence numbers and
4893 * move to established.
4894 */
4895 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4896 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4897
4898 /* RFC1323: The window in SYN & SYN/ACK segments is
4899 * never scaled.
4900 */
4901 tp->snd_wnd = ntohs(th->window);
4902 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4903
4904 if (!tp->rx_opt.wscale_ok) {
4905 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4906 tp->window_clamp = min(tp->window_clamp, 65535U);
4907 }
4908
4909 if (tp->rx_opt.saw_tstamp) {
4910 tp->rx_opt.tstamp_ok = 1;
4911 tp->tcp_header_len =
4912 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4913 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4914 tcp_store_ts_recent(tp);
4915 } else {
4916 tp->tcp_header_len = sizeof(struct tcphdr);
4917 }
4918
4919 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4920 tcp_enable_fack(tp);
4921
4922 tcp_mtup_init(sk);
4923 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4924 tcp_initialize_rcv_mss(sk);
4925
4926 /* Remember, tcp_poll() does not lock socket!
4927 * Change state from SYN-SENT only after copied_seq
4928 * is initialized. */
4929 tp->copied_seq = tp->rcv_nxt;
4930 smp_mb();
4931 tcp_set_state(sk, TCP_ESTABLISHED);
4932
4933 security_inet_conn_established(sk, skb);
4934
4935 /* Make sure socket is routed, for correct metrics. */
4936 icsk->icsk_af_ops->rebuild_header(sk);
4937
4938 tcp_init_metrics(sk);
4939
4940 tcp_init_congestion_control(sk);
4941
4942 /* Prevent spurious tcp_cwnd_restart() on first data
4943 * packet.
4944 */
4945 tp->lsndtime = tcp_time_stamp;
4946
4947 tcp_init_buffer_space(sk);
4948
4949 if (sock_flag(sk, SOCK_KEEPOPEN))
4950 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4951
4952 if (!tp->rx_opt.snd_wscale)
4953 __tcp_fast_path_on(tp, tp->snd_wnd);
4954 else
4955 tp->pred_flags = 0;
4956
4957 if (!sock_flag(sk, SOCK_DEAD)) {
4958 sk->sk_state_change(sk);
4959 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4960 }
4961
4962 if (sk->sk_write_pending ||
4963 icsk->icsk_accept_queue.rskq_defer_accept ||
4964 icsk->icsk_ack.pingpong) {
4965 /* Save one ACK. Data will be ready after
4966 * several ticks, if write_pending is set.
4967 *
4968 * It may be deleted, but with this feature tcpdumps
4969 * look so _wonderfully_ clever, that I was not able
4970 * to stand against the temptation 8) --ANK
4971 */
4972 inet_csk_schedule_ack(sk);
4973 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4974 icsk->icsk_ack.ato = TCP_ATO_MIN;
4975 tcp_incr_quickack(sk);
4976 tcp_enter_quickack_mode(sk);
4977 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4978 TCP_DELACK_MAX, TCP_RTO_MAX);
4979
4980 discard:
4981 __kfree_skb(skb);
4982 return 0;
4983 } else {
4984 tcp_send_ack(sk);
4985 }
4986 return -1;
4987 }
4988
4989 /* No ACK in the segment */
4990
4991 if (th->rst) {
4992 /* rfc793:
4993 * "If the RST bit is set
4994 *
4995 * Otherwise (no ACK) drop the segment and return."
4996 */
4997
4998 goto discard_and_undo;
4999 }
5000
5001 /* PAWS check. */
5002 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
5003 goto discard_and_undo;
5004
5005 if (th->syn) {
5006 /* We see SYN without ACK. It is attempt of
5007 * simultaneous connect with crossed SYNs.
5008 * Particularly, it can be connect to self.
5009 */
5010 tcp_set_state(sk, TCP_SYN_RECV);
5011
5012 if (tp->rx_opt.saw_tstamp) {
5013 tp->rx_opt.tstamp_ok = 1;
5014 tcp_store_ts_recent(tp);
5015 tp->tcp_header_len =
5016 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5017 } else {
5018 tp->tcp_header_len = sizeof(struct tcphdr);
5019 }
5020
5021 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5022 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5023
5024 /* RFC1323: The window in SYN & SYN/ACK segments is
5025 * never scaled.
5026 */
5027 tp->snd_wnd = ntohs(th->window);
5028 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5029 tp->max_window = tp->snd_wnd;
5030
5031 TCP_ECN_rcv_syn(tp, th);
5032
5033 tcp_mtup_init(sk);
5034 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5035 tcp_initialize_rcv_mss(sk);
5036
5037
5038 tcp_send_synack(sk);
5039 #if 0
5040 /* Note, we could accept data and URG from this segment.
5041 * There are no obstacles to make this.
5042 *
5043 * However, if we ignore data in ACKless segments sometimes,
5044 * we have no reasons to accept it sometimes.
5045 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5046 * is not flawless. So, discard packet for sanity.
5047 * Uncomment this return to process the data.
5048 */
5049 return -1;
5050 #else
5051 goto discard;
5052 #endif
5053 }
5054 /* "fifth, if neither of the SYN or RST bits is set then
5055 * drop the segment and return."
5056 */
5057
5058 discard_and_undo:
5059 tcp_clear_options(&tp->rx_opt);
5060 tp->rx_opt.mss_clamp = saved_clamp;
5061 goto discard;
5062
5063 reset_and_undo:
5064 tcp_clear_options(&tp->rx_opt);
5065 tp->rx_opt.mss_clamp = saved_clamp;
5066 return 1;
5067 }
5068
5069
5070 /*
5071 * This function implements the receiving procedure of RFC 793 for
5072 * all states except ESTABLISHED and TIME_WAIT.
5073 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5074 * address independent.
5075 */
5076
5077 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5078 struct tcphdr *th, unsigned len)
5079 {
5080 struct tcp_sock *tp = tcp_sk(sk);
5081 struct inet_connection_sock *icsk = inet_csk(sk);
5082 int queued = 0;
5083
5084 tp->rx_opt.saw_tstamp = 0;
5085
5086 switch (sk->sk_state) {
5087 case TCP_CLOSE:
5088 goto discard;
5089
5090 case TCP_LISTEN:
5091 if (th->ack)
5092 return 1;
5093
5094 if (th->rst)
5095 goto discard;
5096
5097 if (th->syn) {
5098 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5099 return 1;
5100
5101 /* Now we have several options: In theory there is
5102 * nothing else in the frame. KA9Q has an option to
5103 * send data with the syn, BSD accepts data with the
5104 * syn up to the [to be] advertised window and
5105 * Solaris 2.1 gives you a protocol error. For now
5106 * we just ignore it, that fits the spec precisely
5107 * and avoids incompatibilities. It would be nice in
5108 * future to drop through and process the data.
5109 *
5110 * Now that TTCP is starting to be used we ought to
5111 * queue this data.
5112 * But, this leaves one open to an easy denial of
5113 * service attack, and SYN cookies can't defend
5114 * against this problem. So, we drop the data
5115 * in the interest of security over speed unless
5116 * it's still in use.
5117 */
5118 kfree_skb(skb);
5119 return 0;
5120 }
5121 goto discard;
5122
5123 case TCP_SYN_SENT:
5124 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5125 if (queued >= 0)
5126 return queued;
5127
5128 /* Do step6 onward by hand. */
5129 tcp_urg(sk, skb, th);
5130 __kfree_skb(skb);
5131 tcp_data_snd_check(sk);
5132 return 0;
5133 }
5134
5135 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5136 tcp_paws_discard(sk, skb)) {
5137 if (!th->rst) {
5138 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5139 tcp_send_dupack(sk, skb);
5140 goto discard;
5141 }
5142 /* Reset is accepted even if it did not pass PAWS. */
5143 }
5144
5145 /* step 1: check sequence number */
5146 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5147 if (!th->rst)
5148 tcp_send_dupack(sk, skb);
5149 goto discard;
5150 }
5151
5152 /* step 2: check RST bit */
5153 if (th->rst) {
5154 tcp_reset(sk);
5155 goto discard;
5156 }
5157
5158 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5159
5160 /* step 3: check security and precedence [ignored] */
5161
5162 /* step 4:
5163 *
5164 * Check for a SYN in window.
5165 */
5166 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5167 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5168 tcp_reset(sk);
5169 return 1;
5170 }
5171
5172 /* step 5: check the ACK field */
5173 if (th->ack) {
5174 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5175
5176 switch (sk->sk_state) {
5177 case TCP_SYN_RECV:
5178 if (acceptable) {
5179 tp->copied_seq = tp->rcv_nxt;
5180 smp_mb();
5181 tcp_set_state(sk, TCP_ESTABLISHED);
5182 sk->sk_state_change(sk);
5183
5184 /* Note, that this wakeup is only for marginal
5185 * crossed SYN case. Passively open sockets
5186 * are not waked up, because sk->sk_sleep ==
5187 * NULL and sk->sk_socket == NULL.
5188 */
5189 if (sk->sk_socket)
5190 sk_wake_async(sk,
5191 SOCK_WAKE_IO, POLL_OUT);
5192
5193 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5194 tp->snd_wnd = ntohs(th->window) <<
5195 tp->rx_opt.snd_wscale;
5196 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5197 TCP_SKB_CB(skb)->seq);
5198
5199 /* tcp_ack considers this ACK as duplicate
5200 * and does not calculate rtt.
5201 * Fix it at least with timestamps.
5202 */
5203 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5204 !tp->srtt)
5205 tcp_ack_saw_tstamp(sk, 0);
5206
5207 if (tp->rx_opt.tstamp_ok)
5208 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5209
5210 /* Make sure socket is routed, for
5211 * correct metrics.
5212 */
5213 icsk->icsk_af_ops->rebuild_header(sk);
5214
5215 tcp_init_metrics(sk);
5216
5217 tcp_init_congestion_control(sk);
5218
5219 /* Prevent spurious tcp_cwnd_restart() on
5220 * first data packet.
5221 */
5222 tp->lsndtime = tcp_time_stamp;
5223
5224 tcp_mtup_init(sk);
5225 tcp_initialize_rcv_mss(sk);
5226 tcp_init_buffer_space(sk);
5227 tcp_fast_path_on(tp);
5228 } else {
5229 return 1;
5230 }
5231 break;
5232
5233 case TCP_FIN_WAIT1:
5234 if (tp->snd_una == tp->write_seq) {
5235 tcp_set_state(sk, TCP_FIN_WAIT2);
5236 sk->sk_shutdown |= SEND_SHUTDOWN;
5237 dst_confirm(sk->sk_dst_cache);
5238
5239 if (!sock_flag(sk, SOCK_DEAD))
5240 /* Wake up lingering close() */
5241 sk->sk_state_change(sk);
5242 else {
5243 int tmo;
5244
5245 if (tp->linger2 < 0 ||
5246 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5247 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5248 tcp_done(sk);
5249 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5250 return 1;
5251 }
5252
5253 tmo = tcp_fin_time(sk);
5254 if (tmo > TCP_TIMEWAIT_LEN) {
5255 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5256 } else if (th->fin || sock_owned_by_user(sk)) {
5257 /* Bad case. We could lose such FIN otherwise.
5258 * It is not a big problem, but it looks confusing
5259 * and not so rare event. We still can lose it now,
5260 * if it spins in bh_lock_sock(), but it is really
5261 * marginal case.
5262 */
5263 inet_csk_reset_keepalive_timer(sk, tmo);
5264 } else {
5265 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5266 goto discard;
5267 }
5268 }
5269 }
5270 break;
5271
5272 case TCP_CLOSING:
5273 if (tp->snd_una == tp->write_seq) {
5274 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5275 goto discard;
5276 }
5277 break;
5278
5279 case TCP_LAST_ACK:
5280 if (tp->snd_una == tp->write_seq) {
5281 tcp_update_metrics(sk);
5282 tcp_done(sk);
5283 goto discard;
5284 }
5285 break;
5286 }
5287 } else
5288 goto discard;
5289
5290 /* step 6: check the URG bit */
5291 tcp_urg(sk, skb, th);
5292
5293 /* step 7: process the segment text */
5294 switch (sk->sk_state) {
5295 case TCP_CLOSE_WAIT:
5296 case TCP_CLOSING:
5297 case TCP_LAST_ACK:
5298 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5299 break;
5300 case TCP_FIN_WAIT1:
5301 case TCP_FIN_WAIT2:
5302 /* RFC 793 says to queue data in these states,
5303 * RFC 1122 says we MUST send a reset.
5304 * BSD 4.4 also does reset.
5305 */
5306 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5307 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5308 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5309 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5310 tcp_reset(sk);
5311 return 1;
5312 }
5313 }
5314 /* Fall through */
5315 case TCP_ESTABLISHED:
5316 tcp_data_queue(sk, skb);
5317 queued = 1;
5318 break;
5319 }
5320
5321 /* tcp_data could move socket to TIME-WAIT */
5322 if (sk->sk_state != TCP_CLOSE) {
5323 tcp_data_snd_check(sk);
5324 tcp_ack_snd_check(sk);
5325 }
5326
5327 if (!queued) {
5328 discard:
5329 __kfree_skb(skb);
5330 }
5331 return 0;
5332 }
5333
5334 EXPORT_SYMBOL(sysctl_tcp_ecn);
5335 EXPORT_SYMBOL(sysctl_tcp_reordering);
5336 EXPORT_SYMBOL(tcp_parse_options);
5337 EXPORT_SYMBOL(tcp_rcv_established);
5338 EXPORT_SYMBOL(tcp_rcv_state_process);
5339 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.290817 seconds and 6 git commands to generate.