[TCP]: Add unlikely() to urgent handling in clean_rtx_queue
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 /* RFC3517 uses different metric in lost marker => reset on change */
867 if (tcp_is_fack(tp))
868 tp->lost_skb_hint = NULL;
869 tp->rx_opt.sack_ok &= ~2;
870 }
871
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 tp->rx_opt.sack_ok |= 4;
876 }
877
878 /* Initialize metrics on socket. */
879
880 static void tcp_init_metrics(struct sock *sk)
881 {
882 struct tcp_sock *tp = tcp_sk(sk);
883 struct dst_entry *dst = __sk_dst_get(sk);
884
885 if (dst == NULL)
886 goto reset;
887
888 dst_confirm(dst);
889
890 if (dst_metric_locked(dst, RTAX_CWND))
891 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892 if (dst_metric(dst, RTAX_SSTHRESH)) {
893 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 }
897 if (dst_metric(dst, RTAX_REORDERING) &&
898 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899 tcp_disable_fack(tp);
900 tp->reordering = dst_metric(dst, RTAX_REORDERING);
901 }
902
903 if (dst_metric(dst, RTAX_RTT) == 0)
904 goto reset;
905
906 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907 goto reset;
908
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
913 *
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
922 */
923 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
926 }
927 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 }
931 tcp_set_rto(sk);
932 tcp_bound_rto(sk);
933 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934 goto reset;
935 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936 tp->snd_cwnd_stamp = tcp_time_stamp;
937 return;
938
939 reset:
940 /* Play conservative. If timestamps are not
941 * supported, TCP will fail to recalculate correct
942 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 */
944 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945 tp->srtt = 0;
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948 }
949 }
950
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952 const int ts)
953 {
954 struct tcp_sock *tp = tcp_sk(sk);
955 if (metric > tp->reordering) {
956 tp->reordering = min(TCP_MAX_REORDERING, metric);
957
958 /* This exciting event is worth to be remembered. 8) */
959 if (ts)
960 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961 else if (tcp_is_reno(tp))
962 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963 else if (tcp_is_fack(tp))
964 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965 else
966 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970 tp->reordering,
971 tp->fackets_out,
972 tp->sacked_out,
973 tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975 tcp_disable_fack(tp);
976 }
977 }
978
979 /* This procedure tags the retransmission queue when SACKs arrive.
980 *
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
984 *
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
996 *
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modfication, head until snd.fack is lost.
1004 * B. SACK arrives sacking data transmitted after never retransmitted
1005 * hole was sent out.
1006 * C. SACK arrives sacking SND.NXT at the moment, when the
1007 * segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1009 *
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1013 *
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1018 *
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 * ever retransmitted -> reordering. Alas, we cannot use it
1021 * when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 * for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1026 *
1027 * SACK block validation.
1028 * ----------------------
1029 *
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment. Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1042 *
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * wrap (s_w):
1048 *
1049 * <- outs wnd -> <- wrapzone ->
1050 * u e n u_w e_w s n_w
1051 * | | | | | | |
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->| |<--------...
1054 * ...---- >2^31 ------>| |<--------...
1055 *
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1061 *
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1074 */
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076 u32 start_seq, u32 end_seq)
1077 {
1078 /* Too far in future, or reversed (interpretation is ambiguous) */
1079 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080 return 0;
1081
1082 /* Nasty start_seq wrap-around check (see comments above) */
1083 if (!before(start_seq, tp->snd_nxt))
1084 return 0;
1085
1086 /* In outstanding window? ...This is valid exit for D-SACKs too.
1087 * start_seq == snd_una is non-sensical (see comments above)
1088 */
1089 if (after(start_seq, tp->snd_una))
1090 return 1;
1091
1092 if (!is_dsack || !tp->undo_marker)
1093 return 0;
1094
1095 /* ...Then it's D-SACK, and must reside below snd_una completely */
1096 if (!after(end_seq, tp->snd_una))
1097 return 0;
1098
1099 if (!before(start_seq, tp->undo_marker))
1100 return 1;
1101
1102 /* Too old */
1103 if (!after(end_seq, tp->undo_marker))
1104 return 0;
1105
1106 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107 * start_seq < undo_marker and end_seq >= undo_marker.
1108 */
1109 return !before(start_seq, end_seq - tp->max_window);
1110 }
1111
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1115 *
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119 * retransmitted skbs to avoid some costly processing per ACKs.
1120 */
1121 static void tcp_mark_lost_retrans(struct sock *sk)
1122 {
1123 const struct inet_connection_sock *icsk = inet_csk(sk);
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 struct sk_buff *skb;
1126 int cnt = 0;
1127 u32 new_low_seq = tp->snd_nxt;
1128 u32 received_upto = TCP_SKB_CB(tp->highest_sack)->end_seq;
1129
1130 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1131 !after(received_upto, tp->lost_retrans_low) ||
1132 icsk->icsk_ca_state != TCP_CA_Recovery)
1133 return;
1134
1135 tcp_for_write_queue(skb, sk) {
1136 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1137
1138 if (skb == tcp_send_head(sk))
1139 break;
1140 if (cnt == tp->retrans_out)
1141 break;
1142 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1143 continue;
1144
1145 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1146 continue;
1147
1148 if (after(received_upto, ack_seq) &&
1149 (tcp_is_fack(tp) ||
1150 !before(received_upto,
1151 ack_seq + tp->reordering * tp->mss_cache))) {
1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1153 tp->retrans_out -= tcp_skb_pcount(skb);
1154
1155 /* clear lost hint */
1156 tp->retransmit_skb_hint = NULL;
1157
1158 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1159 tp->lost_out += tcp_skb_pcount(skb);
1160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1161 }
1162 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1163 } else {
1164 if (before(ack_seq, new_low_seq))
1165 new_low_seq = ack_seq;
1166 cnt += tcp_skb_pcount(skb);
1167 }
1168 }
1169
1170 if (tp->retrans_out)
1171 tp->lost_retrans_low = new_low_seq;
1172 }
1173
1174 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1175 struct tcp_sack_block_wire *sp, int num_sacks,
1176 u32 prior_snd_una)
1177 {
1178 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1179 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1180 int dup_sack = 0;
1181
1182 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1183 dup_sack = 1;
1184 tcp_dsack_seen(tp);
1185 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1186 } else if (num_sacks > 1) {
1187 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1188 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1189
1190 if (!after(end_seq_0, end_seq_1) &&
1191 !before(start_seq_0, start_seq_1)) {
1192 dup_sack = 1;
1193 tcp_dsack_seen(tp);
1194 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1195 }
1196 }
1197
1198 /* D-SACK for already forgotten data... Do dumb counting. */
1199 if (dup_sack &&
1200 !after(end_seq_0, prior_snd_una) &&
1201 after(end_seq_0, tp->undo_marker))
1202 tp->undo_retrans--;
1203
1204 return dup_sack;
1205 }
1206
1207 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1208 * the incoming SACK may not exactly match but we can find smaller MSS
1209 * aligned portion of it that matches. Therefore we might need to fragment
1210 * which may fail and creates some hassle (caller must handle error case
1211 * returns).
1212 */
1213 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1214 u32 start_seq, u32 end_seq)
1215 {
1216 int in_sack, err;
1217 unsigned int pkt_len;
1218
1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1220 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1221
1222 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1223 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1224
1225 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1226
1227 if (!in_sack)
1228 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1229 else
1230 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1231 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1232 if (err < 0)
1233 return err;
1234 }
1235
1236 return in_sack;
1237 }
1238
1239 static int tcp_sacktag_one(struct sk_buff *skb, struct tcp_sock *tp,
1240 int *reord, int dup_sack, int fack_count)
1241 {
1242 u8 sacked = TCP_SKB_CB(skb)->sacked;
1243 int flag = 0;
1244
1245 /* Account D-SACK for retransmitted packet. */
1246 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1247 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1248 tp->undo_retrans--;
1249 if (sacked & TCPCB_SACKED_ACKED)
1250 *reord = min(fack_count, *reord);
1251 }
1252
1253 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1254 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1255 return flag;
1256
1257 if (!(sacked & TCPCB_SACKED_ACKED)) {
1258 if (sacked & TCPCB_SACKED_RETRANS) {
1259 /* If the segment is not tagged as lost,
1260 * we do not clear RETRANS, believing
1261 * that retransmission is still in flight.
1262 */
1263 if (sacked & TCPCB_LOST) {
1264 TCP_SKB_CB(skb)->sacked &=
1265 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1266 tp->lost_out -= tcp_skb_pcount(skb);
1267 tp->retrans_out -= tcp_skb_pcount(skb);
1268
1269 /* clear lost hint */
1270 tp->retransmit_skb_hint = NULL;
1271 }
1272 } else {
1273 if (!(sacked & TCPCB_RETRANS)) {
1274 /* New sack for not retransmitted frame,
1275 * which was in hole. It is reordering.
1276 */
1277 if (before(TCP_SKB_CB(skb)->seq,
1278 tcp_highest_sack_seq(tp)))
1279 *reord = min(fack_count, *reord);
1280
1281 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1282 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1283 flag |= FLAG_ONLY_ORIG_SACKED;
1284 }
1285
1286 if (sacked & TCPCB_LOST) {
1287 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1288 tp->lost_out -= tcp_skb_pcount(skb);
1289
1290 /* clear lost hint */
1291 tp->retransmit_skb_hint = NULL;
1292 }
1293 }
1294
1295 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1296 flag |= FLAG_DATA_SACKED;
1297 tp->sacked_out += tcp_skb_pcount(skb);
1298
1299 fack_count += tcp_skb_pcount(skb);
1300
1301 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1302 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1303 before(TCP_SKB_CB(skb)->seq,
1304 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1305 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1306
1307 if (fack_count > tp->fackets_out)
1308 tp->fackets_out = fack_count;
1309
1310 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1311 tp->highest_sack = skb;
1312 }
1313
1314 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1315 * frames and clear it. undo_retrans is decreased above, L|R frames
1316 * are accounted above as well.
1317 */
1318 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1319 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1320 tp->retrans_out -= tcp_skb_pcount(skb);
1321 tp->retransmit_skb_hint = NULL;
1322 }
1323
1324 return flag;
1325 }
1326
1327 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1328 struct tcp_sack_block *next_dup,
1329 u32 start_seq, u32 end_seq,
1330 int dup_sack_in, int *fack_count,
1331 int *reord, int *flag)
1332 {
1333 struct tcp_sock *tp = tcp_sk(sk);
1334
1335 tcp_for_write_queue_from(skb, sk) {
1336 int in_sack = 0;
1337 int dup_sack = dup_sack_in;
1338
1339 if (skb == tcp_send_head(sk))
1340 break;
1341
1342 /* queue is in-order => we can short-circuit the walk early */
1343 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1344 break;
1345
1346 if ((next_dup != NULL) &&
1347 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1348 in_sack = tcp_match_skb_to_sack(sk, skb,
1349 next_dup->start_seq,
1350 next_dup->end_seq);
1351 if (in_sack > 0)
1352 dup_sack = 1;
1353 }
1354
1355 if (in_sack <= 0)
1356 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1357 if (unlikely(in_sack < 0))
1358 break;
1359
1360 if (in_sack)
1361 *flag |= tcp_sacktag_one(skb, tp, reord, dup_sack, *fack_count);
1362
1363 *fack_count += tcp_skb_pcount(skb);
1364 }
1365 return skb;
1366 }
1367
1368 /* Avoid all extra work that is being done by sacktag while walking in
1369 * a normal way
1370 */
1371 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1372 u32 skip_to_seq)
1373 {
1374 tcp_for_write_queue_from(skb, sk) {
1375 if (skb == tcp_send_head(sk))
1376 break;
1377
1378 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1379 break;
1380 }
1381 return skb;
1382 }
1383
1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385 struct sock *sk,
1386 struct tcp_sack_block *next_dup,
1387 u32 skip_to_seq,
1388 int *fack_count, int *reord,
1389 int *flag)
1390 {
1391 if (next_dup == NULL)
1392 return skb;
1393
1394 if (before(next_dup->start_seq, skip_to_seq)) {
1395 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1396 tcp_sacktag_walk(skb, sk, NULL,
1397 next_dup->start_seq, next_dup->end_seq,
1398 1, fack_count, reord, flag);
1399 }
1400
1401 return skb;
1402 }
1403
1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 {
1406 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407 }
1408
1409 static int
1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1411 {
1412 const struct inet_connection_sock *icsk = inet_csk(sk);
1413 struct tcp_sock *tp = tcp_sk(sk);
1414 unsigned char *ptr = (skb_transport_header(ack_skb) +
1415 TCP_SKB_CB(ack_skb)->sacked);
1416 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1417 struct tcp_sack_block sp[4];
1418 struct tcp_sack_block *cache;
1419 struct sk_buff *skb;
1420 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1421 int used_sacks;
1422 int reord = tp->packets_out;
1423 int flag = 0;
1424 int found_dup_sack = 0;
1425 int fack_count;
1426 int i, j;
1427 int first_sack_index;
1428
1429 if (!tp->sacked_out) {
1430 if (WARN_ON(tp->fackets_out))
1431 tp->fackets_out = 0;
1432 tp->highest_sack = tcp_write_queue_head(sk);
1433 }
1434
1435 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1436 num_sacks, prior_snd_una);
1437 if (found_dup_sack)
1438 flag |= FLAG_DSACKING_ACK;
1439
1440 /* Eliminate too old ACKs, but take into
1441 * account more or less fresh ones, they can
1442 * contain valid SACK info.
1443 */
1444 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1445 return 0;
1446
1447 if (!tp->packets_out)
1448 goto out;
1449
1450 used_sacks = 0;
1451 first_sack_index = 0;
1452 for (i = 0; i < num_sacks; i++) {
1453 int dup_sack = !i && found_dup_sack;
1454
1455 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1456 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1457
1458 if (!tcp_is_sackblock_valid(tp, dup_sack,
1459 sp[used_sacks].start_seq,
1460 sp[used_sacks].end_seq)) {
1461 if (dup_sack) {
1462 if (!tp->undo_marker)
1463 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1464 else
1465 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1466 } else {
1467 /* Don't count olds caused by ACK reordering */
1468 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1469 !after(sp[used_sacks].end_seq, tp->snd_una))
1470 continue;
1471 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1472 }
1473 if (i == 0)
1474 first_sack_index = -1;
1475 continue;
1476 }
1477
1478 /* Ignore very old stuff early */
1479 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1480 continue;
1481
1482 used_sacks++;
1483 }
1484
1485 /* order SACK blocks to allow in order walk of the retrans queue */
1486 for (i = used_sacks - 1; i > 0; i--) {
1487 for (j = 0; j < i; j++){
1488 if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1489 struct tcp_sack_block tmp;
1490
1491 tmp = sp[j];
1492 sp[j] = sp[j+1];
1493 sp[j+1] = tmp;
1494
1495 /* Track where the first SACK block goes to */
1496 if (j == first_sack_index)
1497 first_sack_index = j+1;
1498 }
1499 }
1500 }
1501
1502 skb = tcp_write_queue_head(sk);
1503 fack_count = 0;
1504 i = 0;
1505
1506 if (!tp->sacked_out) {
1507 /* It's already past, so skip checking against it */
1508 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1509 } else {
1510 cache = tp->recv_sack_cache;
1511 /* Skip empty blocks in at head of the cache */
1512 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1513 !cache->end_seq)
1514 cache++;
1515 }
1516
1517 while (i < used_sacks) {
1518 u32 start_seq = sp[i].start_seq;
1519 u32 end_seq = sp[i].end_seq;
1520 int dup_sack = (found_dup_sack && (i == first_sack_index));
1521 struct tcp_sack_block *next_dup = NULL;
1522
1523 if (found_dup_sack && ((i + 1) == first_sack_index))
1524 next_dup = &sp[i + 1];
1525
1526 /* Event "B" in the comment above. */
1527 if (after(end_seq, tp->high_seq))
1528 flag |= FLAG_DATA_LOST;
1529
1530 /* Skip too early cached blocks */
1531 while (tcp_sack_cache_ok(tp, cache) &&
1532 !before(start_seq, cache->end_seq))
1533 cache++;
1534
1535 /* Can skip some work by looking recv_sack_cache? */
1536 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1537 after(end_seq, cache->start_seq)) {
1538
1539 /* Head todo? */
1540 if (before(start_seq, cache->start_seq)) {
1541 skb = tcp_sacktag_skip(skb, sk, start_seq);
1542 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1543 cache->start_seq, dup_sack,
1544 &fack_count, &reord, &flag);
1545 }
1546
1547 /* Rest of the block already fully processed? */
1548 if (!after(end_seq, cache->end_seq))
1549 goto advance_sp;
1550
1551 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1552 &fack_count, &reord, &flag);
1553
1554 /* ...tail remains todo... */
1555 if (TCP_SKB_CB(tp->highest_sack)->end_seq == cache->end_seq) {
1556 /* ...but better entrypoint exists! */
1557 skb = tcp_write_queue_next(sk, tp->highest_sack);
1558 fack_count = tp->fackets_out;
1559 cache++;
1560 goto walk;
1561 }
1562
1563 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1564 /* Check overlap against next cached too (past this one already) */
1565 cache++;
1566 continue;
1567 }
1568
1569 if (tp->sacked_out && !before(start_seq, tcp_highest_sack_seq(tp))) {
1570 skb = tcp_write_queue_next(sk, tp->highest_sack);
1571 fack_count = tp->fackets_out;
1572 }
1573 skb = tcp_sacktag_skip(skb, sk, start_seq);
1574
1575 walk:
1576 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1577 dup_sack, &fack_count, &reord, &flag);
1578
1579 advance_sp:
1580 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1581 * due to in-order walk
1582 */
1583 if (after(end_seq, tp->frto_highmark))
1584 flag &= ~FLAG_ONLY_ORIG_SACKED;
1585
1586 i++;
1587 }
1588
1589 /* Clear the head of the cache sack blocks so we can skip it next time */
1590 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1591 tp->recv_sack_cache[i].start_seq = 0;
1592 tp->recv_sack_cache[i].end_seq = 0;
1593 }
1594 for (j = 0; j < used_sacks; j++)
1595 tp->recv_sack_cache[i++] = sp[j];
1596
1597 tcp_mark_lost_retrans(sk);
1598
1599 tcp_verify_left_out(tp);
1600
1601 if ((reord < tp->fackets_out) &&
1602 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1603 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1604 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1605
1606 out:
1607
1608 #if FASTRETRANS_DEBUG > 0
1609 BUG_TRAP((int)tp->sacked_out >= 0);
1610 BUG_TRAP((int)tp->lost_out >= 0);
1611 BUG_TRAP((int)tp->retrans_out >= 0);
1612 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1613 #endif
1614 return flag;
1615 }
1616
1617 /* If we receive more dupacks than we expected counting segments
1618 * in assumption of absent reordering, interpret this as reordering.
1619 * The only another reason could be bug in receiver TCP.
1620 */
1621 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1622 {
1623 struct tcp_sock *tp = tcp_sk(sk);
1624 u32 holes;
1625
1626 holes = max(tp->lost_out, 1U);
1627 holes = min(holes, tp->packets_out);
1628
1629 if ((tp->sacked_out + holes) > tp->packets_out) {
1630 tp->sacked_out = tp->packets_out - holes;
1631 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1632 }
1633 }
1634
1635 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1636
1637 static void tcp_add_reno_sack(struct sock *sk)
1638 {
1639 struct tcp_sock *tp = tcp_sk(sk);
1640 tp->sacked_out++;
1641 tcp_check_reno_reordering(sk, 0);
1642 tcp_verify_left_out(tp);
1643 }
1644
1645 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1646
1647 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1648 {
1649 struct tcp_sock *tp = tcp_sk(sk);
1650
1651 if (acked > 0) {
1652 /* One ACK acked hole. The rest eat duplicate ACKs. */
1653 if (acked-1 >= tp->sacked_out)
1654 tp->sacked_out = 0;
1655 else
1656 tp->sacked_out -= acked-1;
1657 }
1658 tcp_check_reno_reordering(sk, acked);
1659 tcp_verify_left_out(tp);
1660 }
1661
1662 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1663 {
1664 tp->sacked_out = 0;
1665 }
1666
1667 /* F-RTO can only be used if TCP has never retransmitted anything other than
1668 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1669 */
1670 int tcp_use_frto(struct sock *sk)
1671 {
1672 const struct tcp_sock *tp = tcp_sk(sk);
1673 struct sk_buff *skb;
1674
1675 if (!sysctl_tcp_frto)
1676 return 0;
1677
1678 if (IsSackFrto())
1679 return 1;
1680
1681 /* Avoid expensive walking of rexmit queue if possible */
1682 if (tp->retrans_out > 1)
1683 return 0;
1684
1685 skb = tcp_write_queue_head(sk);
1686 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1687 tcp_for_write_queue_from(skb, sk) {
1688 if (skb == tcp_send_head(sk))
1689 break;
1690 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1691 return 0;
1692 /* Short-circuit when first non-SACKed skb has been checked */
1693 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1694 break;
1695 }
1696 return 1;
1697 }
1698
1699 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1700 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1701 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1702 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1703 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1704 * bits are handled if the Loss state is really to be entered (in
1705 * tcp_enter_frto_loss).
1706 *
1707 * Do like tcp_enter_loss() would; when RTO expires the second time it
1708 * does:
1709 * "Reduce ssthresh if it has not yet been made inside this window."
1710 */
1711 void tcp_enter_frto(struct sock *sk)
1712 {
1713 const struct inet_connection_sock *icsk = inet_csk(sk);
1714 struct tcp_sock *tp = tcp_sk(sk);
1715 struct sk_buff *skb;
1716
1717 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1718 tp->snd_una == tp->high_seq ||
1719 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1720 !icsk->icsk_retransmits)) {
1721 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1722 /* Our state is too optimistic in ssthresh() call because cwnd
1723 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1724 * recovery has not yet completed. Pattern would be this: RTO,
1725 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1726 * up here twice).
1727 * RFC4138 should be more specific on what to do, even though
1728 * RTO is quite unlikely to occur after the first Cumulative ACK
1729 * due to back-off and complexity of triggering events ...
1730 */
1731 if (tp->frto_counter) {
1732 u32 stored_cwnd;
1733 stored_cwnd = tp->snd_cwnd;
1734 tp->snd_cwnd = 2;
1735 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1736 tp->snd_cwnd = stored_cwnd;
1737 } else {
1738 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1739 }
1740 /* ... in theory, cong.control module could do "any tricks" in
1741 * ssthresh(), which means that ca_state, lost bits and lost_out
1742 * counter would have to be faked before the call occurs. We
1743 * consider that too expensive, unlikely and hacky, so modules
1744 * using these in ssthresh() must deal these incompatibility
1745 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1746 */
1747 tcp_ca_event(sk, CA_EVENT_FRTO);
1748 }
1749
1750 tp->undo_marker = tp->snd_una;
1751 tp->undo_retrans = 0;
1752
1753 skb = tcp_write_queue_head(sk);
1754 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1755 tp->undo_marker = 0;
1756 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1757 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1758 tp->retrans_out -= tcp_skb_pcount(skb);
1759 }
1760 tcp_verify_left_out(tp);
1761
1762 /* Too bad if TCP was application limited */
1763 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1764
1765 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1766 * The last condition is necessary at least in tp->frto_counter case.
1767 */
1768 if (IsSackFrto() && (tp->frto_counter ||
1769 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1770 after(tp->high_seq, tp->snd_una)) {
1771 tp->frto_highmark = tp->high_seq;
1772 } else {
1773 tp->frto_highmark = tp->snd_nxt;
1774 }
1775 tcp_set_ca_state(sk, TCP_CA_Disorder);
1776 tp->high_seq = tp->snd_nxt;
1777 tp->frto_counter = 1;
1778 }
1779
1780 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1781 * which indicates that we should follow the traditional RTO recovery,
1782 * i.e. mark everything lost and do go-back-N retransmission.
1783 */
1784 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1785 {
1786 struct tcp_sock *tp = tcp_sk(sk);
1787 struct sk_buff *skb;
1788
1789 tp->lost_out = 0;
1790 tp->retrans_out = 0;
1791 if (tcp_is_reno(tp))
1792 tcp_reset_reno_sack(tp);
1793
1794 tcp_for_write_queue(skb, sk) {
1795 if (skb == tcp_send_head(sk))
1796 break;
1797
1798 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1799 /*
1800 * Count the retransmission made on RTO correctly (only when
1801 * waiting for the first ACK and did not get it)...
1802 */
1803 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1804 /* For some reason this R-bit might get cleared? */
1805 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1806 tp->retrans_out += tcp_skb_pcount(skb);
1807 /* ...enter this if branch just for the first segment */
1808 flag |= FLAG_DATA_ACKED;
1809 } else {
1810 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1811 tp->undo_marker = 0;
1812 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1813 }
1814
1815 /* Don't lost mark skbs that were fwd transmitted after RTO */
1816 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1817 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1818 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1819 tp->lost_out += tcp_skb_pcount(skb);
1820 }
1821 }
1822 tcp_verify_left_out(tp);
1823
1824 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1825 tp->snd_cwnd_cnt = 0;
1826 tp->snd_cwnd_stamp = tcp_time_stamp;
1827 tp->frto_counter = 0;
1828 tp->bytes_acked = 0;
1829
1830 tp->reordering = min_t(unsigned int, tp->reordering,
1831 sysctl_tcp_reordering);
1832 tcp_set_ca_state(sk, TCP_CA_Loss);
1833 tp->high_seq = tp->frto_highmark;
1834 TCP_ECN_queue_cwr(tp);
1835
1836 tcp_clear_retrans_hints_partial(tp);
1837 }
1838
1839 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1840 {
1841 tp->retrans_out = 0;
1842 tp->lost_out = 0;
1843
1844 tp->undo_marker = 0;
1845 tp->undo_retrans = 0;
1846 }
1847
1848 void tcp_clear_retrans(struct tcp_sock *tp)
1849 {
1850 tcp_clear_retrans_partial(tp);
1851
1852 tp->fackets_out = 0;
1853 tp->sacked_out = 0;
1854 }
1855
1856 /* Enter Loss state. If "how" is not zero, forget all SACK information
1857 * and reset tags completely, otherwise preserve SACKs. If receiver
1858 * dropped its ofo queue, we will know this due to reneging detection.
1859 */
1860 void tcp_enter_loss(struct sock *sk, int how)
1861 {
1862 const struct inet_connection_sock *icsk = inet_csk(sk);
1863 struct tcp_sock *tp = tcp_sk(sk);
1864 struct sk_buff *skb;
1865
1866 /* Reduce ssthresh if it has not yet been made inside this window. */
1867 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1868 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1869 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1870 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1871 tcp_ca_event(sk, CA_EVENT_LOSS);
1872 }
1873 tp->snd_cwnd = 1;
1874 tp->snd_cwnd_cnt = 0;
1875 tp->snd_cwnd_stamp = tcp_time_stamp;
1876
1877 tp->bytes_acked = 0;
1878 tcp_clear_retrans_partial(tp);
1879
1880 if (tcp_is_reno(tp))
1881 tcp_reset_reno_sack(tp);
1882
1883 if (!how) {
1884 /* Push undo marker, if it was plain RTO and nothing
1885 * was retransmitted. */
1886 tp->undo_marker = tp->snd_una;
1887 tcp_clear_retrans_hints_partial(tp);
1888 } else {
1889 tp->sacked_out = 0;
1890 tp->fackets_out = 0;
1891 tcp_clear_all_retrans_hints(tp);
1892 }
1893
1894 tcp_for_write_queue(skb, sk) {
1895 if (skb == tcp_send_head(sk))
1896 break;
1897
1898 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1899 tp->undo_marker = 0;
1900 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1901 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1902 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1903 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1904 tp->lost_out += tcp_skb_pcount(skb);
1905 }
1906 }
1907 tcp_verify_left_out(tp);
1908
1909 tp->reordering = min_t(unsigned int, tp->reordering,
1910 sysctl_tcp_reordering);
1911 tcp_set_ca_state(sk, TCP_CA_Loss);
1912 tp->high_seq = tp->snd_nxt;
1913 TCP_ECN_queue_cwr(tp);
1914 /* Abort F-RTO algorithm if one is in progress */
1915 tp->frto_counter = 0;
1916 }
1917
1918 static int tcp_check_sack_reneging(struct sock *sk)
1919 {
1920 struct sk_buff *skb;
1921
1922 /* If ACK arrived pointing to a remembered SACK,
1923 * it means that our remembered SACKs do not reflect
1924 * real state of receiver i.e.
1925 * receiver _host_ is heavily congested (or buggy).
1926 * Do processing similar to RTO timeout.
1927 */
1928 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1929 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1930 struct inet_connection_sock *icsk = inet_csk(sk);
1931 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1932
1933 tcp_enter_loss(sk, 1);
1934 icsk->icsk_retransmits++;
1935 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1936 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1937 icsk->icsk_rto, TCP_RTO_MAX);
1938 return 1;
1939 }
1940 return 0;
1941 }
1942
1943 static inline int tcp_fackets_out(struct tcp_sock *tp)
1944 {
1945 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1946 }
1947
1948 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1949 * counter when SACK is enabled (without SACK, sacked_out is used for
1950 * that purpose).
1951 *
1952 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1953 * segments up to the highest received SACK block so far and holes in
1954 * between them.
1955 *
1956 * With reordering, holes may still be in flight, so RFC3517 recovery
1957 * uses pure sacked_out (total number of SACKed segments) even though
1958 * it violates the RFC that uses duplicate ACKs, often these are equal
1959 * but when e.g. out-of-window ACKs or packet duplication occurs,
1960 * they differ. Since neither occurs due to loss, TCP should really
1961 * ignore them.
1962 */
1963 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1964 {
1965 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1966 }
1967
1968 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1969 {
1970 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1971 }
1972
1973 static inline int tcp_head_timedout(struct sock *sk)
1974 {
1975 struct tcp_sock *tp = tcp_sk(sk);
1976
1977 return tp->packets_out &&
1978 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1979 }
1980
1981 /* Linux NewReno/SACK/FACK/ECN state machine.
1982 * --------------------------------------
1983 *
1984 * "Open" Normal state, no dubious events, fast path.
1985 * "Disorder" In all the respects it is "Open",
1986 * but requires a bit more attention. It is entered when
1987 * we see some SACKs or dupacks. It is split of "Open"
1988 * mainly to move some processing from fast path to slow one.
1989 * "CWR" CWND was reduced due to some Congestion Notification event.
1990 * It can be ECN, ICMP source quench, local device congestion.
1991 * "Recovery" CWND was reduced, we are fast-retransmitting.
1992 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1993 *
1994 * tcp_fastretrans_alert() is entered:
1995 * - each incoming ACK, if state is not "Open"
1996 * - when arrived ACK is unusual, namely:
1997 * * SACK
1998 * * Duplicate ACK.
1999 * * ECN ECE.
2000 *
2001 * Counting packets in flight is pretty simple.
2002 *
2003 * in_flight = packets_out - left_out + retrans_out
2004 *
2005 * packets_out is SND.NXT-SND.UNA counted in packets.
2006 *
2007 * retrans_out is number of retransmitted segments.
2008 *
2009 * left_out is number of segments left network, but not ACKed yet.
2010 *
2011 * left_out = sacked_out + lost_out
2012 *
2013 * sacked_out: Packets, which arrived to receiver out of order
2014 * and hence not ACKed. With SACKs this number is simply
2015 * amount of SACKed data. Even without SACKs
2016 * it is easy to give pretty reliable estimate of this number,
2017 * counting duplicate ACKs.
2018 *
2019 * lost_out: Packets lost by network. TCP has no explicit
2020 * "loss notification" feedback from network (for now).
2021 * It means that this number can be only _guessed_.
2022 * Actually, it is the heuristics to predict lossage that
2023 * distinguishes different algorithms.
2024 *
2025 * F.e. after RTO, when all the queue is considered as lost,
2026 * lost_out = packets_out and in_flight = retrans_out.
2027 *
2028 * Essentially, we have now two algorithms counting
2029 * lost packets.
2030 *
2031 * FACK: It is the simplest heuristics. As soon as we decided
2032 * that something is lost, we decide that _all_ not SACKed
2033 * packets until the most forward SACK are lost. I.e.
2034 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2035 * It is absolutely correct estimate, if network does not reorder
2036 * packets. And it loses any connection to reality when reordering
2037 * takes place. We use FACK by default until reordering
2038 * is suspected on the path to this destination.
2039 *
2040 * NewReno: when Recovery is entered, we assume that one segment
2041 * is lost (classic Reno). While we are in Recovery and
2042 * a partial ACK arrives, we assume that one more packet
2043 * is lost (NewReno). This heuristics are the same in NewReno
2044 * and SACK.
2045 *
2046 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2047 * deflation etc. CWND is real congestion window, never inflated, changes
2048 * only according to classic VJ rules.
2049 *
2050 * Really tricky (and requiring careful tuning) part of algorithm
2051 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2052 * The first determines the moment _when_ we should reduce CWND and,
2053 * hence, slow down forward transmission. In fact, it determines the moment
2054 * when we decide that hole is caused by loss, rather than by a reorder.
2055 *
2056 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2057 * holes, caused by lost packets.
2058 *
2059 * And the most logically complicated part of algorithm is undo
2060 * heuristics. We detect false retransmits due to both too early
2061 * fast retransmit (reordering) and underestimated RTO, analyzing
2062 * timestamps and D-SACKs. When we detect that some segments were
2063 * retransmitted by mistake and CWND reduction was wrong, we undo
2064 * window reduction and abort recovery phase. This logic is hidden
2065 * inside several functions named tcp_try_undo_<something>.
2066 */
2067
2068 /* This function decides, when we should leave Disordered state
2069 * and enter Recovery phase, reducing congestion window.
2070 *
2071 * Main question: may we further continue forward transmission
2072 * with the same cwnd?
2073 */
2074 static int tcp_time_to_recover(struct sock *sk)
2075 {
2076 struct tcp_sock *tp = tcp_sk(sk);
2077 __u32 packets_out;
2078
2079 /* Do not perform any recovery during F-RTO algorithm */
2080 if (tp->frto_counter)
2081 return 0;
2082
2083 /* Trick#1: The loss is proven. */
2084 if (tp->lost_out)
2085 return 1;
2086
2087 /* Not-A-Trick#2 : Classic rule... */
2088 if (tcp_dupack_heurestics(tp) > tp->reordering)
2089 return 1;
2090
2091 /* Trick#3 : when we use RFC2988 timer restart, fast
2092 * retransmit can be triggered by timeout of queue head.
2093 */
2094 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2095 return 1;
2096
2097 /* Trick#4: It is still not OK... But will it be useful to delay
2098 * recovery more?
2099 */
2100 packets_out = tp->packets_out;
2101 if (packets_out <= tp->reordering &&
2102 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2103 !tcp_may_send_now(sk)) {
2104 /* We have nothing to send. This connection is limited
2105 * either by receiver window or by application.
2106 */
2107 return 1;
2108 }
2109
2110 return 0;
2111 }
2112
2113 /* RFC: This is from the original, I doubt that this is necessary at all:
2114 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2115 * retransmitted past LOST markings in the first place? I'm not fully sure
2116 * about undo and end of connection cases, which can cause R without L?
2117 */
2118 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2119 struct sk_buff *skb)
2120 {
2121 if ((tp->retransmit_skb_hint != NULL) &&
2122 before(TCP_SKB_CB(skb)->seq,
2123 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2124 tp->retransmit_skb_hint = NULL;
2125 }
2126
2127 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2128 * is against sacked "cnt", otherwise it's against facked "cnt"
2129 */
2130 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2131 {
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 struct sk_buff *skb;
2134 int cnt;
2135
2136 BUG_TRAP(packets <= tp->packets_out);
2137 if (tp->lost_skb_hint) {
2138 skb = tp->lost_skb_hint;
2139 cnt = tp->lost_cnt_hint;
2140 } else {
2141 skb = tcp_write_queue_head(sk);
2142 cnt = 0;
2143 }
2144
2145 tcp_for_write_queue_from(skb, sk) {
2146 if (skb == tcp_send_head(sk))
2147 break;
2148 /* TODO: do this better */
2149 /* this is not the most efficient way to do this... */
2150 tp->lost_skb_hint = skb;
2151 tp->lost_cnt_hint = cnt;
2152
2153 if (tcp_is_fack(tp) ||
2154 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2155 cnt += tcp_skb_pcount(skb);
2156
2157 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2158 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2159 break;
2160 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2161 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2162 tp->lost_out += tcp_skb_pcount(skb);
2163 tcp_verify_retransmit_hint(tp, skb);
2164 }
2165 }
2166 tcp_verify_left_out(tp);
2167 }
2168
2169 /* Account newly detected lost packet(s) */
2170
2171 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2172 {
2173 struct tcp_sock *tp = tcp_sk(sk);
2174
2175 if (tcp_is_reno(tp)) {
2176 tcp_mark_head_lost(sk, 1, fast_rexmit);
2177 } else if (tcp_is_fack(tp)) {
2178 int lost = tp->fackets_out - tp->reordering;
2179 if (lost <= 0)
2180 lost = 1;
2181 tcp_mark_head_lost(sk, lost, fast_rexmit);
2182 } else {
2183 int sacked_upto = tp->sacked_out - tp->reordering;
2184 if (sacked_upto < 0)
2185 sacked_upto = 0;
2186 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2187 }
2188
2189 /* New heuristics: it is possible only after we switched
2190 * to restart timer each time when something is ACKed.
2191 * Hence, we can detect timed out packets during fast
2192 * retransmit without falling to slow start.
2193 */
2194 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2195 struct sk_buff *skb;
2196
2197 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2198 : tcp_write_queue_head(sk);
2199
2200 tcp_for_write_queue_from(skb, sk) {
2201 if (skb == tcp_send_head(sk))
2202 break;
2203 if (!tcp_skb_timedout(sk, skb))
2204 break;
2205
2206 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2207 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2208 tp->lost_out += tcp_skb_pcount(skb);
2209 tcp_verify_retransmit_hint(tp, skb);
2210 }
2211 }
2212
2213 tp->scoreboard_skb_hint = skb;
2214
2215 tcp_verify_left_out(tp);
2216 }
2217 }
2218
2219 /* CWND moderation, preventing bursts due to too big ACKs
2220 * in dubious situations.
2221 */
2222 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2223 {
2224 tp->snd_cwnd = min(tp->snd_cwnd,
2225 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2226 tp->snd_cwnd_stamp = tcp_time_stamp;
2227 }
2228
2229 /* Lower bound on congestion window is slow start threshold
2230 * unless congestion avoidance choice decides to overide it.
2231 */
2232 static inline u32 tcp_cwnd_min(const struct sock *sk)
2233 {
2234 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2235
2236 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2237 }
2238
2239 /* Decrease cwnd each second ack. */
2240 static void tcp_cwnd_down(struct sock *sk, int flag)
2241 {
2242 struct tcp_sock *tp = tcp_sk(sk);
2243 int decr = tp->snd_cwnd_cnt + 1;
2244
2245 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2246 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2247 tp->snd_cwnd_cnt = decr&1;
2248 decr >>= 1;
2249
2250 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2251 tp->snd_cwnd -= decr;
2252
2253 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2254 tp->snd_cwnd_stamp = tcp_time_stamp;
2255 }
2256 }
2257
2258 /* Nothing was retransmitted or returned timestamp is less
2259 * than timestamp of the first retransmission.
2260 */
2261 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2262 {
2263 return !tp->retrans_stamp ||
2264 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2265 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2266 }
2267
2268 /* Undo procedures. */
2269
2270 #if FASTRETRANS_DEBUG > 1
2271 static void DBGUNDO(struct sock *sk, const char *msg)
2272 {
2273 struct tcp_sock *tp = tcp_sk(sk);
2274 struct inet_sock *inet = inet_sk(sk);
2275
2276 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2277 msg,
2278 NIPQUAD(inet->daddr), ntohs(inet->dport),
2279 tp->snd_cwnd, tcp_left_out(tp),
2280 tp->snd_ssthresh, tp->prior_ssthresh,
2281 tp->packets_out);
2282 }
2283 #else
2284 #define DBGUNDO(x...) do { } while (0)
2285 #endif
2286
2287 static void tcp_undo_cwr(struct sock *sk, const int undo)
2288 {
2289 struct tcp_sock *tp = tcp_sk(sk);
2290
2291 if (tp->prior_ssthresh) {
2292 const struct inet_connection_sock *icsk = inet_csk(sk);
2293
2294 if (icsk->icsk_ca_ops->undo_cwnd)
2295 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2296 else
2297 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2298
2299 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2300 tp->snd_ssthresh = tp->prior_ssthresh;
2301 TCP_ECN_withdraw_cwr(tp);
2302 }
2303 } else {
2304 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2305 }
2306 tcp_moderate_cwnd(tp);
2307 tp->snd_cwnd_stamp = tcp_time_stamp;
2308
2309 /* There is something screwy going on with the retrans hints after
2310 an undo */
2311 tcp_clear_all_retrans_hints(tp);
2312 }
2313
2314 static inline int tcp_may_undo(struct tcp_sock *tp)
2315 {
2316 return tp->undo_marker &&
2317 (!tp->undo_retrans || tcp_packet_delayed(tp));
2318 }
2319
2320 /* People celebrate: "We love our President!" */
2321 static int tcp_try_undo_recovery(struct sock *sk)
2322 {
2323 struct tcp_sock *tp = tcp_sk(sk);
2324
2325 if (tcp_may_undo(tp)) {
2326 /* Happy end! We did not retransmit anything
2327 * or our original transmission succeeded.
2328 */
2329 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2330 tcp_undo_cwr(sk, 1);
2331 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2332 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2333 else
2334 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2335 tp->undo_marker = 0;
2336 }
2337 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2338 /* Hold old state until something *above* high_seq
2339 * is ACKed. For Reno it is MUST to prevent false
2340 * fast retransmits (RFC2582). SACK TCP is safe. */
2341 tcp_moderate_cwnd(tp);
2342 return 1;
2343 }
2344 tcp_set_ca_state(sk, TCP_CA_Open);
2345 return 0;
2346 }
2347
2348 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2349 static void tcp_try_undo_dsack(struct sock *sk)
2350 {
2351 struct tcp_sock *tp = tcp_sk(sk);
2352
2353 if (tp->undo_marker && !tp->undo_retrans) {
2354 DBGUNDO(sk, "D-SACK");
2355 tcp_undo_cwr(sk, 1);
2356 tp->undo_marker = 0;
2357 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2358 }
2359 }
2360
2361 /* Undo during fast recovery after partial ACK. */
2362
2363 static int tcp_try_undo_partial(struct sock *sk, int acked)
2364 {
2365 struct tcp_sock *tp = tcp_sk(sk);
2366 /* Partial ACK arrived. Force Hoe's retransmit. */
2367 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2368
2369 if (tcp_may_undo(tp)) {
2370 /* Plain luck! Hole if filled with delayed
2371 * packet, rather than with a retransmit.
2372 */
2373 if (tp->retrans_out == 0)
2374 tp->retrans_stamp = 0;
2375
2376 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2377
2378 DBGUNDO(sk, "Hoe");
2379 tcp_undo_cwr(sk, 0);
2380 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2381
2382 /* So... Do not make Hoe's retransmit yet.
2383 * If the first packet was delayed, the rest
2384 * ones are most probably delayed as well.
2385 */
2386 failed = 0;
2387 }
2388 return failed;
2389 }
2390
2391 /* Undo during loss recovery after partial ACK. */
2392 static int tcp_try_undo_loss(struct sock *sk)
2393 {
2394 struct tcp_sock *tp = tcp_sk(sk);
2395
2396 if (tcp_may_undo(tp)) {
2397 struct sk_buff *skb;
2398 tcp_for_write_queue(skb, sk) {
2399 if (skb == tcp_send_head(sk))
2400 break;
2401 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2402 }
2403
2404 tcp_clear_all_retrans_hints(tp);
2405
2406 DBGUNDO(sk, "partial loss");
2407 tp->lost_out = 0;
2408 tcp_undo_cwr(sk, 1);
2409 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2410 inet_csk(sk)->icsk_retransmits = 0;
2411 tp->undo_marker = 0;
2412 if (tcp_is_sack(tp))
2413 tcp_set_ca_state(sk, TCP_CA_Open);
2414 return 1;
2415 }
2416 return 0;
2417 }
2418
2419 static inline void tcp_complete_cwr(struct sock *sk)
2420 {
2421 struct tcp_sock *tp = tcp_sk(sk);
2422 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2423 tp->snd_cwnd_stamp = tcp_time_stamp;
2424 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2425 }
2426
2427 static void tcp_try_to_open(struct sock *sk, int flag)
2428 {
2429 struct tcp_sock *tp = tcp_sk(sk);
2430
2431 tcp_verify_left_out(tp);
2432
2433 if (tp->retrans_out == 0)
2434 tp->retrans_stamp = 0;
2435
2436 if (flag&FLAG_ECE)
2437 tcp_enter_cwr(sk, 1);
2438
2439 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2440 int state = TCP_CA_Open;
2441
2442 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2443 state = TCP_CA_Disorder;
2444
2445 if (inet_csk(sk)->icsk_ca_state != state) {
2446 tcp_set_ca_state(sk, state);
2447 tp->high_seq = tp->snd_nxt;
2448 }
2449 tcp_moderate_cwnd(tp);
2450 } else {
2451 tcp_cwnd_down(sk, flag);
2452 }
2453 }
2454
2455 static void tcp_mtup_probe_failed(struct sock *sk)
2456 {
2457 struct inet_connection_sock *icsk = inet_csk(sk);
2458
2459 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2460 icsk->icsk_mtup.probe_size = 0;
2461 }
2462
2463 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2464 {
2465 struct tcp_sock *tp = tcp_sk(sk);
2466 struct inet_connection_sock *icsk = inet_csk(sk);
2467
2468 /* FIXME: breaks with very large cwnd */
2469 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2470 tp->snd_cwnd = tp->snd_cwnd *
2471 tcp_mss_to_mtu(sk, tp->mss_cache) /
2472 icsk->icsk_mtup.probe_size;
2473 tp->snd_cwnd_cnt = 0;
2474 tp->snd_cwnd_stamp = tcp_time_stamp;
2475 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2476
2477 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2478 icsk->icsk_mtup.probe_size = 0;
2479 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2480 }
2481
2482
2483 /* Process an event, which can update packets-in-flight not trivially.
2484 * Main goal of this function is to calculate new estimate for left_out,
2485 * taking into account both packets sitting in receiver's buffer and
2486 * packets lost by network.
2487 *
2488 * Besides that it does CWND reduction, when packet loss is detected
2489 * and changes state of machine.
2490 *
2491 * It does _not_ decide what to send, it is made in function
2492 * tcp_xmit_retransmit_queue().
2493 */
2494 static void
2495 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2496 {
2497 struct inet_connection_sock *icsk = inet_csk(sk);
2498 struct tcp_sock *tp = tcp_sk(sk);
2499 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2500 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2501 (tcp_fackets_out(tp) > tp->reordering));
2502 int fast_rexmit = 0;
2503
2504 /* Some technical things:
2505 * 1. Reno does not count dupacks (sacked_out) automatically. */
2506 if (!tp->packets_out)
2507 tp->sacked_out = 0;
2508
2509 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2510 tp->fackets_out = 0;
2511
2512 /* Now state machine starts.
2513 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2514 if (flag&FLAG_ECE)
2515 tp->prior_ssthresh = 0;
2516
2517 /* B. In all the states check for reneging SACKs. */
2518 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2519 return;
2520
2521 /* C. Process data loss notification, provided it is valid. */
2522 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2523 before(tp->snd_una, tp->high_seq) &&
2524 icsk->icsk_ca_state != TCP_CA_Open &&
2525 tp->fackets_out > tp->reordering) {
2526 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2527 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2528 }
2529
2530 /* D. Check consistency of the current state. */
2531 tcp_verify_left_out(tp);
2532
2533 /* E. Check state exit conditions. State can be terminated
2534 * when high_seq is ACKed. */
2535 if (icsk->icsk_ca_state == TCP_CA_Open) {
2536 BUG_TRAP(tp->retrans_out == 0);
2537 tp->retrans_stamp = 0;
2538 } else if (!before(tp->snd_una, tp->high_seq)) {
2539 switch (icsk->icsk_ca_state) {
2540 case TCP_CA_Loss:
2541 icsk->icsk_retransmits = 0;
2542 if (tcp_try_undo_recovery(sk))
2543 return;
2544 break;
2545
2546 case TCP_CA_CWR:
2547 /* CWR is to be held something *above* high_seq
2548 * is ACKed for CWR bit to reach receiver. */
2549 if (tp->snd_una != tp->high_seq) {
2550 tcp_complete_cwr(sk);
2551 tcp_set_ca_state(sk, TCP_CA_Open);
2552 }
2553 break;
2554
2555 case TCP_CA_Disorder:
2556 tcp_try_undo_dsack(sk);
2557 if (!tp->undo_marker ||
2558 /* For SACK case do not Open to allow to undo
2559 * catching for all duplicate ACKs. */
2560 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2561 tp->undo_marker = 0;
2562 tcp_set_ca_state(sk, TCP_CA_Open);
2563 }
2564 break;
2565
2566 case TCP_CA_Recovery:
2567 if (tcp_is_reno(tp))
2568 tcp_reset_reno_sack(tp);
2569 if (tcp_try_undo_recovery(sk))
2570 return;
2571 tcp_complete_cwr(sk);
2572 break;
2573 }
2574 }
2575
2576 /* F. Process state. */
2577 switch (icsk->icsk_ca_state) {
2578 case TCP_CA_Recovery:
2579 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2580 if (tcp_is_reno(tp) && is_dupack)
2581 tcp_add_reno_sack(sk);
2582 } else
2583 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2584 break;
2585 case TCP_CA_Loss:
2586 if (flag&FLAG_DATA_ACKED)
2587 icsk->icsk_retransmits = 0;
2588 if (!tcp_try_undo_loss(sk)) {
2589 tcp_moderate_cwnd(tp);
2590 tcp_xmit_retransmit_queue(sk);
2591 return;
2592 }
2593 if (icsk->icsk_ca_state != TCP_CA_Open)
2594 return;
2595 /* Loss is undone; fall through to processing in Open state. */
2596 default:
2597 if (tcp_is_reno(tp)) {
2598 if (flag & FLAG_SND_UNA_ADVANCED)
2599 tcp_reset_reno_sack(tp);
2600 if (is_dupack)
2601 tcp_add_reno_sack(sk);
2602 }
2603
2604 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2605 tcp_try_undo_dsack(sk);
2606
2607 if (!tcp_time_to_recover(sk)) {
2608 tcp_try_to_open(sk, flag);
2609 return;
2610 }
2611
2612 /* MTU probe failure: don't reduce cwnd */
2613 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2614 icsk->icsk_mtup.probe_size &&
2615 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2616 tcp_mtup_probe_failed(sk);
2617 /* Restores the reduction we did in tcp_mtup_probe() */
2618 tp->snd_cwnd++;
2619 tcp_simple_retransmit(sk);
2620 return;
2621 }
2622
2623 /* Otherwise enter Recovery state */
2624
2625 if (tcp_is_reno(tp))
2626 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2627 else
2628 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2629
2630 tp->high_seq = tp->snd_nxt;
2631 tp->prior_ssthresh = 0;
2632 tp->undo_marker = tp->snd_una;
2633 tp->undo_retrans = tp->retrans_out;
2634
2635 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2636 if (!(flag&FLAG_ECE))
2637 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2638 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2639 TCP_ECN_queue_cwr(tp);
2640 }
2641
2642 tp->bytes_acked = 0;
2643 tp->snd_cwnd_cnt = 0;
2644 tcp_set_ca_state(sk, TCP_CA_Recovery);
2645 fast_rexmit = 1;
2646 }
2647
2648 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2649 tcp_update_scoreboard(sk, fast_rexmit);
2650 tcp_cwnd_down(sk, flag);
2651 tcp_xmit_retransmit_queue(sk);
2652 }
2653
2654 /* Read draft-ietf-tcplw-high-performance before mucking
2655 * with this code. (Supersedes RFC1323)
2656 */
2657 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2658 {
2659 /* RTTM Rule: A TSecr value received in a segment is used to
2660 * update the averaged RTT measurement only if the segment
2661 * acknowledges some new data, i.e., only if it advances the
2662 * left edge of the send window.
2663 *
2664 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2665 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2666 *
2667 * Changed: reset backoff as soon as we see the first valid sample.
2668 * If we do not, we get strongly overestimated rto. With timestamps
2669 * samples are accepted even from very old segments: f.e., when rtt=1
2670 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2671 * answer arrives rto becomes 120 seconds! If at least one of segments
2672 * in window is lost... Voila. --ANK (010210)
2673 */
2674 struct tcp_sock *tp = tcp_sk(sk);
2675 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2676 tcp_rtt_estimator(sk, seq_rtt);
2677 tcp_set_rto(sk);
2678 inet_csk(sk)->icsk_backoff = 0;
2679 tcp_bound_rto(sk);
2680 }
2681
2682 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2683 {
2684 /* We don't have a timestamp. Can only use
2685 * packets that are not retransmitted to determine
2686 * rtt estimates. Also, we must not reset the
2687 * backoff for rto until we get a non-retransmitted
2688 * packet. This allows us to deal with a situation
2689 * where the network delay has increased suddenly.
2690 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2691 */
2692
2693 if (flag & FLAG_RETRANS_DATA_ACKED)
2694 return;
2695
2696 tcp_rtt_estimator(sk, seq_rtt);
2697 tcp_set_rto(sk);
2698 inet_csk(sk)->icsk_backoff = 0;
2699 tcp_bound_rto(sk);
2700 }
2701
2702 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2703 const s32 seq_rtt)
2704 {
2705 const struct tcp_sock *tp = tcp_sk(sk);
2706 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2707 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2708 tcp_ack_saw_tstamp(sk, flag);
2709 else if (seq_rtt >= 0)
2710 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2711 }
2712
2713 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2714 {
2715 const struct inet_connection_sock *icsk = inet_csk(sk);
2716 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2717 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2718 }
2719
2720 /* Restart timer after forward progress on connection.
2721 * RFC2988 recommends to restart timer to now+rto.
2722 */
2723 static void tcp_rearm_rto(struct sock *sk)
2724 {
2725 struct tcp_sock *tp = tcp_sk(sk);
2726
2727 if (!tp->packets_out) {
2728 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2729 } else {
2730 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2731 }
2732 }
2733
2734 /* If we get here, the whole TSO packet has not been acked. */
2735 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2736 {
2737 struct tcp_sock *tp = tcp_sk(sk);
2738 u32 packets_acked;
2739
2740 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2741
2742 packets_acked = tcp_skb_pcount(skb);
2743 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2744 return 0;
2745 packets_acked -= tcp_skb_pcount(skb);
2746
2747 if (packets_acked) {
2748 BUG_ON(tcp_skb_pcount(skb) == 0);
2749 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2750 }
2751
2752 return packets_acked;
2753 }
2754
2755 /* Remove acknowledged frames from the retransmission queue. If our packet
2756 * is before the ack sequence we can discard it as it's confirmed to have
2757 * arrived at the other end.
2758 */
2759 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2760 int prior_fackets)
2761 {
2762 struct tcp_sock *tp = tcp_sk(sk);
2763 const struct inet_connection_sock *icsk = inet_csk(sk);
2764 struct sk_buff *skb;
2765 u32 now = tcp_time_stamp;
2766 int fully_acked = 1;
2767 int flag = 0;
2768 int prior_packets = tp->packets_out;
2769 u32 cnt = 0;
2770 u32 reord = tp->packets_out;
2771 s32 seq_rtt = -1;
2772 s32 ca_seq_rtt = -1;
2773 ktime_t last_ackt = net_invalid_timestamp();
2774
2775 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2776 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2777 u32 end_seq;
2778 u32 packets_acked;
2779 u8 sacked = scb->sacked;
2780
2781 /* Determine how many packets and what bytes were acked, tso and else */
2782 if (after(scb->end_seq, tp->snd_una)) {
2783 if (tcp_skb_pcount(skb) == 1 ||
2784 !after(tp->snd_una, scb->seq))
2785 break;
2786
2787 packets_acked = tcp_tso_acked(sk, skb);
2788 if (!packets_acked)
2789 break;
2790
2791 fully_acked = 0;
2792 end_seq = tp->snd_una;
2793 } else {
2794 packets_acked = tcp_skb_pcount(skb);
2795 end_seq = scb->end_seq;
2796 }
2797
2798 /* MTU probing checks */
2799 if (fully_acked && icsk->icsk_mtup.probe_size &&
2800 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2801 tcp_mtup_probe_success(sk, skb);
2802 }
2803
2804 if (sacked & TCPCB_RETRANS) {
2805 if (sacked & TCPCB_SACKED_RETRANS)
2806 tp->retrans_out -= packets_acked;
2807 flag |= FLAG_RETRANS_DATA_ACKED;
2808 ca_seq_rtt = -1;
2809 seq_rtt = -1;
2810 if ((flag & FLAG_DATA_ACKED) ||
2811 (packets_acked > 1))
2812 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2813 } else {
2814 ca_seq_rtt = now - scb->when;
2815 last_ackt = skb->tstamp;
2816 if (seq_rtt < 0) {
2817 seq_rtt = ca_seq_rtt;
2818 }
2819 if (!(sacked & TCPCB_SACKED_ACKED))
2820 reord = min(cnt, reord);
2821 }
2822
2823 if (sacked & TCPCB_SACKED_ACKED)
2824 tp->sacked_out -= packets_acked;
2825 if (sacked & TCPCB_LOST)
2826 tp->lost_out -= packets_acked;
2827
2828 if (unlikely((sacked & TCPCB_URG) && tp->urg_mode &&
2829 !before(end_seq, tp->snd_up)))
2830 tp->urg_mode = 0;
2831
2832 tp->packets_out -= packets_acked;
2833 cnt += packets_acked;
2834
2835 /* Initial outgoing SYN's get put onto the write_queue
2836 * just like anything else we transmit. It is not
2837 * true data, and if we misinform our callers that
2838 * this ACK acks real data, we will erroneously exit
2839 * connection startup slow start one packet too
2840 * quickly. This is severely frowned upon behavior.
2841 */
2842 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2843 flag |= FLAG_DATA_ACKED;
2844 } else {
2845 flag |= FLAG_SYN_ACKED;
2846 tp->retrans_stamp = 0;
2847 }
2848
2849 if (!fully_acked)
2850 break;
2851
2852 tcp_unlink_write_queue(skb, sk);
2853 sk_stream_free_skb(sk, skb);
2854 tcp_clear_all_retrans_hints(tp);
2855 }
2856
2857 if (flag & FLAG_ACKED) {
2858 u32 pkts_acked = prior_packets - tp->packets_out;
2859 const struct tcp_congestion_ops *ca_ops
2860 = inet_csk(sk)->icsk_ca_ops;
2861
2862 tcp_ack_update_rtt(sk, flag, seq_rtt);
2863 tcp_rearm_rto(sk);
2864
2865 if (tcp_is_reno(tp)) {
2866 tcp_remove_reno_sacks(sk, pkts_acked);
2867 } else {
2868 /* Non-retransmitted hole got filled? That's reordering */
2869 if (reord < prior_fackets)
2870 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2871 }
2872
2873 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2874
2875 if (ca_ops->pkts_acked) {
2876 s32 rtt_us = -1;
2877
2878 /* Is the ACK triggering packet unambiguous? */
2879 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2880 /* High resolution needed and available? */
2881 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2882 !ktime_equal(last_ackt,
2883 net_invalid_timestamp()))
2884 rtt_us = ktime_us_delta(ktime_get_real(),
2885 last_ackt);
2886 else if (ca_seq_rtt > 0)
2887 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2888 }
2889
2890 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2891 }
2892 }
2893
2894 #if FASTRETRANS_DEBUG > 0
2895 BUG_TRAP((int)tp->sacked_out >= 0);
2896 BUG_TRAP((int)tp->lost_out >= 0);
2897 BUG_TRAP((int)tp->retrans_out >= 0);
2898 if (!tp->packets_out && tcp_is_sack(tp)) {
2899 icsk = inet_csk(sk);
2900 if (tp->lost_out) {
2901 printk(KERN_DEBUG "Leak l=%u %d\n",
2902 tp->lost_out, icsk->icsk_ca_state);
2903 tp->lost_out = 0;
2904 }
2905 if (tp->sacked_out) {
2906 printk(KERN_DEBUG "Leak s=%u %d\n",
2907 tp->sacked_out, icsk->icsk_ca_state);
2908 tp->sacked_out = 0;
2909 }
2910 if (tp->retrans_out) {
2911 printk(KERN_DEBUG "Leak r=%u %d\n",
2912 tp->retrans_out, icsk->icsk_ca_state);
2913 tp->retrans_out = 0;
2914 }
2915 }
2916 #endif
2917 *seq_rtt_p = seq_rtt;
2918 return flag;
2919 }
2920
2921 static void tcp_ack_probe(struct sock *sk)
2922 {
2923 const struct tcp_sock *tp = tcp_sk(sk);
2924 struct inet_connection_sock *icsk = inet_csk(sk);
2925
2926 /* Was it a usable window open? */
2927
2928 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2929 tp->snd_una + tp->snd_wnd)) {
2930 icsk->icsk_backoff = 0;
2931 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2932 /* Socket must be waked up by subsequent tcp_data_snd_check().
2933 * This function is not for random using!
2934 */
2935 } else {
2936 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2937 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2938 TCP_RTO_MAX);
2939 }
2940 }
2941
2942 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2943 {
2944 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2945 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2946 }
2947
2948 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2949 {
2950 const struct tcp_sock *tp = tcp_sk(sk);
2951 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2952 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2953 }
2954
2955 /* Check that window update is acceptable.
2956 * The function assumes that snd_una<=ack<=snd_next.
2957 */
2958 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2959 const u32 ack_seq, const u32 nwin)
2960 {
2961 return (after(ack, tp->snd_una) ||
2962 after(ack_seq, tp->snd_wl1) ||
2963 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2964 }
2965
2966 /* Update our send window.
2967 *
2968 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2969 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2970 */
2971 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2972 u32 ack_seq)
2973 {
2974 struct tcp_sock *tp = tcp_sk(sk);
2975 int flag = 0;
2976 u32 nwin = ntohs(tcp_hdr(skb)->window);
2977
2978 if (likely(!tcp_hdr(skb)->syn))
2979 nwin <<= tp->rx_opt.snd_wscale;
2980
2981 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2982 flag |= FLAG_WIN_UPDATE;
2983 tcp_update_wl(tp, ack, ack_seq);
2984
2985 if (tp->snd_wnd != nwin) {
2986 tp->snd_wnd = nwin;
2987
2988 /* Note, it is the only place, where
2989 * fast path is recovered for sending TCP.
2990 */
2991 tp->pred_flags = 0;
2992 tcp_fast_path_check(sk);
2993
2994 if (nwin > tp->max_window) {
2995 tp->max_window = nwin;
2996 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2997 }
2998 }
2999 }
3000
3001 tp->snd_una = ack;
3002
3003 return flag;
3004 }
3005
3006 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3007 * continue in congestion avoidance.
3008 */
3009 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3010 {
3011 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3012 tp->snd_cwnd_cnt = 0;
3013 tp->bytes_acked = 0;
3014 TCP_ECN_queue_cwr(tp);
3015 tcp_moderate_cwnd(tp);
3016 }
3017
3018 /* A conservative spurious RTO response algorithm: reduce cwnd using
3019 * rate halving and continue in congestion avoidance.
3020 */
3021 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3022 {
3023 tcp_enter_cwr(sk, 0);
3024 }
3025
3026 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3027 {
3028 if (flag&FLAG_ECE)
3029 tcp_ratehalving_spur_to_response(sk);
3030 else
3031 tcp_undo_cwr(sk, 1);
3032 }
3033
3034 /* F-RTO spurious RTO detection algorithm (RFC4138)
3035 *
3036 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3037 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3038 * window (but not to or beyond highest sequence sent before RTO):
3039 * On First ACK, send two new segments out.
3040 * On Second ACK, RTO was likely spurious. Do spurious response (response
3041 * algorithm is not part of the F-RTO detection algorithm
3042 * given in RFC4138 but can be selected separately).
3043 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3044 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3045 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3046 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3047 *
3048 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3049 * original window even after we transmit two new data segments.
3050 *
3051 * SACK version:
3052 * on first step, wait until first cumulative ACK arrives, then move to
3053 * the second step. In second step, the next ACK decides.
3054 *
3055 * F-RTO is implemented (mainly) in four functions:
3056 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3057 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3058 * called when tcp_use_frto() showed green light
3059 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3060 * - tcp_enter_frto_loss() is called if there is not enough evidence
3061 * to prove that the RTO is indeed spurious. It transfers the control
3062 * from F-RTO to the conventional RTO recovery
3063 */
3064 static int tcp_process_frto(struct sock *sk, int flag)
3065 {
3066 struct tcp_sock *tp = tcp_sk(sk);
3067
3068 tcp_verify_left_out(tp);
3069
3070 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3071 if (flag&FLAG_DATA_ACKED)
3072 inet_csk(sk)->icsk_retransmits = 0;
3073
3074 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3075 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3076 tp->undo_marker = 0;
3077
3078 if (!before(tp->snd_una, tp->frto_highmark)) {
3079 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3080 return 1;
3081 }
3082
3083 if (!IsSackFrto() || tcp_is_reno(tp)) {
3084 /* RFC4138 shortcoming in step 2; should also have case c):
3085 * ACK isn't duplicate nor advances window, e.g., opposite dir
3086 * data, winupdate
3087 */
3088 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3089 return 1;
3090
3091 if (!(flag&FLAG_DATA_ACKED)) {
3092 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3093 flag);
3094 return 1;
3095 }
3096 } else {
3097 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3098 /* Prevent sending of new data. */
3099 tp->snd_cwnd = min(tp->snd_cwnd,
3100 tcp_packets_in_flight(tp));
3101 return 1;
3102 }
3103
3104 if ((tp->frto_counter >= 2) &&
3105 (!(flag&FLAG_FORWARD_PROGRESS) ||
3106 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3107 /* RFC4138 shortcoming (see comment above) */
3108 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3109 return 1;
3110
3111 tcp_enter_frto_loss(sk, 3, flag);
3112 return 1;
3113 }
3114 }
3115
3116 if (tp->frto_counter == 1) {
3117 /* tcp_may_send_now needs to see updated state */
3118 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3119 tp->frto_counter = 2;
3120
3121 if (!tcp_may_send_now(sk))
3122 tcp_enter_frto_loss(sk, 2, flag);
3123
3124 return 1;
3125 } else {
3126 switch (sysctl_tcp_frto_response) {
3127 case 2:
3128 tcp_undo_spur_to_response(sk, flag);
3129 break;
3130 case 1:
3131 tcp_conservative_spur_to_response(tp);
3132 break;
3133 default:
3134 tcp_ratehalving_spur_to_response(sk);
3135 break;
3136 }
3137 tp->frto_counter = 0;
3138 tp->undo_marker = 0;
3139 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3140 }
3141 return 0;
3142 }
3143
3144 /* This routine deals with incoming acks, but not outgoing ones. */
3145 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3146 {
3147 struct inet_connection_sock *icsk = inet_csk(sk);
3148 struct tcp_sock *tp = tcp_sk(sk);
3149 u32 prior_snd_una = tp->snd_una;
3150 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3151 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3152 u32 prior_in_flight;
3153 u32 prior_fackets;
3154 s32 seq_rtt;
3155 int prior_packets;
3156 int frto_cwnd = 0;
3157
3158 /* If the ack is newer than sent or older than previous acks
3159 * then we can probably ignore it.
3160 */
3161 if (after(ack, tp->snd_nxt))
3162 goto uninteresting_ack;
3163
3164 if (before(ack, prior_snd_una))
3165 goto old_ack;
3166
3167 if (after(ack, prior_snd_una))
3168 flag |= FLAG_SND_UNA_ADVANCED;
3169
3170 if (sysctl_tcp_abc) {
3171 if (icsk->icsk_ca_state < TCP_CA_CWR)
3172 tp->bytes_acked += ack - prior_snd_una;
3173 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3174 /* we assume just one segment left network */
3175 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3176 }
3177
3178 prior_fackets = tp->fackets_out;
3179 prior_in_flight = tcp_packets_in_flight(tp);
3180
3181 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3182 /* Window is constant, pure forward advance.
3183 * No more checks are required.
3184 * Note, we use the fact that SND.UNA>=SND.WL2.
3185 */
3186 tcp_update_wl(tp, ack, ack_seq);
3187 tp->snd_una = ack;
3188 flag |= FLAG_WIN_UPDATE;
3189
3190 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3191
3192 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3193 } else {
3194 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3195 flag |= FLAG_DATA;
3196 else
3197 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3198
3199 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3200
3201 if (TCP_SKB_CB(skb)->sacked)
3202 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3203
3204 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3205 flag |= FLAG_ECE;
3206
3207 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3208 }
3209
3210 /* We passed data and got it acked, remove any soft error
3211 * log. Something worked...
3212 */
3213 sk->sk_err_soft = 0;
3214 tp->rcv_tstamp = tcp_time_stamp;
3215 prior_packets = tp->packets_out;
3216 if (!prior_packets)
3217 goto no_queue;
3218
3219 /* See if we can take anything off of the retransmit queue. */
3220 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3221
3222 if (tp->frto_counter)
3223 frto_cwnd = tcp_process_frto(sk, flag);
3224 /* Guarantee sacktag reordering detection against wrap-arounds */
3225 if (before(tp->frto_highmark, tp->snd_una))
3226 tp->frto_highmark = 0;
3227
3228 if (tcp_ack_is_dubious(sk, flag)) {
3229 /* Advance CWND, if state allows this. */
3230 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3231 tcp_may_raise_cwnd(sk, flag))
3232 tcp_cong_avoid(sk, ack, prior_in_flight);
3233 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3234 } else {
3235 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3236 tcp_cong_avoid(sk, ack, prior_in_flight);
3237 }
3238
3239 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3240 dst_confirm(sk->sk_dst_cache);
3241
3242 return 1;
3243
3244 no_queue:
3245 icsk->icsk_probes_out = 0;
3246
3247 /* If this ack opens up a zero window, clear backoff. It was
3248 * being used to time the probes, and is probably far higher than
3249 * it needs to be for normal retransmission.
3250 */
3251 if (tcp_send_head(sk))
3252 tcp_ack_probe(sk);
3253 return 1;
3254
3255 old_ack:
3256 if (TCP_SKB_CB(skb)->sacked)
3257 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3258
3259 uninteresting_ack:
3260 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3261 return 0;
3262 }
3263
3264
3265 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3266 * But, this can also be called on packets in the established flow when
3267 * the fast version below fails.
3268 */
3269 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3270 {
3271 unsigned char *ptr;
3272 struct tcphdr *th = tcp_hdr(skb);
3273 int length=(th->doff*4)-sizeof(struct tcphdr);
3274
3275 ptr = (unsigned char *)(th + 1);
3276 opt_rx->saw_tstamp = 0;
3277
3278 while (length > 0) {
3279 int opcode=*ptr++;
3280 int opsize;
3281
3282 switch (opcode) {
3283 case TCPOPT_EOL:
3284 return;
3285 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3286 length--;
3287 continue;
3288 default:
3289 opsize=*ptr++;
3290 if (opsize < 2) /* "silly options" */
3291 return;
3292 if (opsize > length)
3293 return; /* don't parse partial options */
3294 switch (opcode) {
3295 case TCPOPT_MSS:
3296 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3297 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3298 if (in_mss) {
3299 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3300 in_mss = opt_rx->user_mss;
3301 opt_rx->mss_clamp = in_mss;
3302 }
3303 }
3304 break;
3305 case TCPOPT_WINDOW:
3306 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3307 if (sysctl_tcp_window_scaling) {
3308 __u8 snd_wscale = *(__u8 *) ptr;
3309 opt_rx->wscale_ok = 1;
3310 if (snd_wscale > 14) {
3311 if (net_ratelimit())
3312 printk(KERN_INFO "tcp_parse_options: Illegal window "
3313 "scaling value %d >14 received.\n",
3314 snd_wscale);
3315 snd_wscale = 14;
3316 }
3317 opt_rx->snd_wscale = snd_wscale;
3318 }
3319 break;
3320 case TCPOPT_TIMESTAMP:
3321 if (opsize==TCPOLEN_TIMESTAMP) {
3322 if ((estab && opt_rx->tstamp_ok) ||
3323 (!estab && sysctl_tcp_timestamps)) {
3324 opt_rx->saw_tstamp = 1;
3325 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3326 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3327 }
3328 }
3329 break;
3330 case TCPOPT_SACK_PERM:
3331 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3332 if (sysctl_tcp_sack) {
3333 opt_rx->sack_ok = 1;
3334 tcp_sack_reset(opt_rx);
3335 }
3336 }
3337 break;
3338
3339 case TCPOPT_SACK:
3340 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3341 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3342 opt_rx->sack_ok) {
3343 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3344 }
3345 break;
3346 #ifdef CONFIG_TCP_MD5SIG
3347 case TCPOPT_MD5SIG:
3348 /*
3349 * The MD5 Hash has already been
3350 * checked (see tcp_v{4,6}_do_rcv()).
3351 */
3352 break;
3353 #endif
3354 }
3355
3356 ptr+=opsize-2;
3357 length-=opsize;
3358 }
3359 }
3360 }
3361
3362 /* Fast parse options. This hopes to only see timestamps.
3363 * If it is wrong it falls back on tcp_parse_options().
3364 */
3365 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3366 struct tcp_sock *tp)
3367 {
3368 if (th->doff == sizeof(struct tcphdr)>>2) {
3369 tp->rx_opt.saw_tstamp = 0;
3370 return 0;
3371 } else if (tp->rx_opt.tstamp_ok &&
3372 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3373 __be32 *ptr = (__be32 *)(th + 1);
3374 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3375 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3376 tp->rx_opt.saw_tstamp = 1;
3377 ++ptr;
3378 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3379 ++ptr;
3380 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3381 return 1;
3382 }
3383 }
3384 tcp_parse_options(skb, &tp->rx_opt, 1);
3385 return 1;
3386 }
3387
3388 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3389 {
3390 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3391 tp->rx_opt.ts_recent_stamp = get_seconds();
3392 }
3393
3394 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3395 {
3396 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3397 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3398 * extra check below makes sure this can only happen
3399 * for pure ACK frames. -DaveM
3400 *
3401 * Not only, also it occurs for expired timestamps.
3402 */
3403
3404 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3405 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3406 tcp_store_ts_recent(tp);
3407 }
3408 }
3409
3410 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3411 *
3412 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3413 * it can pass through stack. So, the following predicate verifies that
3414 * this segment is not used for anything but congestion avoidance or
3415 * fast retransmit. Moreover, we even are able to eliminate most of such
3416 * second order effects, if we apply some small "replay" window (~RTO)
3417 * to timestamp space.
3418 *
3419 * All these measures still do not guarantee that we reject wrapped ACKs
3420 * on networks with high bandwidth, when sequence space is recycled fastly,
3421 * but it guarantees that such events will be very rare and do not affect
3422 * connection seriously. This doesn't look nice, but alas, PAWS is really
3423 * buggy extension.
3424 *
3425 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3426 * states that events when retransmit arrives after original data are rare.
3427 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3428 * the biggest problem on large power networks even with minor reordering.
3429 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3430 * up to bandwidth of 18Gigabit/sec. 8) ]
3431 */
3432
3433 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3434 {
3435 struct tcp_sock *tp = tcp_sk(sk);
3436 struct tcphdr *th = tcp_hdr(skb);
3437 u32 seq = TCP_SKB_CB(skb)->seq;
3438 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3439
3440 return (/* 1. Pure ACK with correct sequence number. */
3441 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3442
3443 /* 2. ... and duplicate ACK. */
3444 ack == tp->snd_una &&
3445
3446 /* 3. ... and does not update window. */
3447 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3448
3449 /* 4. ... and sits in replay window. */
3450 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3451 }
3452
3453 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3454 {
3455 const struct tcp_sock *tp = tcp_sk(sk);
3456 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3457 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3458 !tcp_disordered_ack(sk, skb));
3459 }
3460
3461 /* Check segment sequence number for validity.
3462 *
3463 * Segment controls are considered valid, if the segment
3464 * fits to the window after truncation to the window. Acceptability
3465 * of data (and SYN, FIN, of course) is checked separately.
3466 * See tcp_data_queue(), for example.
3467 *
3468 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3469 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3470 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3471 * (borrowed from freebsd)
3472 */
3473
3474 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3475 {
3476 return !before(end_seq, tp->rcv_wup) &&
3477 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3478 }
3479
3480 /* When we get a reset we do this. */
3481 static void tcp_reset(struct sock *sk)
3482 {
3483 /* We want the right error as BSD sees it (and indeed as we do). */
3484 switch (sk->sk_state) {
3485 case TCP_SYN_SENT:
3486 sk->sk_err = ECONNREFUSED;
3487 break;
3488 case TCP_CLOSE_WAIT:
3489 sk->sk_err = EPIPE;
3490 break;
3491 case TCP_CLOSE:
3492 return;
3493 default:
3494 sk->sk_err = ECONNRESET;
3495 }
3496
3497 if (!sock_flag(sk, SOCK_DEAD))
3498 sk->sk_error_report(sk);
3499
3500 tcp_done(sk);
3501 }
3502
3503 /*
3504 * Process the FIN bit. This now behaves as it is supposed to work
3505 * and the FIN takes effect when it is validly part of sequence
3506 * space. Not before when we get holes.
3507 *
3508 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3509 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3510 * TIME-WAIT)
3511 *
3512 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3513 * close and we go into CLOSING (and later onto TIME-WAIT)
3514 *
3515 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3516 */
3517 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3518 {
3519 struct tcp_sock *tp = tcp_sk(sk);
3520
3521 inet_csk_schedule_ack(sk);
3522
3523 sk->sk_shutdown |= RCV_SHUTDOWN;
3524 sock_set_flag(sk, SOCK_DONE);
3525
3526 switch (sk->sk_state) {
3527 case TCP_SYN_RECV:
3528 case TCP_ESTABLISHED:
3529 /* Move to CLOSE_WAIT */
3530 tcp_set_state(sk, TCP_CLOSE_WAIT);
3531 inet_csk(sk)->icsk_ack.pingpong = 1;
3532 break;
3533
3534 case TCP_CLOSE_WAIT:
3535 case TCP_CLOSING:
3536 /* Received a retransmission of the FIN, do
3537 * nothing.
3538 */
3539 break;
3540 case TCP_LAST_ACK:
3541 /* RFC793: Remain in the LAST-ACK state. */
3542 break;
3543
3544 case TCP_FIN_WAIT1:
3545 /* This case occurs when a simultaneous close
3546 * happens, we must ack the received FIN and
3547 * enter the CLOSING state.
3548 */
3549 tcp_send_ack(sk);
3550 tcp_set_state(sk, TCP_CLOSING);
3551 break;
3552 case TCP_FIN_WAIT2:
3553 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3554 tcp_send_ack(sk);
3555 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3556 break;
3557 default:
3558 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3559 * cases we should never reach this piece of code.
3560 */
3561 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3562 __FUNCTION__, sk->sk_state);
3563 break;
3564 }
3565
3566 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3567 * Probably, we should reset in this case. For now drop them.
3568 */
3569 __skb_queue_purge(&tp->out_of_order_queue);
3570 if (tcp_is_sack(tp))
3571 tcp_sack_reset(&tp->rx_opt);
3572 sk_stream_mem_reclaim(sk);
3573
3574 if (!sock_flag(sk, SOCK_DEAD)) {
3575 sk->sk_state_change(sk);
3576
3577 /* Do not send POLL_HUP for half duplex close. */
3578 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3579 sk->sk_state == TCP_CLOSE)
3580 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3581 else
3582 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3583 }
3584 }
3585
3586 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3587 {
3588 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3589 if (before(seq, sp->start_seq))
3590 sp->start_seq = seq;
3591 if (after(end_seq, sp->end_seq))
3592 sp->end_seq = end_seq;
3593 return 1;
3594 }
3595 return 0;
3596 }
3597
3598 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3599 {
3600 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3601 if (before(seq, tp->rcv_nxt))
3602 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3603 else
3604 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3605
3606 tp->rx_opt.dsack = 1;
3607 tp->duplicate_sack[0].start_seq = seq;
3608 tp->duplicate_sack[0].end_seq = end_seq;
3609 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3610 }
3611 }
3612
3613 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3614 {
3615 if (!tp->rx_opt.dsack)
3616 tcp_dsack_set(tp, seq, end_seq);
3617 else
3618 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3619 }
3620
3621 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3622 {
3623 struct tcp_sock *tp = tcp_sk(sk);
3624
3625 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3626 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3627 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3628 tcp_enter_quickack_mode(sk);
3629
3630 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3631 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3632
3633 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3634 end_seq = tp->rcv_nxt;
3635 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3636 }
3637 }
3638
3639 tcp_send_ack(sk);
3640 }
3641
3642 /* These routines update the SACK block as out-of-order packets arrive or
3643 * in-order packets close up the sequence space.
3644 */
3645 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3646 {
3647 int this_sack;
3648 struct tcp_sack_block *sp = &tp->selective_acks[0];
3649 struct tcp_sack_block *swalk = sp+1;
3650
3651 /* See if the recent change to the first SACK eats into
3652 * or hits the sequence space of other SACK blocks, if so coalesce.
3653 */
3654 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3655 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3656 int i;
3657
3658 /* Zap SWALK, by moving every further SACK up by one slot.
3659 * Decrease num_sacks.
3660 */
3661 tp->rx_opt.num_sacks--;
3662 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3663 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3664 sp[i] = sp[i+1];
3665 continue;
3666 }
3667 this_sack++, swalk++;
3668 }
3669 }
3670
3671 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3672 {
3673 __u32 tmp;
3674
3675 tmp = sack1->start_seq;
3676 sack1->start_seq = sack2->start_seq;
3677 sack2->start_seq = tmp;
3678
3679 tmp = sack1->end_seq;
3680 sack1->end_seq = sack2->end_seq;
3681 sack2->end_seq = tmp;
3682 }
3683
3684 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3685 {
3686 struct tcp_sock *tp = tcp_sk(sk);
3687 struct tcp_sack_block *sp = &tp->selective_acks[0];
3688 int cur_sacks = tp->rx_opt.num_sacks;
3689 int this_sack;
3690
3691 if (!cur_sacks)
3692 goto new_sack;
3693
3694 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3695 if (tcp_sack_extend(sp, seq, end_seq)) {
3696 /* Rotate this_sack to the first one. */
3697 for (; this_sack>0; this_sack--, sp--)
3698 tcp_sack_swap(sp, sp-1);
3699 if (cur_sacks > 1)
3700 tcp_sack_maybe_coalesce(tp);
3701 return;
3702 }
3703 }
3704
3705 /* Could not find an adjacent existing SACK, build a new one,
3706 * put it at the front, and shift everyone else down. We
3707 * always know there is at least one SACK present already here.
3708 *
3709 * If the sack array is full, forget about the last one.
3710 */
3711 if (this_sack >= 4) {
3712 this_sack--;
3713 tp->rx_opt.num_sacks--;
3714 sp--;
3715 }
3716 for (; this_sack > 0; this_sack--, sp--)
3717 *sp = *(sp-1);
3718
3719 new_sack:
3720 /* Build the new head SACK, and we're done. */
3721 sp->start_seq = seq;
3722 sp->end_seq = end_seq;
3723 tp->rx_opt.num_sacks++;
3724 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3725 }
3726
3727 /* RCV.NXT advances, some SACKs should be eaten. */
3728
3729 static void tcp_sack_remove(struct tcp_sock *tp)
3730 {
3731 struct tcp_sack_block *sp = &tp->selective_acks[0];
3732 int num_sacks = tp->rx_opt.num_sacks;
3733 int this_sack;
3734
3735 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3736 if (skb_queue_empty(&tp->out_of_order_queue)) {
3737 tp->rx_opt.num_sacks = 0;
3738 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3739 return;
3740 }
3741
3742 for (this_sack = 0; this_sack < num_sacks; ) {
3743 /* Check if the start of the sack is covered by RCV.NXT. */
3744 if (!before(tp->rcv_nxt, sp->start_seq)) {
3745 int i;
3746
3747 /* RCV.NXT must cover all the block! */
3748 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3749
3750 /* Zap this SACK, by moving forward any other SACKS. */
3751 for (i=this_sack+1; i < num_sacks; i++)
3752 tp->selective_acks[i-1] = tp->selective_acks[i];
3753 num_sacks--;
3754 continue;
3755 }
3756 this_sack++;
3757 sp++;
3758 }
3759 if (num_sacks != tp->rx_opt.num_sacks) {
3760 tp->rx_opt.num_sacks = num_sacks;
3761 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3762 }
3763 }
3764
3765 /* This one checks to see if we can put data from the
3766 * out_of_order queue into the receive_queue.
3767 */
3768 static void tcp_ofo_queue(struct sock *sk)
3769 {
3770 struct tcp_sock *tp = tcp_sk(sk);
3771 __u32 dsack_high = tp->rcv_nxt;
3772 struct sk_buff *skb;
3773
3774 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3775 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3776 break;
3777
3778 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3779 __u32 dsack = dsack_high;
3780 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3781 dsack_high = TCP_SKB_CB(skb)->end_seq;
3782 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3783 }
3784
3785 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3786 SOCK_DEBUG(sk, "ofo packet was already received \n");
3787 __skb_unlink(skb, &tp->out_of_order_queue);
3788 __kfree_skb(skb);
3789 continue;
3790 }
3791 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3792 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3793 TCP_SKB_CB(skb)->end_seq);
3794
3795 __skb_unlink(skb, &tp->out_of_order_queue);
3796 __skb_queue_tail(&sk->sk_receive_queue, skb);
3797 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3798 if (tcp_hdr(skb)->fin)
3799 tcp_fin(skb, sk, tcp_hdr(skb));
3800 }
3801 }
3802
3803 static int tcp_prune_queue(struct sock *sk);
3804
3805 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3806 {
3807 struct tcphdr *th = tcp_hdr(skb);
3808 struct tcp_sock *tp = tcp_sk(sk);
3809 int eaten = -1;
3810
3811 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3812 goto drop;
3813
3814 __skb_pull(skb, th->doff*4);
3815
3816 TCP_ECN_accept_cwr(tp, skb);
3817
3818 if (tp->rx_opt.dsack) {
3819 tp->rx_opt.dsack = 0;
3820 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3821 4 - tp->rx_opt.tstamp_ok);
3822 }
3823
3824 /* Queue data for delivery to the user.
3825 * Packets in sequence go to the receive queue.
3826 * Out of sequence packets to the out_of_order_queue.
3827 */
3828 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3829 if (tcp_receive_window(tp) == 0)
3830 goto out_of_window;
3831
3832 /* Ok. In sequence. In window. */
3833 if (tp->ucopy.task == current &&
3834 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3835 sock_owned_by_user(sk) && !tp->urg_data) {
3836 int chunk = min_t(unsigned int, skb->len,
3837 tp->ucopy.len);
3838
3839 __set_current_state(TASK_RUNNING);
3840
3841 local_bh_enable();
3842 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3843 tp->ucopy.len -= chunk;
3844 tp->copied_seq += chunk;
3845 eaten = (chunk == skb->len && !th->fin);
3846 tcp_rcv_space_adjust(sk);
3847 }
3848 local_bh_disable();
3849 }
3850
3851 if (eaten <= 0) {
3852 queue_and_out:
3853 if (eaten < 0 &&
3854 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3855 !sk_stream_rmem_schedule(sk, skb))) {
3856 if (tcp_prune_queue(sk) < 0 ||
3857 !sk_stream_rmem_schedule(sk, skb))
3858 goto drop;
3859 }
3860 sk_stream_set_owner_r(skb, sk);
3861 __skb_queue_tail(&sk->sk_receive_queue, skb);
3862 }
3863 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3864 if (skb->len)
3865 tcp_event_data_recv(sk, skb);
3866 if (th->fin)
3867 tcp_fin(skb, sk, th);
3868
3869 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3870 tcp_ofo_queue(sk);
3871
3872 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3873 * gap in queue is filled.
3874 */
3875 if (skb_queue_empty(&tp->out_of_order_queue))
3876 inet_csk(sk)->icsk_ack.pingpong = 0;
3877 }
3878
3879 if (tp->rx_opt.num_sacks)
3880 tcp_sack_remove(tp);
3881
3882 tcp_fast_path_check(sk);
3883
3884 if (eaten > 0)
3885 __kfree_skb(skb);
3886 else if (!sock_flag(sk, SOCK_DEAD))
3887 sk->sk_data_ready(sk, 0);
3888 return;
3889 }
3890
3891 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3892 /* A retransmit, 2nd most common case. Force an immediate ack. */
3893 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3894 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3895
3896 out_of_window:
3897 tcp_enter_quickack_mode(sk);
3898 inet_csk_schedule_ack(sk);
3899 drop:
3900 __kfree_skb(skb);
3901 return;
3902 }
3903
3904 /* Out of window. F.e. zero window probe. */
3905 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3906 goto out_of_window;
3907
3908 tcp_enter_quickack_mode(sk);
3909
3910 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3911 /* Partial packet, seq < rcv_next < end_seq */
3912 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3913 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3914 TCP_SKB_CB(skb)->end_seq);
3915
3916 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3917
3918 /* If window is closed, drop tail of packet. But after
3919 * remembering D-SACK for its head made in previous line.
3920 */
3921 if (!tcp_receive_window(tp))
3922 goto out_of_window;
3923 goto queue_and_out;
3924 }
3925
3926 TCP_ECN_check_ce(tp, skb);
3927
3928 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3929 !sk_stream_rmem_schedule(sk, skb)) {
3930 if (tcp_prune_queue(sk) < 0 ||
3931 !sk_stream_rmem_schedule(sk, skb))
3932 goto drop;
3933 }
3934
3935 /* Disable header prediction. */
3936 tp->pred_flags = 0;
3937 inet_csk_schedule_ack(sk);
3938
3939 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3940 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3941
3942 sk_stream_set_owner_r(skb, sk);
3943
3944 if (!skb_peek(&tp->out_of_order_queue)) {
3945 /* Initial out of order segment, build 1 SACK. */
3946 if (tcp_is_sack(tp)) {
3947 tp->rx_opt.num_sacks = 1;
3948 tp->rx_opt.dsack = 0;
3949 tp->rx_opt.eff_sacks = 1;
3950 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3951 tp->selective_acks[0].end_seq =
3952 TCP_SKB_CB(skb)->end_seq;
3953 }
3954 __skb_queue_head(&tp->out_of_order_queue,skb);
3955 } else {
3956 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3957 u32 seq = TCP_SKB_CB(skb)->seq;
3958 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3959
3960 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3961 __skb_append(skb1, skb, &tp->out_of_order_queue);
3962
3963 if (!tp->rx_opt.num_sacks ||
3964 tp->selective_acks[0].end_seq != seq)
3965 goto add_sack;
3966
3967 /* Common case: data arrive in order after hole. */
3968 tp->selective_acks[0].end_seq = end_seq;
3969 return;
3970 }
3971
3972 /* Find place to insert this segment. */
3973 do {
3974 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3975 break;
3976 } while ((skb1 = skb1->prev) !=
3977 (struct sk_buff*)&tp->out_of_order_queue);
3978
3979 /* Do skb overlap to previous one? */
3980 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3981 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3982 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3983 /* All the bits are present. Drop. */
3984 __kfree_skb(skb);
3985 tcp_dsack_set(tp, seq, end_seq);
3986 goto add_sack;
3987 }
3988 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3989 /* Partial overlap. */
3990 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3991 } else {
3992 skb1 = skb1->prev;
3993 }
3994 }
3995 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3996
3997 /* And clean segments covered by new one as whole. */
3998 while ((skb1 = skb->next) !=
3999 (struct sk_buff*)&tp->out_of_order_queue &&
4000 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4001 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4002 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
4003 break;
4004 }
4005 __skb_unlink(skb1, &tp->out_of_order_queue);
4006 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4007 __kfree_skb(skb1);
4008 }
4009
4010 add_sack:
4011 if (tcp_is_sack(tp))
4012 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4013 }
4014 }
4015
4016 /* Collapse contiguous sequence of skbs head..tail with
4017 * sequence numbers start..end.
4018 * Segments with FIN/SYN are not collapsed (only because this
4019 * simplifies code)
4020 */
4021 static void
4022 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4023 struct sk_buff *head, struct sk_buff *tail,
4024 u32 start, u32 end)
4025 {
4026 struct sk_buff *skb;
4027
4028 /* First, check that queue is collapsible and find
4029 * the point where collapsing can be useful. */
4030 for (skb = head; skb != tail; ) {
4031 /* No new bits? It is possible on ofo queue. */
4032 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4033 struct sk_buff *next = skb->next;
4034 __skb_unlink(skb, list);
4035 __kfree_skb(skb);
4036 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4037 skb = next;
4038 continue;
4039 }
4040
4041 /* The first skb to collapse is:
4042 * - not SYN/FIN and
4043 * - bloated or contains data before "start" or
4044 * overlaps to the next one.
4045 */
4046 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4047 (tcp_win_from_space(skb->truesize) > skb->len ||
4048 before(TCP_SKB_CB(skb)->seq, start) ||
4049 (skb->next != tail &&
4050 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4051 break;
4052
4053 /* Decided to skip this, advance start seq. */
4054 start = TCP_SKB_CB(skb)->end_seq;
4055 skb = skb->next;
4056 }
4057 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4058 return;
4059
4060 while (before(start, end)) {
4061 struct sk_buff *nskb;
4062 unsigned int header = skb_headroom(skb);
4063 int copy = SKB_MAX_ORDER(header, 0);
4064
4065 /* Too big header? This can happen with IPv6. */
4066 if (copy < 0)
4067 return;
4068 if (end-start < copy)
4069 copy = end-start;
4070 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4071 if (!nskb)
4072 return;
4073
4074 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4075 skb_set_network_header(nskb, (skb_network_header(skb) -
4076 skb->head));
4077 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4078 skb->head));
4079 skb_reserve(nskb, header);
4080 memcpy(nskb->head, skb->head, header);
4081 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4082 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4083 __skb_insert(nskb, skb->prev, skb, list);
4084 sk_stream_set_owner_r(nskb, sk);
4085
4086 /* Copy data, releasing collapsed skbs. */
4087 while (copy > 0) {
4088 int offset = start - TCP_SKB_CB(skb)->seq;
4089 int size = TCP_SKB_CB(skb)->end_seq - start;
4090
4091 BUG_ON(offset < 0);
4092 if (size > 0) {
4093 size = min(copy, size);
4094 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4095 BUG();
4096 TCP_SKB_CB(nskb)->end_seq += size;
4097 copy -= size;
4098 start += size;
4099 }
4100 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4101 struct sk_buff *next = skb->next;
4102 __skb_unlink(skb, list);
4103 __kfree_skb(skb);
4104 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4105 skb = next;
4106 if (skb == tail ||
4107 tcp_hdr(skb)->syn ||
4108 tcp_hdr(skb)->fin)
4109 return;
4110 }
4111 }
4112 }
4113 }
4114
4115 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4116 * and tcp_collapse() them until all the queue is collapsed.
4117 */
4118 static void tcp_collapse_ofo_queue(struct sock *sk)
4119 {
4120 struct tcp_sock *tp = tcp_sk(sk);
4121 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4122 struct sk_buff *head;
4123 u32 start, end;
4124
4125 if (skb == NULL)
4126 return;
4127
4128 start = TCP_SKB_CB(skb)->seq;
4129 end = TCP_SKB_CB(skb)->end_seq;
4130 head = skb;
4131
4132 for (;;) {
4133 skb = skb->next;
4134
4135 /* Segment is terminated when we see gap or when
4136 * we are at the end of all the queue. */
4137 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4138 after(TCP_SKB_CB(skb)->seq, end) ||
4139 before(TCP_SKB_CB(skb)->end_seq, start)) {
4140 tcp_collapse(sk, &tp->out_of_order_queue,
4141 head, skb, start, end);
4142 head = skb;
4143 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4144 break;
4145 /* Start new segment */
4146 start = TCP_SKB_CB(skb)->seq;
4147 end = TCP_SKB_CB(skb)->end_seq;
4148 } else {
4149 if (before(TCP_SKB_CB(skb)->seq, start))
4150 start = TCP_SKB_CB(skb)->seq;
4151 if (after(TCP_SKB_CB(skb)->end_seq, end))
4152 end = TCP_SKB_CB(skb)->end_seq;
4153 }
4154 }
4155 }
4156
4157 /* Reduce allocated memory if we can, trying to get
4158 * the socket within its memory limits again.
4159 *
4160 * Return less than zero if we should start dropping frames
4161 * until the socket owning process reads some of the data
4162 * to stabilize the situation.
4163 */
4164 static int tcp_prune_queue(struct sock *sk)
4165 {
4166 struct tcp_sock *tp = tcp_sk(sk);
4167
4168 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4169
4170 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4171
4172 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4173 tcp_clamp_window(sk);
4174 else if (tcp_memory_pressure)
4175 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4176
4177 tcp_collapse_ofo_queue(sk);
4178 tcp_collapse(sk, &sk->sk_receive_queue,
4179 sk->sk_receive_queue.next,
4180 (struct sk_buff*)&sk->sk_receive_queue,
4181 tp->copied_seq, tp->rcv_nxt);
4182 sk_stream_mem_reclaim(sk);
4183
4184 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4185 return 0;
4186
4187 /* Collapsing did not help, destructive actions follow.
4188 * This must not ever occur. */
4189
4190 /* First, purge the out_of_order queue. */
4191 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4192 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4193 __skb_queue_purge(&tp->out_of_order_queue);
4194
4195 /* Reset SACK state. A conforming SACK implementation will
4196 * do the same at a timeout based retransmit. When a connection
4197 * is in a sad state like this, we care only about integrity
4198 * of the connection not performance.
4199 */
4200 if (tcp_is_sack(tp))
4201 tcp_sack_reset(&tp->rx_opt);
4202 sk_stream_mem_reclaim(sk);
4203 }
4204
4205 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4206 return 0;
4207
4208 /* If we are really being abused, tell the caller to silently
4209 * drop receive data on the floor. It will get retransmitted
4210 * and hopefully then we'll have sufficient space.
4211 */
4212 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4213
4214 /* Massive buffer overcommit. */
4215 tp->pred_flags = 0;
4216 return -1;
4217 }
4218
4219
4220 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4221 * As additional protections, we do not touch cwnd in retransmission phases,
4222 * and if application hit its sndbuf limit recently.
4223 */
4224 void tcp_cwnd_application_limited(struct sock *sk)
4225 {
4226 struct tcp_sock *tp = tcp_sk(sk);
4227
4228 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4229 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4230 /* Limited by application or receiver window. */
4231 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4232 u32 win_used = max(tp->snd_cwnd_used, init_win);
4233 if (win_used < tp->snd_cwnd) {
4234 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4235 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4236 }
4237 tp->snd_cwnd_used = 0;
4238 }
4239 tp->snd_cwnd_stamp = tcp_time_stamp;
4240 }
4241
4242 static int tcp_should_expand_sndbuf(struct sock *sk)
4243 {
4244 struct tcp_sock *tp = tcp_sk(sk);
4245
4246 /* If the user specified a specific send buffer setting, do
4247 * not modify it.
4248 */
4249 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4250 return 0;
4251
4252 /* If we are under global TCP memory pressure, do not expand. */
4253 if (tcp_memory_pressure)
4254 return 0;
4255
4256 /* If we are under soft global TCP memory pressure, do not expand. */
4257 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4258 return 0;
4259
4260 /* If we filled the congestion window, do not expand. */
4261 if (tp->packets_out >= tp->snd_cwnd)
4262 return 0;
4263
4264 return 1;
4265 }
4266
4267 /* When incoming ACK allowed to free some skb from write_queue,
4268 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4269 * on the exit from tcp input handler.
4270 *
4271 * PROBLEM: sndbuf expansion does not work well with largesend.
4272 */
4273 static void tcp_new_space(struct sock *sk)
4274 {
4275 struct tcp_sock *tp = tcp_sk(sk);
4276
4277 if (tcp_should_expand_sndbuf(sk)) {
4278 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4279 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4280 demanded = max_t(unsigned int, tp->snd_cwnd,
4281 tp->reordering + 1);
4282 sndmem *= 2*demanded;
4283 if (sndmem > sk->sk_sndbuf)
4284 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4285 tp->snd_cwnd_stamp = tcp_time_stamp;
4286 }
4287
4288 sk->sk_write_space(sk);
4289 }
4290
4291 static void tcp_check_space(struct sock *sk)
4292 {
4293 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4294 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4295 if (sk->sk_socket &&
4296 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4297 tcp_new_space(sk);
4298 }
4299 }
4300
4301 static inline void tcp_data_snd_check(struct sock *sk)
4302 {
4303 tcp_push_pending_frames(sk);
4304 tcp_check_space(sk);
4305 }
4306
4307 /*
4308 * Check if sending an ack is needed.
4309 */
4310 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4311 {
4312 struct tcp_sock *tp = tcp_sk(sk);
4313
4314 /* More than one full frame received... */
4315 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4316 /* ... and right edge of window advances far enough.
4317 * (tcp_recvmsg() will send ACK otherwise). Or...
4318 */
4319 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4320 /* We ACK each frame or... */
4321 tcp_in_quickack_mode(sk) ||
4322 /* We have out of order data. */
4323 (ofo_possible &&
4324 skb_peek(&tp->out_of_order_queue))) {
4325 /* Then ack it now */
4326 tcp_send_ack(sk);
4327 } else {
4328 /* Else, send delayed ack. */
4329 tcp_send_delayed_ack(sk);
4330 }
4331 }
4332
4333 static inline void tcp_ack_snd_check(struct sock *sk)
4334 {
4335 if (!inet_csk_ack_scheduled(sk)) {
4336 /* We sent a data segment already. */
4337 return;
4338 }
4339 __tcp_ack_snd_check(sk, 1);
4340 }
4341
4342 /*
4343 * This routine is only called when we have urgent data
4344 * signaled. Its the 'slow' part of tcp_urg. It could be
4345 * moved inline now as tcp_urg is only called from one
4346 * place. We handle URGent data wrong. We have to - as
4347 * BSD still doesn't use the correction from RFC961.
4348 * For 1003.1g we should support a new option TCP_STDURG to permit
4349 * either form (or just set the sysctl tcp_stdurg).
4350 */
4351
4352 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4353 {
4354 struct tcp_sock *tp = tcp_sk(sk);
4355 u32 ptr = ntohs(th->urg_ptr);
4356
4357 if (ptr && !sysctl_tcp_stdurg)
4358 ptr--;
4359 ptr += ntohl(th->seq);
4360
4361 /* Ignore urgent data that we've already seen and read. */
4362 if (after(tp->copied_seq, ptr))
4363 return;
4364
4365 /* Do not replay urg ptr.
4366 *
4367 * NOTE: interesting situation not covered by specs.
4368 * Misbehaving sender may send urg ptr, pointing to segment,
4369 * which we already have in ofo queue. We are not able to fetch
4370 * such data and will stay in TCP_URG_NOTYET until will be eaten
4371 * by recvmsg(). Seems, we are not obliged to handle such wicked
4372 * situations. But it is worth to think about possibility of some
4373 * DoSes using some hypothetical application level deadlock.
4374 */
4375 if (before(ptr, tp->rcv_nxt))
4376 return;
4377
4378 /* Do we already have a newer (or duplicate) urgent pointer? */
4379 if (tp->urg_data && !after(ptr, tp->urg_seq))
4380 return;
4381
4382 /* Tell the world about our new urgent pointer. */
4383 sk_send_sigurg(sk);
4384
4385 /* We may be adding urgent data when the last byte read was
4386 * urgent. To do this requires some care. We cannot just ignore
4387 * tp->copied_seq since we would read the last urgent byte again
4388 * as data, nor can we alter copied_seq until this data arrives
4389 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4390 *
4391 * NOTE. Double Dutch. Rendering to plain English: author of comment
4392 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4393 * and expect that both A and B disappear from stream. This is _wrong_.
4394 * Though this happens in BSD with high probability, this is occasional.
4395 * Any application relying on this is buggy. Note also, that fix "works"
4396 * only in this artificial test. Insert some normal data between A and B and we will
4397 * decline of BSD again. Verdict: it is better to remove to trap
4398 * buggy users.
4399 */
4400 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4401 !sock_flag(sk, SOCK_URGINLINE) &&
4402 tp->copied_seq != tp->rcv_nxt) {
4403 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4404 tp->copied_seq++;
4405 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4406 __skb_unlink(skb, &sk->sk_receive_queue);
4407 __kfree_skb(skb);
4408 }
4409 }
4410
4411 tp->urg_data = TCP_URG_NOTYET;
4412 tp->urg_seq = ptr;
4413
4414 /* Disable header prediction. */
4415 tp->pred_flags = 0;
4416 }
4417
4418 /* This is the 'fast' part of urgent handling. */
4419 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4420 {
4421 struct tcp_sock *tp = tcp_sk(sk);
4422
4423 /* Check if we get a new urgent pointer - normally not. */
4424 if (th->urg)
4425 tcp_check_urg(sk,th);
4426
4427 /* Do we wait for any urgent data? - normally not... */
4428 if (tp->urg_data == TCP_URG_NOTYET) {
4429 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4430 th->syn;
4431
4432 /* Is the urgent pointer pointing into this packet? */
4433 if (ptr < skb->len) {
4434 u8 tmp;
4435 if (skb_copy_bits(skb, ptr, &tmp, 1))
4436 BUG();
4437 tp->urg_data = TCP_URG_VALID | tmp;
4438 if (!sock_flag(sk, SOCK_DEAD))
4439 sk->sk_data_ready(sk, 0);
4440 }
4441 }
4442 }
4443
4444 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4445 {
4446 struct tcp_sock *tp = tcp_sk(sk);
4447 int chunk = skb->len - hlen;
4448 int err;
4449
4450 local_bh_enable();
4451 if (skb_csum_unnecessary(skb))
4452 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4453 else
4454 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4455 tp->ucopy.iov);
4456
4457 if (!err) {
4458 tp->ucopy.len -= chunk;
4459 tp->copied_seq += chunk;
4460 tcp_rcv_space_adjust(sk);
4461 }
4462
4463 local_bh_disable();
4464 return err;
4465 }
4466
4467 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4468 {
4469 __sum16 result;
4470
4471 if (sock_owned_by_user(sk)) {
4472 local_bh_enable();
4473 result = __tcp_checksum_complete(skb);
4474 local_bh_disable();
4475 } else {
4476 result = __tcp_checksum_complete(skb);
4477 }
4478 return result;
4479 }
4480
4481 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4482 {
4483 return !skb_csum_unnecessary(skb) &&
4484 __tcp_checksum_complete_user(sk, skb);
4485 }
4486
4487 #ifdef CONFIG_NET_DMA
4488 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4489 {
4490 struct tcp_sock *tp = tcp_sk(sk);
4491 int chunk = skb->len - hlen;
4492 int dma_cookie;
4493 int copied_early = 0;
4494
4495 if (tp->ucopy.wakeup)
4496 return 0;
4497
4498 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4499 tp->ucopy.dma_chan = get_softnet_dma();
4500
4501 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4502
4503 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4504 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4505
4506 if (dma_cookie < 0)
4507 goto out;
4508
4509 tp->ucopy.dma_cookie = dma_cookie;
4510 copied_early = 1;
4511
4512 tp->ucopy.len -= chunk;
4513 tp->copied_seq += chunk;
4514 tcp_rcv_space_adjust(sk);
4515
4516 if ((tp->ucopy.len == 0) ||
4517 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4518 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4519 tp->ucopy.wakeup = 1;
4520 sk->sk_data_ready(sk, 0);
4521 }
4522 } else if (chunk > 0) {
4523 tp->ucopy.wakeup = 1;
4524 sk->sk_data_ready(sk, 0);
4525 }
4526 out:
4527 return copied_early;
4528 }
4529 #endif /* CONFIG_NET_DMA */
4530
4531 /*
4532 * TCP receive function for the ESTABLISHED state.
4533 *
4534 * It is split into a fast path and a slow path. The fast path is
4535 * disabled when:
4536 * - A zero window was announced from us - zero window probing
4537 * is only handled properly in the slow path.
4538 * - Out of order segments arrived.
4539 * - Urgent data is expected.
4540 * - There is no buffer space left
4541 * - Unexpected TCP flags/window values/header lengths are received
4542 * (detected by checking the TCP header against pred_flags)
4543 * - Data is sent in both directions. Fast path only supports pure senders
4544 * or pure receivers (this means either the sequence number or the ack
4545 * value must stay constant)
4546 * - Unexpected TCP option.
4547 *
4548 * When these conditions are not satisfied it drops into a standard
4549 * receive procedure patterned after RFC793 to handle all cases.
4550 * The first three cases are guaranteed by proper pred_flags setting,
4551 * the rest is checked inline. Fast processing is turned on in
4552 * tcp_data_queue when everything is OK.
4553 */
4554 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4555 struct tcphdr *th, unsigned len)
4556 {
4557 struct tcp_sock *tp = tcp_sk(sk);
4558
4559 /*
4560 * Header prediction.
4561 * The code loosely follows the one in the famous
4562 * "30 instruction TCP receive" Van Jacobson mail.
4563 *
4564 * Van's trick is to deposit buffers into socket queue
4565 * on a device interrupt, to call tcp_recv function
4566 * on the receive process context and checksum and copy
4567 * the buffer to user space. smart...
4568 *
4569 * Our current scheme is not silly either but we take the
4570 * extra cost of the net_bh soft interrupt processing...
4571 * We do checksum and copy also but from device to kernel.
4572 */
4573
4574 tp->rx_opt.saw_tstamp = 0;
4575
4576 /* pred_flags is 0xS?10 << 16 + snd_wnd
4577 * if header_prediction is to be made
4578 * 'S' will always be tp->tcp_header_len >> 2
4579 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4580 * turn it off (when there are holes in the receive
4581 * space for instance)
4582 * PSH flag is ignored.
4583 */
4584
4585 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4586 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4587 int tcp_header_len = tp->tcp_header_len;
4588
4589 /* Timestamp header prediction: tcp_header_len
4590 * is automatically equal to th->doff*4 due to pred_flags
4591 * match.
4592 */
4593
4594 /* Check timestamp */
4595 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4596 __be32 *ptr = (__be32 *)(th + 1);
4597
4598 /* No? Slow path! */
4599 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4600 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4601 goto slow_path;
4602
4603 tp->rx_opt.saw_tstamp = 1;
4604 ++ptr;
4605 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4606 ++ptr;
4607 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4608
4609 /* If PAWS failed, check it more carefully in slow path */
4610 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4611 goto slow_path;
4612
4613 /* DO NOT update ts_recent here, if checksum fails
4614 * and timestamp was corrupted part, it will result
4615 * in a hung connection since we will drop all
4616 * future packets due to the PAWS test.
4617 */
4618 }
4619
4620 if (len <= tcp_header_len) {
4621 /* Bulk data transfer: sender */
4622 if (len == tcp_header_len) {
4623 /* Predicted packet is in window by definition.
4624 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4625 * Hence, check seq<=rcv_wup reduces to:
4626 */
4627 if (tcp_header_len ==
4628 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4629 tp->rcv_nxt == tp->rcv_wup)
4630 tcp_store_ts_recent(tp);
4631
4632 /* We know that such packets are checksummed
4633 * on entry.
4634 */
4635 tcp_ack(sk, skb, 0);
4636 __kfree_skb(skb);
4637 tcp_data_snd_check(sk);
4638 return 0;
4639 } else { /* Header too small */
4640 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4641 goto discard;
4642 }
4643 } else {
4644 int eaten = 0;
4645 int copied_early = 0;
4646
4647 if (tp->copied_seq == tp->rcv_nxt &&
4648 len - tcp_header_len <= tp->ucopy.len) {
4649 #ifdef CONFIG_NET_DMA
4650 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4651 copied_early = 1;
4652 eaten = 1;
4653 }
4654 #endif
4655 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4656 __set_current_state(TASK_RUNNING);
4657
4658 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4659 eaten = 1;
4660 }
4661 if (eaten) {
4662 /* Predicted packet is in window by definition.
4663 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4664 * Hence, check seq<=rcv_wup reduces to:
4665 */
4666 if (tcp_header_len ==
4667 (sizeof(struct tcphdr) +
4668 TCPOLEN_TSTAMP_ALIGNED) &&
4669 tp->rcv_nxt == tp->rcv_wup)
4670 tcp_store_ts_recent(tp);
4671
4672 tcp_rcv_rtt_measure_ts(sk, skb);
4673
4674 __skb_pull(skb, tcp_header_len);
4675 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4676 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4677 }
4678 if (copied_early)
4679 tcp_cleanup_rbuf(sk, skb->len);
4680 }
4681 if (!eaten) {
4682 if (tcp_checksum_complete_user(sk, skb))
4683 goto csum_error;
4684
4685 /* Predicted packet is in window by definition.
4686 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4687 * Hence, check seq<=rcv_wup reduces to:
4688 */
4689 if (tcp_header_len ==
4690 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4691 tp->rcv_nxt == tp->rcv_wup)
4692 tcp_store_ts_recent(tp);
4693
4694 tcp_rcv_rtt_measure_ts(sk, skb);
4695
4696 if ((int)skb->truesize > sk->sk_forward_alloc)
4697 goto step5;
4698
4699 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4700
4701 /* Bulk data transfer: receiver */
4702 __skb_pull(skb,tcp_header_len);
4703 __skb_queue_tail(&sk->sk_receive_queue, skb);
4704 sk_stream_set_owner_r(skb, sk);
4705 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4706 }
4707
4708 tcp_event_data_recv(sk, skb);
4709
4710 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4711 /* Well, only one small jumplet in fast path... */
4712 tcp_ack(sk, skb, FLAG_DATA);
4713 tcp_data_snd_check(sk);
4714 if (!inet_csk_ack_scheduled(sk))
4715 goto no_ack;
4716 }
4717
4718 __tcp_ack_snd_check(sk, 0);
4719 no_ack:
4720 #ifdef CONFIG_NET_DMA
4721 if (copied_early)
4722 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4723 else
4724 #endif
4725 if (eaten)
4726 __kfree_skb(skb);
4727 else
4728 sk->sk_data_ready(sk, 0);
4729 return 0;
4730 }
4731 }
4732
4733 slow_path:
4734 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4735 goto csum_error;
4736
4737 /*
4738 * RFC1323: H1. Apply PAWS check first.
4739 */
4740 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4741 tcp_paws_discard(sk, skb)) {
4742 if (!th->rst) {
4743 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4744 tcp_send_dupack(sk, skb);
4745 goto discard;
4746 }
4747 /* Resets are accepted even if PAWS failed.
4748
4749 ts_recent update must be made after we are sure
4750 that the packet is in window.
4751 */
4752 }
4753
4754 /*
4755 * Standard slow path.
4756 */
4757
4758 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4759 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4760 * (RST) segments are validated by checking their SEQ-fields."
4761 * And page 69: "If an incoming segment is not acceptable,
4762 * an acknowledgment should be sent in reply (unless the RST bit
4763 * is set, if so drop the segment and return)".
4764 */
4765 if (!th->rst)
4766 tcp_send_dupack(sk, skb);
4767 goto discard;
4768 }
4769
4770 if (th->rst) {
4771 tcp_reset(sk);
4772 goto discard;
4773 }
4774
4775 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4776
4777 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4778 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4779 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4780 tcp_reset(sk);
4781 return 1;
4782 }
4783
4784 step5:
4785 if (th->ack)
4786 tcp_ack(sk, skb, FLAG_SLOWPATH);
4787
4788 tcp_rcv_rtt_measure_ts(sk, skb);
4789
4790 /* Process urgent data. */
4791 tcp_urg(sk, skb, th);
4792
4793 /* step 7: process the segment text */
4794 tcp_data_queue(sk, skb);
4795
4796 tcp_data_snd_check(sk);
4797 tcp_ack_snd_check(sk);
4798 return 0;
4799
4800 csum_error:
4801 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4802
4803 discard:
4804 __kfree_skb(skb);
4805 return 0;
4806 }
4807
4808 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4809 struct tcphdr *th, unsigned len)
4810 {
4811 struct tcp_sock *tp = tcp_sk(sk);
4812 struct inet_connection_sock *icsk = inet_csk(sk);
4813 int saved_clamp = tp->rx_opt.mss_clamp;
4814
4815 tcp_parse_options(skb, &tp->rx_opt, 0);
4816
4817 if (th->ack) {
4818 /* rfc793:
4819 * "If the state is SYN-SENT then
4820 * first check the ACK bit
4821 * If the ACK bit is set
4822 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4823 * a reset (unless the RST bit is set, if so drop
4824 * the segment and return)"
4825 *
4826 * We do not send data with SYN, so that RFC-correct
4827 * test reduces to:
4828 */
4829 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4830 goto reset_and_undo;
4831
4832 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4833 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4834 tcp_time_stamp)) {
4835 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4836 goto reset_and_undo;
4837 }
4838
4839 /* Now ACK is acceptable.
4840 *
4841 * "If the RST bit is set
4842 * If the ACK was acceptable then signal the user "error:
4843 * connection reset", drop the segment, enter CLOSED state,
4844 * delete TCB, and return."
4845 */
4846
4847 if (th->rst) {
4848 tcp_reset(sk);
4849 goto discard;
4850 }
4851
4852 /* rfc793:
4853 * "fifth, if neither of the SYN or RST bits is set then
4854 * drop the segment and return."
4855 *
4856 * See note below!
4857 * --ANK(990513)
4858 */
4859 if (!th->syn)
4860 goto discard_and_undo;
4861
4862 /* rfc793:
4863 * "If the SYN bit is on ...
4864 * are acceptable then ...
4865 * (our SYN has been ACKed), change the connection
4866 * state to ESTABLISHED..."
4867 */
4868
4869 TCP_ECN_rcv_synack(tp, th);
4870
4871 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4872 tcp_ack(sk, skb, FLAG_SLOWPATH);
4873
4874 /* Ok.. it's good. Set up sequence numbers and
4875 * move to established.
4876 */
4877 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4878 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4879
4880 /* RFC1323: The window in SYN & SYN/ACK segments is
4881 * never scaled.
4882 */
4883 tp->snd_wnd = ntohs(th->window);
4884 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4885
4886 if (!tp->rx_opt.wscale_ok) {
4887 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4888 tp->window_clamp = min(tp->window_clamp, 65535U);
4889 }
4890
4891 if (tp->rx_opt.saw_tstamp) {
4892 tp->rx_opt.tstamp_ok = 1;
4893 tp->tcp_header_len =
4894 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4895 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4896 tcp_store_ts_recent(tp);
4897 } else {
4898 tp->tcp_header_len = sizeof(struct tcphdr);
4899 }
4900
4901 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4902 tcp_enable_fack(tp);
4903
4904 tcp_mtup_init(sk);
4905 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4906 tcp_initialize_rcv_mss(sk);
4907
4908 /* Remember, tcp_poll() does not lock socket!
4909 * Change state from SYN-SENT only after copied_seq
4910 * is initialized. */
4911 tp->copied_seq = tp->rcv_nxt;
4912 smp_mb();
4913 tcp_set_state(sk, TCP_ESTABLISHED);
4914
4915 security_inet_conn_established(sk, skb);
4916
4917 /* Make sure socket is routed, for correct metrics. */
4918 icsk->icsk_af_ops->rebuild_header(sk);
4919
4920 tcp_init_metrics(sk);
4921
4922 tcp_init_congestion_control(sk);
4923
4924 /* Prevent spurious tcp_cwnd_restart() on first data
4925 * packet.
4926 */
4927 tp->lsndtime = tcp_time_stamp;
4928
4929 tcp_init_buffer_space(sk);
4930
4931 if (sock_flag(sk, SOCK_KEEPOPEN))
4932 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4933
4934 if (!tp->rx_opt.snd_wscale)
4935 __tcp_fast_path_on(tp, tp->snd_wnd);
4936 else
4937 tp->pred_flags = 0;
4938
4939 if (!sock_flag(sk, SOCK_DEAD)) {
4940 sk->sk_state_change(sk);
4941 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4942 }
4943
4944 if (sk->sk_write_pending ||
4945 icsk->icsk_accept_queue.rskq_defer_accept ||
4946 icsk->icsk_ack.pingpong) {
4947 /* Save one ACK. Data will be ready after
4948 * several ticks, if write_pending is set.
4949 *
4950 * It may be deleted, but with this feature tcpdumps
4951 * look so _wonderfully_ clever, that I was not able
4952 * to stand against the temptation 8) --ANK
4953 */
4954 inet_csk_schedule_ack(sk);
4955 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4956 icsk->icsk_ack.ato = TCP_ATO_MIN;
4957 tcp_incr_quickack(sk);
4958 tcp_enter_quickack_mode(sk);
4959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4960 TCP_DELACK_MAX, TCP_RTO_MAX);
4961
4962 discard:
4963 __kfree_skb(skb);
4964 return 0;
4965 } else {
4966 tcp_send_ack(sk);
4967 }
4968 return -1;
4969 }
4970
4971 /* No ACK in the segment */
4972
4973 if (th->rst) {
4974 /* rfc793:
4975 * "If the RST bit is set
4976 *
4977 * Otherwise (no ACK) drop the segment and return."
4978 */
4979
4980 goto discard_and_undo;
4981 }
4982
4983 /* PAWS check. */
4984 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4985 goto discard_and_undo;
4986
4987 if (th->syn) {
4988 /* We see SYN without ACK. It is attempt of
4989 * simultaneous connect with crossed SYNs.
4990 * Particularly, it can be connect to self.
4991 */
4992 tcp_set_state(sk, TCP_SYN_RECV);
4993
4994 if (tp->rx_opt.saw_tstamp) {
4995 tp->rx_opt.tstamp_ok = 1;
4996 tcp_store_ts_recent(tp);
4997 tp->tcp_header_len =
4998 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4999 } else {
5000 tp->tcp_header_len = sizeof(struct tcphdr);
5001 }
5002
5003 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5004 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5005
5006 /* RFC1323: The window in SYN & SYN/ACK segments is
5007 * never scaled.
5008 */
5009 tp->snd_wnd = ntohs(th->window);
5010 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5011 tp->max_window = tp->snd_wnd;
5012
5013 TCP_ECN_rcv_syn(tp, th);
5014
5015 tcp_mtup_init(sk);
5016 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5017 tcp_initialize_rcv_mss(sk);
5018
5019
5020 tcp_send_synack(sk);
5021 #if 0
5022 /* Note, we could accept data and URG from this segment.
5023 * There are no obstacles to make this.
5024 *
5025 * However, if we ignore data in ACKless segments sometimes,
5026 * we have no reasons to accept it sometimes.
5027 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5028 * is not flawless. So, discard packet for sanity.
5029 * Uncomment this return to process the data.
5030 */
5031 return -1;
5032 #else
5033 goto discard;
5034 #endif
5035 }
5036 /* "fifth, if neither of the SYN or RST bits is set then
5037 * drop the segment and return."
5038 */
5039
5040 discard_and_undo:
5041 tcp_clear_options(&tp->rx_opt);
5042 tp->rx_opt.mss_clamp = saved_clamp;
5043 goto discard;
5044
5045 reset_and_undo:
5046 tcp_clear_options(&tp->rx_opt);
5047 tp->rx_opt.mss_clamp = saved_clamp;
5048 return 1;
5049 }
5050
5051
5052 /*
5053 * This function implements the receiving procedure of RFC 793 for
5054 * all states except ESTABLISHED and TIME_WAIT.
5055 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5056 * address independent.
5057 */
5058
5059 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5060 struct tcphdr *th, unsigned len)
5061 {
5062 struct tcp_sock *tp = tcp_sk(sk);
5063 struct inet_connection_sock *icsk = inet_csk(sk);
5064 int queued = 0;
5065
5066 tp->rx_opt.saw_tstamp = 0;
5067
5068 switch (sk->sk_state) {
5069 case TCP_CLOSE:
5070 goto discard;
5071
5072 case TCP_LISTEN:
5073 if (th->ack)
5074 return 1;
5075
5076 if (th->rst)
5077 goto discard;
5078
5079 if (th->syn) {
5080 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5081 return 1;
5082
5083 /* Now we have several options: In theory there is
5084 * nothing else in the frame. KA9Q has an option to
5085 * send data with the syn, BSD accepts data with the
5086 * syn up to the [to be] advertised window and
5087 * Solaris 2.1 gives you a protocol error. For now
5088 * we just ignore it, that fits the spec precisely
5089 * and avoids incompatibilities. It would be nice in
5090 * future to drop through and process the data.
5091 *
5092 * Now that TTCP is starting to be used we ought to
5093 * queue this data.
5094 * But, this leaves one open to an easy denial of
5095 * service attack, and SYN cookies can't defend
5096 * against this problem. So, we drop the data
5097 * in the interest of security over speed unless
5098 * it's still in use.
5099 */
5100 kfree_skb(skb);
5101 return 0;
5102 }
5103 goto discard;
5104
5105 case TCP_SYN_SENT:
5106 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5107 if (queued >= 0)
5108 return queued;
5109
5110 /* Do step6 onward by hand. */
5111 tcp_urg(sk, skb, th);
5112 __kfree_skb(skb);
5113 tcp_data_snd_check(sk);
5114 return 0;
5115 }
5116
5117 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5118 tcp_paws_discard(sk, skb)) {
5119 if (!th->rst) {
5120 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5121 tcp_send_dupack(sk, skb);
5122 goto discard;
5123 }
5124 /* Reset is accepted even if it did not pass PAWS. */
5125 }
5126
5127 /* step 1: check sequence number */
5128 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5129 if (!th->rst)
5130 tcp_send_dupack(sk, skb);
5131 goto discard;
5132 }
5133
5134 /* step 2: check RST bit */
5135 if (th->rst) {
5136 tcp_reset(sk);
5137 goto discard;
5138 }
5139
5140 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5141
5142 /* step 3: check security and precedence [ignored] */
5143
5144 /* step 4:
5145 *
5146 * Check for a SYN in window.
5147 */
5148 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5149 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5150 tcp_reset(sk);
5151 return 1;
5152 }
5153
5154 /* step 5: check the ACK field */
5155 if (th->ack) {
5156 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5157
5158 switch (sk->sk_state) {
5159 case TCP_SYN_RECV:
5160 if (acceptable) {
5161 tp->copied_seq = tp->rcv_nxt;
5162 smp_mb();
5163 tcp_set_state(sk, TCP_ESTABLISHED);
5164 sk->sk_state_change(sk);
5165
5166 /* Note, that this wakeup is only for marginal
5167 * crossed SYN case. Passively open sockets
5168 * are not waked up, because sk->sk_sleep ==
5169 * NULL and sk->sk_socket == NULL.
5170 */
5171 if (sk->sk_socket)
5172 sk_wake_async(sk,
5173 SOCK_WAKE_IO, POLL_OUT);
5174
5175 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5176 tp->snd_wnd = ntohs(th->window) <<
5177 tp->rx_opt.snd_wscale;
5178 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5179 TCP_SKB_CB(skb)->seq);
5180
5181 /* tcp_ack considers this ACK as duplicate
5182 * and does not calculate rtt.
5183 * Fix it at least with timestamps.
5184 */
5185 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5186 !tp->srtt)
5187 tcp_ack_saw_tstamp(sk, 0);
5188
5189 if (tp->rx_opt.tstamp_ok)
5190 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5191
5192 /* Make sure socket is routed, for
5193 * correct metrics.
5194 */
5195 icsk->icsk_af_ops->rebuild_header(sk);
5196
5197 tcp_init_metrics(sk);
5198
5199 tcp_init_congestion_control(sk);
5200
5201 /* Prevent spurious tcp_cwnd_restart() on
5202 * first data packet.
5203 */
5204 tp->lsndtime = tcp_time_stamp;
5205
5206 tcp_mtup_init(sk);
5207 tcp_initialize_rcv_mss(sk);
5208 tcp_init_buffer_space(sk);
5209 tcp_fast_path_on(tp);
5210 } else {
5211 return 1;
5212 }
5213 break;
5214
5215 case TCP_FIN_WAIT1:
5216 if (tp->snd_una == tp->write_seq) {
5217 tcp_set_state(sk, TCP_FIN_WAIT2);
5218 sk->sk_shutdown |= SEND_SHUTDOWN;
5219 dst_confirm(sk->sk_dst_cache);
5220
5221 if (!sock_flag(sk, SOCK_DEAD))
5222 /* Wake up lingering close() */
5223 sk->sk_state_change(sk);
5224 else {
5225 int tmo;
5226
5227 if (tp->linger2 < 0 ||
5228 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5229 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5230 tcp_done(sk);
5231 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5232 return 1;
5233 }
5234
5235 tmo = tcp_fin_time(sk);
5236 if (tmo > TCP_TIMEWAIT_LEN) {
5237 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5238 } else if (th->fin || sock_owned_by_user(sk)) {
5239 /* Bad case. We could lose such FIN otherwise.
5240 * It is not a big problem, but it looks confusing
5241 * and not so rare event. We still can lose it now,
5242 * if it spins in bh_lock_sock(), but it is really
5243 * marginal case.
5244 */
5245 inet_csk_reset_keepalive_timer(sk, tmo);
5246 } else {
5247 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5248 goto discard;
5249 }
5250 }
5251 }
5252 break;
5253
5254 case TCP_CLOSING:
5255 if (tp->snd_una == tp->write_seq) {
5256 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5257 goto discard;
5258 }
5259 break;
5260
5261 case TCP_LAST_ACK:
5262 if (tp->snd_una == tp->write_seq) {
5263 tcp_update_metrics(sk);
5264 tcp_done(sk);
5265 goto discard;
5266 }
5267 break;
5268 }
5269 } else
5270 goto discard;
5271
5272 /* step 6: check the URG bit */
5273 tcp_urg(sk, skb, th);
5274
5275 /* step 7: process the segment text */
5276 switch (sk->sk_state) {
5277 case TCP_CLOSE_WAIT:
5278 case TCP_CLOSING:
5279 case TCP_LAST_ACK:
5280 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5281 break;
5282 case TCP_FIN_WAIT1:
5283 case TCP_FIN_WAIT2:
5284 /* RFC 793 says to queue data in these states,
5285 * RFC 1122 says we MUST send a reset.
5286 * BSD 4.4 also does reset.
5287 */
5288 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5289 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5290 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5291 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5292 tcp_reset(sk);
5293 return 1;
5294 }
5295 }
5296 /* Fall through */
5297 case TCP_ESTABLISHED:
5298 tcp_data_queue(sk, skb);
5299 queued = 1;
5300 break;
5301 }
5302
5303 /* tcp_data could move socket to TIME-WAIT */
5304 if (sk->sk_state != TCP_CLOSE) {
5305 tcp_data_snd_check(sk);
5306 tcp_ack_snd_check(sk);
5307 }
5308
5309 if (!queued) {
5310 discard:
5311 __kfree_skb(skb);
5312 }
5313 return 0;
5314 }
5315
5316 EXPORT_SYMBOL(sysctl_tcp_ecn);
5317 EXPORT_SYMBOL(sysctl_tcp_reordering);
5318 EXPORT_SYMBOL(tcp_parse_options);
5319 EXPORT_SYMBOL(tcp_rcv_established);
5320 EXPORT_SYMBOL(tcp_rcv_state_process);
5321 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.140255 seconds and 6 git commands to generate.