tcp: TCP Fast Open Server - take SYNACK RTT after completing 3WHS
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
213 tcp_fetch_timewait_stamp(sk, &rt->dst);
214
215 inet->inet_dport = usin->sin_port;
216 inet->inet_daddr = daddr;
217
218 inet_csk(sk)->icsk_ext_hdr_len = 0;
219 if (inet_opt)
220 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
221
222 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
223
224 /* Socket identity is still unknown (sport may be zero).
225 * However we set state to SYN-SENT and not releasing socket
226 * lock select source port, enter ourselves into the hash tables and
227 * complete initialization after this.
228 */
229 tcp_set_state(sk, TCP_SYN_SENT);
230 err = inet_hash_connect(&tcp_death_row, sk);
231 if (err)
232 goto failure;
233
234 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
235 inet->inet_sport, inet->inet_dport, sk);
236 if (IS_ERR(rt)) {
237 err = PTR_ERR(rt);
238 rt = NULL;
239 goto failure;
240 }
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->dst);
244
245 if (!tp->write_seq && likely(!tp->repair))
246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 inet->inet_daddr,
248 inet->inet_sport,
249 usin->sin_port);
250
251 inet->inet_id = tp->write_seq ^ jiffies;
252
253 if (likely(!tp->repair))
254 err = tcp_connect(sk);
255 else
256 err = tcp_repair_connect(sk);
257
258 rt = NULL;
259 if (err)
260 goto failure;
261
262 return 0;
263
264 failure:
265 /*
266 * This unhashes the socket and releases the local port,
267 * if necessary.
268 */
269 tcp_set_state(sk, TCP_CLOSE);
270 ip_rt_put(rt);
271 sk->sk_route_caps = 0;
272 inet->inet_dport = 0;
273 return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
279 * It can be called through tcp_release_cb() if socket was owned by user
280 * at the time tcp_v4_err() was called to handle ICMP message.
281 */
282 static void tcp_v4_mtu_reduced(struct sock *sk)
283 {
284 struct dst_entry *dst;
285 struct inet_sock *inet = inet_sk(sk);
286 u32 mtu = tcp_sk(sk)->mtu_info;
287
288 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
289 * send out by Linux are always <576bytes so they should go through
290 * unfragmented).
291 */
292 if (sk->sk_state == TCP_LISTEN)
293 return;
294
295 dst = inet_csk_update_pmtu(sk, mtu);
296 if (!dst)
297 return;
298
299 /* Something is about to be wrong... Remember soft error
300 * for the case, if this connection will not able to recover.
301 */
302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303 sk->sk_err_soft = EMSGSIZE;
304
305 mtu = dst_mtu(dst);
306
307 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309 tcp_sync_mss(sk, mtu);
310
311 /* Resend the TCP packet because it's
312 * clear that the old packet has been
313 * dropped. This is the new "fast" path mtu
314 * discovery.
315 */
316 tcp_simple_retransmit(sk);
317 } /* else let the usual retransmit timer handle it */
318 }
319
320 static void do_redirect(struct sk_buff *skb, struct sock *sk)
321 {
322 struct dst_entry *dst = __sk_dst_check(sk, 0);
323
324 if (dst)
325 dst->ops->redirect(dst, sk, skb);
326 }
327
328 /*
329 * This routine is called by the ICMP module when it gets some
330 * sort of error condition. If err < 0 then the socket should
331 * be closed and the error returned to the user. If err > 0
332 * it's just the icmp type << 8 | icmp code. After adjustment
333 * header points to the first 8 bytes of the tcp header. We need
334 * to find the appropriate port.
335 *
336 * The locking strategy used here is very "optimistic". When
337 * someone else accesses the socket the ICMP is just dropped
338 * and for some paths there is no check at all.
339 * A more general error queue to queue errors for later handling
340 * is probably better.
341 *
342 */
343
344 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
345 {
346 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
347 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
348 struct inet_connection_sock *icsk;
349 struct tcp_sock *tp;
350 struct inet_sock *inet;
351 const int type = icmp_hdr(icmp_skb)->type;
352 const int code = icmp_hdr(icmp_skb)->code;
353 struct sock *sk;
354 struct sk_buff *skb;
355 struct request_sock *req;
356 __u32 seq;
357 __u32 remaining;
358 int err;
359 struct net *net = dev_net(icmp_skb->dev);
360
361 if (icmp_skb->len < (iph->ihl << 2) + 8) {
362 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
363 return;
364 }
365
366 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
367 iph->saddr, th->source, inet_iif(icmp_skb));
368 if (!sk) {
369 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
370 return;
371 }
372 if (sk->sk_state == TCP_TIME_WAIT) {
373 inet_twsk_put(inet_twsk(sk));
374 return;
375 }
376
377 bh_lock_sock(sk);
378 /* If too many ICMPs get dropped on busy
379 * servers this needs to be solved differently.
380 * We do take care of PMTU discovery (RFC1191) special case :
381 * we can receive locally generated ICMP messages while socket is held.
382 */
383 if (sock_owned_by_user(sk) &&
384 type != ICMP_DEST_UNREACH &&
385 code != ICMP_FRAG_NEEDED)
386 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
387
388 if (sk->sk_state == TCP_CLOSE)
389 goto out;
390
391 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
392 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
393 goto out;
394 }
395
396 icsk = inet_csk(sk);
397 tp = tcp_sk(sk);
398 req = tp->fastopen_rsk;
399 seq = ntohl(th->seq);
400 if (sk->sk_state != TCP_LISTEN &&
401 !between(seq, tp->snd_una, tp->snd_nxt) &&
402 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
403 /* For a Fast Open socket, allow seq to be snt_isn. */
404 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
405 goto out;
406 }
407
408 switch (type) {
409 case ICMP_REDIRECT:
410 do_redirect(icmp_skb, sk);
411 goto out;
412 case ICMP_SOURCE_QUENCH:
413 /* Just silently ignore these. */
414 goto out;
415 case ICMP_PARAMETERPROB:
416 err = EPROTO;
417 break;
418 case ICMP_DEST_UNREACH:
419 if (code > NR_ICMP_UNREACH)
420 goto out;
421
422 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
423 tp->mtu_info = info;
424 if (!sock_owned_by_user(sk)) {
425 tcp_v4_mtu_reduced(sk);
426 } else {
427 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
428 sock_hold(sk);
429 }
430 goto out;
431 }
432
433 err = icmp_err_convert[code].errno;
434 /* check if icmp_skb allows revert of backoff
435 * (see draft-zimmermann-tcp-lcd) */
436 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
437 break;
438 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
439 !icsk->icsk_backoff)
440 break;
441
442 /* XXX (TFO) - revisit the following logic for TFO */
443
444 if (sock_owned_by_user(sk))
445 break;
446
447 icsk->icsk_backoff--;
448 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
449 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
450 tcp_bound_rto(sk);
451
452 skb = tcp_write_queue_head(sk);
453 BUG_ON(!skb);
454
455 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
456 tcp_time_stamp - TCP_SKB_CB(skb)->when);
457
458 if (remaining) {
459 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
460 remaining, TCP_RTO_MAX);
461 } else {
462 /* RTO revert clocked out retransmission.
463 * Will retransmit now */
464 tcp_retransmit_timer(sk);
465 }
466
467 break;
468 case ICMP_TIME_EXCEEDED:
469 err = EHOSTUNREACH;
470 break;
471 default:
472 goto out;
473 }
474
475 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
476 * than following the TCP_SYN_RECV case and closing the socket,
477 * we ignore the ICMP error and keep trying like a fully established
478 * socket. Is this the right thing to do?
479 */
480 if (req && req->sk == NULL)
481 goto out;
482
483 switch (sk->sk_state) {
484 struct request_sock *req, **prev;
485 case TCP_LISTEN:
486 if (sock_owned_by_user(sk))
487 goto out;
488
489 req = inet_csk_search_req(sk, &prev, th->dest,
490 iph->daddr, iph->saddr);
491 if (!req)
492 goto out;
493
494 /* ICMPs are not backlogged, hence we cannot get
495 an established socket here.
496 */
497 WARN_ON(req->sk);
498
499 if (seq != tcp_rsk(req)->snt_isn) {
500 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
501 goto out;
502 }
503
504 /*
505 * Still in SYN_RECV, just remove it silently.
506 * There is no good way to pass the error to the newly
507 * created socket, and POSIX does not want network
508 * errors returned from accept().
509 */
510 inet_csk_reqsk_queue_drop(sk, req, prev);
511 goto out;
512
513 case TCP_SYN_SENT:
514 case TCP_SYN_RECV: /* Cannot happen.
515 It can f.e. if SYNs crossed,
516 or Fast Open.
517 */
518 if (!sock_owned_by_user(sk)) {
519 sk->sk_err = err;
520
521 sk->sk_error_report(sk);
522
523 tcp_done(sk);
524 } else {
525 sk->sk_err_soft = err;
526 }
527 goto out;
528 }
529
530 /* If we've already connected we will keep trying
531 * until we time out, or the user gives up.
532 *
533 * rfc1122 4.2.3.9 allows to consider as hard errors
534 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
535 * but it is obsoleted by pmtu discovery).
536 *
537 * Note, that in modern internet, where routing is unreliable
538 * and in each dark corner broken firewalls sit, sending random
539 * errors ordered by their masters even this two messages finally lose
540 * their original sense (even Linux sends invalid PORT_UNREACHs)
541 *
542 * Now we are in compliance with RFCs.
543 * --ANK (980905)
544 */
545
546 inet = inet_sk(sk);
547 if (!sock_owned_by_user(sk) && inet->recverr) {
548 sk->sk_err = err;
549 sk->sk_error_report(sk);
550 } else { /* Only an error on timeout */
551 sk->sk_err_soft = err;
552 }
553
554 out:
555 bh_unlock_sock(sk);
556 sock_put(sk);
557 }
558
559 static void __tcp_v4_send_check(struct sk_buff *skb,
560 __be32 saddr, __be32 daddr)
561 {
562 struct tcphdr *th = tcp_hdr(skb);
563
564 if (skb->ip_summed == CHECKSUM_PARTIAL) {
565 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
566 skb->csum_start = skb_transport_header(skb) - skb->head;
567 skb->csum_offset = offsetof(struct tcphdr, check);
568 } else {
569 th->check = tcp_v4_check(skb->len, saddr, daddr,
570 csum_partial(th,
571 th->doff << 2,
572 skb->csum));
573 }
574 }
575
576 /* This routine computes an IPv4 TCP checksum. */
577 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
578 {
579 const struct inet_sock *inet = inet_sk(sk);
580
581 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
582 }
583 EXPORT_SYMBOL(tcp_v4_send_check);
584
585 int tcp_v4_gso_send_check(struct sk_buff *skb)
586 {
587 const struct iphdr *iph;
588 struct tcphdr *th;
589
590 if (!pskb_may_pull(skb, sizeof(*th)))
591 return -EINVAL;
592
593 iph = ip_hdr(skb);
594 th = tcp_hdr(skb);
595
596 th->check = 0;
597 skb->ip_summed = CHECKSUM_PARTIAL;
598 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
599 return 0;
600 }
601
602 /*
603 * This routine will send an RST to the other tcp.
604 *
605 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
606 * for reset.
607 * Answer: if a packet caused RST, it is not for a socket
608 * existing in our system, if it is matched to a socket,
609 * it is just duplicate segment or bug in other side's TCP.
610 * So that we build reply only basing on parameters
611 * arrived with segment.
612 * Exception: precedence violation. We do not implement it in any case.
613 */
614
615 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
616 {
617 const struct tcphdr *th = tcp_hdr(skb);
618 struct {
619 struct tcphdr th;
620 #ifdef CONFIG_TCP_MD5SIG
621 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
622 #endif
623 } rep;
624 struct ip_reply_arg arg;
625 #ifdef CONFIG_TCP_MD5SIG
626 struct tcp_md5sig_key *key;
627 const __u8 *hash_location = NULL;
628 unsigned char newhash[16];
629 int genhash;
630 struct sock *sk1 = NULL;
631 #endif
632 struct net *net;
633
634 /* Never send a reset in response to a reset. */
635 if (th->rst)
636 return;
637
638 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
639 return;
640
641 /* Swap the send and the receive. */
642 memset(&rep, 0, sizeof(rep));
643 rep.th.dest = th->source;
644 rep.th.source = th->dest;
645 rep.th.doff = sizeof(struct tcphdr) / 4;
646 rep.th.rst = 1;
647
648 if (th->ack) {
649 rep.th.seq = th->ack_seq;
650 } else {
651 rep.th.ack = 1;
652 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
653 skb->len - (th->doff << 2));
654 }
655
656 memset(&arg, 0, sizeof(arg));
657 arg.iov[0].iov_base = (unsigned char *)&rep;
658 arg.iov[0].iov_len = sizeof(rep.th);
659
660 #ifdef CONFIG_TCP_MD5SIG
661 hash_location = tcp_parse_md5sig_option(th);
662 if (!sk && hash_location) {
663 /*
664 * active side is lost. Try to find listening socket through
665 * source port, and then find md5 key through listening socket.
666 * we are not loose security here:
667 * Incoming packet is checked with md5 hash with finding key,
668 * no RST generated if md5 hash doesn't match.
669 */
670 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
671 &tcp_hashinfo, ip_hdr(skb)->daddr,
672 ntohs(th->source), inet_iif(skb));
673 /* don't send rst if it can't find key */
674 if (!sk1)
675 return;
676 rcu_read_lock();
677 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
678 &ip_hdr(skb)->saddr, AF_INET);
679 if (!key)
680 goto release_sk1;
681
682 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
683 if (genhash || memcmp(hash_location, newhash, 16) != 0)
684 goto release_sk1;
685 } else {
686 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
687 &ip_hdr(skb)->saddr,
688 AF_INET) : NULL;
689 }
690
691 if (key) {
692 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
693 (TCPOPT_NOP << 16) |
694 (TCPOPT_MD5SIG << 8) |
695 TCPOLEN_MD5SIG);
696 /* Update length and the length the header thinks exists */
697 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
698 rep.th.doff = arg.iov[0].iov_len / 4;
699
700 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
701 key, ip_hdr(skb)->saddr,
702 ip_hdr(skb)->daddr, &rep.th);
703 }
704 #endif
705 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
706 ip_hdr(skb)->saddr, /* XXX */
707 arg.iov[0].iov_len, IPPROTO_TCP, 0);
708 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
709 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
710 /* When socket is gone, all binding information is lost.
711 * routing might fail in this case. using iif for oif to
712 * make sure we can deliver it
713 */
714 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
715
716 net = dev_net(skb_dst(skb)->dev);
717 arg.tos = ip_hdr(skb)->tos;
718 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
719 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
720
721 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
722 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
723
724 #ifdef CONFIG_TCP_MD5SIG
725 release_sk1:
726 if (sk1) {
727 rcu_read_unlock();
728 sock_put(sk1);
729 }
730 #endif
731 }
732
733 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
734 outside socket context is ugly, certainly. What can I do?
735 */
736
737 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
738 u32 win, u32 ts, int oif,
739 struct tcp_md5sig_key *key,
740 int reply_flags, u8 tos)
741 {
742 const struct tcphdr *th = tcp_hdr(skb);
743 struct {
744 struct tcphdr th;
745 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
746 #ifdef CONFIG_TCP_MD5SIG
747 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
748 #endif
749 ];
750 } rep;
751 struct ip_reply_arg arg;
752 struct net *net = dev_net(skb_dst(skb)->dev);
753
754 memset(&rep.th, 0, sizeof(struct tcphdr));
755 memset(&arg, 0, sizeof(arg));
756
757 arg.iov[0].iov_base = (unsigned char *)&rep;
758 arg.iov[0].iov_len = sizeof(rep.th);
759 if (ts) {
760 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
761 (TCPOPT_TIMESTAMP << 8) |
762 TCPOLEN_TIMESTAMP);
763 rep.opt[1] = htonl(tcp_time_stamp);
764 rep.opt[2] = htonl(ts);
765 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
766 }
767
768 /* Swap the send and the receive. */
769 rep.th.dest = th->source;
770 rep.th.source = th->dest;
771 rep.th.doff = arg.iov[0].iov_len / 4;
772 rep.th.seq = htonl(seq);
773 rep.th.ack_seq = htonl(ack);
774 rep.th.ack = 1;
775 rep.th.window = htons(win);
776
777 #ifdef CONFIG_TCP_MD5SIG
778 if (key) {
779 int offset = (ts) ? 3 : 0;
780
781 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
782 (TCPOPT_NOP << 16) |
783 (TCPOPT_MD5SIG << 8) |
784 TCPOLEN_MD5SIG);
785 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
786 rep.th.doff = arg.iov[0].iov_len/4;
787
788 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
789 key, ip_hdr(skb)->saddr,
790 ip_hdr(skb)->daddr, &rep.th);
791 }
792 #endif
793 arg.flags = reply_flags;
794 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
795 ip_hdr(skb)->saddr, /* XXX */
796 arg.iov[0].iov_len, IPPROTO_TCP, 0);
797 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
798 if (oif)
799 arg.bound_dev_if = oif;
800 arg.tos = tos;
801 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
802 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
803
804 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
805 }
806
807 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
808 {
809 struct inet_timewait_sock *tw = inet_twsk(sk);
810 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
811
812 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
813 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
814 tcptw->tw_ts_recent,
815 tw->tw_bound_dev_if,
816 tcp_twsk_md5_key(tcptw),
817 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
818 tw->tw_tos
819 );
820
821 inet_twsk_put(tw);
822 }
823
824 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
825 struct request_sock *req)
826 {
827 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
828 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
829 */
830 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
831 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
832 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
833 req->ts_recent,
834 0,
835 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
836 AF_INET),
837 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
838 ip_hdr(skb)->tos);
839 }
840
841 /*
842 * Send a SYN-ACK after having received a SYN.
843 * This still operates on a request_sock only, not on a big
844 * socket.
845 */
846 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
847 struct request_sock *req,
848 struct request_values *rvp,
849 u16 queue_mapping,
850 bool nocache)
851 {
852 const struct inet_request_sock *ireq = inet_rsk(req);
853 struct flowi4 fl4;
854 int err = -1;
855 struct sk_buff * skb;
856
857 /* First, grab a route. */
858 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
859 return -1;
860
861 skb = tcp_make_synack(sk, dst, req, rvp, NULL);
862
863 if (skb) {
864 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
865
866 skb_set_queue_mapping(skb, queue_mapping);
867 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
868 ireq->rmt_addr,
869 ireq->opt);
870 err = net_xmit_eval(err);
871 if (!tcp_rsk(req)->snt_synack && !err)
872 tcp_rsk(req)->snt_synack = tcp_time_stamp;
873 }
874
875 return err;
876 }
877
878 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
879 struct request_values *rvp)
880 {
881 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
882 return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
883 }
884
885 /*
886 * IPv4 request_sock destructor.
887 */
888 static void tcp_v4_reqsk_destructor(struct request_sock *req)
889 {
890 kfree(inet_rsk(req)->opt);
891 }
892
893 /*
894 * Return true if a syncookie should be sent
895 */
896 bool tcp_syn_flood_action(struct sock *sk,
897 const struct sk_buff *skb,
898 const char *proto)
899 {
900 const char *msg = "Dropping request";
901 bool want_cookie = false;
902 struct listen_sock *lopt;
903
904
905
906 #ifdef CONFIG_SYN_COOKIES
907 if (sysctl_tcp_syncookies) {
908 msg = "Sending cookies";
909 want_cookie = true;
910 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
911 } else
912 #endif
913 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
914
915 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
916 if (!lopt->synflood_warned) {
917 lopt->synflood_warned = 1;
918 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
919 proto, ntohs(tcp_hdr(skb)->dest), msg);
920 }
921 return want_cookie;
922 }
923 EXPORT_SYMBOL(tcp_syn_flood_action);
924
925 /*
926 * Save and compile IPv4 options into the request_sock if needed.
927 */
928 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
929 struct sk_buff *skb)
930 {
931 const struct ip_options *opt = &(IPCB(skb)->opt);
932 struct ip_options_rcu *dopt = NULL;
933
934 if (opt && opt->optlen) {
935 int opt_size = sizeof(*dopt) + opt->optlen;
936
937 dopt = kmalloc(opt_size, GFP_ATOMIC);
938 if (dopt) {
939 if (ip_options_echo(&dopt->opt, skb)) {
940 kfree(dopt);
941 dopt = NULL;
942 }
943 }
944 }
945 return dopt;
946 }
947
948 #ifdef CONFIG_TCP_MD5SIG
949 /*
950 * RFC2385 MD5 checksumming requires a mapping of
951 * IP address->MD5 Key.
952 * We need to maintain these in the sk structure.
953 */
954
955 /* Find the Key structure for an address. */
956 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
957 const union tcp_md5_addr *addr,
958 int family)
959 {
960 struct tcp_sock *tp = tcp_sk(sk);
961 struct tcp_md5sig_key *key;
962 struct hlist_node *pos;
963 unsigned int size = sizeof(struct in_addr);
964 struct tcp_md5sig_info *md5sig;
965
966 /* caller either holds rcu_read_lock() or socket lock */
967 md5sig = rcu_dereference_check(tp->md5sig_info,
968 sock_owned_by_user(sk) ||
969 lockdep_is_held(&sk->sk_lock.slock));
970 if (!md5sig)
971 return NULL;
972 #if IS_ENABLED(CONFIG_IPV6)
973 if (family == AF_INET6)
974 size = sizeof(struct in6_addr);
975 #endif
976 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
977 if (key->family != family)
978 continue;
979 if (!memcmp(&key->addr, addr, size))
980 return key;
981 }
982 return NULL;
983 }
984 EXPORT_SYMBOL(tcp_md5_do_lookup);
985
986 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
987 struct sock *addr_sk)
988 {
989 union tcp_md5_addr *addr;
990
991 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
992 return tcp_md5_do_lookup(sk, addr, AF_INET);
993 }
994 EXPORT_SYMBOL(tcp_v4_md5_lookup);
995
996 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
997 struct request_sock *req)
998 {
999 union tcp_md5_addr *addr;
1000
1001 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
1002 return tcp_md5_do_lookup(sk, addr, AF_INET);
1003 }
1004
1005 /* This can be called on a newly created socket, from other files */
1006 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1007 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1008 {
1009 /* Add Key to the list */
1010 struct tcp_md5sig_key *key;
1011 struct tcp_sock *tp = tcp_sk(sk);
1012 struct tcp_md5sig_info *md5sig;
1013
1014 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1015 if (key) {
1016 /* Pre-existing entry - just update that one. */
1017 memcpy(key->key, newkey, newkeylen);
1018 key->keylen = newkeylen;
1019 return 0;
1020 }
1021
1022 md5sig = rcu_dereference_protected(tp->md5sig_info,
1023 sock_owned_by_user(sk));
1024 if (!md5sig) {
1025 md5sig = kmalloc(sizeof(*md5sig), gfp);
1026 if (!md5sig)
1027 return -ENOMEM;
1028
1029 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1030 INIT_HLIST_HEAD(&md5sig->head);
1031 rcu_assign_pointer(tp->md5sig_info, md5sig);
1032 }
1033
1034 key = sock_kmalloc(sk, sizeof(*key), gfp);
1035 if (!key)
1036 return -ENOMEM;
1037 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1038 sock_kfree_s(sk, key, sizeof(*key));
1039 return -ENOMEM;
1040 }
1041
1042 memcpy(key->key, newkey, newkeylen);
1043 key->keylen = newkeylen;
1044 key->family = family;
1045 memcpy(&key->addr, addr,
1046 (family == AF_INET6) ? sizeof(struct in6_addr) :
1047 sizeof(struct in_addr));
1048 hlist_add_head_rcu(&key->node, &md5sig->head);
1049 return 0;
1050 }
1051 EXPORT_SYMBOL(tcp_md5_do_add);
1052
1053 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1054 {
1055 struct tcp_sock *tp = tcp_sk(sk);
1056 struct tcp_md5sig_key *key;
1057 struct tcp_md5sig_info *md5sig;
1058
1059 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1060 if (!key)
1061 return -ENOENT;
1062 hlist_del_rcu(&key->node);
1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 kfree_rcu(key, rcu);
1065 md5sig = rcu_dereference_protected(tp->md5sig_info,
1066 sock_owned_by_user(sk));
1067 if (hlist_empty(&md5sig->head))
1068 tcp_free_md5sig_pool();
1069 return 0;
1070 }
1071 EXPORT_SYMBOL(tcp_md5_do_del);
1072
1073 void tcp_clear_md5_list(struct sock *sk)
1074 {
1075 struct tcp_sock *tp = tcp_sk(sk);
1076 struct tcp_md5sig_key *key;
1077 struct hlist_node *pos, *n;
1078 struct tcp_md5sig_info *md5sig;
1079
1080 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1081
1082 if (!hlist_empty(&md5sig->head))
1083 tcp_free_md5sig_pool();
1084 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1085 hlist_del_rcu(&key->node);
1086 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1087 kfree_rcu(key, rcu);
1088 }
1089 }
1090
1091 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1092 int optlen)
1093 {
1094 struct tcp_md5sig cmd;
1095 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1096
1097 if (optlen < sizeof(cmd))
1098 return -EINVAL;
1099
1100 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1101 return -EFAULT;
1102
1103 if (sin->sin_family != AF_INET)
1104 return -EINVAL;
1105
1106 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1107 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1108 AF_INET);
1109
1110 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1111 return -EINVAL;
1112
1113 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1114 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1115 GFP_KERNEL);
1116 }
1117
1118 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1119 __be32 daddr, __be32 saddr, int nbytes)
1120 {
1121 struct tcp4_pseudohdr *bp;
1122 struct scatterlist sg;
1123
1124 bp = &hp->md5_blk.ip4;
1125
1126 /*
1127 * 1. the TCP pseudo-header (in the order: source IP address,
1128 * destination IP address, zero-padded protocol number, and
1129 * segment length)
1130 */
1131 bp->saddr = saddr;
1132 bp->daddr = daddr;
1133 bp->pad = 0;
1134 bp->protocol = IPPROTO_TCP;
1135 bp->len = cpu_to_be16(nbytes);
1136
1137 sg_init_one(&sg, bp, sizeof(*bp));
1138 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1139 }
1140
1141 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1142 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1143 {
1144 struct tcp_md5sig_pool *hp;
1145 struct hash_desc *desc;
1146
1147 hp = tcp_get_md5sig_pool();
1148 if (!hp)
1149 goto clear_hash_noput;
1150 desc = &hp->md5_desc;
1151
1152 if (crypto_hash_init(desc))
1153 goto clear_hash;
1154 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1155 goto clear_hash;
1156 if (tcp_md5_hash_header(hp, th))
1157 goto clear_hash;
1158 if (tcp_md5_hash_key(hp, key))
1159 goto clear_hash;
1160 if (crypto_hash_final(desc, md5_hash))
1161 goto clear_hash;
1162
1163 tcp_put_md5sig_pool();
1164 return 0;
1165
1166 clear_hash:
1167 tcp_put_md5sig_pool();
1168 clear_hash_noput:
1169 memset(md5_hash, 0, 16);
1170 return 1;
1171 }
1172
1173 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1174 const struct sock *sk, const struct request_sock *req,
1175 const struct sk_buff *skb)
1176 {
1177 struct tcp_md5sig_pool *hp;
1178 struct hash_desc *desc;
1179 const struct tcphdr *th = tcp_hdr(skb);
1180 __be32 saddr, daddr;
1181
1182 if (sk) {
1183 saddr = inet_sk(sk)->inet_saddr;
1184 daddr = inet_sk(sk)->inet_daddr;
1185 } else if (req) {
1186 saddr = inet_rsk(req)->loc_addr;
1187 daddr = inet_rsk(req)->rmt_addr;
1188 } else {
1189 const struct iphdr *iph = ip_hdr(skb);
1190 saddr = iph->saddr;
1191 daddr = iph->daddr;
1192 }
1193
1194 hp = tcp_get_md5sig_pool();
1195 if (!hp)
1196 goto clear_hash_noput;
1197 desc = &hp->md5_desc;
1198
1199 if (crypto_hash_init(desc))
1200 goto clear_hash;
1201
1202 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1203 goto clear_hash;
1204 if (tcp_md5_hash_header(hp, th))
1205 goto clear_hash;
1206 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1207 goto clear_hash;
1208 if (tcp_md5_hash_key(hp, key))
1209 goto clear_hash;
1210 if (crypto_hash_final(desc, md5_hash))
1211 goto clear_hash;
1212
1213 tcp_put_md5sig_pool();
1214 return 0;
1215
1216 clear_hash:
1217 tcp_put_md5sig_pool();
1218 clear_hash_noput:
1219 memset(md5_hash, 0, 16);
1220 return 1;
1221 }
1222 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1223
1224 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1225 {
1226 /*
1227 * This gets called for each TCP segment that arrives
1228 * so we want to be efficient.
1229 * We have 3 drop cases:
1230 * o No MD5 hash and one expected.
1231 * o MD5 hash and we're not expecting one.
1232 * o MD5 hash and its wrong.
1233 */
1234 const __u8 *hash_location = NULL;
1235 struct tcp_md5sig_key *hash_expected;
1236 const struct iphdr *iph = ip_hdr(skb);
1237 const struct tcphdr *th = tcp_hdr(skb);
1238 int genhash;
1239 unsigned char newhash[16];
1240
1241 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1242 AF_INET);
1243 hash_location = tcp_parse_md5sig_option(th);
1244
1245 /* We've parsed the options - do we have a hash? */
1246 if (!hash_expected && !hash_location)
1247 return false;
1248
1249 if (hash_expected && !hash_location) {
1250 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1251 return true;
1252 }
1253
1254 if (!hash_expected && hash_location) {
1255 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1256 return true;
1257 }
1258
1259 /* Okay, so this is hash_expected and hash_location -
1260 * so we need to calculate the checksum.
1261 */
1262 genhash = tcp_v4_md5_hash_skb(newhash,
1263 hash_expected,
1264 NULL, NULL, skb);
1265
1266 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1267 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1268 &iph->saddr, ntohs(th->source),
1269 &iph->daddr, ntohs(th->dest),
1270 genhash ? " tcp_v4_calc_md5_hash failed"
1271 : "");
1272 return true;
1273 }
1274 return false;
1275 }
1276
1277 #endif
1278
1279 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1280 .family = PF_INET,
1281 .obj_size = sizeof(struct tcp_request_sock),
1282 .rtx_syn_ack = tcp_v4_rtx_synack,
1283 .send_ack = tcp_v4_reqsk_send_ack,
1284 .destructor = tcp_v4_reqsk_destructor,
1285 .send_reset = tcp_v4_send_reset,
1286 .syn_ack_timeout = tcp_syn_ack_timeout,
1287 };
1288
1289 #ifdef CONFIG_TCP_MD5SIG
1290 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1291 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1292 .calc_md5_hash = tcp_v4_md5_hash_skb,
1293 };
1294 #endif
1295
1296 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1297 struct request_sock *req,
1298 struct tcp_fastopen_cookie *foc,
1299 struct tcp_fastopen_cookie *valid_foc)
1300 {
1301 bool skip_cookie = false;
1302 struct fastopen_queue *fastopenq;
1303
1304 if (likely(!fastopen_cookie_present(foc))) {
1305 /* See include/net/tcp.h for the meaning of these knobs */
1306 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1307 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1308 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1309 skip_cookie = true; /* no cookie to validate */
1310 else
1311 return false;
1312 }
1313 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1314 /* A FO option is present; bump the counter. */
1315 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1316
1317 /* Make sure the listener has enabled fastopen, and we don't
1318 * exceed the max # of pending TFO requests allowed before trying
1319 * to validating the cookie in order to avoid burning CPU cycles
1320 * unnecessarily.
1321 *
1322 * XXX (TFO) - The implication of checking the max_qlen before
1323 * processing a cookie request is that clients can't differentiate
1324 * between qlen overflow causing Fast Open to be disabled
1325 * temporarily vs a server not supporting Fast Open at all.
1326 */
1327 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1328 fastopenq == NULL || fastopenq->max_qlen == 0)
1329 return false;
1330
1331 if (fastopenq->qlen >= fastopenq->max_qlen) {
1332 struct request_sock *req1;
1333 spin_lock(&fastopenq->lock);
1334 req1 = fastopenq->rskq_rst_head;
1335 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1336 spin_unlock(&fastopenq->lock);
1337 NET_INC_STATS_BH(sock_net(sk),
1338 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1339 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1340 foc->len = -1;
1341 return false;
1342 }
1343 fastopenq->rskq_rst_head = req1->dl_next;
1344 fastopenq->qlen--;
1345 spin_unlock(&fastopenq->lock);
1346 reqsk_free(req1);
1347 }
1348 if (skip_cookie) {
1349 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1350 return true;
1351 }
1352 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1353 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1354 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1355 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1356 memcmp(&foc->val[0], &valid_foc->val[0],
1357 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1358 return false;
1359 valid_foc->len = -1;
1360 }
1361 /* Acknowledge the data received from the peer. */
1362 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1363 return true;
1364 } else if (foc->len == 0) { /* Client requesting a cookie */
1365 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1366 NET_INC_STATS_BH(sock_net(sk),
1367 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1368 } else {
1369 /* Client sent a cookie with wrong size. Treat it
1370 * the same as invalid and return a valid one.
1371 */
1372 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1373 }
1374 return false;
1375 }
1376
1377 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1378 struct sk_buff *skb,
1379 struct sk_buff *skb_synack,
1380 struct request_sock *req,
1381 struct request_values *rvp)
1382 {
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1385 const struct inet_request_sock *ireq = inet_rsk(req);
1386 struct sock *child;
1387 int err;
1388
1389 req->retrans = 0;
1390 req->sk = NULL;
1391
1392 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1393 if (child == NULL) {
1394 NET_INC_STATS_BH(sock_net(sk),
1395 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1396 kfree_skb(skb_synack);
1397 return -1;
1398 }
1399 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1400 ireq->rmt_addr, ireq->opt);
1401 err = net_xmit_eval(err);
1402 if (!err)
1403 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1404 /* XXX (TFO) - is it ok to ignore error and continue? */
1405
1406 spin_lock(&queue->fastopenq->lock);
1407 queue->fastopenq->qlen++;
1408 spin_unlock(&queue->fastopenq->lock);
1409
1410 /* Initialize the child socket. Have to fix some values to take
1411 * into account the child is a Fast Open socket and is created
1412 * only out of the bits carried in the SYN packet.
1413 */
1414 tp = tcp_sk(child);
1415
1416 tp->fastopen_rsk = req;
1417 /* Do a hold on the listner sk so that if the listener is being
1418 * closed, the child that has been accepted can live on and still
1419 * access listen_lock.
1420 */
1421 sock_hold(sk);
1422 tcp_rsk(req)->listener = sk;
1423
1424 /* RFC1323: The window in SYN & SYN/ACK segments is never
1425 * scaled. So correct it appropriately.
1426 */
1427 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1428
1429 /* Activate the retrans timer so that SYNACK can be retransmitted.
1430 * The request socket is not added to the SYN table of the parent
1431 * because it's been added to the accept queue directly.
1432 */
1433 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1434 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1435
1436 /* Add the child socket directly into the accept queue */
1437 inet_csk_reqsk_queue_add(sk, req, child);
1438
1439 /* Now finish processing the fastopen child socket. */
1440 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1441 tcp_init_congestion_control(child);
1442 tcp_mtup_init(child);
1443 tcp_init_buffer_space(child);
1444 tcp_init_metrics(child);
1445
1446 /* Queue the data carried in the SYN packet. We need to first
1447 * bump skb's refcnt because the caller will attempt to free it.
1448 *
1449 * XXX (TFO) - we honor a zero-payload TFO request for now.
1450 * (Any reason not to?)
1451 */
1452 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1453 /* Don't queue the skb if there is no payload in SYN.
1454 * XXX (TFO) - How about SYN+FIN?
1455 */
1456 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457 } else {
1458 skb = skb_get(skb);
1459 skb_dst_drop(skb);
1460 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1461 skb_set_owner_r(skb, child);
1462 __skb_queue_tail(&child->sk_receive_queue, skb);
1463 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1464 }
1465 sk->sk_data_ready(sk, 0);
1466 bh_unlock_sock(child);
1467 sock_put(child);
1468 WARN_ON(req->sk == NULL);
1469 return 0;
1470 }
1471
1472 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1473 {
1474 struct tcp_extend_values tmp_ext;
1475 struct tcp_options_received tmp_opt;
1476 const u8 *hash_location;
1477 struct request_sock *req;
1478 struct inet_request_sock *ireq;
1479 struct tcp_sock *tp = tcp_sk(sk);
1480 struct dst_entry *dst = NULL;
1481 __be32 saddr = ip_hdr(skb)->saddr;
1482 __be32 daddr = ip_hdr(skb)->daddr;
1483 __u32 isn = TCP_SKB_CB(skb)->when;
1484 bool want_cookie = false;
1485 struct flowi4 fl4;
1486 struct tcp_fastopen_cookie foc = { .len = -1 };
1487 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1488 struct sk_buff *skb_synack;
1489 int do_fastopen;
1490
1491 /* Never answer to SYNs send to broadcast or multicast */
1492 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1493 goto drop;
1494
1495 /* TW buckets are converted to open requests without
1496 * limitations, they conserve resources and peer is
1497 * evidently real one.
1498 */
1499 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1500 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1501 if (!want_cookie)
1502 goto drop;
1503 }
1504
1505 /* Accept backlog is full. If we have already queued enough
1506 * of warm entries in syn queue, drop request. It is better than
1507 * clogging syn queue with openreqs with exponentially increasing
1508 * timeout.
1509 */
1510 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1511 goto drop;
1512
1513 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1514 if (!req)
1515 goto drop;
1516
1517 #ifdef CONFIG_TCP_MD5SIG
1518 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1519 #endif
1520
1521 tcp_clear_options(&tmp_opt);
1522 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1523 tmp_opt.user_mss = tp->rx_opt.user_mss;
1524 tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1525 want_cookie ? NULL : &foc);
1526
1527 if (tmp_opt.cookie_plus > 0 &&
1528 tmp_opt.saw_tstamp &&
1529 !tp->rx_opt.cookie_out_never &&
1530 (sysctl_tcp_cookie_size > 0 ||
1531 (tp->cookie_values != NULL &&
1532 tp->cookie_values->cookie_desired > 0))) {
1533 u8 *c;
1534 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1535 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1536
1537 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1538 goto drop_and_release;
1539
1540 /* Secret recipe starts with IP addresses */
1541 *mess++ ^= (__force u32)daddr;
1542 *mess++ ^= (__force u32)saddr;
1543
1544 /* plus variable length Initiator Cookie */
1545 c = (u8 *)mess;
1546 while (l-- > 0)
1547 *c++ ^= *hash_location++;
1548
1549 want_cookie = false; /* not our kind of cookie */
1550 tmp_ext.cookie_out_never = 0; /* false */
1551 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1552 } else if (!tp->rx_opt.cookie_in_always) {
1553 /* redundant indications, but ensure initialization. */
1554 tmp_ext.cookie_out_never = 1; /* true */
1555 tmp_ext.cookie_plus = 0;
1556 } else {
1557 goto drop_and_release;
1558 }
1559 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1560
1561 if (want_cookie && !tmp_opt.saw_tstamp)
1562 tcp_clear_options(&tmp_opt);
1563
1564 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1565 tcp_openreq_init(req, &tmp_opt, skb);
1566
1567 ireq = inet_rsk(req);
1568 ireq->loc_addr = daddr;
1569 ireq->rmt_addr = saddr;
1570 ireq->no_srccheck = inet_sk(sk)->transparent;
1571 ireq->opt = tcp_v4_save_options(sk, skb);
1572
1573 if (security_inet_conn_request(sk, skb, req))
1574 goto drop_and_free;
1575
1576 if (!want_cookie || tmp_opt.tstamp_ok)
1577 TCP_ECN_create_request(req, skb);
1578
1579 if (want_cookie) {
1580 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1581 req->cookie_ts = tmp_opt.tstamp_ok;
1582 } else if (!isn) {
1583 /* VJ's idea. We save last timestamp seen
1584 * from the destination in peer table, when entering
1585 * state TIME-WAIT, and check against it before
1586 * accepting new connection request.
1587 *
1588 * If "isn" is not zero, this request hit alive
1589 * timewait bucket, so that all the necessary checks
1590 * are made in the function processing timewait state.
1591 */
1592 if (tmp_opt.saw_tstamp &&
1593 tcp_death_row.sysctl_tw_recycle &&
1594 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1595 fl4.daddr == saddr) {
1596 if (!tcp_peer_is_proven(req, dst, true)) {
1597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1598 goto drop_and_release;
1599 }
1600 }
1601 /* Kill the following clause, if you dislike this way. */
1602 else if (!sysctl_tcp_syncookies &&
1603 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1604 (sysctl_max_syn_backlog >> 2)) &&
1605 !tcp_peer_is_proven(req, dst, false)) {
1606 /* Without syncookies last quarter of
1607 * backlog is filled with destinations,
1608 * proven to be alive.
1609 * It means that we continue to communicate
1610 * to destinations, already remembered
1611 * to the moment of synflood.
1612 */
1613 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1614 &saddr, ntohs(tcp_hdr(skb)->source));
1615 goto drop_and_release;
1616 }
1617
1618 isn = tcp_v4_init_sequence(skb);
1619 }
1620 tcp_rsk(req)->snt_isn = isn;
1621
1622 if (dst == NULL) {
1623 dst = inet_csk_route_req(sk, &fl4, req);
1624 if (dst == NULL)
1625 goto drop_and_free;
1626 }
1627 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1628
1629 /* We don't call tcp_v4_send_synack() directly because we need
1630 * to make sure a child socket can be created successfully before
1631 * sending back synack!
1632 *
1633 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1634 * (or better yet, call tcp_send_synack() in the child context
1635 * directly, but will have to fix bunch of other code first)
1636 * after syn_recv_sock() except one will need to first fix the
1637 * latter to remove its dependency on the current implementation
1638 * of tcp_v4_send_synack()->tcp_select_initial_window().
1639 */
1640 skb_synack = tcp_make_synack(sk, dst, req,
1641 (struct request_values *)&tmp_ext,
1642 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1643
1644 if (skb_synack) {
1645 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1646 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1647 } else
1648 goto drop_and_free;
1649
1650 if (likely(!do_fastopen)) {
1651 int err;
1652 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1653 ireq->rmt_addr, ireq->opt);
1654 err = net_xmit_eval(err);
1655 if (err || want_cookie)
1656 goto drop_and_free;
1657
1658 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1659 tcp_rsk(req)->listener = NULL;
1660 /* Add the request_sock to the SYN table */
1661 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1662 if (fastopen_cookie_present(&foc) && foc.len != 0)
1663 NET_INC_STATS_BH(sock_net(sk),
1664 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1665 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1666 (struct request_values *)&tmp_ext))
1667 goto drop_and_free;
1668
1669 return 0;
1670
1671 drop_and_release:
1672 dst_release(dst);
1673 drop_and_free:
1674 reqsk_free(req);
1675 drop:
1676 return 0;
1677 }
1678 EXPORT_SYMBOL(tcp_v4_conn_request);
1679
1680
1681 /*
1682 * The three way handshake has completed - we got a valid synack -
1683 * now create the new socket.
1684 */
1685 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1686 struct request_sock *req,
1687 struct dst_entry *dst)
1688 {
1689 struct inet_request_sock *ireq;
1690 struct inet_sock *newinet;
1691 struct tcp_sock *newtp;
1692 struct sock *newsk;
1693 #ifdef CONFIG_TCP_MD5SIG
1694 struct tcp_md5sig_key *key;
1695 #endif
1696 struct ip_options_rcu *inet_opt;
1697
1698 if (sk_acceptq_is_full(sk))
1699 goto exit_overflow;
1700
1701 newsk = tcp_create_openreq_child(sk, req, skb);
1702 if (!newsk)
1703 goto exit_nonewsk;
1704
1705 newsk->sk_gso_type = SKB_GSO_TCPV4;
1706 inet_sk_rx_dst_set(newsk, skb);
1707
1708 newtp = tcp_sk(newsk);
1709 newinet = inet_sk(newsk);
1710 ireq = inet_rsk(req);
1711 newinet->inet_daddr = ireq->rmt_addr;
1712 newinet->inet_rcv_saddr = ireq->loc_addr;
1713 newinet->inet_saddr = ireq->loc_addr;
1714 inet_opt = ireq->opt;
1715 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1716 ireq->opt = NULL;
1717 newinet->mc_index = inet_iif(skb);
1718 newinet->mc_ttl = ip_hdr(skb)->ttl;
1719 newinet->rcv_tos = ip_hdr(skb)->tos;
1720 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1721 if (inet_opt)
1722 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1723 newinet->inet_id = newtp->write_seq ^ jiffies;
1724
1725 if (!dst) {
1726 dst = inet_csk_route_child_sock(sk, newsk, req);
1727 if (!dst)
1728 goto put_and_exit;
1729 } else {
1730 /* syncookie case : see end of cookie_v4_check() */
1731 }
1732 sk_setup_caps(newsk, dst);
1733
1734 tcp_mtup_init(newsk);
1735 tcp_sync_mss(newsk, dst_mtu(dst));
1736 newtp->advmss = dst_metric_advmss(dst);
1737 if (tcp_sk(sk)->rx_opt.user_mss &&
1738 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1739 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1740
1741 tcp_initialize_rcv_mss(newsk);
1742 tcp_synack_rtt_meas(newsk, req);
1743 newtp->total_retrans = req->retrans;
1744
1745 #ifdef CONFIG_TCP_MD5SIG
1746 /* Copy over the MD5 key from the original socket */
1747 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1748 AF_INET);
1749 if (key != NULL) {
1750 /*
1751 * We're using one, so create a matching key
1752 * on the newsk structure. If we fail to get
1753 * memory, then we end up not copying the key
1754 * across. Shucks.
1755 */
1756 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1757 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1758 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1759 }
1760 #endif
1761
1762 if (__inet_inherit_port(sk, newsk) < 0)
1763 goto put_and_exit;
1764 __inet_hash_nolisten(newsk, NULL);
1765
1766 return newsk;
1767
1768 exit_overflow:
1769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1770 exit_nonewsk:
1771 dst_release(dst);
1772 exit:
1773 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1774 return NULL;
1775 put_and_exit:
1776 tcp_clear_xmit_timers(newsk);
1777 tcp_cleanup_congestion_control(newsk);
1778 bh_unlock_sock(newsk);
1779 sock_put(newsk);
1780 goto exit;
1781 }
1782 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1783
1784 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1785 {
1786 struct tcphdr *th = tcp_hdr(skb);
1787 const struct iphdr *iph = ip_hdr(skb);
1788 struct sock *nsk;
1789 struct request_sock **prev;
1790 /* Find possible connection requests. */
1791 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1792 iph->saddr, iph->daddr);
1793 if (req)
1794 return tcp_check_req(sk, skb, req, prev, false);
1795
1796 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1797 th->source, iph->daddr, th->dest, inet_iif(skb));
1798
1799 if (nsk) {
1800 if (nsk->sk_state != TCP_TIME_WAIT) {
1801 bh_lock_sock(nsk);
1802 return nsk;
1803 }
1804 inet_twsk_put(inet_twsk(nsk));
1805 return NULL;
1806 }
1807
1808 #ifdef CONFIG_SYN_COOKIES
1809 if (!th->syn)
1810 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1811 #endif
1812 return sk;
1813 }
1814
1815 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1816 {
1817 const struct iphdr *iph = ip_hdr(skb);
1818
1819 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1820 if (!tcp_v4_check(skb->len, iph->saddr,
1821 iph->daddr, skb->csum)) {
1822 skb->ip_summed = CHECKSUM_UNNECESSARY;
1823 return 0;
1824 }
1825 }
1826
1827 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1828 skb->len, IPPROTO_TCP, 0);
1829
1830 if (skb->len <= 76) {
1831 return __skb_checksum_complete(skb);
1832 }
1833 return 0;
1834 }
1835
1836
1837 /* The socket must have it's spinlock held when we get
1838 * here.
1839 *
1840 * We have a potential double-lock case here, so even when
1841 * doing backlog processing we use the BH locking scheme.
1842 * This is because we cannot sleep with the original spinlock
1843 * held.
1844 */
1845 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1846 {
1847 struct sock *rsk;
1848 #ifdef CONFIG_TCP_MD5SIG
1849 /*
1850 * We really want to reject the packet as early as possible
1851 * if:
1852 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1853 * o There is an MD5 option and we're not expecting one
1854 */
1855 if (tcp_v4_inbound_md5_hash(sk, skb))
1856 goto discard;
1857 #endif
1858
1859 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1860 struct dst_entry *dst = sk->sk_rx_dst;
1861
1862 sock_rps_save_rxhash(sk, skb);
1863 if (dst) {
1864 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1865 dst->ops->check(dst, 0) == NULL) {
1866 dst_release(dst);
1867 sk->sk_rx_dst = NULL;
1868 }
1869 }
1870 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1871 rsk = sk;
1872 goto reset;
1873 }
1874 return 0;
1875 }
1876
1877 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1878 goto csum_err;
1879
1880 if (sk->sk_state == TCP_LISTEN) {
1881 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1882 if (!nsk)
1883 goto discard;
1884
1885 if (nsk != sk) {
1886 sock_rps_save_rxhash(nsk, skb);
1887 if (tcp_child_process(sk, nsk, skb)) {
1888 rsk = nsk;
1889 goto reset;
1890 }
1891 return 0;
1892 }
1893 } else
1894 sock_rps_save_rxhash(sk, skb);
1895
1896 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1897 rsk = sk;
1898 goto reset;
1899 }
1900 return 0;
1901
1902 reset:
1903 tcp_v4_send_reset(rsk, skb);
1904 discard:
1905 kfree_skb(skb);
1906 /* Be careful here. If this function gets more complicated and
1907 * gcc suffers from register pressure on the x86, sk (in %ebx)
1908 * might be destroyed here. This current version compiles correctly,
1909 * but you have been warned.
1910 */
1911 return 0;
1912
1913 csum_err:
1914 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1915 goto discard;
1916 }
1917 EXPORT_SYMBOL(tcp_v4_do_rcv);
1918
1919 void tcp_v4_early_demux(struct sk_buff *skb)
1920 {
1921 struct net *net = dev_net(skb->dev);
1922 const struct iphdr *iph;
1923 const struct tcphdr *th;
1924 struct sock *sk;
1925
1926 if (skb->pkt_type != PACKET_HOST)
1927 return;
1928
1929 if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr)))
1930 return;
1931
1932 iph = ip_hdr(skb);
1933 th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb));
1934
1935 if (th->doff < sizeof(struct tcphdr) / 4)
1936 return;
1937
1938 sk = __inet_lookup_established(net, &tcp_hashinfo,
1939 iph->saddr, th->source,
1940 iph->daddr, ntohs(th->dest),
1941 skb->skb_iif);
1942 if (sk) {
1943 skb->sk = sk;
1944 skb->destructor = sock_edemux;
1945 if (sk->sk_state != TCP_TIME_WAIT) {
1946 struct dst_entry *dst = sk->sk_rx_dst;
1947
1948 if (dst)
1949 dst = dst_check(dst, 0);
1950 if (dst &&
1951 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1952 skb_dst_set_noref(skb, dst);
1953 }
1954 }
1955 }
1956
1957 /*
1958 * From tcp_input.c
1959 */
1960
1961 int tcp_v4_rcv(struct sk_buff *skb)
1962 {
1963 const struct iphdr *iph;
1964 const struct tcphdr *th;
1965 struct sock *sk;
1966 int ret;
1967 struct net *net = dev_net(skb->dev);
1968
1969 if (skb->pkt_type != PACKET_HOST)
1970 goto discard_it;
1971
1972 /* Count it even if it's bad */
1973 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1974
1975 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1976 goto discard_it;
1977
1978 th = tcp_hdr(skb);
1979
1980 if (th->doff < sizeof(struct tcphdr) / 4)
1981 goto bad_packet;
1982 if (!pskb_may_pull(skb, th->doff * 4))
1983 goto discard_it;
1984
1985 /* An explanation is required here, I think.
1986 * Packet length and doff are validated by header prediction,
1987 * provided case of th->doff==0 is eliminated.
1988 * So, we defer the checks. */
1989 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1990 goto bad_packet;
1991
1992 th = tcp_hdr(skb);
1993 iph = ip_hdr(skb);
1994 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1995 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1996 skb->len - th->doff * 4);
1997 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1998 TCP_SKB_CB(skb)->when = 0;
1999 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2000 TCP_SKB_CB(skb)->sacked = 0;
2001
2002 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2003 if (!sk)
2004 goto no_tcp_socket;
2005
2006 process:
2007 if (sk->sk_state == TCP_TIME_WAIT)
2008 goto do_time_wait;
2009
2010 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2011 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2012 goto discard_and_relse;
2013 }
2014
2015 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2016 goto discard_and_relse;
2017 nf_reset(skb);
2018
2019 if (sk_filter(sk, skb))
2020 goto discard_and_relse;
2021
2022 skb->dev = NULL;
2023
2024 bh_lock_sock_nested(sk);
2025 ret = 0;
2026 if (!sock_owned_by_user(sk)) {
2027 #ifdef CONFIG_NET_DMA
2028 struct tcp_sock *tp = tcp_sk(sk);
2029 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2030 tp->ucopy.dma_chan = net_dma_find_channel();
2031 if (tp->ucopy.dma_chan)
2032 ret = tcp_v4_do_rcv(sk, skb);
2033 else
2034 #endif
2035 {
2036 if (!tcp_prequeue(sk, skb))
2037 ret = tcp_v4_do_rcv(sk, skb);
2038 }
2039 } else if (unlikely(sk_add_backlog(sk, skb,
2040 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2041 bh_unlock_sock(sk);
2042 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2043 goto discard_and_relse;
2044 }
2045 bh_unlock_sock(sk);
2046
2047 sock_put(sk);
2048
2049 return ret;
2050
2051 no_tcp_socket:
2052 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2053 goto discard_it;
2054
2055 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2056 bad_packet:
2057 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2058 } else {
2059 tcp_v4_send_reset(NULL, skb);
2060 }
2061
2062 discard_it:
2063 /* Discard frame. */
2064 kfree_skb(skb);
2065 return 0;
2066
2067 discard_and_relse:
2068 sock_put(sk);
2069 goto discard_it;
2070
2071 do_time_wait:
2072 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2073 inet_twsk_put(inet_twsk(sk));
2074 goto discard_it;
2075 }
2076
2077 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2078 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2079 inet_twsk_put(inet_twsk(sk));
2080 goto discard_it;
2081 }
2082 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2083 case TCP_TW_SYN: {
2084 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2085 &tcp_hashinfo,
2086 iph->daddr, th->dest,
2087 inet_iif(skb));
2088 if (sk2) {
2089 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2090 inet_twsk_put(inet_twsk(sk));
2091 sk = sk2;
2092 goto process;
2093 }
2094 /* Fall through to ACK */
2095 }
2096 case TCP_TW_ACK:
2097 tcp_v4_timewait_ack(sk, skb);
2098 break;
2099 case TCP_TW_RST:
2100 goto no_tcp_socket;
2101 case TCP_TW_SUCCESS:;
2102 }
2103 goto discard_it;
2104 }
2105
2106 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2107 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2108 .twsk_unique = tcp_twsk_unique,
2109 .twsk_destructor= tcp_twsk_destructor,
2110 };
2111
2112 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2113 {
2114 struct dst_entry *dst = skb_dst(skb);
2115
2116 dst_hold(dst);
2117 sk->sk_rx_dst = dst;
2118 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2119 }
2120 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2121
2122 const struct inet_connection_sock_af_ops ipv4_specific = {
2123 .queue_xmit = ip_queue_xmit,
2124 .send_check = tcp_v4_send_check,
2125 .rebuild_header = inet_sk_rebuild_header,
2126 .sk_rx_dst_set = inet_sk_rx_dst_set,
2127 .conn_request = tcp_v4_conn_request,
2128 .syn_recv_sock = tcp_v4_syn_recv_sock,
2129 .net_header_len = sizeof(struct iphdr),
2130 .setsockopt = ip_setsockopt,
2131 .getsockopt = ip_getsockopt,
2132 .addr2sockaddr = inet_csk_addr2sockaddr,
2133 .sockaddr_len = sizeof(struct sockaddr_in),
2134 .bind_conflict = inet_csk_bind_conflict,
2135 #ifdef CONFIG_COMPAT
2136 .compat_setsockopt = compat_ip_setsockopt,
2137 .compat_getsockopt = compat_ip_getsockopt,
2138 #endif
2139 };
2140 EXPORT_SYMBOL(ipv4_specific);
2141
2142 #ifdef CONFIG_TCP_MD5SIG
2143 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2144 .md5_lookup = tcp_v4_md5_lookup,
2145 .calc_md5_hash = tcp_v4_md5_hash_skb,
2146 .md5_parse = tcp_v4_parse_md5_keys,
2147 };
2148 #endif
2149
2150 /* NOTE: A lot of things set to zero explicitly by call to
2151 * sk_alloc() so need not be done here.
2152 */
2153 static int tcp_v4_init_sock(struct sock *sk)
2154 {
2155 struct inet_connection_sock *icsk = inet_csk(sk);
2156
2157 tcp_init_sock(sk);
2158
2159 icsk->icsk_af_ops = &ipv4_specific;
2160
2161 #ifdef CONFIG_TCP_MD5SIG
2162 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2163 #endif
2164
2165 return 0;
2166 }
2167
2168 void tcp_v4_destroy_sock(struct sock *sk)
2169 {
2170 struct tcp_sock *tp = tcp_sk(sk);
2171
2172 tcp_clear_xmit_timers(sk);
2173
2174 tcp_cleanup_congestion_control(sk);
2175
2176 /* Cleanup up the write buffer. */
2177 tcp_write_queue_purge(sk);
2178
2179 /* Cleans up our, hopefully empty, out_of_order_queue. */
2180 __skb_queue_purge(&tp->out_of_order_queue);
2181
2182 #ifdef CONFIG_TCP_MD5SIG
2183 /* Clean up the MD5 key list, if any */
2184 if (tp->md5sig_info) {
2185 tcp_clear_md5_list(sk);
2186 kfree_rcu(tp->md5sig_info, rcu);
2187 tp->md5sig_info = NULL;
2188 }
2189 #endif
2190
2191 #ifdef CONFIG_NET_DMA
2192 /* Cleans up our sk_async_wait_queue */
2193 __skb_queue_purge(&sk->sk_async_wait_queue);
2194 #endif
2195
2196 /* Clean prequeue, it must be empty really */
2197 __skb_queue_purge(&tp->ucopy.prequeue);
2198
2199 /* Clean up a referenced TCP bind bucket. */
2200 if (inet_csk(sk)->icsk_bind_hash)
2201 inet_put_port(sk);
2202
2203 /*
2204 * If sendmsg cached page exists, toss it.
2205 */
2206 if (sk->sk_sndmsg_page) {
2207 __free_page(sk->sk_sndmsg_page);
2208 sk->sk_sndmsg_page = NULL;
2209 }
2210
2211 /* TCP Cookie Transactions */
2212 if (tp->cookie_values != NULL) {
2213 kref_put(&tp->cookie_values->kref,
2214 tcp_cookie_values_release);
2215 tp->cookie_values = NULL;
2216 }
2217 BUG_ON(tp->fastopen_rsk != NULL);
2218
2219 /* If socket is aborted during connect operation */
2220 tcp_free_fastopen_req(tp);
2221
2222 sk_sockets_allocated_dec(sk);
2223 sock_release_memcg(sk);
2224 }
2225 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2226
2227 #ifdef CONFIG_PROC_FS
2228 /* Proc filesystem TCP sock list dumping. */
2229
2230 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2231 {
2232 return hlist_nulls_empty(head) ? NULL :
2233 list_entry(head->first, struct inet_timewait_sock, tw_node);
2234 }
2235
2236 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2237 {
2238 return !is_a_nulls(tw->tw_node.next) ?
2239 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2240 }
2241
2242 /*
2243 * Get next listener socket follow cur. If cur is NULL, get first socket
2244 * starting from bucket given in st->bucket; when st->bucket is zero the
2245 * very first socket in the hash table is returned.
2246 */
2247 static void *listening_get_next(struct seq_file *seq, void *cur)
2248 {
2249 struct inet_connection_sock *icsk;
2250 struct hlist_nulls_node *node;
2251 struct sock *sk = cur;
2252 struct inet_listen_hashbucket *ilb;
2253 struct tcp_iter_state *st = seq->private;
2254 struct net *net = seq_file_net(seq);
2255
2256 if (!sk) {
2257 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2258 spin_lock_bh(&ilb->lock);
2259 sk = sk_nulls_head(&ilb->head);
2260 st->offset = 0;
2261 goto get_sk;
2262 }
2263 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2264 ++st->num;
2265 ++st->offset;
2266
2267 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2268 struct request_sock *req = cur;
2269
2270 icsk = inet_csk(st->syn_wait_sk);
2271 req = req->dl_next;
2272 while (1) {
2273 while (req) {
2274 if (req->rsk_ops->family == st->family) {
2275 cur = req;
2276 goto out;
2277 }
2278 req = req->dl_next;
2279 }
2280 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2281 break;
2282 get_req:
2283 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2284 }
2285 sk = sk_nulls_next(st->syn_wait_sk);
2286 st->state = TCP_SEQ_STATE_LISTENING;
2287 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2288 } else {
2289 icsk = inet_csk(sk);
2290 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2291 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2292 goto start_req;
2293 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2294 sk = sk_nulls_next(sk);
2295 }
2296 get_sk:
2297 sk_nulls_for_each_from(sk, node) {
2298 if (!net_eq(sock_net(sk), net))
2299 continue;
2300 if (sk->sk_family == st->family) {
2301 cur = sk;
2302 goto out;
2303 }
2304 icsk = inet_csk(sk);
2305 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2306 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2307 start_req:
2308 st->uid = sock_i_uid(sk);
2309 st->syn_wait_sk = sk;
2310 st->state = TCP_SEQ_STATE_OPENREQ;
2311 st->sbucket = 0;
2312 goto get_req;
2313 }
2314 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2315 }
2316 spin_unlock_bh(&ilb->lock);
2317 st->offset = 0;
2318 if (++st->bucket < INET_LHTABLE_SIZE) {
2319 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2320 spin_lock_bh(&ilb->lock);
2321 sk = sk_nulls_head(&ilb->head);
2322 goto get_sk;
2323 }
2324 cur = NULL;
2325 out:
2326 return cur;
2327 }
2328
2329 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2330 {
2331 struct tcp_iter_state *st = seq->private;
2332 void *rc;
2333
2334 st->bucket = 0;
2335 st->offset = 0;
2336 rc = listening_get_next(seq, NULL);
2337
2338 while (rc && *pos) {
2339 rc = listening_get_next(seq, rc);
2340 --*pos;
2341 }
2342 return rc;
2343 }
2344
2345 static inline bool empty_bucket(struct tcp_iter_state *st)
2346 {
2347 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2348 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2349 }
2350
2351 /*
2352 * Get first established socket starting from bucket given in st->bucket.
2353 * If st->bucket is zero, the very first socket in the hash is returned.
2354 */
2355 static void *established_get_first(struct seq_file *seq)
2356 {
2357 struct tcp_iter_state *st = seq->private;
2358 struct net *net = seq_file_net(seq);
2359 void *rc = NULL;
2360
2361 st->offset = 0;
2362 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2363 struct sock *sk;
2364 struct hlist_nulls_node *node;
2365 struct inet_timewait_sock *tw;
2366 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2367
2368 /* Lockless fast path for the common case of empty buckets */
2369 if (empty_bucket(st))
2370 continue;
2371
2372 spin_lock_bh(lock);
2373 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2374 if (sk->sk_family != st->family ||
2375 !net_eq(sock_net(sk), net)) {
2376 continue;
2377 }
2378 rc = sk;
2379 goto out;
2380 }
2381 st->state = TCP_SEQ_STATE_TIME_WAIT;
2382 inet_twsk_for_each(tw, node,
2383 &tcp_hashinfo.ehash[st->bucket].twchain) {
2384 if (tw->tw_family != st->family ||
2385 !net_eq(twsk_net(tw), net)) {
2386 continue;
2387 }
2388 rc = tw;
2389 goto out;
2390 }
2391 spin_unlock_bh(lock);
2392 st->state = TCP_SEQ_STATE_ESTABLISHED;
2393 }
2394 out:
2395 return rc;
2396 }
2397
2398 static void *established_get_next(struct seq_file *seq, void *cur)
2399 {
2400 struct sock *sk = cur;
2401 struct inet_timewait_sock *tw;
2402 struct hlist_nulls_node *node;
2403 struct tcp_iter_state *st = seq->private;
2404 struct net *net = seq_file_net(seq);
2405
2406 ++st->num;
2407 ++st->offset;
2408
2409 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2410 tw = cur;
2411 tw = tw_next(tw);
2412 get_tw:
2413 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2414 tw = tw_next(tw);
2415 }
2416 if (tw) {
2417 cur = tw;
2418 goto out;
2419 }
2420 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2421 st->state = TCP_SEQ_STATE_ESTABLISHED;
2422
2423 /* Look for next non empty bucket */
2424 st->offset = 0;
2425 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2426 empty_bucket(st))
2427 ;
2428 if (st->bucket > tcp_hashinfo.ehash_mask)
2429 return NULL;
2430
2431 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2432 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2433 } else
2434 sk = sk_nulls_next(sk);
2435
2436 sk_nulls_for_each_from(sk, node) {
2437 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2438 goto found;
2439 }
2440
2441 st->state = TCP_SEQ_STATE_TIME_WAIT;
2442 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2443 goto get_tw;
2444 found:
2445 cur = sk;
2446 out:
2447 return cur;
2448 }
2449
2450 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2451 {
2452 struct tcp_iter_state *st = seq->private;
2453 void *rc;
2454
2455 st->bucket = 0;
2456 rc = established_get_first(seq);
2457
2458 while (rc && pos) {
2459 rc = established_get_next(seq, rc);
2460 --pos;
2461 }
2462 return rc;
2463 }
2464
2465 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2466 {
2467 void *rc;
2468 struct tcp_iter_state *st = seq->private;
2469
2470 st->state = TCP_SEQ_STATE_LISTENING;
2471 rc = listening_get_idx(seq, &pos);
2472
2473 if (!rc) {
2474 st->state = TCP_SEQ_STATE_ESTABLISHED;
2475 rc = established_get_idx(seq, pos);
2476 }
2477
2478 return rc;
2479 }
2480
2481 static void *tcp_seek_last_pos(struct seq_file *seq)
2482 {
2483 struct tcp_iter_state *st = seq->private;
2484 int offset = st->offset;
2485 int orig_num = st->num;
2486 void *rc = NULL;
2487
2488 switch (st->state) {
2489 case TCP_SEQ_STATE_OPENREQ:
2490 case TCP_SEQ_STATE_LISTENING:
2491 if (st->bucket >= INET_LHTABLE_SIZE)
2492 break;
2493 st->state = TCP_SEQ_STATE_LISTENING;
2494 rc = listening_get_next(seq, NULL);
2495 while (offset-- && rc)
2496 rc = listening_get_next(seq, rc);
2497 if (rc)
2498 break;
2499 st->bucket = 0;
2500 /* Fallthrough */
2501 case TCP_SEQ_STATE_ESTABLISHED:
2502 case TCP_SEQ_STATE_TIME_WAIT:
2503 st->state = TCP_SEQ_STATE_ESTABLISHED;
2504 if (st->bucket > tcp_hashinfo.ehash_mask)
2505 break;
2506 rc = established_get_first(seq);
2507 while (offset-- && rc)
2508 rc = established_get_next(seq, rc);
2509 }
2510
2511 st->num = orig_num;
2512
2513 return rc;
2514 }
2515
2516 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2517 {
2518 struct tcp_iter_state *st = seq->private;
2519 void *rc;
2520
2521 if (*pos && *pos == st->last_pos) {
2522 rc = tcp_seek_last_pos(seq);
2523 if (rc)
2524 goto out;
2525 }
2526
2527 st->state = TCP_SEQ_STATE_LISTENING;
2528 st->num = 0;
2529 st->bucket = 0;
2530 st->offset = 0;
2531 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2532
2533 out:
2534 st->last_pos = *pos;
2535 return rc;
2536 }
2537
2538 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2539 {
2540 struct tcp_iter_state *st = seq->private;
2541 void *rc = NULL;
2542
2543 if (v == SEQ_START_TOKEN) {
2544 rc = tcp_get_idx(seq, 0);
2545 goto out;
2546 }
2547
2548 switch (st->state) {
2549 case TCP_SEQ_STATE_OPENREQ:
2550 case TCP_SEQ_STATE_LISTENING:
2551 rc = listening_get_next(seq, v);
2552 if (!rc) {
2553 st->state = TCP_SEQ_STATE_ESTABLISHED;
2554 st->bucket = 0;
2555 st->offset = 0;
2556 rc = established_get_first(seq);
2557 }
2558 break;
2559 case TCP_SEQ_STATE_ESTABLISHED:
2560 case TCP_SEQ_STATE_TIME_WAIT:
2561 rc = established_get_next(seq, v);
2562 break;
2563 }
2564 out:
2565 ++*pos;
2566 st->last_pos = *pos;
2567 return rc;
2568 }
2569
2570 static void tcp_seq_stop(struct seq_file *seq, void *v)
2571 {
2572 struct tcp_iter_state *st = seq->private;
2573
2574 switch (st->state) {
2575 case TCP_SEQ_STATE_OPENREQ:
2576 if (v) {
2577 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2578 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2579 }
2580 case TCP_SEQ_STATE_LISTENING:
2581 if (v != SEQ_START_TOKEN)
2582 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2583 break;
2584 case TCP_SEQ_STATE_TIME_WAIT:
2585 case TCP_SEQ_STATE_ESTABLISHED:
2586 if (v)
2587 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2588 break;
2589 }
2590 }
2591
2592 int tcp_seq_open(struct inode *inode, struct file *file)
2593 {
2594 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2595 struct tcp_iter_state *s;
2596 int err;
2597
2598 err = seq_open_net(inode, file, &afinfo->seq_ops,
2599 sizeof(struct tcp_iter_state));
2600 if (err < 0)
2601 return err;
2602
2603 s = ((struct seq_file *)file->private_data)->private;
2604 s->family = afinfo->family;
2605 s->last_pos = 0;
2606 return 0;
2607 }
2608 EXPORT_SYMBOL(tcp_seq_open);
2609
2610 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2611 {
2612 int rc = 0;
2613 struct proc_dir_entry *p;
2614
2615 afinfo->seq_ops.start = tcp_seq_start;
2616 afinfo->seq_ops.next = tcp_seq_next;
2617 afinfo->seq_ops.stop = tcp_seq_stop;
2618
2619 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2620 afinfo->seq_fops, afinfo);
2621 if (!p)
2622 rc = -ENOMEM;
2623 return rc;
2624 }
2625 EXPORT_SYMBOL(tcp_proc_register);
2626
2627 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2628 {
2629 proc_net_remove(net, afinfo->name);
2630 }
2631 EXPORT_SYMBOL(tcp_proc_unregister);
2632
2633 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2634 struct seq_file *f, int i, kuid_t uid, int *len)
2635 {
2636 const struct inet_request_sock *ireq = inet_rsk(req);
2637 long delta = req->expires - jiffies;
2638
2639 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2640 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2641 i,
2642 ireq->loc_addr,
2643 ntohs(inet_sk(sk)->inet_sport),
2644 ireq->rmt_addr,
2645 ntohs(ireq->rmt_port),
2646 TCP_SYN_RECV,
2647 0, 0, /* could print option size, but that is af dependent. */
2648 1, /* timers active (only the expire timer) */
2649 jiffies_delta_to_clock_t(delta),
2650 req->retrans,
2651 from_kuid_munged(seq_user_ns(f), uid),
2652 0, /* non standard timer */
2653 0, /* open_requests have no inode */
2654 atomic_read(&sk->sk_refcnt),
2655 req,
2656 len);
2657 }
2658
2659 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2660 {
2661 int timer_active;
2662 unsigned long timer_expires;
2663 const struct tcp_sock *tp = tcp_sk(sk);
2664 const struct inet_connection_sock *icsk = inet_csk(sk);
2665 const struct inet_sock *inet = inet_sk(sk);
2666 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2667 __be32 dest = inet->inet_daddr;
2668 __be32 src = inet->inet_rcv_saddr;
2669 __u16 destp = ntohs(inet->inet_dport);
2670 __u16 srcp = ntohs(inet->inet_sport);
2671 int rx_queue;
2672
2673 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2674 timer_active = 1;
2675 timer_expires = icsk->icsk_timeout;
2676 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2677 timer_active = 4;
2678 timer_expires = icsk->icsk_timeout;
2679 } else if (timer_pending(&sk->sk_timer)) {
2680 timer_active = 2;
2681 timer_expires = sk->sk_timer.expires;
2682 } else {
2683 timer_active = 0;
2684 timer_expires = jiffies;
2685 }
2686
2687 if (sk->sk_state == TCP_LISTEN)
2688 rx_queue = sk->sk_ack_backlog;
2689 else
2690 /*
2691 * because we dont lock socket, we might find a transient negative value
2692 */
2693 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2694
2695 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2696 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2697 i, src, srcp, dest, destp, sk->sk_state,
2698 tp->write_seq - tp->snd_una,
2699 rx_queue,
2700 timer_active,
2701 jiffies_delta_to_clock_t(timer_expires - jiffies),
2702 icsk->icsk_retransmits,
2703 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2704 icsk->icsk_probes_out,
2705 sock_i_ino(sk),
2706 atomic_read(&sk->sk_refcnt), sk,
2707 jiffies_to_clock_t(icsk->icsk_rto),
2708 jiffies_to_clock_t(icsk->icsk_ack.ato),
2709 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2710 tp->snd_cwnd,
2711 sk->sk_state == TCP_LISTEN ?
2712 (fastopenq ? fastopenq->max_qlen : 0) :
2713 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2714 len);
2715 }
2716
2717 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2718 struct seq_file *f, int i, int *len)
2719 {
2720 __be32 dest, src;
2721 __u16 destp, srcp;
2722 long delta = tw->tw_ttd - jiffies;
2723
2724 dest = tw->tw_daddr;
2725 src = tw->tw_rcv_saddr;
2726 destp = ntohs(tw->tw_dport);
2727 srcp = ntohs(tw->tw_sport);
2728
2729 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2730 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2731 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2732 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2733 atomic_read(&tw->tw_refcnt), tw, len);
2734 }
2735
2736 #define TMPSZ 150
2737
2738 static int tcp4_seq_show(struct seq_file *seq, void *v)
2739 {
2740 struct tcp_iter_state *st;
2741 int len;
2742
2743 if (v == SEQ_START_TOKEN) {
2744 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2745 " sl local_address rem_address st tx_queue "
2746 "rx_queue tr tm->when retrnsmt uid timeout "
2747 "inode");
2748 goto out;
2749 }
2750 st = seq->private;
2751
2752 switch (st->state) {
2753 case TCP_SEQ_STATE_LISTENING:
2754 case TCP_SEQ_STATE_ESTABLISHED:
2755 get_tcp4_sock(v, seq, st->num, &len);
2756 break;
2757 case TCP_SEQ_STATE_OPENREQ:
2758 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2759 break;
2760 case TCP_SEQ_STATE_TIME_WAIT:
2761 get_timewait4_sock(v, seq, st->num, &len);
2762 break;
2763 }
2764 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2765 out:
2766 return 0;
2767 }
2768
2769 static const struct file_operations tcp_afinfo_seq_fops = {
2770 .owner = THIS_MODULE,
2771 .open = tcp_seq_open,
2772 .read = seq_read,
2773 .llseek = seq_lseek,
2774 .release = seq_release_net
2775 };
2776
2777 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2778 .name = "tcp",
2779 .family = AF_INET,
2780 .seq_fops = &tcp_afinfo_seq_fops,
2781 .seq_ops = {
2782 .show = tcp4_seq_show,
2783 },
2784 };
2785
2786 static int __net_init tcp4_proc_init_net(struct net *net)
2787 {
2788 return tcp_proc_register(net, &tcp4_seq_afinfo);
2789 }
2790
2791 static void __net_exit tcp4_proc_exit_net(struct net *net)
2792 {
2793 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2794 }
2795
2796 static struct pernet_operations tcp4_net_ops = {
2797 .init = tcp4_proc_init_net,
2798 .exit = tcp4_proc_exit_net,
2799 };
2800
2801 int __init tcp4_proc_init(void)
2802 {
2803 return register_pernet_subsys(&tcp4_net_ops);
2804 }
2805
2806 void tcp4_proc_exit(void)
2807 {
2808 unregister_pernet_subsys(&tcp4_net_ops);
2809 }
2810 #endif /* CONFIG_PROC_FS */
2811
2812 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2813 {
2814 const struct iphdr *iph = skb_gro_network_header(skb);
2815
2816 switch (skb->ip_summed) {
2817 case CHECKSUM_COMPLETE:
2818 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2819 skb->csum)) {
2820 skb->ip_summed = CHECKSUM_UNNECESSARY;
2821 break;
2822 }
2823
2824 /* fall through */
2825 case CHECKSUM_NONE:
2826 NAPI_GRO_CB(skb)->flush = 1;
2827 return NULL;
2828 }
2829
2830 return tcp_gro_receive(head, skb);
2831 }
2832
2833 int tcp4_gro_complete(struct sk_buff *skb)
2834 {
2835 const struct iphdr *iph = ip_hdr(skb);
2836 struct tcphdr *th = tcp_hdr(skb);
2837
2838 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2839 iph->saddr, iph->daddr, 0);
2840 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2841
2842 return tcp_gro_complete(skb);
2843 }
2844
2845 struct proto tcp_prot = {
2846 .name = "TCP",
2847 .owner = THIS_MODULE,
2848 .close = tcp_close,
2849 .connect = tcp_v4_connect,
2850 .disconnect = tcp_disconnect,
2851 .accept = inet_csk_accept,
2852 .ioctl = tcp_ioctl,
2853 .init = tcp_v4_init_sock,
2854 .destroy = tcp_v4_destroy_sock,
2855 .shutdown = tcp_shutdown,
2856 .setsockopt = tcp_setsockopt,
2857 .getsockopt = tcp_getsockopt,
2858 .recvmsg = tcp_recvmsg,
2859 .sendmsg = tcp_sendmsg,
2860 .sendpage = tcp_sendpage,
2861 .backlog_rcv = tcp_v4_do_rcv,
2862 .release_cb = tcp_release_cb,
2863 .mtu_reduced = tcp_v4_mtu_reduced,
2864 .hash = inet_hash,
2865 .unhash = inet_unhash,
2866 .get_port = inet_csk_get_port,
2867 .enter_memory_pressure = tcp_enter_memory_pressure,
2868 .sockets_allocated = &tcp_sockets_allocated,
2869 .orphan_count = &tcp_orphan_count,
2870 .memory_allocated = &tcp_memory_allocated,
2871 .memory_pressure = &tcp_memory_pressure,
2872 .sysctl_wmem = sysctl_tcp_wmem,
2873 .sysctl_rmem = sysctl_tcp_rmem,
2874 .max_header = MAX_TCP_HEADER,
2875 .obj_size = sizeof(struct tcp_sock),
2876 .slab_flags = SLAB_DESTROY_BY_RCU,
2877 .twsk_prot = &tcp_timewait_sock_ops,
2878 .rsk_prot = &tcp_request_sock_ops,
2879 .h.hashinfo = &tcp_hashinfo,
2880 .no_autobind = true,
2881 #ifdef CONFIG_COMPAT
2882 .compat_setsockopt = compat_tcp_setsockopt,
2883 .compat_getsockopt = compat_tcp_getsockopt,
2884 #endif
2885 #ifdef CONFIG_MEMCG_KMEM
2886 .init_cgroup = tcp_init_cgroup,
2887 .destroy_cgroup = tcp_destroy_cgroup,
2888 .proto_cgroup = tcp_proto_cgroup,
2889 #endif
2890 };
2891 EXPORT_SYMBOL(tcp_prot);
2892
2893 static int __net_init tcp_sk_init(struct net *net)
2894 {
2895 return 0;
2896 }
2897
2898 static void __net_exit tcp_sk_exit(struct net *net)
2899 {
2900 }
2901
2902 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2903 {
2904 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2905 }
2906
2907 static struct pernet_operations __net_initdata tcp_sk_ops = {
2908 .init = tcp_sk_init,
2909 .exit = tcp_sk_exit,
2910 .exit_batch = tcp_sk_exit_batch,
2911 };
2912
2913 void __init tcp_v4_init(void)
2914 {
2915 inet_hashinfo_init(&tcp_hashinfo);
2916 if (register_pernet_subsys(&tcp_sk_ops))
2917 panic("Failed to create the TCP control socket.\n");
2918 }
This page took 0.135986 seconds and 5 git commands to generate.