inet: Turn ->remember_stamp into ->get_peer in connection AF ops.
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
88
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92 __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
98 {
99 return NULL;
100 }
101 #endif
102
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109 ip_hdr(skb)->saddr,
110 tcp_hdr(skb)->dest,
111 tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
118
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
125 holder.
126
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
129 */
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
135 tp->write_seq = 1;
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138 sock_hold(sktw);
139 return 1;
140 }
141
142 return 0;
143 }
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 {
149 struct inet_sock *inet = inet_sk(sk);
150 struct tcp_sock *tp = tcp_sk(sk);
151 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
152 struct rtable *rt;
153 __be32 daddr, nexthop;
154 int tmp;
155 int err;
156
157 if (addr_len < sizeof(struct sockaddr_in))
158 return -EINVAL;
159
160 if (usin->sin_family != AF_INET)
161 return -EAFNOSUPPORT;
162
163 nexthop = daddr = usin->sin_addr.s_addr;
164 if (inet->opt && inet->opt->srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet->opt->faddr;
168 }
169
170 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 inet->inet_sport, usin->sin_port, sk, 1);
174 if (tmp < 0) {
175 if (tmp == -ENETUNREACH)
176 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
177 return tmp;
178 }
179
180 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
181 ip_rt_put(rt);
182 return -ENETUNREACH;
183 }
184
185 if (!inet->opt || !inet->opt->srr)
186 daddr = rt->rt_dst;
187
188 if (!inet->inet_saddr)
189 inet->inet_saddr = rt->rt_src;
190 inet->inet_rcv_saddr = inet->inet_saddr;
191
192 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
193 /* Reset inherited state */
194 tp->rx_opt.ts_recent = 0;
195 tp->rx_opt.ts_recent_stamp = 0;
196 tp->write_seq = 0;
197 }
198
199 if (tcp_death_row.sysctl_tw_recycle &&
200 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
201 struct inet_peer *peer = rt_get_peer(rt);
202 /*
203 * VJ's idea. We save last timestamp seen from
204 * the destination in peer table, when entering state
205 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
206 * when trying new connection.
207 */
208 if (peer) {
209 inet_peer_refcheck(peer);
210 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
211 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
212 tp->rx_opt.ts_recent = peer->tcp_ts;
213 }
214 }
215 }
216
217 inet->inet_dport = usin->sin_port;
218 inet->inet_daddr = daddr;
219
220 inet_csk(sk)->icsk_ext_hdr_len = 0;
221 if (inet->opt)
222 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
223
224 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
225
226 /* Socket identity is still unknown (sport may be zero).
227 * However we set state to SYN-SENT and not releasing socket
228 * lock select source port, enter ourselves into the hash tables and
229 * complete initialization after this.
230 */
231 tcp_set_state(sk, TCP_SYN_SENT);
232 err = inet_hash_connect(&tcp_death_row, sk);
233 if (err)
234 goto failure;
235
236 err = ip_route_newports(&rt, IPPROTO_TCP,
237 inet->inet_sport, inet->inet_dport, sk);
238 if (err)
239 goto failure;
240
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->dst);
244
245 if (!tp->write_seq)
246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 inet->inet_daddr,
248 inet->inet_sport,
249 usin->sin_port);
250
251 inet->inet_id = tp->write_seq ^ jiffies;
252
253 err = tcp_connect(sk);
254 rt = NULL;
255 if (err)
256 goto failure;
257
258 return 0;
259
260 failure:
261 /*
262 * This unhashes the socket and releases the local port,
263 * if necessary.
264 */
265 tcp_set_state(sk, TCP_CLOSE);
266 ip_rt_put(rt);
267 sk->sk_route_caps = 0;
268 inet->inet_dport = 0;
269 return err;
270 }
271 EXPORT_SYMBOL(tcp_v4_connect);
272
273 /*
274 * This routine does path mtu discovery as defined in RFC1191.
275 */
276 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
277 {
278 struct dst_entry *dst;
279 struct inet_sock *inet = inet_sk(sk);
280
281 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
282 * send out by Linux are always <576bytes so they should go through
283 * unfragmented).
284 */
285 if (sk->sk_state == TCP_LISTEN)
286 return;
287
288 /* We don't check in the destentry if pmtu discovery is forbidden
289 * on this route. We just assume that no packet_to_big packets
290 * are send back when pmtu discovery is not active.
291 * There is a small race when the user changes this flag in the
292 * route, but I think that's acceptable.
293 */
294 if ((dst = __sk_dst_check(sk, 0)) == NULL)
295 return;
296
297 dst->ops->update_pmtu(dst, mtu);
298
299 /* Something is about to be wrong... Remember soft error
300 * for the case, if this connection will not able to recover.
301 */
302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303 sk->sk_err_soft = EMSGSIZE;
304
305 mtu = dst_mtu(dst);
306
307 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309 tcp_sync_mss(sk, mtu);
310
311 /* Resend the TCP packet because it's
312 * clear that the old packet has been
313 * dropped. This is the new "fast" path mtu
314 * discovery.
315 */
316 tcp_simple_retransmit(sk);
317 } /* else let the usual retransmit timer handle it */
318 }
319
320 /*
321 * This routine is called by the ICMP module when it gets some
322 * sort of error condition. If err < 0 then the socket should
323 * be closed and the error returned to the user. If err > 0
324 * it's just the icmp type << 8 | icmp code. After adjustment
325 * header points to the first 8 bytes of the tcp header. We need
326 * to find the appropriate port.
327 *
328 * The locking strategy used here is very "optimistic". When
329 * someone else accesses the socket the ICMP is just dropped
330 * and for some paths there is no check at all.
331 * A more general error queue to queue errors for later handling
332 * is probably better.
333 *
334 */
335
336 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
337 {
338 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
339 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
340 struct inet_connection_sock *icsk;
341 struct tcp_sock *tp;
342 struct inet_sock *inet;
343 const int type = icmp_hdr(icmp_skb)->type;
344 const int code = icmp_hdr(icmp_skb)->code;
345 struct sock *sk;
346 struct sk_buff *skb;
347 __u32 seq;
348 __u32 remaining;
349 int err;
350 struct net *net = dev_net(icmp_skb->dev);
351
352 if (icmp_skb->len < (iph->ihl << 2) + 8) {
353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
354 return;
355 }
356
357 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
358 iph->saddr, th->source, inet_iif(icmp_skb));
359 if (!sk) {
360 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
361 return;
362 }
363 if (sk->sk_state == TCP_TIME_WAIT) {
364 inet_twsk_put(inet_twsk(sk));
365 return;
366 }
367
368 bh_lock_sock(sk);
369 /* If too many ICMPs get dropped on busy
370 * servers this needs to be solved differently.
371 */
372 if (sock_owned_by_user(sk))
373 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
374
375 if (sk->sk_state == TCP_CLOSE)
376 goto out;
377
378 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
379 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
380 goto out;
381 }
382
383 icsk = inet_csk(sk);
384 tp = tcp_sk(sk);
385 seq = ntohl(th->seq);
386 if (sk->sk_state != TCP_LISTEN &&
387 !between(seq, tp->snd_una, tp->snd_nxt)) {
388 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
389 goto out;
390 }
391
392 switch (type) {
393 case ICMP_SOURCE_QUENCH:
394 /* Just silently ignore these. */
395 goto out;
396 case ICMP_PARAMETERPROB:
397 err = EPROTO;
398 break;
399 case ICMP_DEST_UNREACH:
400 if (code > NR_ICMP_UNREACH)
401 goto out;
402
403 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
404 if (!sock_owned_by_user(sk))
405 do_pmtu_discovery(sk, iph, info);
406 goto out;
407 }
408
409 err = icmp_err_convert[code].errno;
410 /* check if icmp_skb allows revert of backoff
411 * (see draft-zimmermann-tcp-lcd) */
412 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
413 break;
414 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
415 !icsk->icsk_backoff)
416 break;
417
418 if (sock_owned_by_user(sk))
419 break;
420
421 icsk->icsk_backoff--;
422 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
423 icsk->icsk_backoff;
424 tcp_bound_rto(sk);
425
426 skb = tcp_write_queue_head(sk);
427 BUG_ON(!skb);
428
429 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
430 tcp_time_stamp - TCP_SKB_CB(skb)->when);
431
432 if (remaining) {
433 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
434 remaining, TCP_RTO_MAX);
435 } else {
436 /* RTO revert clocked out retransmission.
437 * Will retransmit now */
438 tcp_retransmit_timer(sk);
439 }
440
441 break;
442 case ICMP_TIME_EXCEEDED:
443 err = EHOSTUNREACH;
444 break;
445 default:
446 goto out;
447 }
448
449 switch (sk->sk_state) {
450 struct request_sock *req, **prev;
451 case TCP_LISTEN:
452 if (sock_owned_by_user(sk))
453 goto out;
454
455 req = inet_csk_search_req(sk, &prev, th->dest,
456 iph->daddr, iph->saddr);
457 if (!req)
458 goto out;
459
460 /* ICMPs are not backlogged, hence we cannot get
461 an established socket here.
462 */
463 WARN_ON(req->sk);
464
465 if (seq != tcp_rsk(req)->snt_isn) {
466 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
467 goto out;
468 }
469
470 /*
471 * Still in SYN_RECV, just remove it silently.
472 * There is no good way to pass the error to the newly
473 * created socket, and POSIX does not want network
474 * errors returned from accept().
475 */
476 inet_csk_reqsk_queue_drop(sk, req, prev);
477 goto out;
478
479 case TCP_SYN_SENT:
480 case TCP_SYN_RECV: /* Cannot happen.
481 It can f.e. if SYNs crossed.
482 */
483 if (!sock_owned_by_user(sk)) {
484 sk->sk_err = err;
485
486 sk->sk_error_report(sk);
487
488 tcp_done(sk);
489 } else {
490 sk->sk_err_soft = err;
491 }
492 goto out;
493 }
494
495 /* If we've already connected we will keep trying
496 * until we time out, or the user gives up.
497 *
498 * rfc1122 4.2.3.9 allows to consider as hard errors
499 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
500 * but it is obsoleted by pmtu discovery).
501 *
502 * Note, that in modern internet, where routing is unreliable
503 * and in each dark corner broken firewalls sit, sending random
504 * errors ordered by their masters even this two messages finally lose
505 * their original sense (even Linux sends invalid PORT_UNREACHs)
506 *
507 * Now we are in compliance with RFCs.
508 * --ANK (980905)
509 */
510
511 inet = inet_sk(sk);
512 if (!sock_owned_by_user(sk) && inet->recverr) {
513 sk->sk_err = err;
514 sk->sk_error_report(sk);
515 } else { /* Only an error on timeout */
516 sk->sk_err_soft = err;
517 }
518
519 out:
520 bh_unlock_sock(sk);
521 sock_put(sk);
522 }
523
524 static void __tcp_v4_send_check(struct sk_buff *skb,
525 __be32 saddr, __be32 daddr)
526 {
527 struct tcphdr *th = tcp_hdr(skb);
528
529 if (skb->ip_summed == CHECKSUM_PARTIAL) {
530 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
531 skb->csum_start = skb_transport_header(skb) - skb->head;
532 skb->csum_offset = offsetof(struct tcphdr, check);
533 } else {
534 th->check = tcp_v4_check(skb->len, saddr, daddr,
535 csum_partial(th,
536 th->doff << 2,
537 skb->csum));
538 }
539 }
540
541 /* This routine computes an IPv4 TCP checksum. */
542 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
543 {
544 struct inet_sock *inet = inet_sk(sk);
545
546 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
547 }
548 EXPORT_SYMBOL(tcp_v4_send_check);
549
550 int tcp_v4_gso_send_check(struct sk_buff *skb)
551 {
552 const struct iphdr *iph;
553 struct tcphdr *th;
554
555 if (!pskb_may_pull(skb, sizeof(*th)))
556 return -EINVAL;
557
558 iph = ip_hdr(skb);
559 th = tcp_hdr(skb);
560
561 th->check = 0;
562 skb->ip_summed = CHECKSUM_PARTIAL;
563 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
564 return 0;
565 }
566
567 /*
568 * This routine will send an RST to the other tcp.
569 *
570 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
571 * for reset.
572 * Answer: if a packet caused RST, it is not for a socket
573 * existing in our system, if it is matched to a socket,
574 * it is just duplicate segment or bug in other side's TCP.
575 * So that we build reply only basing on parameters
576 * arrived with segment.
577 * Exception: precedence violation. We do not implement it in any case.
578 */
579
580 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
581 {
582 struct tcphdr *th = tcp_hdr(skb);
583 struct {
584 struct tcphdr th;
585 #ifdef CONFIG_TCP_MD5SIG
586 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
587 #endif
588 } rep;
589 struct ip_reply_arg arg;
590 #ifdef CONFIG_TCP_MD5SIG
591 struct tcp_md5sig_key *key;
592 #endif
593 struct net *net;
594
595 /* Never send a reset in response to a reset. */
596 if (th->rst)
597 return;
598
599 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
600 return;
601
602 /* Swap the send and the receive. */
603 memset(&rep, 0, sizeof(rep));
604 rep.th.dest = th->source;
605 rep.th.source = th->dest;
606 rep.th.doff = sizeof(struct tcphdr) / 4;
607 rep.th.rst = 1;
608
609 if (th->ack) {
610 rep.th.seq = th->ack_seq;
611 } else {
612 rep.th.ack = 1;
613 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
614 skb->len - (th->doff << 2));
615 }
616
617 memset(&arg, 0, sizeof(arg));
618 arg.iov[0].iov_base = (unsigned char *)&rep;
619 arg.iov[0].iov_len = sizeof(rep.th);
620
621 #ifdef CONFIG_TCP_MD5SIG
622 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
623 if (key) {
624 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
625 (TCPOPT_NOP << 16) |
626 (TCPOPT_MD5SIG << 8) |
627 TCPOLEN_MD5SIG);
628 /* Update length and the length the header thinks exists */
629 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
630 rep.th.doff = arg.iov[0].iov_len / 4;
631
632 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
633 key, ip_hdr(skb)->saddr,
634 ip_hdr(skb)->daddr, &rep.th);
635 }
636 #endif
637 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
638 ip_hdr(skb)->saddr, /* XXX */
639 arg.iov[0].iov_len, IPPROTO_TCP, 0);
640 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
641 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
642
643 net = dev_net(skb_dst(skb)->dev);
644 ip_send_reply(net->ipv4.tcp_sock, skb,
645 &arg, arg.iov[0].iov_len);
646
647 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
648 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
649 }
650
651 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
652 outside socket context is ugly, certainly. What can I do?
653 */
654
655 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
656 u32 win, u32 ts, int oif,
657 struct tcp_md5sig_key *key,
658 int reply_flags)
659 {
660 struct tcphdr *th = tcp_hdr(skb);
661 struct {
662 struct tcphdr th;
663 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
664 #ifdef CONFIG_TCP_MD5SIG
665 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
666 #endif
667 ];
668 } rep;
669 struct ip_reply_arg arg;
670 struct net *net = dev_net(skb_dst(skb)->dev);
671
672 memset(&rep.th, 0, sizeof(struct tcphdr));
673 memset(&arg, 0, sizeof(arg));
674
675 arg.iov[0].iov_base = (unsigned char *)&rep;
676 arg.iov[0].iov_len = sizeof(rep.th);
677 if (ts) {
678 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
679 (TCPOPT_TIMESTAMP << 8) |
680 TCPOLEN_TIMESTAMP);
681 rep.opt[1] = htonl(tcp_time_stamp);
682 rep.opt[2] = htonl(ts);
683 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
684 }
685
686 /* Swap the send and the receive. */
687 rep.th.dest = th->source;
688 rep.th.source = th->dest;
689 rep.th.doff = arg.iov[0].iov_len / 4;
690 rep.th.seq = htonl(seq);
691 rep.th.ack_seq = htonl(ack);
692 rep.th.ack = 1;
693 rep.th.window = htons(win);
694
695 #ifdef CONFIG_TCP_MD5SIG
696 if (key) {
697 int offset = (ts) ? 3 : 0;
698
699 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
700 (TCPOPT_NOP << 16) |
701 (TCPOPT_MD5SIG << 8) |
702 TCPOLEN_MD5SIG);
703 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
704 rep.th.doff = arg.iov[0].iov_len/4;
705
706 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
707 key, ip_hdr(skb)->saddr,
708 ip_hdr(skb)->daddr, &rep.th);
709 }
710 #endif
711 arg.flags = reply_flags;
712 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
713 ip_hdr(skb)->saddr, /* XXX */
714 arg.iov[0].iov_len, IPPROTO_TCP, 0);
715 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
716 if (oif)
717 arg.bound_dev_if = oif;
718
719 ip_send_reply(net->ipv4.tcp_sock, skb,
720 &arg, arg.iov[0].iov_len);
721
722 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
723 }
724
725 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
726 {
727 struct inet_timewait_sock *tw = inet_twsk(sk);
728 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
729
730 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
731 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
732 tcptw->tw_ts_recent,
733 tw->tw_bound_dev_if,
734 tcp_twsk_md5_key(tcptw),
735 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
736 );
737
738 inet_twsk_put(tw);
739 }
740
741 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
742 struct request_sock *req)
743 {
744 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
745 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
746 req->ts_recent,
747 0,
748 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
749 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
750 }
751
752 /*
753 * Send a SYN-ACK after having received a SYN.
754 * This still operates on a request_sock only, not on a big
755 * socket.
756 */
757 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
758 struct request_sock *req,
759 struct request_values *rvp)
760 {
761 const struct inet_request_sock *ireq = inet_rsk(req);
762 int err = -1;
763 struct sk_buff * skb;
764
765 /* First, grab a route. */
766 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
767 return -1;
768
769 skb = tcp_make_synack(sk, dst, req, rvp);
770
771 if (skb) {
772 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
773
774 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
775 ireq->rmt_addr,
776 ireq->opt);
777 err = net_xmit_eval(err);
778 }
779
780 dst_release(dst);
781 return err;
782 }
783
784 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
785 struct request_values *rvp)
786 {
787 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
788 return tcp_v4_send_synack(sk, NULL, req, rvp);
789 }
790
791 /*
792 * IPv4 request_sock destructor.
793 */
794 static void tcp_v4_reqsk_destructor(struct request_sock *req)
795 {
796 kfree(inet_rsk(req)->opt);
797 }
798
799 static void syn_flood_warning(const struct sk_buff *skb)
800 {
801 const char *msg;
802
803 #ifdef CONFIG_SYN_COOKIES
804 if (sysctl_tcp_syncookies)
805 msg = "Sending cookies";
806 else
807 #endif
808 msg = "Dropping request";
809
810 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
811 ntohs(tcp_hdr(skb)->dest), msg);
812 }
813
814 /*
815 * Save and compile IPv4 options into the request_sock if needed.
816 */
817 static struct ip_options *tcp_v4_save_options(struct sock *sk,
818 struct sk_buff *skb)
819 {
820 struct ip_options *opt = &(IPCB(skb)->opt);
821 struct ip_options *dopt = NULL;
822
823 if (opt && opt->optlen) {
824 int opt_size = optlength(opt);
825 dopt = kmalloc(opt_size, GFP_ATOMIC);
826 if (dopt) {
827 if (ip_options_echo(dopt, skb)) {
828 kfree(dopt);
829 dopt = NULL;
830 }
831 }
832 }
833 return dopt;
834 }
835
836 #ifdef CONFIG_TCP_MD5SIG
837 /*
838 * RFC2385 MD5 checksumming requires a mapping of
839 * IP address->MD5 Key.
840 * We need to maintain these in the sk structure.
841 */
842
843 /* Find the Key structure for an address. */
844 static struct tcp_md5sig_key *
845 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
846 {
847 struct tcp_sock *tp = tcp_sk(sk);
848 int i;
849
850 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
851 return NULL;
852 for (i = 0; i < tp->md5sig_info->entries4; i++) {
853 if (tp->md5sig_info->keys4[i].addr == addr)
854 return &tp->md5sig_info->keys4[i].base;
855 }
856 return NULL;
857 }
858
859 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
860 struct sock *addr_sk)
861 {
862 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
863 }
864 EXPORT_SYMBOL(tcp_v4_md5_lookup);
865
866 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
867 struct request_sock *req)
868 {
869 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
870 }
871
872 /* This can be called on a newly created socket, from other files */
873 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
874 u8 *newkey, u8 newkeylen)
875 {
876 /* Add Key to the list */
877 struct tcp_md5sig_key *key;
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp4_md5sig_key *keys;
880
881 key = tcp_v4_md5_do_lookup(sk, addr);
882 if (key) {
883 /* Pre-existing entry - just update that one. */
884 kfree(key->key);
885 key->key = newkey;
886 key->keylen = newkeylen;
887 } else {
888 struct tcp_md5sig_info *md5sig;
889
890 if (!tp->md5sig_info) {
891 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
892 GFP_ATOMIC);
893 if (!tp->md5sig_info) {
894 kfree(newkey);
895 return -ENOMEM;
896 }
897 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
898 }
899 if (tcp_alloc_md5sig_pool(sk) == NULL) {
900 kfree(newkey);
901 return -ENOMEM;
902 }
903 md5sig = tp->md5sig_info;
904
905 if (md5sig->alloced4 == md5sig->entries4) {
906 keys = kmalloc((sizeof(*keys) *
907 (md5sig->entries4 + 1)), GFP_ATOMIC);
908 if (!keys) {
909 kfree(newkey);
910 tcp_free_md5sig_pool();
911 return -ENOMEM;
912 }
913
914 if (md5sig->entries4)
915 memcpy(keys, md5sig->keys4,
916 sizeof(*keys) * md5sig->entries4);
917
918 /* Free old key list, and reference new one */
919 kfree(md5sig->keys4);
920 md5sig->keys4 = keys;
921 md5sig->alloced4++;
922 }
923 md5sig->entries4++;
924 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
925 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
926 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
927 }
928 return 0;
929 }
930 EXPORT_SYMBOL(tcp_v4_md5_do_add);
931
932 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
933 u8 *newkey, u8 newkeylen)
934 {
935 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
936 newkey, newkeylen);
937 }
938
939 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
940 {
941 struct tcp_sock *tp = tcp_sk(sk);
942 int i;
943
944 for (i = 0; i < tp->md5sig_info->entries4; i++) {
945 if (tp->md5sig_info->keys4[i].addr == addr) {
946 /* Free the key */
947 kfree(tp->md5sig_info->keys4[i].base.key);
948 tp->md5sig_info->entries4--;
949
950 if (tp->md5sig_info->entries4 == 0) {
951 kfree(tp->md5sig_info->keys4);
952 tp->md5sig_info->keys4 = NULL;
953 tp->md5sig_info->alloced4 = 0;
954 } else if (tp->md5sig_info->entries4 != i) {
955 /* Need to do some manipulation */
956 memmove(&tp->md5sig_info->keys4[i],
957 &tp->md5sig_info->keys4[i+1],
958 (tp->md5sig_info->entries4 - i) *
959 sizeof(struct tcp4_md5sig_key));
960 }
961 tcp_free_md5sig_pool();
962 return 0;
963 }
964 }
965 return -ENOENT;
966 }
967 EXPORT_SYMBOL(tcp_v4_md5_do_del);
968
969 static void tcp_v4_clear_md5_list(struct sock *sk)
970 {
971 struct tcp_sock *tp = tcp_sk(sk);
972
973 /* Free each key, then the set of key keys,
974 * the crypto element, and then decrement our
975 * hold on the last resort crypto.
976 */
977 if (tp->md5sig_info->entries4) {
978 int i;
979 for (i = 0; i < tp->md5sig_info->entries4; i++)
980 kfree(tp->md5sig_info->keys4[i].base.key);
981 tp->md5sig_info->entries4 = 0;
982 tcp_free_md5sig_pool();
983 }
984 if (tp->md5sig_info->keys4) {
985 kfree(tp->md5sig_info->keys4);
986 tp->md5sig_info->keys4 = NULL;
987 tp->md5sig_info->alloced4 = 0;
988 }
989 }
990
991 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
992 int optlen)
993 {
994 struct tcp_md5sig cmd;
995 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
996 u8 *newkey;
997
998 if (optlen < sizeof(cmd))
999 return -EINVAL;
1000
1001 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1002 return -EFAULT;
1003
1004 if (sin->sin_family != AF_INET)
1005 return -EINVAL;
1006
1007 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1008 if (!tcp_sk(sk)->md5sig_info)
1009 return -ENOENT;
1010 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1011 }
1012
1013 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1014 return -EINVAL;
1015
1016 if (!tcp_sk(sk)->md5sig_info) {
1017 struct tcp_sock *tp = tcp_sk(sk);
1018 struct tcp_md5sig_info *p;
1019
1020 p = kzalloc(sizeof(*p), sk->sk_allocation);
1021 if (!p)
1022 return -EINVAL;
1023
1024 tp->md5sig_info = p;
1025 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1026 }
1027
1028 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1029 if (!newkey)
1030 return -ENOMEM;
1031 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1032 newkey, cmd.tcpm_keylen);
1033 }
1034
1035 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1036 __be32 daddr, __be32 saddr, int nbytes)
1037 {
1038 struct tcp4_pseudohdr *bp;
1039 struct scatterlist sg;
1040
1041 bp = &hp->md5_blk.ip4;
1042
1043 /*
1044 * 1. the TCP pseudo-header (in the order: source IP address,
1045 * destination IP address, zero-padded protocol number, and
1046 * segment length)
1047 */
1048 bp->saddr = saddr;
1049 bp->daddr = daddr;
1050 bp->pad = 0;
1051 bp->protocol = IPPROTO_TCP;
1052 bp->len = cpu_to_be16(nbytes);
1053
1054 sg_init_one(&sg, bp, sizeof(*bp));
1055 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1056 }
1057
1058 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1059 __be32 daddr, __be32 saddr, struct tcphdr *th)
1060 {
1061 struct tcp_md5sig_pool *hp;
1062 struct hash_desc *desc;
1063
1064 hp = tcp_get_md5sig_pool();
1065 if (!hp)
1066 goto clear_hash_noput;
1067 desc = &hp->md5_desc;
1068
1069 if (crypto_hash_init(desc))
1070 goto clear_hash;
1071 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1072 goto clear_hash;
1073 if (tcp_md5_hash_header(hp, th))
1074 goto clear_hash;
1075 if (tcp_md5_hash_key(hp, key))
1076 goto clear_hash;
1077 if (crypto_hash_final(desc, md5_hash))
1078 goto clear_hash;
1079
1080 tcp_put_md5sig_pool();
1081 return 0;
1082
1083 clear_hash:
1084 tcp_put_md5sig_pool();
1085 clear_hash_noput:
1086 memset(md5_hash, 0, 16);
1087 return 1;
1088 }
1089
1090 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1091 struct sock *sk, struct request_sock *req,
1092 struct sk_buff *skb)
1093 {
1094 struct tcp_md5sig_pool *hp;
1095 struct hash_desc *desc;
1096 struct tcphdr *th = tcp_hdr(skb);
1097 __be32 saddr, daddr;
1098
1099 if (sk) {
1100 saddr = inet_sk(sk)->inet_saddr;
1101 daddr = inet_sk(sk)->inet_daddr;
1102 } else if (req) {
1103 saddr = inet_rsk(req)->loc_addr;
1104 daddr = inet_rsk(req)->rmt_addr;
1105 } else {
1106 const struct iphdr *iph = ip_hdr(skb);
1107 saddr = iph->saddr;
1108 daddr = iph->daddr;
1109 }
1110
1111 hp = tcp_get_md5sig_pool();
1112 if (!hp)
1113 goto clear_hash_noput;
1114 desc = &hp->md5_desc;
1115
1116 if (crypto_hash_init(desc))
1117 goto clear_hash;
1118
1119 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1120 goto clear_hash;
1121 if (tcp_md5_hash_header(hp, th))
1122 goto clear_hash;
1123 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1124 goto clear_hash;
1125 if (tcp_md5_hash_key(hp, key))
1126 goto clear_hash;
1127 if (crypto_hash_final(desc, md5_hash))
1128 goto clear_hash;
1129
1130 tcp_put_md5sig_pool();
1131 return 0;
1132
1133 clear_hash:
1134 tcp_put_md5sig_pool();
1135 clear_hash_noput:
1136 memset(md5_hash, 0, 16);
1137 return 1;
1138 }
1139 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1140
1141 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1142 {
1143 /*
1144 * This gets called for each TCP segment that arrives
1145 * so we want to be efficient.
1146 * We have 3 drop cases:
1147 * o No MD5 hash and one expected.
1148 * o MD5 hash and we're not expecting one.
1149 * o MD5 hash and its wrong.
1150 */
1151 __u8 *hash_location = NULL;
1152 struct tcp_md5sig_key *hash_expected;
1153 const struct iphdr *iph = ip_hdr(skb);
1154 struct tcphdr *th = tcp_hdr(skb);
1155 int genhash;
1156 unsigned char newhash[16];
1157
1158 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1159 hash_location = tcp_parse_md5sig_option(th);
1160
1161 /* We've parsed the options - do we have a hash? */
1162 if (!hash_expected && !hash_location)
1163 return 0;
1164
1165 if (hash_expected && !hash_location) {
1166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1167 return 1;
1168 }
1169
1170 if (!hash_expected && hash_location) {
1171 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1172 return 1;
1173 }
1174
1175 /* Okay, so this is hash_expected and hash_location -
1176 * so we need to calculate the checksum.
1177 */
1178 genhash = tcp_v4_md5_hash_skb(newhash,
1179 hash_expected,
1180 NULL, NULL, skb);
1181
1182 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1183 if (net_ratelimit()) {
1184 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1185 &iph->saddr, ntohs(th->source),
1186 &iph->daddr, ntohs(th->dest),
1187 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1188 }
1189 return 1;
1190 }
1191 return 0;
1192 }
1193
1194 #endif
1195
1196 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1197 .family = PF_INET,
1198 .obj_size = sizeof(struct tcp_request_sock),
1199 .rtx_syn_ack = tcp_v4_rtx_synack,
1200 .send_ack = tcp_v4_reqsk_send_ack,
1201 .destructor = tcp_v4_reqsk_destructor,
1202 .send_reset = tcp_v4_send_reset,
1203 .syn_ack_timeout = tcp_syn_ack_timeout,
1204 };
1205
1206 #ifdef CONFIG_TCP_MD5SIG
1207 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1208 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1209 .calc_md5_hash = tcp_v4_md5_hash_skb,
1210 };
1211 #endif
1212
1213 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1214 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1215 .twsk_unique = tcp_twsk_unique,
1216 .twsk_destructor= tcp_twsk_destructor,
1217 };
1218
1219 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1220 {
1221 struct tcp_extend_values tmp_ext;
1222 struct tcp_options_received tmp_opt;
1223 u8 *hash_location;
1224 struct request_sock *req;
1225 struct inet_request_sock *ireq;
1226 struct tcp_sock *tp = tcp_sk(sk);
1227 struct dst_entry *dst = NULL;
1228 __be32 saddr = ip_hdr(skb)->saddr;
1229 __be32 daddr = ip_hdr(skb)->daddr;
1230 __u32 isn = TCP_SKB_CB(skb)->when;
1231 #ifdef CONFIG_SYN_COOKIES
1232 int want_cookie = 0;
1233 #else
1234 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1235 #endif
1236
1237 /* Never answer to SYNs send to broadcast or multicast */
1238 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1239 goto drop;
1240
1241 /* TW buckets are converted to open requests without
1242 * limitations, they conserve resources and peer is
1243 * evidently real one.
1244 */
1245 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1246 if (net_ratelimit())
1247 syn_flood_warning(skb);
1248 #ifdef CONFIG_SYN_COOKIES
1249 if (sysctl_tcp_syncookies) {
1250 want_cookie = 1;
1251 } else
1252 #endif
1253 goto drop;
1254 }
1255
1256 /* Accept backlog is full. If we have already queued enough
1257 * of warm entries in syn queue, drop request. It is better than
1258 * clogging syn queue with openreqs with exponentially increasing
1259 * timeout.
1260 */
1261 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1262 goto drop;
1263
1264 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1265 if (!req)
1266 goto drop;
1267
1268 #ifdef CONFIG_TCP_MD5SIG
1269 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1270 #endif
1271
1272 tcp_clear_options(&tmp_opt);
1273 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1274 tmp_opt.user_mss = tp->rx_opt.user_mss;
1275 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1276
1277 if (tmp_opt.cookie_plus > 0 &&
1278 tmp_opt.saw_tstamp &&
1279 !tp->rx_opt.cookie_out_never &&
1280 (sysctl_tcp_cookie_size > 0 ||
1281 (tp->cookie_values != NULL &&
1282 tp->cookie_values->cookie_desired > 0))) {
1283 u8 *c;
1284 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1285 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1286
1287 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1288 goto drop_and_release;
1289
1290 /* Secret recipe starts with IP addresses */
1291 *mess++ ^= (__force u32)daddr;
1292 *mess++ ^= (__force u32)saddr;
1293
1294 /* plus variable length Initiator Cookie */
1295 c = (u8 *)mess;
1296 while (l-- > 0)
1297 *c++ ^= *hash_location++;
1298
1299 #ifdef CONFIG_SYN_COOKIES
1300 want_cookie = 0; /* not our kind of cookie */
1301 #endif
1302 tmp_ext.cookie_out_never = 0; /* false */
1303 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1304 } else if (!tp->rx_opt.cookie_in_always) {
1305 /* redundant indications, but ensure initialization. */
1306 tmp_ext.cookie_out_never = 1; /* true */
1307 tmp_ext.cookie_plus = 0;
1308 } else {
1309 goto drop_and_release;
1310 }
1311 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1312
1313 if (want_cookie && !tmp_opt.saw_tstamp)
1314 tcp_clear_options(&tmp_opt);
1315
1316 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1317 tcp_openreq_init(req, &tmp_opt, skb);
1318
1319 ireq = inet_rsk(req);
1320 ireq->loc_addr = daddr;
1321 ireq->rmt_addr = saddr;
1322 ireq->no_srccheck = inet_sk(sk)->transparent;
1323 ireq->opt = tcp_v4_save_options(sk, skb);
1324
1325 if (security_inet_conn_request(sk, skb, req))
1326 goto drop_and_free;
1327
1328 if (!want_cookie || tmp_opt.tstamp_ok)
1329 TCP_ECN_create_request(req, tcp_hdr(skb));
1330
1331 if (want_cookie) {
1332 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1333 req->cookie_ts = tmp_opt.tstamp_ok;
1334 } else if (!isn) {
1335 struct inet_peer *peer = NULL;
1336
1337 /* VJ's idea. We save last timestamp seen
1338 * from the destination in peer table, when entering
1339 * state TIME-WAIT, and check against it before
1340 * accepting new connection request.
1341 *
1342 * If "isn" is not zero, this request hit alive
1343 * timewait bucket, so that all the necessary checks
1344 * are made in the function processing timewait state.
1345 */
1346 if (tmp_opt.saw_tstamp &&
1347 tcp_death_row.sysctl_tw_recycle &&
1348 (dst = inet_csk_route_req(sk, req)) != NULL &&
1349 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1350 peer->daddr.a4 == saddr) {
1351 inet_peer_refcheck(peer);
1352 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1353 (s32)(peer->tcp_ts - req->ts_recent) >
1354 TCP_PAWS_WINDOW) {
1355 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1356 goto drop_and_release;
1357 }
1358 }
1359 /* Kill the following clause, if you dislike this way. */
1360 else if (!sysctl_tcp_syncookies &&
1361 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1362 (sysctl_max_syn_backlog >> 2)) &&
1363 (!peer || !peer->tcp_ts_stamp) &&
1364 (!dst || !dst_metric(dst, RTAX_RTT))) {
1365 /* Without syncookies last quarter of
1366 * backlog is filled with destinations,
1367 * proven to be alive.
1368 * It means that we continue to communicate
1369 * to destinations, already remembered
1370 * to the moment of synflood.
1371 */
1372 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1373 &saddr, ntohs(tcp_hdr(skb)->source));
1374 goto drop_and_release;
1375 }
1376
1377 isn = tcp_v4_init_sequence(skb);
1378 }
1379 tcp_rsk(req)->snt_isn = isn;
1380
1381 if (tcp_v4_send_synack(sk, dst, req,
1382 (struct request_values *)&tmp_ext) ||
1383 want_cookie)
1384 goto drop_and_free;
1385
1386 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1387 return 0;
1388
1389 drop_and_release:
1390 dst_release(dst);
1391 drop_and_free:
1392 reqsk_free(req);
1393 drop:
1394 return 0;
1395 }
1396 EXPORT_SYMBOL(tcp_v4_conn_request);
1397
1398
1399 /*
1400 * The three way handshake has completed - we got a valid synack -
1401 * now create the new socket.
1402 */
1403 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1404 struct request_sock *req,
1405 struct dst_entry *dst)
1406 {
1407 struct inet_request_sock *ireq;
1408 struct inet_sock *newinet;
1409 struct tcp_sock *newtp;
1410 struct sock *newsk;
1411 #ifdef CONFIG_TCP_MD5SIG
1412 struct tcp_md5sig_key *key;
1413 #endif
1414
1415 if (sk_acceptq_is_full(sk))
1416 goto exit_overflow;
1417
1418 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1419 goto exit;
1420
1421 newsk = tcp_create_openreq_child(sk, req, skb);
1422 if (!newsk)
1423 goto exit_nonewsk;
1424
1425 newsk->sk_gso_type = SKB_GSO_TCPV4;
1426 sk_setup_caps(newsk, dst);
1427
1428 newtp = tcp_sk(newsk);
1429 newinet = inet_sk(newsk);
1430 ireq = inet_rsk(req);
1431 newinet->inet_daddr = ireq->rmt_addr;
1432 newinet->inet_rcv_saddr = ireq->loc_addr;
1433 newinet->inet_saddr = ireq->loc_addr;
1434 newinet->opt = ireq->opt;
1435 ireq->opt = NULL;
1436 newinet->mc_index = inet_iif(skb);
1437 newinet->mc_ttl = ip_hdr(skb)->ttl;
1438 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1439 if (newinet->opt)
1440 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1441 newinet->inet_id = newtp->write_seq ^ jiffies;
1442
1443 tcp_mtup_init(newsk);
1444 tcp_sync_mss(newsk, dst_mtu(dst));
1445 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1446 if (tcp_sk(sk)->rx_opt.user_mss &&
1447 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1448 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1449
1450 tcp_initialize_rcv_mss(newsk);
1451
1452 #ifdef CONFIG_TCP_MD5SIG
1453 /* Copy over the MD5 key from the original socket */
1454 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1455 if (key != NULL) {
1456 /*
1457 * We're using one, so create a matching key
1458 * on the newsk structure. If we fail to get
1459 * memory, then we end up not copying the key
1460 * across. Shucks.
1461 */
1462 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1463 if (newkey != NULL)
1464 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1465 newkey, key->keylen);
1466 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1467 }
1468 #endif
1469
1470 if (__inet_inherit_port(sk, newsk) < 0) {
1471 sock_put(newsk);
1472 goto exit;
1473 }
1474 __inet_hash_nolisten(newsk, NULL);
1475
1476 return newsk;
1477
1478 exit_overflow:
1479 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1480 exit_nonewsk:
1481 dst_release(dst);
1482 exit:
1483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1484 return NULL;
1485 }
1486 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1487
1488 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1489 {
1490 struct tcphdr *th = tcp_hdr(skb);
1491 const struct iphdr *iph = ip_hdr(skb);
1492 struct sock *nsk;
1493 struct request_sock **prev;
1494 /* Find possible connection requests. */
1495 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1496 iph->saddr, iph->daddr);
1497 if (req)
1498 return tcp_check_req(sk, skb, req, prev);
1499
1500 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1501 th->source, iph->daddr, th->dest, inet_iif(skb));
1502
1503 if (nsk) {
1504 if (nsk->sk_state != TCP_TIME_WAIT) {
1505 bh_lock_sock(nsk);
1506 return nsk;
1507 }
1508 inet_twsk_put(inet_twsk(nsk));
1509 return NULL;
1510 }
1511
1512 #ifdef CONFIG_SYN_COOKIES
1513 if (!th->syn)
1514 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1515 #endif
1516 return sk;
1517 }
1518
1519 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1520 {
1521 const struct iphdr *iph = ip_hdr(skb);
1522
1523 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1524 if (!tcp_v4_check(skb->len, iph->saddr,
1525 iph->daddr, skb->csum)) {
1526 skb->ip_summed = CHECKSUM_UNNECESSARY;
1527 return 0;
1528 }
1529 }
1530
1531 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1532 skb->len, IPPROTO_TCP, 0);
1533
1534 if (skb->len <= 76) {
1535 return __skb_checksum_complete(skb);
1536 }
1537 return 0;
1538 }
1539
1540
1541 /* The socket must have it's spinlock held when we get
1542 * here.
1543 *
1544 * We have a potential double-lock case here, so even when
1545 * doing backlog processing we use the BH locking scheme.
1546 * This is because we cannot sleep with the original spinlock
1547 * held.
1548 */
1549 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1550 {
1551 struct sock *rsk;
1552 #ifdef CONFIG_TCP_MD5SIG
1553 /*
1554 * We really want to reject the packet as early as possible
1555 * if:
1556 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1557 * o There is an MD5 option and we're not expecting one
1558 */
1559 if (tcp_v4_inbound_md5_hash(sk, skb))
1560 goto discard;
1561 #endif
1562
1563 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1564 sock_rps_save_rxhash(sk, skb->rxhash);
1565 TCP_CHECK_TIMER(sk);
1566 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1567 rsk = sk;
1568 goto reset;
1569 }
1570 TCP_CHECK_TIMER(sk);
1571 return 0;
1572 }
1573
1574 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1575 goto csum_err;
1576
1577 if (sk->sk_state == TCP_LISTEN) {
1578 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1579 if (!nsk)
1580 goto discard;
1581
1582 if (nsk != sk) {
1583 if (tcp_child_process(sk, nsk, skb)) {
1584 rsk = nsk;
1585 goto reset;
1586 }
1587 return 0;
1588 }
1589 } else
1590 sock_rps_save_rxhash(sk, skb->rxhash);
1591
1592
1593 TCP_CHECK_TIMER(sk);
1594 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1595 rsk = sk;
1596 goto reset;
1597 }
1598 TCP_CHECK_TIMER(sk);
1599 return 0;
1600
1601 reset:
1602 tcp_v4_send_reset(rsk, skb);
1603 discard:
1604 kfree_skb(skb);
1605 /* Be careful here. If this function gets more complicated and
1606 * gcc suffers from register pressure on the x86, sk (in %ebx)
1607 * might be destroyed here. This current version compiles correctly,
1608 * but you have been warned.
1609 */
1610 return 0;
1611
1612 csum_err:
1613 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1614 goto discard;
1615 }
1616 EXPORT_SYMBOL(tcp_v4_do_rcv);
1617
1618 /*
1619 * From tcp_input.c
1620 */
1621
1622 int tcp_v4_rcv(struct sk_buff *skb)
1623 {
1624 const struct iphdr *iph;
1625 struct tcphdr *th;
1626 struct sock *sk;
1627 int ret;
1628 struct net *net = dev_net(skb->dev);
1629
1630 if (skb->pkt_type != PACKET_HOST)
1631 goto discard_it;
1632
1633 /* Count it even if it's bad */
1634 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1635
1636 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1637 goto discard_it;
1638
1639 th = tcp_hdr(skb);
1640
1641 if (th->doff < sizeof(struct tcphdr) / 4)
1642 goto bad_packet;
1643 if (!pskb_may_pull(skb, th->doff * 4))
1644 goto discard_it;
1645
1646 /* An explanation is required here, I think.
1647 * Packet length and doff are validated by header prediction,
1648 * provided case of th->doff==0 is eliminated.
1649 * So, we defer the checks. */
1650 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1651 goto bad_packet;
1652
1653 th = tcp_hdr(skb);
1654 iph = ip_hdr(skb);
1655 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1656 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1657 skb->len - th->doff * 4);
1658 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1659 TCP_SKB_CB(skb)->when = 0;
1660 TCP_SKB_CB(skb)->flags = iph->tos;
1661 TCP_SKB_CB(skb)->sacked = 0;
1662
1663 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1664 if (!sk)
1665 goto no_tcp_socket;
1666
1667 process:
1668 if (sk->sk_state == TCP_TIME_WAIT)
1669 goto do_time_wait;
1670
1671 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1672 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1673 goto discard_and_relse;
1674 }
1675
1676 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1677 goto discard_and_relse;
1678 nf_reset(skb);
1679
1680 if (sk_filter(sk, skb))
1681 goto discard_and_relse;
1682
1683 skb->dev = NULL;
1684
1685 bh_lock_sock_nested(sk);
1686 ret = 0;
1687 if (!sock_owned_by_user(sk)) {
1688 #ifdef CONFIG_NET_DMA
1689 struct tcp_sock *tp = tcp_sk(sk);
1690 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1691 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1692 if (tp->ucopy.dma_chan)
1693 ret = tcp_v4_do_rcv(sk, skb);
1694 else
1695 #endif
1696 {
1697 if (!tcp_prequeue(sk, skb))
1698 ret = tcp_v4_do_rcv(sk, skb);
1699 }
1700 } else if (unlikely(sk_add_backlog(sk, skb))) {
1701 bh_unlock_sock(sk);
1702 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1703 goto discard_and_relse;
1704 }
1705 bh_unlock_sock(sk);
1706
1707 sock_put(sk);
1708
1709 return ret;
1710
1711 no_tcp_socket:
1712 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1713 goto discard_it;
1714
1715 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1716 bad_packet:
1717 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1718 } else {
1719 tcp_v4_send_reset(NULL, skb);
1720 }
1721
1722 discard_it:
1723 /* Discard frame. */
1724 kfree_skb(skb);
1725 return 0;
1726
1727 discard_and_relse:
1728 sock_put(sk);
1729 goto discard_it;
1730
1731 do_time_wait:
1732 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1733 inet_twsk_put(inet_twsk(sk));
1734 goto discard_it;
1735 }
1736
1737 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1738 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1739 inet_twsk_put(inet_twsk(sk));
1740 goto discard_it;
1741 }
1742 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1743 case TCP_TW_SYN: {
1744 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1745 &tcp_hashinfo,
1746 iph->daddr, th->dest,
1747 inet_iif(skb));
1748 if (sk2) {
1749 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1750 inet_twsk_put(inet_twsk(sk));
1751 sk = sk2;
1752 goto process;
1753 }
1754 /* Fall through to ACK */
1755 }
1756 case TCP_TW_ACK:
1757 tcp_v4_timewait_ack(sk, skb);
1758 break;
1759 case TCP_TW_RST:
1760 goto no_tcp_socket;
1761 case TCP_TW_SUCCESS:;
1762 }
1763 goto discard_it;
1764 }
1765
1766 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1767 {
1768 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1769 struct inet_sock *inet = inet_sk(sk);
1770 struct inet_peer *peer;
1771
1772 if (!rt || rt->rt_dst != inet->inet_daddr) {
1773 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1774 *release_it = true;
1775 } else {
1776 if (!rt->peer)
1777 rt_bind_peer(rt, 1);
1778 peer = rt->peer;
1779 *release_it = false;
1780 }
1781
1782 return peer;
1783 }
1784 EXPORT_SYMBOL(tcp_v4_get_peer);
1785
1786 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1787 {
1788 struct inet_peer *peer = inet_getpeer_v4(tw->tw_daddr, 1);
1789
1790 if (peer) {
1791 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1792
1793 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1794 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1795 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1796 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1797 peer->tcp_ts = tcptw->tw_ts_recent;
1798 }
1799 inet_putpeer(peer);
1800 return 1;
1801 }
1802
1803 return 0;
1804 }
1805
1806 const struct inet_connection_sock_af_ops ipv4_specific = {
1807 .queue_xmit = ip_queue_xmit,
1808 .send_check = tcp_v4_send_check,
1809 .rebuild_header = inet_sk_rebuild_header,
1810 .conn_request = tcp_v4_conn_request,
1811 .syn_recv_sock = tcp_v4_syn_recv_sock,
1812 .get_peer = tcp_v4_get_peer,
1813 .net_header_len = sizeof(struct iphdr),
1814 .setsockopt = ip_setsockopt,
1815 .getsockopt = ip_getsockopt,
1816 .addr2sockaddr = inet_csk_addr2sockaddr,
1817 .sockaddr_len = sizeof(struct sockaddr_in),
1818 .bind_conflict = inet_csk_bind_conflict,
1819 #ifdef CONFIG_COMPAT
1820 .compat_setsockopt = compat_ip_setsockopt,
1821 .compat_getsockopt = compat_ip_getsockopt,
1822 #endif
1823 };
1824 EXPORT_SYMBOL(ipv4_specific);
1825
1826 #ifdef CONFIG_TCP_MD5SIG
1827 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1828 .md5_lookup = tcp_v4_md5_lookup,
1829 .calc_md5_hash = tcp_v4_md5_hash_skb,
1830 .md5_add = tcp_v4_md5_add_func,
1831 .md5_parse = tcp_v4_parse_md5_keys,
1832 };
1833 #endif
1834
1835 /* NOTE: A lot of things set to zero explicitly by call to
1836 * sk_alloc() so need not be done here.
1837 */
1838 static int tcp_v4_init_sock(struct sock *sk)
1839 {
1840 struct inet_connection_sock *icsk = inet_csk(sk);
1841 struct tcp_sock *tp = tcp_sk(sk);
1842
1843 skb_queue_head_init(&tp->out_of_order_queue);
1844 tcp_init_xmit_timers(sk);
1845 tcp_prequeue_init(tp);
1846
1847 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1848 tp->mdev = TCP_TIMEOUT_INIT;
1849
1850 /* So many TCP implementations out there (incorrectly) count the
1851 * initial SYN frame in their delayed-ACK and congestion control
1852 * algorithms that we must have the following bandaid to talk
1853 * efficiently to them. -DaveM
1854 */
1855 tp->snd_cwnd = 2;
1856
1857 /* See draft-stevens-tcpca-spec-01 for discussion of the
1858 * initialization of these values.
1859 */
1860 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1861 tp->snd_cwnd_clamp = ~0;
1862 tp->mss_cache = TCP_MSS_DEFAULT;
1863
1864 tp->reordering = sysctl_tcp_reordering;
1865 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1866
1867 sk->sk_state = TCP_CLOSE;
1868
1869 sk->sk_write_space = sk_stream_write_space;
1870 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1871
1872 icsk->icsk_af_ops = &ipv4_specific;
1873 icsk->icsk_sync_mss = tcp_sync_mss;
1874 #ifdef CONFIG_TCP_MD5SIG
1875 tp->af_specific = &tcp_sock_ipv4_specific;
1876 #endif
1877
1878 /* TCP Cookie Transactions */
1879 if (sysctl_tcp_cookie_size > 0) {
1880 /* Default, cookies without s_data_payload. */
1881 tp->cookie_values =
1882 kzalloc(sizeof(*tp->cookie_values),
1883 sk->sk_allocation);
1884 if (tp->cookie_values != NULL)
1885 kref_init(&tp->cookie_values->kref);
1886 }
1887 /* Presumed zeroed, in order of appearance:
1888 * cookie_in_always, cookie_out_never,
1889 * s_data_constant, s_data_in, s_data_out
1890 */
1891 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1892 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1893
1894 local_bh_disable();
1895 percpu_counter_inc(&tcp_sockets_allocated);
1896 local_bh_enable();
1897
1898 return 0;
1899 }
1900
1901 void tcp_v4_destroy_sock(struct sock *sk)
1902 {
1903 struct tcp_sock *tp = tcp_sk(sk);
1904
1905 tcp_clear_xmit_timers(sk);
1906
1907 tcp_cleanup_congestion_control(sk);
1908
1909 /* Cleanup up the write buffer. */
1910 tcp_write_queue_purge(sk);
1911
1912 /* Cleans up our, hopefully empty, out_of_order_queue. */
1913 __skb_queue_purge(&tp->out_of_order_queue);
1914
1915 #ifdef CONFIG_TCP_MD5SIG
1916 /* Clean up the MD5 key list, if any */
1917 if (tp->md5sig_info) {
1918 tcp_v4_clear_md5_list(sk);
1919 kfree(tp->md5sig_info);
1920 tp->md5sig_info = NULL;
1921 }
1922 #endif
1923
1924 #ifdef CONFIG_NET_DMA
1925 /* Cleans up our sk_async_wait_queue */
1926 __skb_queue_purge(&sk->sk_async_wait_queue);
1927 #endif
1928
1929 /* Clean prequeue, it must be empty really */
1930 __skb_queue_purge(&tp->ucopy.prequeue);
1931
1932 /* Clean up a referenced TCP bind bucket. */
1933 if (inet_csk(sk)->icsk_bind_hash)
1934 inet_put_port(sk);
1935
1936 /*
1937 * If sendmsg cached page exists, toss it.
1938 */
1939 if (sk->sk_sndmsg_page) {
1940 __free_page(sk->sk_sndmsg_page);
1941 sk->sk_sndmsg_page = NULL;
1942 }
1943
1944 /* TCP Cookie Transactions */
1945 if (tp->cookie_values != NULL) {
1946 kref_put(&tp->cookie_values->kref,
1947 tcp_cookie_values_release);
1948 tp->cookie_values = NULL;
1949 }
1950
1951 percpu_counter_dec(&tcp_sockets_allocated);
1952 }
1953 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1954
1955 #ifdef CONFIG_PROC_FS
1956 /* Proc filesystem TCP sock list dumping. */
1957
1958 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1959 {
1960 return hlist_nulls_empty(head) ? NULL :
1961 list_entry(head->first, struct inet_timewait_sock, tw_node);
1962 }
1963
1964 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1965 {
1966 return !is_a_nulls(tw->tw_node.next) ?
1967 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1968 }
1969
1970 /*
1971 * Get next listener socket follow cur. If cur is NULL, get first socket
1972 * starting from bucket given in st->bucket; when st->bucket is zero the
1973 * very first socket in the hash table is returned.
1974 */
1975 static void *listening_get_next(struct seq_file *seq, void *cur)
1976 {
1977 struct inet_connection_sock *icsk;
1978 struct hlist_nulls_node *node;
1979 struct sock *sk = cur;
1980 struct inet_listen_hashbucket *ilb;
1981 struct tcp_iter_state *st = seq->private;
1982 struct net *net = seq_file_net(seq);
1983
1984 if (!sk) {
1985 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1986 spin_lock_bh(&ilb->lock);
1987 sk = sk_nulls_head(&ilb->head);
1988 st->offset = 0;
1989 goto get_sk;
1990 }
1991 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992 ++st->num;
1993 ++st->offset;
1994
1995 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1996 struct request_sock *req = cur;
1997
1998 icsk = inet_csk(st->syn_wait_sk);
1999 req = req->dl_next;
2000 while (1) {
2001 while (req) {
2002 if (req->rsk_ops->family == st->family) {
2003 cur = req;
2004 goto out;
2005 }
2006 req = req->dl_next;
2007 }
2008 st->offset = 0;
2009 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2010 break;
2011 get_req:
2012 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2013 }
2014 sk = sk_next(st->syn_wait_sk);
2015 st->state = TCP_SEQ_STATE_LISTENING;
2016 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2017 } else {
2018 icsk = inet_csk(sk);
2019 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2020 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2021 goto start_req;
2022 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2023 sk = sk_next(sk);
2024 }
2025 get_sk:
2026 sk_nulls_for_each_from(sk, node) {
2027 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2028 cur = sk;
2029 goto out;
2030 }
2031 icsk = inet_csk(sk);
2032 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2033 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2034 start_req:
2035 st->uid = sock_i_uid(sk);
2036 st->syn_wait_sk = sk;
2037 st->state = TCP_SEQ_STATE_OPENREQ;
2038 st->sbucket = 0;
2039 goto get_req;
2040 }
2041 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2042 }
2043 spin_unlock_bh(&ilb->lock);
2044 st->offset = 0;
2045 if (++st->bucket < INET_LHTABLE_SIZE) {
2046 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2047 spin_lock_bh(&ilb->lock);
2048 sk = sk_nulls_head(&ilb->head);
2049 goto get_sk;
2050 }
2051 cur = NULL;
2052 out:
2053 return cur;
2054 }
2055
2056 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2057 {
2058 struct tcp_iter_state *st = seq->private;
2059 void *rc;
2060
2061 st->bucket = 0;
2062 st->offset = 0;
2063 rc = listening_get_next(seq, NULL);
2064
2065 while (rc && *pos) {
2066 rc = listening_get_next(seq, rc);
2067 --*pos;
2068 }
2069 return rc;
2070 }
2071
2072 static inline int empty_bucket(struct tcp_iter_state *st)
2073 {
2074 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2075 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2076 }
2077
2078 /*
2079 * Get first established socket starting from bucket given in st->bucket.
2080 * If st->bucket is zero, the very first socket in the hash is returned.
2081 */
2082 static void *established_get_first(struct seq_file *seq)
2083 {
2084 struct tcp_iter_state *st = seq->private;
2085 struct net *net = seq_file_net(seq);
2086 void *rc = NULL;
2087
2088 st->offset = 0;
2089 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2090 struct sock *sk;
2091 struct hlist_nulls_node *node;
2092 struct inet_timewait_sock *tw;
2093 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2094
2095 /* Lockless fast path for the common case of empty buckets */
2096 if (empty_bucket(st))
2097 continue;
2098
2099 spin_lock_bh(lock);
2100 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2101 if (sk->sk_family != st->family ||
2102 !net_eq(sock_net(sk), net)) {
2103 continue;
2104 }
2105 rc = sk;
2106 goto out;
2107 }
2108 st->state = TCP_SEQ_STATE_TIME_WAIT;
2109 inet_twsk_for_each(tw, node,
2110 &tcp_hashinfo.ehash[st->bucket].twchain) {
2111 if (tw->tw_family != st->family ||
2112 !net_eq(twsk_net(tw), net)) {
2113 continue;
2114 }
2115 rc = tw;
2116 goto out;
2117 }
2118 spin_unlock_bh(lock);
2119 st->state = TCP_SEQ_STATE_ESTABLISHED;
2120 }
2121 out:
2122 return rc;
2123 }
2124
2125 static void *established_get_next(struct seq_file *seq, void *cur)
2126 {
2127 struct sock *sk = cur;
2128 struct inet_timewait_sock *tw;
2129 struct hlist_nulls_node *node;
2130 struct tcp_iter_state *st = seq->private;
2131 struct net *net = seq_file_net(seq);
2132
2133 ++st->num;
2134 ++st->offset;
2135
2136 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2137 tw = cur;
2138 tw = tw_next(tw);
2139 get_tw:
2140 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2141 tw = tw_next(tw);
2142 }
2143 if (tw) {
2144 cur = tw;
2145 goto out;
2146 }
2147 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2148 st->state = TCP_SEQ_STATE_ESTABLISHED;
2149
2150 /* Look for next non empty bucket */
2151 st->offset = 0;
2152 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2153 empty_bucket(st))
2154 ;
2155 if (st->bucket > tcp_hashinfo.ehash_mask)
2156 return NULL;
2157
2158 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2159 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2160 } else
2161 sk = sk_nulls_next(sk);
2162
2163 sk_nulls_for_each_from(sk, node) {
2164 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2165 goto found;
2166 }
2167
2168 st->state = TCP_SEQ_STATE_TIME_WAIT;
2169 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2170 goto get_tw;
2171 found:
2172 cur = sk;
2173 out:
2174 return cur;
2175 }
2176
2177 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2178 {
2179 struct tcp_iter_state *st = seq->private;
2180 void *rc;
2181
2182 st->bucket = 0;
2183 rc = established_get_first(seq);
2184
2185 while (rc && pos) {
2186 rc = established_get_next(seq, rc);
2187 --pos;
2188 }
2189 return rc;
2190 }
2191
2192 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2193 {
2194 void *rc;
2195 struct tcp_iter_state *st = seq->private;
2196
2197 st->state = TCP_SEQ_STATE_LISTENING;
2198 rc = listening_get_idx(seq, &pos);
2199
2200 if (!rc) {
2201 st->state = TCP_SEQ_STATE_ESTABLISHED;
2202 rc = established_get_idx(seq, pos);
2203 }
2204
2205 return rc;
2206 }
2207
2208 static void *tcp_seek_last_pos(struct seq_file *seq)
2209 {
2210 struct tcp_iter_state *st = seq->private;
2211 int offset = st->offset;
2212 int orig_num = st->num;
2213 void *rc = NULL;
2214
2215 switch (st->state) {
2216 case TCP_SEQ_STATE_OPENREQ:
2217 case TCP_SEQ_STATE_LISTENING:
2218 if (st->bucket >= INET_LHTABLE_SIZE)
2219 break;
2220 st->state = TCP_SEQ_STATE_LISTENING;
2221 rc = listening_get_next(seq, NULL);
2222 while (offset-- && rc)
2223 rc = listening_get_next(seq, rc);
2224 if (rc)
2225 break;
2226 st->bucket = 0;
2227 /* Fallthrough */
2228 case TCP_SEQ_STATE_ESTABLISHED:
2229 case TCP_SEQ_STATE_TIME_WAIT:
2230 st->state = TCP_SEQ_STATE_ESTABLISHED;
2231 if (st->bucket > tcp_hashinfo.ehash_mask)
2232 break;
2233 rc = established_get_first(seq);
2234 while (offset-- && rc)
2235 rc = established_get_next(seq, rc);
2236 }
2237
2238 st->num = orig_num;
2239
2240 return rc;
2241 }
2242
2243 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2244 {
2245 struct tcp_iter_state *st = seq->private;
2246 void *rc;
2247
2248 if (*pos && *pos == st->last_pos) {
2249 rc = tcp_seek_last_pos(seq);
2250 if (rc)
2251 goto out;
2252 }
2253
2254 st->state = TCP_SEQ_STATE_LISTENING;
2255 st->num = 0;
2256 st->bucket = 0;
2257 st->offset = 0;
2258 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2259
2260 out:
2261 st->last_pos = *pos;
2262 return rc;
2263 }
2264
2265 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2266 {
2267 struct tcp_iter_state *st = seq->private;
2268 void *rc = NULL;
2269
2270 if (v == SEQ_START_TOKEN) {
2271 rc = tcp_get_idx(seq, 0);
2272 goto out;
2273 }
2274
2275 switch (st->state) {
2276 case TCP_SEQ_STATE_OPENREQ:
2277 case TCP_SEQ_STATE_LISTENING:
2278 rc = listening_get_next(seq, v);
2279 if (!rc) {
2280 st->state = TCP_SEQ_STATE_ESTABLISHED;
2281 st->bucket = 0;
2282 st->offset = 0;
2283 rc = established_get_first(seq);
2284 }
2285 break;
2286 case TCP_SEQ_STATE_ESTABLISHED:
2287 case TCP_SEQ_STATE_TIME_WAIT:
2288 rc = established_get_next(seq, v);
2289 break;
2290 }
2291 out:
2292 ++*pos;
2293 st->last_pos = *pos;
2294 return rc;
2295 }
2296
2297 static void tcp_seq_stop(struct seq_file *seq, void *v)
2298 {
2299 struct tcp_iter_state *st = seq->private;
2300
2301 switch (st->state) {
2302 case TCP_SEQ_STATE_OPENREQ:
2303 if (v) {
2304 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2305 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2306 }
2307 case TCP_SEQ_STATE_LISTENING:
2308 if (v != SEQ_START_TOKEN)
2309 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2310 break;
2311 case TCP_SEQ_STATE_TIME_WAIT:
2312 case TCP_SEQ_STATE_ESTABLISHED:
2313 if (v)
2314 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2315 break;
2316 }
2317 }
2318
2319 static int tcp_seq_open(struct inode *inode, struct file *file)
2320 {
2321 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2322 struct tcp_iter_state *s;
2323 int err;
2324
2325 err = seq_open_net(inode, file, &afinfo->seq_ops,
2326 sizeof(struct tcp_iter_state));
2327 if (err < 0)
2328 return err;
2329
2330 s = ((struct seq_file *)file->private_data)->private;
2331 s->family = afinfo->family;
2332 s->last_pos = 0;
2333 return 0;
2334 }
2335
2336 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2337 {
2338 int rc = 0;
2339 struct proc_dir_entry *p;
2340
2341 afinfo->seq_fops.open = tcp_seq_open;
2342 afinfo->seq_fops.read = seq_read;
2343 afinfo->seq_fops.llseek = seq_lseek;
2344 afinfo->seq_fops.release = seq_release_net;
2345
2346 afinfo->seq_ops.start = tcp_seq_start;
2347 afinfo->seq_ops.next = tcp_seq_next;
2348 afinfo->seq_ops.stop = tcp_seq_stop;
2349
2350 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2351 &afinfo->seq_fops, afinfo);
2352 if (!p)
2353 rc = -ENOMEM;
2354 return rc;
2355 }
2356 EXPORT_SYMBOL(tcp_proc_register);
2357
2358 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2359 {
2360 proc_net_remove(net, afinfo->name);
2361 }
2362 EXPORT_SYMBOL(tcp_proc_unregister);
2363
2364 static void get_openreq4(struct sock *sk, struct request_sock *req,
2365 struct seq_file *f, int i, int uid, int *len)
2366 {
2367 const struct inet_request_sock *ireq = inet_rsk(req);
2368 int ttd = req->expires - jiffies;
2369
2370 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2371 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2372 i,
2373 ireq->loc_addr,
2374 ntohs(inet_sk(sk)->inet_sport),
2375 ireq->rmt_addr,
2376 ntohs(ireq->rmt_port),
2377 TCP_SYN_RECV,
2378 0, 0, /* could print option size, but that is af dependent. */
2379 1, /* timers active (only the expire timer) */
2380 jiffies_to_clock_t(ttd),
2381 req->retrans,
2382 uid,
2383 0, /* non standard timer */
2384 0, /* open_requests have no inode */
2385 atomic_read(&sk->sk_refcnt),
2386 req,
2387 len);
2388 }
2389
2390 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2391 {
2392 int timer_active;
2393 unsigned long timer_expires;
2394 struct tcp_sock *tp = tcp_sk(sk);
2395 const struct inet_connection_sock *icsk = inet_csk(sk);
2396 struct inet_sock *inet = inet_sk(sk);
2397 __be32 dest = inet->inet_daddr;
2398 __be32 src = inet->inet_rcv_saddr;
2399 __u16 destp = ntohs(inet->inet_dport);
2400 __u16 srcp = ntohs(inet->inet_sport);
2401 int rx_queue;
2402
2403 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2404 timer_active = 1;
2405 timer_expires = icsk->icsk_timeout;
2406 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2407 timer_active = 4;
2408 timer_expires = icsk->icsk_timeout;
2409 } else if (timer_pending(&sk->sk_timer)) {
2410 timer_active = 2;
2411 timer_expires = sk->sk_timer.expires;
2412 } else {
2413 timer_active = 0;
2414 timer_expires = jiffies;
2415 }
2416
2417 if (sk->sk_state == TCP_LISTEN)
2418 rx_queue = sk->sk_ack_backlog;
2419 else
2420 /*
2421 * because we dont lock socket, we might find a transient negative value
2422 */
2423 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2424
2425 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2426 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2427 i, src, srcp, dest, destp, sk->sk_state,
2428 tp->write_seq - tp->snd_una,
2429 rx_queue,
2430 timer_active,
2431 jiffies_to_clock_t(timer_expires - jiffies),
2432 icsk->icsk_retransmits,
2433 sock_i_uid(sk),
2434 icsk->icsk_probes_out,
2435 sock_i_ino(sk),
2436 atomic_read(&sk->sk_refcnt), sk,
2437 jiffies_to_clock_t(icsk->icsk_rto),
2438 jiffies_to_clock_t(icsk->icsk_ack.ato),
2439 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2440 tp->snd_cwnd,
2441 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2442 len);
2443 }
2444
2445 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2446 struct seq_file *f, int i, int *len)
2447 {
2448 __be32 dest, src;
2449 __u16 destp, srcp;
2450 int ttd = tw->tw_ttd - jiffies;
2451
2452 if (ttd < 0)
2453 ttd = 0;
2454
2455 dest = tw->tw_daddr;
2456 src = tw->tw_rcv_saddr;
2457 destp = ntohs(tw->tw_dport);
2458 srcp = ntohs(tw->tw_sport);
2459
2460 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2461 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2462 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2463 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2464 atomic_read(&tw->tw_refcnt), tw, len);
2465 }
2466
2467 #define TMPSZ 150
2468
2469 static int tcp4_seq_show(struct seq_file *seq, void *v)
2470 {
2471 struct tcp_iter_state *st;
2472 int len;
2473
2474 if (v == SEQ_START_TOKEN) {
2475 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2476 " sl local_address rem_address st tx_queue "
2477 "rx_queue tr tm->when retrnsmt uid timeout "
2478 "inode");
2479 goto out;
2480 }
2481 st = seq->private;
2482
2483 switch (st->state) {
2484 case TCP_SEQ_STATE_LISTENING:
2485 case TCP_SEQ_STATE_ESTABLISHED:
2486 get_tcp4_sock(v, seq, st->num, &len);
2487 break;
2488 case TCP_SEQ_STATE_OPENREQ:
2489 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2490 break;
2491 case TCP_SEQ_STATE_TIME_WAIT:
2492 get_timewait4_sock(v, seq, st->num, &len);
2493 break;
2494 }
2495 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2496 out:
2497 return 0;
2498 }
2499
2500 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2501 .name = "tcp",
2502 .family = AF_INET,
2503 .seq_fops = {
2504 .owner = THIS_MODULE,
2505 },
2506 .seq_ops = {
2507 .show = tcp4_seq_show,
2508 },
2509 };
2510
2511 static int __net_init tcp4_proc_init_net(struct net *net)
2512 {
2513 return tcp_proc_register(net, &tcp4_seq_afinfo);
2514 }
2515
2516 static void __net_exit tcp4_proc_exit_net(struct net *net)
2517 {
2518 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2519 }
2520
2521 static struct pernet_operations tcp4_net_ops = {
2522 .init = tcp4_proc_init_net,
2523 .exit = tcp4_proc_exit_net,
2524 };
2525
2526 int __init tcp4_proc_init(void)
2527 {
2528 return register_pernet_subsys(&tcp4_net_ops);
2529 }
2530
2531 void tcp4_proc_exit(void)
2532 {
2533 unregister_pernet_subsys(&tcp4_net_ops);
2534 }
2535 #endif /* CONFIG_PROC_FS */
2536
2537 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2538 {
2539 struct iphdr *iph = skb_gro_network_header(skb);
2540
2541 switch (skb->ip_summed) {
2542 case CHECKSUM_COMPLETE:
2543 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2544 skb->csum)) {
2545 skb->ip_summed = CHECKSUM_UNNECESSARY;
2546 break;
2547 }
2548
2549 /* fall through */
2550 case CHECKSUM_NONE:
2551 NAPI_GRO_CB(skb)->flush = 1;
2552 return NULL;
2553 }
2554
2555 return tcp_gro_receive(head, skb);
2556 }
2557
2558 int tcp4_gro_complete(struct sk_buff *skb)
2559 {
2560 struct iphdr *iph = ip_hdr(skb);
2561 struct tcphdr *th = tcp_hdr(skb);
2562
2563 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2564 iph->saddr, iph->daddr, 0);
2565 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2566
2567 return tcp_gro_complete(skb);
2568 }
2569
2570 struct proto tcp_prot = {
2571 .name = "TCP",
2572 .owner = THIS_MODULE,
2573 .close = tcp_close,
2574 .connect = tcp_v4_connect,
2575 .disconnect = tcp_disconnect,
2576 .accept = inet_csk_accept,
2577 .ioctl = tcp_ioctl,
2578 .init = tcp_v4_init_sock,
2579 .destroy = tcp_v4_destroy_sock,
2580 .shutdown = tcp_shutdown,
2581 .setsockopt = tcp_setsockopt,
2582 .getsockopt = tcp_getsockopt,
2583 .recvmsg = tcp_recvmsg,
2584 .sendmsg = tcp_sendmsg,
2585 .sendpage = tcp_sendpage,
2586 .backlog_rcv = tcp_v4_do_rcv,
2587 .hash = inet_hash,
2588 .unhash = inet_unhash,
2589 .get_port = inet_csk_get_port,
2590 .enter_memory_pressure = tcp_enter_memory_pressure,
2591 .sockets_allocated = &tcp_sockets_allocated,
2592 .orphan_count = &tcp_orphan_count,
2593 .memory_allocated = &tcp_memory_allocated,
2594 .memory_pressure = &tcp_memory_pressure,
2595 .sysctl_mem = sysctl_tcp_mem,
2596 .sysctl_wmem = sysctl_tcp_wmem,
2597 .sysctl_rmem = sysctl_tcp_rmem,
2598 .max_header = MAX_TCP_HEADER,
2599 .obj_size = sizeof(struct tcp_sock),
2600 .slab_flags = SLAB_DESTROY_BY_RCU,
2601 .twsk_prot = &tcp_timewait_sock_ops,
2602 .rsk_prot = &tcp_request_sock_ops,
2603 .h.hashinfo = &tcp_hashinfo,
2604 .no_autobind = true,
2605 #ifdef CONFIG_COMPAT
2606 .compat_setsockopt = compat_tcp_setsockopt,
2607 .compat_getsockopt = compat_tcp_getsockopt,
2608 #endif
2609 };
2610 EXPORT_SYMBOL(tcp_prot);
2611
2612
2613 static int __net_init tcp_sk_init(struct net *net)
2614 {
2615 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2616 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2617 }
2618
2619 static void __net_exit tcp_sk_exit(struct net *net)
2620 {
2621 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2622 }
2623
2624 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2625 {
2626 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2627 }
2628
2629 static struct pernet_operations __net_initdata tcp_sk_ops = {
2630 .init = tcp_sk_init,
2631 .exit = tcp_sk_exit,
2632 .exit_batch = tcp_sk_exit_batch,
2633 };
2634
2635 void __init tcp_v4_init(void)
2636 {
2637 inet_hashinfo_init(&tcp_hashinfo);
2638 if (register_pernet_subsys(&tcp_sk_ops))
2639 panic("Failed to create the TCP control socket.\n");
2640 }
This page took 0.291344 seconds and 5 git commands to generate.