inet: includes a sock_common in request_sock
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 #include <net/busy_poll.h>
79
80 #include <linux/inet.h>
81 #include <linux/ipv6.h>
82 #include <linux/stddef.h>
83 #include <linux/proc_fs.h>
84 #include <linux/seq_file.h>
85
86 #include <linux/crypto.h>
87 #include <linux/scatterlist.h>
88
89 int sysctl_tcp_tw_reuse __read_mostly;
90 int sysctl_tcp_low_latency __read_mostly;
91 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94 #ifdef CONFIG_TCP_MD5SIG
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98
99 struct inet_hashinfo tcp_hashinfo;
100 EXPORT_SYMBOL(tcp_hashinfo);
101
102 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 {
104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 ip_hdr(skb)->saddr,
106 tcp_hdr(skb)->dest,
107 tcp_hdr(skb)->source);
108 }
109
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 struct tcp_sock *tp = tcp_sk(sk);
114
115 /* With PAWS, it is safe from the viewpoint
116 of data integrity. Even without PAWS it is safe provided sequence
117 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119 Actually, the idea is close to VJ's one, only timestamp cache is
120 held not per host, but per port pair and TW bucket is used as state
121 holder.
122
123 If TW bucket has been already destroyed we fall back to VJ's scheme
124 and use initial timestamp retrieved from peer table.
125 */
126 if (tcptw->tw_ts_recent_stamp &&
127 (twp == NULL || (sysctl_tcp_tw_reuse &&
128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 if (tp->write_seq == 0)
131 tp->write_seq = 1;
132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 sock_hold(sktw);
135 return 1;
136 }
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142 /* This will initiate an outgoing connection. */
143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 {
145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 struct inet_sock *inet = inet_sk(sk);
147 struct tcp_sock *tp = tcp_sk(sk);
148 __be16 orig_sport, orig_dport;
149 __be32 daddr, nexthop;
150 struct flowi4 *fl4;
151 struct rtable *rt;
152 int err;
153 struct ip_options_rcu *inet_opt;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 inet_opt = rcu_dereference_protected(inet->inet_opt,
163 sock_owned_by_user(sk));
164 if (inet_opt && inet_opt->opt.srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet_opt->opt.faddr;
168 }
169
170 orig_sport = inet->inet_sport;
171 orig_dport = usin->sin_port;
172 fl4 = &inet->cork.fl.u.ip4;
173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 IPPROTO_TCP,
176 orig_sport, orig_dport, sk, true);
177 if (IS_ERR(rt)) {
178 err = PTR_ERR(rt);
179 if (err == -ENETUNREACH)
180 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 return err;
182 }
183
184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 ip_rt_put(rt);
186 return -ENETUNREACH;
187 }
188
189 if (!inet_opt || !inet_opt->opt.srr)
190 daddr = fl4->daddr;
191
192 if (!inet->inet_saddr)
193 inet->inet_saddr = fl4->saddr;
194 inet->inet_rcv_saddr = inet->inet_saddr;
195
196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 /* Reset inherited state */
198 tp->rx_opt.ts_recent = 0;
199 tp->rx_opt.ts_recent_stamp = 0;
200 if (likely(!tp->repair))
201 tp->write_seq = 0;
202 }
203
204 if (tcp_death_row.sysctl_tw_recycle &&
205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208 inet->inet_dport = usin->sin_port;
209 inet->inet_daddr = daddr;
210
211 inet_csk(sk)->icsk_ext_hdr_len = 0;
212 if (inet_opt)
213 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214
215 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216
217 /* Socket identity is still unknown (sport may be zero).
218 * However we set state to SYN-SENT and not releasing socket
219 * lock select source port, enter ourselves into the hash tables and
220 * complete initialization after this.
221 */
222 tcp_set_state(sk, TCP_SYN_SENT);
223 err = inet_hash_connect(&tcp_death_row, sk);
224 if (err)
225 goto failure;
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254 failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272 static void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
293
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
298 */
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
301 }
302
303 static void do_redirect(struct sk_buff *skb, struct sock *sk)
304 {
305 struct dst_entry *dst = __sk_dst_check(sk, 0);
306
307 if (dst)
308 dst->ops->redirect(dst, sk, skb);
309 }
310
311 /*
312 * This routine is called by the ICMP module when it gets some
313 * sort of error condition. If err < 0 then the socket should
314 * be closed and the error returned to the user. If err > 0
315 * it's just the icmp type << 8 | icmp code. After adjustment
316 * header points to the first 8 bytes of the tcp header. We need
317 * to find the appropriate port.
318 *
319 * The locking strategy used here is very "optimistic". When
320 * someone else accesses the socket the ICMP is just dropped
321 * and for some paths there is no check at all.
322 * A more general error queue to queue errors for later handling
323 * is probably better.
324 *
325 */
326
327 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
328 {
329 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
330 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
331 struct inet_connection_sock *icsk;
332 struct tcp_sock *tp;
333 struct inet_sock *inet;
334 const int type = icmp_hdr(icmp_skb)->type;
335 const int code = icmp_hdr(icmp_skb)->code;
336 struct sock *sk;
337 struct sk_buff *skb;
338 struct request_sock *req;
339 __u32 seq;
340 __u32 remaining;
341 int err;
342 struct net *net = dev_net(icmp_skb->dev);
343
344 if (icmp_skb->len < (iph->ihl << 2) + 8) {
345 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
346 return;
347 }
348
349 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
350 iph->saddr, th->source, inet_iif(icmp_skb));
351 if (!sk) {
352 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
353 return;
354 }
355 if (sk->sk_state == TCP_TIME_WAIT) {
356 inet_twsk_put(inet_twsk(sk));
357 return;
358 }
359
360 bh_lock_sock(sk);
361 /* If too many ICMPs get dropped on busy
362 * servers this needs to be solved differently.
363 * We do take care of PMTU discovery (RFC1191) special case :
364 * we can receive locally generated ICMP messages while socket is held.
365 */
366 if (sock_owned_by_user(sk)) {
367 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369 }
370 if (sk->sk_state == TCP_CLOSE)
371 goto out;
372
373 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
374 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
375 goto out;
376 }
377
378 icsk = inet_csk(sk);
379 tp = tcp_sk(sk);
380 req = tp->fastopen_rsk;
381 seq = ntohl(th->seq);
382 if (sk->sk_state != TCP_LISTEN &&
383 !between(seq, tp->snd_una, tp->snd_nxt) &&
384 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
385 /* For a Fast Open socket, allow seq to be snt_isn. */
386 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
387 goto out;
388 }
389
390 switch (type) {
391 case ICMP_REDIRECT:
392 do_redirect(icmp_skb, sk);
393 goto out;
394 case ICMP_SOURCE_QUENCH:
395 /* Just silently ignore these. */
396 goto out;
397 case ICMP_PARAMETERPROB:
398 err = EPROTO;
399 break;
400 case ICMP_DEST_UNREACH:
401 if (code > NR_ICMP_UNREACH)
402 goto out;
403
404 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
405 /* We are not interested in TCP_LISTEN and open_requests
406 * (SYN-ACKs send out by Linux are always <576bytes so
407 * they should go through unfragmented).
408 */
409 if (sk->sk_state == TCP_LISTEN)
410 goto out;
411
412 tp->mtu_info = info;
413 if (!sock_owned_by_user(sk)) {
414 tcp_v4_mtu_reduced(sk);
415 } else {
416 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417 sock_hold(sk);
418 }
419 goto out;
420 }
421
422 err = icmp_err_convert[code].errno;
423 /* check if icmp_skb allows revert of backoff
424 * (see draft-zimmermann-tcp-lcd) */
425 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426 break;
427 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
428 !icsk->icsk_backoff)
429 break;
430
431 /* XXX (TFO) - revisit the following logic for TFO */
432
433 if (sock_owned_by_user(sk))
434 break;
435
436 icsk->icsk_backoff--;
437 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439 tcp_bound_rto(sk);
440
441 skb = tcp_write_queue_head(sk);
442 BUG_ON(!skb);
443
444 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447 if (remaining) {
448 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 remaining, TCP_RTO_MAX);
450 } else {
451 /* RTO revert clocked out retransmission.
452 * Will retransmit now */
453 tcp_retransmit_timer(sk);
454 }
455
456 break;
457 case ICMP_TIME_EXCEEDED:
458 err = EHOSTUNREACH;
459 break;
460 default:
461 goto out;
462 }
463
464 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465 * than following the TCP_SYN_RECV case and closing the socket,
466 * we ignore the ICMP error and keep trying like a fully established
467 * socket. Is this the right thing to do?
468 */
469 if (req && req->sk == NULL)
470 goto out;
471
472 switch (sk->sk_state) {
473 struct request_sock *req, **prev;
474 case TCP_LISTEN:
475 if (sock_owned_by_user(sk))
476 goto out;
477
478 req = inet_csk_search_req(sk, &prev, th->dest,
479 iph->daddr, iph->saddr);
480 if (!req)
481 goto out;
482
483 /* ICMPs are not backlogged, hence we cannot get
484 an established socket here.
485 */
486 WARN_ON(req->sk);
487
488 if (seq != tcp_rsk(req)->snt_isn) {
489 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490 goto out;
491 }
492
493 /*
494 * Still in SYN_RECV, just remove it silently.
495 * There is no good way to pass the error to the newly
496 * created socket, and POSIX does not want network
497 * errors returned from accept().
498 */
499 inet_csk_reqsk_queue_drop(sk, req, prev);
500 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
501 goto out;
502
503 case TCP_SYN_SENT:
504 case TCP_SYN_RECV: /* Cannot happen.
505 It can f.e. if SYNs crossed,
506 or Fast Open.
507 */
508 if (!sock_owned_by_user(sk)) {
509 sk->sk_err = err;
510
511 sk->sk_error_report(sk);
512
513 tcp_done(sk);
514 } else {
515 sk->sk_err_soft = err;
516 }
517 goto out;
518 }
519
520 /* If we've already connected we will keep trying
521 * until we time out, or the user gives up.
522 *
523 * rfc1122 4.2.3.9 allows to consider as hard errors
524 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
525 * but it is obsoleted by pmtu discovery).
526 *
527 * Note, that in modern internet, where routing is unreliable
528 * and in each dark corner broken firewalls sit, sending random
529 * errors ordered by their masters even this two messages finally lose
530 * their original sense (even Linux sends invalid PORT_UNREACHs)
531 *
532 * Now we are in compliance with RFCs.
533 * --ANK (980905)
534 */
535
536 inet = inet_sk(sk);
537 if (!sock_owned_by_user(sk) && inet->recverr) {
538 sk->sk_err = err;
539 sk->sk_error_report(sk);
540 } else { /* Only an error on timeout */
541 sk->sk_err_soft = err;
542 }
543
544 out:
545 bh_unlock_sock(sk);
546 sock_put(sk);
547 }
548
549 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
550 {
551 struct tcphdr *th = tcp_hdr(skb);
552
553 if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 } else {
558 th->check = tcp_v4_check(skb->len, saddr, daddr,
559 csum_partial(th,
560 th->doff << 2,
561 skb->csum));
562 }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 const struct inet_sock *inet = inet_sk(sk);
569
570 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 /*
575 * This routine will send an RST to the other tcp.
576 *
577 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
578 * for reset.
579 * Answer: if a packet caused RST, it is not for a socket
580 * existing in our system, if it is matched to a socket,
581 * it is just duplicate segment or bug in other side's TCP.
582 * So that we build reply only basing on parameters
583 * arrived with segment.
584 * Exception: precedence violation. We do not implement it in any case.
585 */
586
587 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
588 {
589 const struct tcphdr *th = tcp_hdr(skb);
590 struct {
591 struct tcphdr th;
592 #ifdef CONFIG_TCP_MD5SIG
593 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
594 #endif
595 } rep;
596 struct ip_reply_arg arg;
597 #ifdef CONFIG_TCP_MD5SIG
598 struct tcp_md5sig_key *key;
599 const __u8 *hash_location = NULL;
600 unsigned char newhash[16];
601 int genhash;
602 struct sock *sk1 = NULL;
603 #endif
604 struct net *net;
605
606 /* Never send a reset in response to a reset. */
607 if (th->rst)
608 return;
609
610 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611 return;
612
613 /* Swap the send and the receive. */
614 memset(&rep, 0, sizeof(rep));
615 rep.th.dest = th->source;
616 rep.th.source = th->dest;
617 rep.th.doff = sizeof(struct tcphdr) / 4;
618 rep.th.rst = 1;
619
620 if (th->ack) {
621 rep.th.seq = th->ack_seq;
622 } else {
623 rep.th.ack = 1;
624 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625 skb->len - (th->doff << 2));
626 }
627
628 memset(&arg, 0, sizeof(arg));
629 arg.iov[0].iov_base = (unsigned char *)&rep;
630 arg.iov[0].iov_len = sizeof(rep.th);
631
632 #ifdef CONFIG_TCP_MD5SIG
633 hash_location = tcp_parse_md5sig_option(th);
634 if (!sk && hash_location) {
635 /*
636 * active side is lost. Try to find listening socket through
637 * source port, and then find md5 key through listening socket.
638 * we are not loose security here:
639 * Incoming packet is checked with md5 hash with finding key,
640 * no RST generated if md5 hash doesn't match.
641 */
642 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
643 &tcp_hashinfo, ip_hdr(skb)->saddr,
644 th->source, ip_hdr(skb)->daddr,
645 ntohs(th->source), inet_iif(skb));
646 /* don't send rst if it can't find key */
647 if (!sk1)
648 return;
649 rcu_read_lock();
650 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
651 &ip_hdr(skb)->saddr, AF_INET);
652 if (!key)
653 goto release_sk1;
654
655 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
656 if (genhash || memcmp(hash_location, newhash, 16) != 0)
657 goto release_sk1;
658 } else {
659 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
660 &ip_hdr(skb)->saddr,
661 AF_INET) : NULL;
662 }
663
664 if (key) {
665 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
666 (TCPOPT_NOP << 16) |
667 (TCPOPT_MD5SIG << 8) |
668 TCPOLEN_MD5SIG);
669 /* Update length and the length the header thinks exists */
670 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
671 rep.th.doff = arg.iov[0].iov_len / 4;
672
673 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
674 key, ip_hdr(skb)->saddr,
675 ip_hdr(skb)->daddr, &rep.th);
676 }
677 #endif
678 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
679 ip_hdr(skb)->saddr, /* XXX */
680 arg.iov[0].iov_len, IPPROTO_TCP, 0);
681 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
682 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
683 /* When socket is gone, all binding information is lost.
684 * routing might fail in this case. No choice here, if we choose to force
685 * input interface, we will misroute in case of asymmetric route.
686 */
687 if (sk)
688 arg.bound_dev_if = sk->sk_bound_dev_if;
689
690 net = dev_net(skb_dst(skb)->dev);
691 arg.tos = ip_hdr(skb)->tos;
692 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
693 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
694
695 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
696 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
697
698 #ifdef CONFIG_TCP_MD5SIG
699 release_sk1:
700 if (sk1) {
701 rcu_read_unlock();
702 sock_put(sk1);
703 }
704 #endif
705 }
706
707 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
708 outside socket context is ugly, certainly. What can I do?
709 */
710
711 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
712 u32 win, u32 tsval, u32 tsecr, int oif,
713 struct tcp_md5sig_key *key,
714 int reply_flags, u8 tos)
715 {
716 const struct tcphdr *th = tcp_hdr(skb);
717 struct {
718 struct tcphdr th;
719 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
720 #ifdef CONFIG_TCP_MD5SIG
721 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
722 #endif
723 ];
724 } rep;
725 struct ip_reply_arg arg;
726 struct net *net = dev_net(skb_dst(skb)->dev);
727
728 memset(&rep.th, 0, sizeof(struct tcphdr));
729 memset(&arg, 0, sizeof(arg));
730
731 arg.iov[0].iov_base = (unsigned char *)&rep;
732 arg.iov[0].iov_len = sizeof(rep.th);
733 if (tsecr) {
734 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
735 (TCPOPT_TIMESTAMP << 8) |
736 TCPOLEN_TIMESTAMP);
737 rep.opt[1] = htonl(tsval);
738 rep.opt[2] = htonl(tsecr);
739 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
740 }
741
742 /* Swap the send and the receive. */
743 rep.th.dest = th->source;
744 rep.th.source = th->dest;
745 rep.th.doff = arg.iov[0].iov_len / 4;
746 rep.th.seq = htonl(seq);
747 rep.th.ack_seq = htonl(ack);
748 rep.th.ack = 1;
749 rep.th.window = htons(win);
750
751 #ifdef CONFIG_TCP_MD5SIG
752 if (key) {
753 int offset = (tsecr) ? 3 : 0;
754
755 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
756 (TCPOPT_NOP << 16) |
757 (TCPOPT_MD5SIG << 8) |
758 TCPOLEN_MD5SIG);
759 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
760 rep.th.doff = arg.iov[0].iov_len/4;
761
762 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
763 key, ip_hdr(skb)->saddr,
764 ip_hdr(skb)->daddr, &rep.th);
765 }
766 #endif
767 arg.flags = reply_flags;
768 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
769 ip_hdr(skb)->saddr, /* XXX */
770 arg.iov[0].iov_len, IPPROTO_TCP, 0);
771 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
772 if (oif)
773 arg.bound_dev_if = oif;
774 arg.tos = tos;
775 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
776 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
777
778 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
779 }
780
781 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
782 {
783 struct inet_timewait_sock *tw = inet_twsk(sk);
784 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
785
786 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
787 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
788 tcp_time_stamp + tcptw->tw_ts_offset,
789 tcptw->tw_ts_recent,
790 tw->tw_bound_dev_if,
791 tcp_twsk_md5_key(tcptw),
792 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
793 tw->tw_tos
794 );
795
796 inet_twsk_put(tw);
797 }
798
799 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
800 struct request_sock *req)
801 {
802 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
803 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
804 */
805 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
806 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
807 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
808 tcp_time_stamp,
809 req->ts_recent,
810 0,
811 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
812 AF_INET),
813 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
814 ip_hdr(skb)->tos);
815 }
816
817 /*
818 * Send a SYN-ACK after having received a SYN.
819 * This still operates on a request_sock only, not on a big
820 * socket.
821 */
822 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
823 struct request_sock *req,
824 u16 queue_mapping)
825 {
826 const struct inet_request_sock *ireq = inet_rsk(req);
827 struct flowi4 fl4;
828 int err = -1;
829 struct sk_buff * skb;
830
831 /* First, grab a route. */
832 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
833 return -1;
834
835 skb = tcp_make_synack(sk, dst, req, NULL);
836
837 if (skb) {
838 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
839
840 skb_set_queue_mapping(skb, queue_mapping);
841 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
842 ireq->ir_rmt_addr,
843 ireq->opt);
844 err = net_xmit_eval(err);
845 if (!tcp_rsk(req)->snt_synack && !err)
846 tcp_rsk(req)->snt_synack = tcp_time_stamp;
847 }
848
849 return err;
850 }
851
852 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
853 {
854 int res = tcp_v4_send_synack(sk, NULL, req, 0);
855
856 if (!res)
857 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
858 return res;
859 }
860
861 /*
862 * IPv4 request_sock destructor.
863 */
864 static void tcp_v4_reqsk_destructor(struct request_sock *req)
865 {
866 kfree(inet_rsk(req)->opt);
867 }
868
869 /*
870 * Return true if a syncookie should be sent
871 */
872 bool tcp_syn_flood_action(struct sock *sk,
873 const struct sk_buff *skb,
874 const char *proto)
875 {
876 const char *msg = "Dropping request";
877 bool want_cookie = false;
878 struct listen_sock *lopt;
879
880
881
882 #ifdef CONFIG_SYN_COOKIES
883 if (sysctl_tcp_syncookies) {
884 msg = "Sending cookies";
885 want_cookie = true;
886 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
887 } else
888 #endif
889 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
890
891 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
892 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
893 lopt->synflood_warned = 1;
894 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
895 proto, ntohs(tcp_hdr(skb)->dest), msg);
896 }
897 return want_cookie;
898 }
899 EXPORT_SYMBOL(tcp_syn_flood_action);
900
901 /*
902 * Save and compile IPv4 options into the request_sock if needed.
903 */
904 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
905 {
906 const struct ip_options *opt = &(IPCB(skb)->opt);
907 struct ip_options_rcu *dopt = NULL;
908
909 if (opt && opt->optlen) {
910 int opt_size = sizeof(*dopt) + opt->optlen;
911
912 dopt = kmalloc(opt_size, GFP_ATOMIC);
913 if (dopt) {
914 if (ip_options_echo(&dopt->opt, skb)) {
915 kfree(dopt);
916 dopt = NULL;
917 }
918 }
919 }
920 return dopt;
921 }
922
923 #ifdef CONFIG_TCP_MD5SIG
924 /*
925 * RFC2385 MD5 checksumming requires a mapping of
926 * IP address->MD5 Key.
927 * We need to maintain these in the sk structure.
928 */
929
930 /* Find the Key structure for an address. */
931 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
932 const union tcp_md5_addr *addr,
933 int family)
934 {
935 struct tcp_sock *tp = tcp_sk(sk);
936 struct tcp_md5sig_key *key;
937 unsigned int size = sizeof(struct in_addr);
938 struct tcp_md5sig_info *md5sig;
939
940 /* caller either holds rcu_read_lock() or socket lock */
941 md5sig = rcu_dereference_check(tp->md5sig_info,
942 sock_owned_by_user(sk) ||
943 lockdep_is_held(&sk->sk_lock.slock));
944 if (!md5sig)
945 return NULL;
946 #if IS_ENABLED(CONFIG_IPV6)
947 if (family == AF_INET6)
948 size = sizeof(struct in6_addr);
949 #endif
950 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
951 if (key->family != family)
952 continue;
953 if (!memcmp(&key->addr, addr, size))
954 return key;
955 }
956 return NULL;
957 }
958 EXPORT_SYMBOL(tcp_md5_do_lookup);
959
960 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
961 struct sock *addr_sk)
962 {
963 union tcp_md5_addr *addr;
964
965 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
966 return tcp_md5_do_lookup(sk, addr, AF_INET);
967 }
968 EXPORT_SYMBOL(tcp_v4_md5_lookup);
969
970 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
971 struct request_sock *req)
972 {
973 union tcp_md5_addr *addr;
974
975 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
976 return tcp_md5_do_lookup(sk, addr, AF_INET);
977 }
978
979 /* This can be called on a newly created socket, from other files */
980 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
981 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
982 {
983 /* Add Key to the list */
984 struct tcp_md5sig_key *key;
985 struct tcp_sock *tp = tcp_sk(sk);
986 struct tcp_md5sig_info *md5sig;
987
988 key = tcp_md5_do_lookup(sk, addr, family);
989 if (key) {
990 /* Pre-existing entry - just update that one. */
991 memcpy(key->key, newkey, newkeylen);
992 key->keylen = newkeylen;
993 return 0;
994 }
995
996 md5sig = rcu_dereference_protected(tp->md5sig_info,
997 sock_owned_by_user(sk));
998 if (!md5sig) {
999 md5sig = kmalloc(sizeof(*md5sig), gfp);
1000 if (!md5sig)
1001 return -ENOMEM;
1002
1003 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1004 INIT_HLIST_HEAD(&md5sig->head);
1005 rcu_assign_pointer(tp->md5sig_info, md5sig);
1006 }
1007
1008 key = sock_kmalloc(sk, sizeof(*key), gfp);
1009 if (!key)
1010 return -ENOMEM;
1011 if (!tcp_alloc_md5sig_pool()) {
1012 sock_kfree_s(sk, key, sizeof(*key));
1013 return -ENOMEM;
1014 }
1015
1016 memcpy(key->key, newkey, newkeylen);
1017 key->keylen = newkeylen;
1018 key->family = family;
1019 memcpy(&key->addr, addr,
1020 (family == AF_INET6) ? sizeof(struct in6_addr) :
1021 sizeof(struct in_addr));
1022 hlist_add_head_rcu(&key->node, &md5sig->head);
1023 return 0;
1024 }
1025 EXPORT_SYMBOL(tcp_md5_do_add);
1026
1027 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1028 {
1029 struct tcp_md5sig_key *key;
1030
1031 key = tcp_md5_do_lookup(sk, addr, family);
1032 if (!key)
1033 return -ENOENT;
1034 hlist_del_rcu(&key->node);
1035 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1036 kfree_rcu(key, rcu);
1037 return 0;
1038 }
1039 EXPORT_SYMBOL(tcp_md5_do_del);
1040
1041 static void tcp_clear_md5_list(struct sock *sk)
1042 {
1043 struct tcp_sock *tp = tcp_sk(sk);
1044 struct tcp_md5sig_key *key;
1045 struct hlist_node *n;
1046 struct tcp_md5sig_info *md5sig;
1047
1048 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1049
1050 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1051 hlist_del_rcu(&key->node);
1052 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1053 kfree_rcu(key, rcu);
1054 }
1055 }
1056
1057 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1058 int optlen)
1059 {
1060 struct tcp_md5sig cmd;
1061 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1062
1063 if (optlen < sizeof(cmd))
1064 return -EINVAL;
1065
1066 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1067 return -EFAULT;
1068
1069 if (sin->sin_family != AF_INET)
1070 return -EINVAL;
1071
1072 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1073 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1074 AF_INET);
1075
1076 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1077 return -EINVAL;
1078
1079 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1080 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1081 GFP_KERNEL);
1082 }
1083
1084 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1085 __be32 daddr, __be32 saddr, int nbytes)
1086 {
1087 struct tcp4_pseudohdr *bp;
1088 struct scatterlist sg;
1089
1090 bp = &hp->md5_blk.ip4;
1091
1092 /*
1093 * 1. the TCP pseudo-header (in the order: source IP address,
1094 * destination IP address, zero-padded protocol number, and
1095 * segment length)
1096 */
1097 bp->saddr = saddr;
1098 bp->daddr = daddr;
1099 bp->pad = 0;
1100 bp->protocol = IPPROTO_TCP;
1101 bp->len = cpu_to_be16(nbytes);
1102
1103 sg_init_one(&sg, bp, sizeof(*bp));
1104 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1105 }
1106
1107 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1108 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1109 {
1110 struct tcp_md5sig_pool *hp;
1111 struct hash_desc *desc;
1112
1113 hp = tcp_get_md5sig_pool();
1114 if (!hp)
1115 goto clear_hash_noput;
1116 desc = &hp->md5_desc;
1117
1118 if (crypto_hash_init(desc))
1119 goto clear_hash;
1120 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1121 goto clear_hash;
1122 if (tcp_md5_hash_header(hp, th))
1123 goto clear_hash;
1124 if (tcp_md5_hash_key(hp, key))
1125 goto clear_hash;
1126 if (crypto_hash_final(desc, md5_hash))
1127 goto clear_hash;
1128
1129 tcp_put_md5sig_pool();
1130 return 0;
1131
1132 clear_hash:
1133 tcp_put_md5sig_pool();
1134 clear_hash_noput:
1135 memset(md5_hash, 0, 16);
1136 return 1;
1137 }
1138
1139 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1140 const struct sock *sk, const struct request_sock *req,
1141 const struct sk_buff *skb)
1142 {
1143 struct tcp_md5sig_pool *hp;
1144 struct hash_desc *desc;
1145 const struct tcphdr *th = tcp_hdr(skb);
1146 __be32 saddr, daddr;
1147
1148 if (sk) {
1149 saddr = inet_sk(sk)->inet_saddr;
1150 daddr = inet_sk(sk)->inet_daddr;
1151 } else if (req) {
1152 saddr = inet_rsk(req)->ir_loc_addr;
1153 daddr = inet_rsk(req)->ir_rmt_addr;
1154 } else {
1155 const struct iphdr *iph = ip_hdr(skb);
1156 saddr = iph->saddr;
1157 daddr = iph->daddr;
1158 }
1159
1160 hp = tcp_get_md5sig_pool();
1161 if (!hp)
1162 goto clear_hash_noput;
1163 desc = &hp->md5_desc;
1164
1165 if (crypto_hash_init(desc))
1166 goto clear_hash;
1167
1168 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1169 goto clear_hash;
1170 if (tcp_md5_hash_header(hp, th))
1171 goto clear_hash;
1172 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1173 goto clear_hash;
1174 if (tcp_md5_hash_key(hp, key))
1175 goto clear_hash;
1176 if (crypto_hash_final(desc, md5_hash))
1177 goto clear_hash;
1178
1179 tcp_put_md5sig_pool();
1180 return 0;
1181
1182 clear_hash:
1183 tcp_put_md5sig_pool();
1184 clear_hash_noput:
1185 memset(md5_hash, 0, 16);
1186 return 1;
1187 }
1188 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1189
1190 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1191 {
1192 /*
1193 * This gets called for each TCP segment that arrives
1194 * so we want to be efficient.
1195 * We have 3 drop cases:
1196 * o No MD5 hash and one expected.
1197 * o MD5 hash and we're not expecting one.
1198 * o MD5 hash and its wrong.
1199 */
1200 const __u8 *hash_location = NULL;
1201 struct tcp_md5sig_key *hash_expected;
1202 const struct iphdr *iph = ip_hdr(skb);
1203 const struct tcphdr *th = tcp_hdr(skb);
1204 int genhash;
1205 unsigned char newhash[16];
1206
1207 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1208 AF_INET);
1209 hash_location = tcp_parse_md5sig_option(th);
1210
1211 /* We've parsed the options - do we have a hash? */
1212 if (!hash_expected && !hash_location)
1213 return false;
1214
1215 if (hash_expected && !hash_location) {
1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1217 return true;
1218 }
1219
1220 if (!hash_expected && hash_location) {
1221 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1222 return true;
1223 }
1224
1225 /* Okay, so this is hash_expected and hash_location -
1226 * so we need to calculate the checksum.
1227 */
1228 genhash = tcp_v4_md5_hash_skb(newhash,
1229 hash_expected,
1230 NULL, NULL, skb);
1231
1232 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1233 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1234 &iph->saddr, ntohs(th->source),
1235 &iph->daddr, ntohs(th->dest),
1236 genhash ? " tcp_v4_calc_md5_hash failed"
1237 : "");
1238 return true;
1239 }
1240 return false;
1241 }
1242
1243 #endif
1244
1245 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1246 .family = PF_INET,
1247 .obj_size = sizeof(struct tcp_request_sock),
1248 .rtx_syn_ack = tcp_v4_rtx_synack,
1249 .send_ack = tcp_v4_reqsk_send_ack,
1250 .destructor = tcp_v4_reqsk_destructor,
1251 .send_reset = tcp_v4_send_reset,
1252 .syn_ack_timeout = tcp_syn_ack_timeout,
1253 };
1254
1255 #ifdef CONFIG_TCP_MD5SIG
1256 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1257 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1258 .calc_md5_hash = tcp_v4_md5_hash_skb,
1259 };
1260 #endif
1261
1262 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1263 struct request_sock *req,
1264 struct tcp_fastopen_cookie *foc,
1265 struct tcp_fastopen_cookie *valid_foc)
1266 {
1267 bool skip_cookie = false;
1268 struct fastopen_queue *fastopenq;
1269
1270 if (likely(!fastopen_cookie_present(foc))) {
1271 /* See include/net/tcp.h for the meaning of these knobs */
1272 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1273 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1274 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1275 skip_cookie = true; /* no cookie to validate */
1276 else
1277 return false;
1278 }
1279 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1280 /* A FO option is present; bump the counter. */
1281 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1282
1283 /* Make sure the listener has enabled fastopen, and we don't
1284 * exceed the max # of pending TFO requests allowed before trying
1285 * to validating the cookie in order to avoid burning CPU cycles
1286 * unnecessarily.
1287 *
1288 * XXX (TFO) - The implication of checking the max_qlen before
1289 * processing a cookie request is that clients can't differentiate
1290 * between qlen overflow causing Fast Open to be disabled
1291 * temporarily vs a server not supporting Fast Open at all.
1292 */
1293 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1294 fastopenq == NULL || fastopenq->max_qlen == 0)
1295 return false;
1296
1297 if (fastopenq->qlen >= fastopenq->max_qlen) {
1298 struct request_sock *req1;
1299 spin_lock(&fastopenq->lock);
1300 req1 = fastopenq->rskq_rst_head;
1301 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1302 spin_unlock(&fastopenq->lock);
1303 NET_INC_STATS_BH(sock_net(sk),
1304 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1305 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1306 foc->len = -1;
1307 return false;
1308 }
1309 fastopenq->rskq_rst_head = req1->dl_next;
1310 fastopenq->qlen--;
1311 spin_unlock(&fastopenq->lock);
1312 reqsk_free(req1);
1313 }
1314 if (skip_cookie) {
1315 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1316 return true;
1317 }
1318
1319 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1320 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1321 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1322 ip_hdr(skb)->daddr, valid_foc);
1323 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1324 memcmp(&foc->val[0], &valid_foc->val[0],
1325 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1326 return false;
1327 valid_foc->len = -1;
1328 }
1329 /* Acknowledge the data received from the peer. */
1330 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1331 return true;
1332 } else if (foc->len == 0) { /* Client requesting a cookie */
1333 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1334 ip_hdr(skb)->daddr, valid_foc);
1335 NET_INC_STATS_BH(sock_net(sk),
1336 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1337 } else {
1338 /* Client sent a cookie with wrong size. Treat it
1339 * the same as invalid and return a valid one.
1340 */
1341 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1342 ip_hdr(skb)->daddr, valid_foc);
1343 }
1344 return false;
1345 }
1346
1347 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1348 struct sk_buff *skb,
1349 struct sk_buff *skb_synack,
1350 struct request_sock *req)
1351 {
1352 struct tcp_sock *tp = tcp_sk(sk);
1353 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1354 const struct inet_request_sock *ireq = inet_rsk(req);
1355 struct sock *child;
1356 int err;
1357
1358 req->num_retrans = 0;
1359 req->num_timeout = 0;
1360 req->sk = NULL;
1361
1362 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1363 if (child == NULL) {
1364 NET_INC_STATS_BH(sock_net(sk),
1365 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1366 kfree_skb(skb_synack);
1367 return -1;
1368 }
1369 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1370 ireq->ir_rmt_addr, ireq->opt);
1371 err = net_xmit_eval(err);
1372 if (!err)
1373 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1374 /* XXX (TFO) - is it ok to ignore error and continue? */
1375
1376 spin_lock(&queue->fastopenq->lock);
1377 queue->fastopenq->qlen++;
1378 spin_unlock(&queue->fastopenq->lock);
1379
1380 /* Initialize the child socket. Have to fix some values to take
1381 * into account the child is a Fast Open socket and is created
1382 * only out of the bits carried in the SYN packet.
1383 */
1384 tp = tcp_sk(child);
1385
1386 tp->fastopen_rsk = req;
1387 /* Do a hold on the listner sk so that if the listener is being
1388 * closed, the child that has been accepted can live on and still
1389 * access listen_lock.
1390 */
1391 sock_hold(sk);
1392 tcp_rsk(req)->listener = sk;
1393
1394 /* RFC1323: The window in SYN & SYN/ACK segments is never
1395 * scaled. So correct it appropriately.
1396 */
1397 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1398
1399 /* Activate the retrans timer so that SYNACK can be retransmitted.
1400 * The request socket is not added to the SYN table of the parent
1401 * because it's been added to the accept queue directly.
1402 */
1403 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1404 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1405
1406 /* Add the child socket directly into the accept queue */
1407 inet_csk_reqsk_queue_add(sk, req, child);
1408
1409 /* Now finish processing the fastopen child socket. */
1410 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1411 tcp_init_congestion_control(child);
1412 tcp_mtup_init(child);
1413 tcp_init_metrics(child);
1414 tcp_init_buffer_space(child);
1415
1416 /* Queue the data carried in the SYN packet. We need to first
1417 * bump skb's refcnt because the caller will attempt to free it.
1418 *
1419 * XXX (TFO) - we honor a zero-payload TFO request for now.
1420 * (Any reason not to?)
1421 */
1422 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1423 /* Don't queue the skb if there is no payload in SYN.
1424 * XXX (TFO) - How about SYN+FIN?
1425 */
1426 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1427 } else {
1428 skb = skb_get(skb);
1429 skb_dst_drop(skb);
1430 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1431 skb_set_owner_r(skb, child);
1432 __skb_queue_tail(&child->sk_receive_queue, skb);
1433 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1434 tp->syn_data_acked = 1;
1435 }
1436 sk->sk_data_ready(sk, 0);
1437 bh_unlock_sock(child);
1438 sock_put(child);
1439 WARN_ON(req->sk == NULL);
1440 return 0;
1441 }
1442
1443 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1444 {
1445 struct tcp_options_received tmp_opt;
1446 struct request_sock *req;
1447 struct inet_request_sock *ireq;
1448 struct tcp_sock *tp = tcp_sk(sk);
1449 struct dst_entry *dst = NULL;
1450 __be32 saddr = ip_hdr(skb)->saddr;
1451 __be32 daddr = ip_hdr(skb)->daddr;
1452 __u32 isn = TCP_SKB_CB(skb)->when;
1453 bool want_cookie = false;
1454 struct flowi4 fl4;
1455 struct tcp_fastopen_cookie foc = { .len = -1 };
1456 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1457 struct sk_buff *skb_synack;
1458 int do_fastopen;
1459
1460 /* Never answer to SYNs send to broadcast or multicast */
1461 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1462 goto drop;
1463
1464 /* TW buckets are converted to open requests without
1465 * limitations, they conserve resources and peer is
1466 * evidently real one.
1467 */
1468 if ((sysctl_tcp_syncookies == 2 ||
1469 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
1470 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1471 if (!want_cookie)
1472 goto drop;
1473 }
1474
1475 /* Accept backlog is full. If we have already queued enough
1476 * of warm entries in syn queue, drop request. It is better than
1477 * clogging syn queue with openreqs with exponentially increasing
1478 * timeout.
1479 */
1480 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1481 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1482 goto drop;
1483 }
1484
1485 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1486 if (!req)
1487 goto drop;
1488
1489 #ifdef CONFIG_TCP_MD5SIG
1490 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1491 #endif
1492
1493 tcp_clear_options(&tmp_opt);
1494 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1495 tmp_opt.user_mss = tp->rx_opt.user_mss;
1496 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1497
1498 if (want_cookie && !tmp_opt.saw_tstamp)
1499 tcp_clear_options(&tmp_opt);
1500
1501 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1502 tcp_openreq_init(req, &tmp_opt, skb);
1503
1504 ireq = inet_rsk(req);
1505 ireq->ir_loc_addr = daddr;
1506 ireq->ir_rmt_addr = saddr;
1507 ireq->no_srccheck = inet_sk(sk)->transparent;
1508 ireq->opt = tcp_v4_save_options(skb);
1509
1510 if (security_inet_conn_request(sk, skb, req))
1511 goto drop_and_free;
1512
1513 if (!want_cookie || tmp_opt.tstamp_ok)
1514 TCP_ECN_create_request(req, skb, sock_net(sk));
1515
1516 if (want_cookie) {
1517 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1518 req->cookie_ts = tmp_opt.tstamp_ok;
1519 } else if (!isn) {
1520 /* VJ's idea. We save last timestamp seen
1521 * from the destination in peer table, when entering
1522 * state TIME-WAIT, and check against it before
1523 * accepting new connection request.
1524 *
1525 * If "isn" is not zero, this request hit alive
1526 * timewait bucket, so that all the necessary checks
1527 * are made in the function processing timewait state.
1528 */
1529 if (tmp_opt.saw_tstamp &&
1530 tcp_death_row.sysctl_tw_recycle &&
1531 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1532 fl4.daddr == saddr) {
1533 if (!tcp_peer_is_proven(req, dst, true)) {
1534 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1535 goto drop_and_release;
1536 }
1537 }
1538 /* Kill the following clause, if you dislike this way. */
1539 else if (!sysctl_tcp_syncookies &&
1540 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1541 (sysctl_max_syn_backlog >> 2)) &&
1542 !tcp_peer_is_proven(req, dst, false)) {
1543 /* Without syncookies last quarter of
1544 * backlog is filled with destinations,
1545 * proven to be alive.
1546 * It means that we continue to communicate
1547 * to destinations, already remembered
1548 * to the moment of synflood.
1549 */
1550 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1551 &saddr, ntohs(tcp_hdr(skb)->source));
1552 goto drop_and_release;
1553 }
1554
1555 isn = tcp_v4_init_sequence(skb);
1556 }
1557 tcp_rsk(req)->snt_isn = isn;
1558
1559 if (dst == NULL) {
1560 dst = inet_csk_route_req(sk, &fl4, req);
1561 if (dst == NULL)
1562 goto drop_and_free;
1563 }
1564 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1565
1566 /* We don't call tcp_v4_send_synack() directly because we need
1567 * to make sure a child socket can be created successfully before
1568 * sending back synack!
1569 *
1570 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1571 * (or better yet, call tcp_send_synack() in the child context
1572 * directly, but will have to fix bunch of other code first)
1573 * after syn_recv_sock() except one will need to first fix the
1574 * latter to remove its dependency on the current implementation
1575 * of tcp_v4_send_synack()->tcp_select_initial_window().
1576 */
1577 skb_synack = tcp_make_synack(sk, dst, req,
1578 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1579
1580 if (skb_synack) {
1581 __tcp_v4_send_check(skb_synack, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1582 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1583 } else
1584 goto drop_and_free;
1585
1586 if (likely(!do_fastopen)) {
1587 int err;
1588 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1589 ireq->ir_rmt_addr, ireq->opt);
1590 err = net_xmit_eval(err);
1591 if (err || want_cookie)
1592 goto drop_and_free;
1593
1594 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1595 tcp_rsk(req)->listener = NULL;
1596 /* Add the request_sock to the SYN table */
1597 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1598 if (fastopen_cookie_present(&foc) && foc.len != 0)
1599 NET_INC_STATS_BH(sock_net(sk),
1600 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1601 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1602 goto drop_and_free;
1603
1604 return 0;
1605
1606 drop_and_release:
1607 dst_release(dst);
1608 drop_and_free:
1609 reqsk_free(req);
1610 drop:
1611 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1612 return 0;
1613 }
1614 EXPORT_SYMBOL(tcp_v4_conn_request);
1615
1616
1617 /*
1618 * The three way handshake has completed - we got a valid synack -
1619 * now create the new socket.
1620 */
1621 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1622 struct request_sock *req,
1623 struct dst_entry *dst)
1624 {
1625 struct inet_request_sock *ireq;
1626 struct inet_sock *newinet;
1627 struct tcp_sock *newtp;
1628 struct sock *newsk;
1629 #ifdef CONFIG_TCP_MD5SIG
1630 struct tcp_md5sig_key *key;
1631 #endif
1632 struct ip_options_rcu *inet_opt;
1633
1634 if (sk_acceptq_is_full(sk))
1635 goto exit_overflow;
1636
1637 newsk = tcp_create_openreq_child(sk, req, skb);
1638 if (!newsk)
1639 goto exit_nonewsk;
1640
1641 newsk->sk_gso_type = SKB_GSO_TCPV4;
1642 inet_sk_rx_dst_set(newsk, skb);
1643
1644 newtp = tcp_sk(newsk);
1645 newinet = inet_sk(newsk);
1646 ireq = inet_rsk(req);
1647 newinet->inet_daddr = ireq->ir_rmt_addr;
1648 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1649 newinet->inet_saddr = ireq->ir_loc_addr;
1650 inet_opt = ireq->opt;
1651 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1652 ireq->opt = NULL;
1653 newinet->mc_index = inet_iif(skb);
1654 newinet->mc_ttl = ip_hdr(skb)->ttl;
1655 newinet->rcv_tos = ip_hdr(skb)->tos;
1656 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1657 if (inet_opt)
1658 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1659 newinet->inet_id = newtp->write_seq ^ jiffies;
1660
1661 if (!dst) {
1662 dst = inet_csk_route_child_sock(sk, newsk, req);
1663 if (!dst)
1664 goto put_and_exit;
1665 } else {
1666 /* syncookie case : see end of cookie_v4_check() */
1667 }
1668 sk_setup_caps(newsk, dst);
1669
1670 tcp_mtup_init(newsk);
1671 tcp_sync_mss(newsk, dst_mtu(dst));
1672 newtp->advmss = dst_metric_advmss(dst);
1673 if (tcp_sk(sk)->rx_opt.user_mss &&
1674 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1675 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1676
1677 tcp_initialize_rcv_mss(newsk);
1678
1679 #ifdef CONFIG_TCP_MD5SIG
1680 /* Copy over the MD5 key from the original socket */
1681 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1682 AF_INET);
1683 if (key != NULL) {
1684 /*
1685 * We're using one, so create a matching key
1686 * on the newsk structure. If we fail to get
1687 * memory, then we end up not copying the key
1688 * across. Shucks.
1689 */
1690 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1691 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1692 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1693 }
1694 #endif
1695
1696 if (__inet_inherit_port(sk, newsk) < 0)
1697 goto put_and_exit;
1698 __inet_hash_nolisten(newsk, NULL);
1699
1700 return newsk;
1701
1702 exit_overflow:
1703 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1704 exit_nonewsk:
1705 dst_release(dst);
1706 exit:
1707 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1708 return NULL;
1709 put_and_exit:
1710 inet_csk_prepare_forced_close(newsk);
1711 tcp_done(newsk);
1712 goto exit;
1713 }
1714 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1715
1716 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1717 {
1718 struct tcphdr *th = tcp_hdr(skb);
1719 const struct iphdr *iph = ip_hdr(skb);
1720 struct sock *nsk;
1721 struct request_sock **prev;
1722 /* Find possible connection requests. */
1723 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1724 iph->saddr, iph->daddr);
1725 if (req)
1726 return tcp_check_req(sk, skb, req, prev, false);
1727
1728 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1729 th->source, iph->daddr, th->dest, inet_iif(skb));
1730
1731 if (nsk) {
1732 if (nsk->sk_state != TCP_TIME_WAIT) {
1733 bh_lock_sock(nsk);
1734 return nsk;
1735 }
1736 inet_twsk_put(inet_twsk(nsk));
1737 return NULL;
1738 }
1739
1740 #ifdef CONFIG_SYN_COOKIES
1741 if (!th->syn)
1742 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1743 #endif
1744 return sk;
1745 }
1746
1747 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1748 {
1749 const struct iphdr *iph = ip_hdr(skb);
1750
1751 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1752 if (!tcp_v4_check(skb->len, iph->saddr,
1753 iph->daddr, skb->csum)) {
1754 skb->ip_summed = CHECKSUM_UNNECESSARY;
1755 return 0;
1756 }
1757 }
1758
1759 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1760 skb->len, IPPROTO_TCP, 0);
1761
1762 if (skb->len <= 76) {
1763 return __skb_checksum_complete(skb);
1764 }
1765 return 0;
1766 }
1767
1768
1769 /* The socket must have it's spinlock held when we get
1770 * here.
1771 *
1772 * We have a potential double-lock case here, so even when
1773 * doing backlog processing we use the BH locking scheme.
1774 * This is because we cannot sleep with the original spinlock
1775 * held.
1776 */
1777 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1778 {
1779 struct sock *rsk;
1780 #ifdef CONFIG_TCP_MD5SIG
1781 /*
1782 * We really want to reject the packet as early as possible
1783 * if:
1784 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1785 * o There is an MD5 option and we're not expecting one
1786 */
1787 if (tcp_v4_inbound_md5_hash(sk, skb))
1788 goto discard;
1789 #endif
1790
1791 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1792 struct dst_entry *dst = sk->sk_rx_dst;
1793
1794 sock_rps_save_rxhash(sk, skb);
1795 if (dst) {
1796 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1797 dst->ops->check(dst, 0) == NULL) {
1798 dst_release(dst);
1799 sk->sk_rx_dst = NULL;
1800 }
1801 }
1802 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1803 return 0;
1804 }
1805
1806 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1807 goto csum_err;
1808
1809 if (sk->sk_state == TCP_LISTEN) {
1810 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1811 if (!nsk)
1812 goto discard;
1813
1814 if (nsk != sk) {
1815 sock_rps_save_rxhash(nsk, skb);
1816 if (tcp_child_process(sk, nsk, skb)) {
1817 rsk = nsk;
1818 goto reset;
1819 }
1820 return 0;
1821 }
1822 } else
1823 sock_rps_save_rxhash(sk, skb);
1824
1825 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1826 rsk = sk;
1827 goto reset;
1828 }
1829 return 0;
1830
1831 reset:
1832 tcp_v4_send_reset(rsk, skb);
1833 discard:
1834 kfree_skb(skb);
1835 /* Be careful here. If this function gets more complicated and
1836 * gcc suffers from register pressure on the x86, sk (in %ebx)
1837 * might be destroyed here. This current version compiles correctly,
1838 * but you have been warned.
1839 */
1840 return 0;
1841
1842 csum_err:
1843 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1844 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1845 goto discard;
1846 }
1847 EXPORT_SYMBOL(tcp_v4_do_rcv);
1848
1849 void tcp_v4_early_demux(struct sk_buff *skb)
1850 {
1851 const struct iphdr *iph;
1852 const struct tcphdr *th;
1853 struct sock *sk;
1854
1855 if (skb->pkt_type != PACKET_HOST)
1856 return;
1857
1858 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1859 return;
1860
1861 iph = ip_hdr(skb);
1862 th = tcp_hdr(skb);
1863
1864 if (th->doff < sizeof(struct tcphdr) / 4)
1865 return;
1866
1867 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1868 iph->saddr, th->source,
1869 iph->daddr, ntohs(th->dest),
1870 skb->skb_iif);
1871 if (sk) {
1872 skb->sk = sk;
1873 skb->destructor = sock_edemux;
1874 if (sk->sk_state != TCP_TIME_WAIT) {
1875 struct dst_entry *dst = sk->sk_rx_dst;
1876
1877 if (dst)
1878 dst = dst_check(dst, 0);
1879 if (dst &&
1880 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1881 skb_dst_set_noref(skb, dst);
1882 }
1883 }
1884 }
1885
1886 /* Packet is added to VJ-style prequeue for processing in process
1887 * context, if a reader task is waiting. Apparently, this exciting
1888 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1889 * failed somewhere. Latency? Burstiness? Well, at least now we will
1890 * see, why it failed. 8)8) --ANK
1891 *
1892 */
1893 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1894 {
1895 struct tcp_sock *tp = tcp_sk(sk);
1896
1897 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1898 return false;
1899
1900 if (skb->len <= tcp_hdrlen(skb) &&
1901 skb_queue_len(&tp->ucopy.prequeue) == 0)
1902 return false;
1903
1904 skb_dst_force(skb);
1905 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1906 tp->ucopy.memory += skb->truesize;
1907 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1908 struct sk_buff *skb1;
1909
1910 BUG_ON(sock_owned_by_user(sk));
1911
1912 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1913 sk_backlog_rcv(sk, skb1);
1914 NET_INC_STATS_BH(sock_net(sk),
1915 LINUX_MIB_TCPPREQUEUEDROPPED);
1916 }
1917
1918 tp->ucopy.memory = 0;
1919 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1920 wake_up_interruptible_sync_poll(sk_sleep(sk),
1921 POLLIN | POLLRDNORM | POLLRDBAND);
1922 if (!inet_csk_ack_scheduled(sk))
1923 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1924 (3 * tcp_rto_min(sk)) / 4,
1925 TCP_RTO_MAX);
1926 }
1927 return true;
1928 }
1929 EXPORT_SYMBOL(tcp_prequeue);
1930
1931 /*
1932 * From tcp_input.c
1933 */
1934
1935 int tcp_v4_rcv(struct sk_buff *skb)
1936 {
1937 const struct iphdr *iph;
1938 const struct tcphdr *th;
1939 struct sock *sk;
1940 int ret;
1941 struct net *net = dev_net(skb->dev);
1942
1943 if (skb->pkt_type != PACKET_HOST)
1944 goto discard_it;
1945
1946 /* Count it even if it's bad */
1947 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1948
1949 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1950 goto discard_it;
1951
1952 th = tcp_hdr(skb);
1953
1954 if (th->doff < sizeof(struct tcphdr) / 4)
1955 goto bad_packet;
1956 if (!pskb_may_pull(skb, th->doff * 4))
1957 goto discard_it;
1958
1959 /* An explanation is required here, I think.
1960 * Packet length and doff are validated by header prediction,
1961 * provided case of th->doff==0 is eliminated.
1962 * So, we defer the checks. */
1963 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1964 goto csum_error;
1965
1966 th = tcp_hdr(skb);
1967 iph = ip_hdr(skb);
1968 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1969 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1970 skb->len - th->doff * 4);
1971 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1972 TCP_SKB_CB(skb)->when = 0;
1973 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974 TCP_SKB_CB(skb)->sacked = 0;
1975
1976 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1977 if (!sk)
1978 goto no_tcp_socket;
1979
1980 process:
1981 if (sk->sk_state == TCP_TIME_WAIT)
1982 goto do_time_wait;
1983
1984 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1985 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1986 goto discard_and_relse;
1987 }
1988
1989 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1990 goto discard_and_relse;
1991 nf_reset(skb);
1992
1993 if (sk_filter(sk, skb))
1994 goto discard_and_relse;
1995
1996 sk_mark_napi_id(sk, skb);
1997 skb->dev = NULL;
1998
1999 bh_lock_sock_nested(sk);
2000 ret = 0;
2001 if (!sock_owned_by_user(sk)) {
2002 #ifdef CONFIG_NET_DMA
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2005 tp->ucopy.dma_chan = net_dma_find_channel();
2006 if (tp->ucopy.dma_chan)
2007 ret = tcp_v4_do_rcv(sk, skb);
2008 else
2009 #endif
2010 {
2011 if (!tcp_prequeue(sk, skb))
2012 ret = tcp_v4_do_rcv(sk, skb);
2013 }
2014 } else if (unlikely(sk_add_backlog(sk, skb,
2015 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2016 bh_unlock_sock(sk);
2017 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2018 goto discard_and_relse;
2019 }
2020 bh_unlock_sock(sk);
2021
2022 sock_put(sk);
2023
2024 return ret;
2025
2026 no_tcp_socket:
2027 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2028 goto discard_it;
2029
2030 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2031 csum_error:
2032 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2033 bad_packet:
2034 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2035 } else {
2036 tcp_v4_send_reset(NULL, skb);
2037 }
2038
2039 discard_it:
2040 /* Discard frame. */
2041 kfree_skb(skb);
2042 return 0;
2043
2044 discard_and_relse:
2045 sock_put(sk);
2046 goto discard_it;
2047
2048 do_time_wait:
2049 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2050 inet_twsk_put(inet_twsk(sk));
2051 goto discard_it;
2052 }
2053
2054 if (skb->len < (th->doff << 2)) {
2055 inet_twsk_put(inet_twsk(sk));
2056 goto bad_packet;
2057 }
2058 if (tcp_checksum_complete(skb)) {
2059 inet_twsk_put(inet_twsk(sk));
2060 goto csum_error;
2061 }
2062 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2063 case TCP_TW_SYN: {
2064 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2065 &tcp_hashinfo,
2066 iph->saddr, th->source,
2067 iph->daddr, th->dest,
2068 inet_iif(skb));
2069 if (sk2) {
2070 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2071 inet_twsk_put(inet_twsk(sk));
2072 sk = sk2;
2073 goto process;
2074 }
2075 /* Fall through to ACK */
2076 }
2077 case TCP_TW_ACK:
2078 tcp_v4_timewait_ack(sk, skb);
2079 break;
2080 case TCP_TW_RST:
2081 goto no_tcp_socket;
2082 case TCP_TW_SUCCESS:;
2083 }
2084 goto discard_it;
2085 }
2086
2087 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2088 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2089 .twsk_unique = tcp_twsk_unique,
2090 .twsk_destructor= tcp_twsk_destructor,
2091 };
2092
2093 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2094 {
2095 struct dst_entry *dst = skb_dst(skb);
2096
2097 dst_hold(dst);
2098 sk->sk_rx_dst = dst;
2099 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2100 }
2101 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2102
2103 const struct inet_connection_sock_af_ops ipv4_specific = {
2104 .queue_xmit = ip_queue_xmit,
2105 .send_check = tcp_v4_send_check,
2106 .rebuild_header = inet_sk_rebuild_header,
2107 .sk_rx_dst_set = inet_sk_rx_dst_set,
2108 .conn_request = tcp_v4_conn_request,
2109 .syn_recv_sock = tcp_v4_syn_recv_sock,
2110 .net_header_len = sizeof(struct iphdr),
2111 .setsockopt = ip_setsockopt,
2112 .getsockopt = ip_getsockopt,
2113 .addr2sockaddr = inet_csk_addr2sockaddr,
2114 .sockaddr_len = sizeof(struct sockaddr_in),
2115 .bind_conflict = inet_csk_bind_conflict,
2116 #ifdef CONFIG_COMPAT
2117 .compat_setsockopt = compat_ip_setsockopt,
2118 .compat_getsockopt = compat_ip_getsockopt,
2119 #endif
2120 };
2121 EXPORT_SYMBOL(ipv4_specific);
2122
2123 #ifdef CONFIG_TCP_MD5SIG
2124 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2125 .md5_lookup = tcp_v4_md5_lookup,
2126 .calc_md5_hash = tcp_v4_md5_hash_skb,
2127 .md5_parse = tcp_v4_parse_md5_keys,
2128 };
2129 #endif
2130
2131 /* NOTE: A lot of things set to zero explicitly by call to
2132 * sk_alloc() so need not be done here.
2133 */
2134 static int tcp_v4_init_sock(struct sock *sk)
2135 {
2136 struct inet_connection_sock *icsk = inet_csk(sk);
2137
2138 tcp_init_sock(sk);
2139
2140 icsk->icsk_af_ops = &ipv4_specific;
2141
2142 #ifdef CONFIG_TCP_MD5SIG
2143 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2144 #endif
2145
2146 return 0;
2147 }
2148
2149 void tcp_v4_destroy_sock(struct sock *sk)
2150 {
2151 struct tcp_sock *tp = tcp_sk(sk);
2152
2153 tcp_clear_xmit_timers(sk);
2154
2155 tcp_cleanup_congestion_control(sk);
2156
2157 /* Cleanup up the write buffer. */
2158 tcp_write_queue_purge(sk);
2159
2160 /* Cleans up our, hopefully empty, out_of_order_queue. */
2161 __skb_queue_purge(&tp->out_of_order_queue);
2162
2163 #ifdef CONFIG_TCP_MD5SIG
2164 /* Clean up the MD5 key list, if any */
2165 if (tp->md5sig_info) {
2166 tcp_clear_md5_list(sk);
2167 kfree_rcu(tp->md5sig_info, rcu);
2168 tp->md5sig_info = NULL;
2169 }
2170 #endif
2171
2172 #ifdef CONFIG_NET_DMA
2173 /* Cleans up our sk_async_wait_queue */
2174 __skb_queue_purge(&sk->sk_async_wait_queue);
2175 #endif
2176
2177 /* Clean prequeue, it must be empty really */
2178 __skb_queue_purge(&tp->ucopy.prequeue);
2179
2180 /* Clean up a referenced TCP bind bucket. */
2181 if (inet_csk(sk)->icsk_bind_hash)
2182 inet_put_port(sk);
2183
2184 BUG_ON(tp->fastopen_rsk != NULL);
2185
2186 /* If socket is aborted during connect operation */
2187 tcp_free_fastopen_req(tp);
2188
2189 sk_sockets_allocated_dec(sk);
2190 sock_release_memcg(sk);
2191 }
2192 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2193
2194 #ifdef CONFIG_PROC_FS
2195 /* Proc filesystem TCP sock list dumping. */
2196
2197 /*
2198 * Get next listener socket follow cur. If cur is NULL, get first socket
2199 * starting from bucket given in st->bucket; when st->bucket is zero the
2200 * very first socket in the hash table is returned.
2201 */
2202 static void *listening_get_next(struct seq_file *seq, void *cur)
2203 {
2204 struct inet_connection_sock *icsk;
2205 struct hlist_nulls_node *node;
2206 struct sock *sk = cur;
2207 struct inet_listen_hashbucket *ilb;
2208 struct tcp_iter_state *st = seq->private;
2209 struct net *net = seq_file_net(seq);
2210
2211 if (!sk) {
2212 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2213 spin_lock_bh(&ilb->lock);
2214 sk = sk_nulls_head(&ilb->head);
2215 st->offset = 0;
2216 goto get_sk;
2217 }
2218 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2219 ++st->num;
2220 ++st->offset;
2221
2222 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2223 struct request_sock *req = cur;
2224
2225 icsk = inet_csk(st->syn_wait_sk);
2226 req = req->dl_next;
2227 while (1) {
2228 while (req) {
2229 if (req->rsk_ops->family == st->family) {
2230 cur = req;
2231 goto out;
2232 }
2233 req = req->dl_next;
2234 }
2235 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2236 break;
2237 get_req:
2238 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2239 }
2240 sk = sk_nulls_next(st->syn_wait_sk);
2241 st->state = TCP_SEQ_STATE_LISTENING;
2242 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2243 } else {
2244 icsk = inet_csk(sk);
2245 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2246 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2247 goto start_req;
2248 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2249 sk = sk_nulls_next(sk);
2250 }
2251 get_sk:
2252 sk_nulls_for_each_from(sk, node) {
2253 if (!net_eq(sock_net(sk), net))
2254 continue;
2255 if (sk->sk_family == st->family) {
2256 cur = sk;
2257 goto out;
2258 }
2259 icsk = inet_csk(sk);
2260 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2261 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2262 start_req:
2263 st->uid = sock_i_uid(sk);
2264 st->syn_wait_sk = sk;
2265 st->state = TCP_SEQ_STATE_OPENREQ;
2266 st->sbucket = 0;
2267 goto get_req;
2268 }
2269 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2270 }
2271 spin_unlock_bh(&ilb->lock);
2272 st->offset = 0;
2273 if (++st->bucket < INET_LHTABLE_SIZE) {
2274 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2275 spin_lock_bh(&ilb->lock);
2276 sk = sk_nulls_head(&ilb->head);
2277 goto get_sk;
2278 }
2279 cur = NULL;
2280 out:
2281 return cur;
2282 }
2283
2284 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2285 {
2286 struct tcp_iter_state *st = seq->private;
2287 void *rc;
2288
2289 st->bucket = 0;
2290 st->offset = 0;
2291 rc = listening_get_next(seq, NULL);
2292
2293 while (rc && *pos) {
2294 rc = listening_get_next(seq, rc);
2295 --*pos;
2296 }
2297 return rc;
2298 }
2299
2300 static inline bool empty_bucket(const struct tcp_iter_state *st)
2301 {
2302 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2303 }
2304
2305 /*
2306 * Get first established socket starting from bucket given in st->bucket.
2307 * If st->bucket is zero, the very first socket in the hash is returned.
2308 */
2309 static void *established_get_first(struct seq_file *seq)
2310 {
2311 struct tcp_iter_state *st = seq->private;
2312 struct net *net = seq_file_net(seq);
2313 void *rc = NULL;
2314
2315 st->offset = 0;
2316 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2317 struct sock *sk;
2318 struct hlist_nulls_node *node;
2319 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2320
2321 /* Lockless fast path for the common case of empty buckets */
2322 if (empty_bucket(st))
2323 continue;
2324
2325 spin_lock_bh(lock);
2326 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2327 if (sk->sk_family != st->family ||
2328 !net_eq(sock_net(sk), net)) {
2329 continue;
2330 }
2331 rc = sk;
2332 goto out;
2333 }
2334 spin_unlock_bh(lock);
2335 }
2336 out:
2337 return rc;
2338 }
2339
2340 static void *established_get_next(struct seq_file *seq, void *cur)
2341 {
2342 struct sock *sk = cur;
2343 struct hlist_nulls_node *node;
2344 struct tcp_iter_state *st = seq->private;
2345 struct net *net = seq_file_net(seq);
2346
2347 ++st->num;
2348 ++st->offset;
2349
2350 sk = sk_nulls_next(sk);
2351
2352 sk_nulls_for_each_from(sk, node) {
2353 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2354 return sk;
2355 }
2356
2357 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2358 ++st->bucket;
2359 return established_get_first(seq);
2360 }
2361
2362 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2363 {
2364 struct tcp_iter_state *st = seq->private;
2365 void *rc;
2366
2367 st->bucket = 0;
2368 rc = established_get_first(seq);
2369
2370 while (rc && pos) {
2371 rc = established_get_next(seq, rc);
2372 --pos;
2373 }
2374 return rc;
2375 }
2376
2377 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2378 {
2379 void *rc;
2380 struct tcp_iter_state *st = seq->private;
2381
2382 st->state = TCP_SEQ_STATE_LISTENING;
2383 rc = listening_get_idx(seq, &pos);
2384
2385 if (!rc) {
2386 st->state = TCP_SEQ_STATE_ESTABLISHED;
2387 rc = established_get_idx(seq, pos);
2388 }
2389
2390 return rc;
2391 }
2392
2393 static void *tcp_seek_last_pos(struct seq_file *seq)
2394 {
2395 struct tcp_iter_state *st = seq->private;
2396 int offset = st->offset;
2397 int orig_num = st->num;
2398 void *rc = NULL;
2399
2400 switch (st->state) {
2401 case TCP_SEQ_STATE_OPENREQ:
2402 case TCP_SEQ_STATE_LISTENING:
2403 if (st->bucket >= INET_LHTABLE_SIZE)
2404 break;
2405 st->state = TCP_SEQ_STATE_LISTENING;
2406 rc = listening_get_next(seq, NULL);
2407 while (offset-- && rc)
2408 rc = listening_get_next(seq, rc);
2409 if (rc)
2410 break;
2411 st->bucket = 0;
2412 st->state = TCP_SEQ_STATE_ESTABLISHED;
2413 /* Fallthrough */
2414 case TCP_SEQ_STATE_ESTABLISHED:
2415 if (st->bucket > tcp_hashinfo.ehash_mask)
2416 break;
2417 rc = established_get_first(seq);
2418 while (offset-- && rc)
2419 rc = established_get_next(seq, rc);
2420 }
2421
2422 st->num = orig_num;
2423
2424 return rc;
2425 }
2426
2427 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2428 {
2429 struct tcp_iter_state *st = seq->private;
2430 void *rc;
2431
2432 if (*pos && *pos == st->last_pos) {
2433 rc = tcp_seek_last_pos(seq);
2434 if (rc)
2435 goto out;
2436 }
2437
2438 st->state = TCP_SEQ_STATE_LISTENING;
2439 st->num = 0;
2440 st->bucket = 0;
2441 st->offset = 0;
2442 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2443
2444 out:
2445 st->last_pos = *pos;
2446 return rc;
2447 }
2448
2449 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450 {
2451 struct tcp_iter_state *st = seq->private;
2452 void *rc = NULL;
2453
2454 if (v == SEQ_START_TOKEN) {
2455 rc = tcp_get_idx(seq, 0);
2456 goto out;
2457 }
2458
2459 switch (st->state) {
2460 case TCP_SEQ_STATE_OPENREQ:
2461 case TCP_SEQ_STATE_LISTENING:
2462 rc = listening_get_next(seq, v);
2463 if (!rc) {
2464 st->state = TCP_SEQ_STATE_ESTABLISHED;
2465 st->bucket = 0;
2466 st->offset = 0;
2467 rc = established_get_first(seq);
2468 }
2469 break;
2470 case TCP_SEQ_STATE_ESTABLISHED:
2471 rc = established_get_next(seq, v);
2472 break;
2473 }
2474 out:
2475 ++*pos;
2476 st->last_pos = *pos;
2477 return rc;
2478 }
2479
2480 static void tcp_seq_stop(struct seq_file *seq, void *v)
2481 {
2482 struct tcp_iter_state *st = seq->private;
2483
2484 switch (st->state) {
2485 case TCP_SEQ_STATE_OPENREQ:
2486 if (v) {
2487 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2488 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2489 }
2490 case TCP_SEQ_STATE_LISTENING:
2491 if (v != SEQ_START_TOKEN)
2492 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2493 break;
2494 case TCP_SEQ_STATE_ESTABLISHED:
2495 if (v)
2496 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2497 break;
2498 }
2499 }
2500
2501 int tcp_seq_open(struct inode *inode, struct file *file)
2502 {
2503 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2504 struct tcp_iter_state *s;
2505 int err;
2506
2507 err = seq_open_net(inode, file, &afinfo->seq_ops,
2508 sizeof(struct tcp_iter_state));
2509 if (err < 0)
2510 return err;
2511
2512 s = ((struct seq_file *)file->private_data)->private;
2513 s->family = afinfo->family;
2514 s->last_pos = 0;
2515 return 0;
2516 }
2517 EXPORT_SYMBOL(tcp_seq_open);
2518
2519 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2520 {
2521 int rc = 0;
2522 struct proc_dir_entry *p;
2523
2524 afinfo->seq_ops.start = tcp_seq_start;
2525 afinfo->seq_ops.next = tcp_seq_next;
2526 afinfo->seq_ops.stop = tcp_seq_stop;
2527
2528 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2529 afinfo->seq_fops, afinfo);
2530 if (!p)
2531 rc = -ENOMEM;
2532 return rc;
2533 }
2534 EXPORT_SYMBOL(tcp_proc_register);
2535
2536 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2537 {
2538 remove_proc_entry(afinfo->name, net->proc_net);
2539 }
2540 EXPORT_SYMBOL(tcp_proc_unregister);
2541
2542 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2543 struct seq_file *f, int i, kuid_t uid, int *len)
2544 {
2545 const struct inet_request_sock *ireq = inet_rsk(req);
2546 long delta = req->expires - jiffies;
2547
2548 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2549 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK%n",
2550 i,
2551 ireq->ir_loc_addr,
2552 ntohs(inet_sk(sk)->inet_sport),
2553 ireq->ir_rmt_addr,
2554 ntohs(ireq->ir_rmt_port),
2555 TCP_SYN_RECV,
2556 0, 0, /* could print option size, but that is af dependent. */
2557 1, /* timers active (only the expire timer) */
2558 jiffies_delta_to_clock_t(delta),
2559 req->num_timeout,
2560 from_kuid_munged(seq_user_ns(f), uid),
2561 0, /* non standard timer */
2562 0, /* open_requests have no inode */
2563 atomic_read(&sk->sk_refcnt),
2564 req,
2565 len);
2566 }
2567
2568 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2569 {
2570 int timer_active;
2571 unsigned long timer_expires;
2572 const struct tcp_sock *tp = tcp_sk(sk);
2573 const struct inet_connection_sock *icsk = inet_csk(sk);
2574 const struct inet_sock *inet = inet_sk(sk);
2575 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2576 __be32 dest = inet->inet_daddr;
2577 __be32 src = inet->inet_rcv_saddr;
2578 __u16 destp = ntohs(inet->inet_dport);
2579 __u16 srcp = ntohs(inet->inet_sport);
2580 int rx_queue;
2581
2582 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2583 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2584 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2585 timer_active = 1;
2586 timer_expires = icsk->icsk_timeout;
2587 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2588 timer_active = 4;
2589 timer_expires = icsk->icsk_timeout;
2590 } else if (timer_pending(&sk->sk_timer)) {
2591 timer_active = 2;
2592 timer_expires = sk->sk_timer.expires;
2593 } else {
2594 timer_active = 0;
2595 timer_expires = jiffies;
2596 }
2597
2598 if (sk->sk_state == TCP_LISTEN)
2599 rx_queue = sk->sk_ack_backlog;
2600 else
2601 /*
2602 * because we dont lock socket, we might find a transient negative value
2603 */
2604 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2605
2606 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2607 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d%n",
2608 i, src, srcp, dest, destp, sk->sk_state,
2609 tp->write_seq - tp->snd_una,
2610 rx_queue,
2611 timer_active,
2612 jiffies_delta_to_clock_t(timer_expires - jiffies),
2613 icsk->icsk_retransmits,
2614 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2615 icsk->icsk_probes_out,
2616 sock_i_ino(sk),
2617 atomic_read(&sk->sk_refcnt), sk,
2618 jiffies_to_clock_t(icsk->icsk_rto),
2619 jiffies_to_clock_t(icsk->icsk_ack.ato),
2620 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2621 tp->snd_cwnd,
2622 sk->sk_state == TCP_LISTEN ?
2623 (fastopenq ? fastopenq->max_qlen : 0) :
2624 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2625 len);
2626 }
2627
2628 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2629 struct seq_file *f, int i, int *len)
2630 {
2631 __be32 dest, src;
2632 __u16 destp, srcp;
2633 long delta = tw->tw_ttd - jiffies;
2634
2635 dest = tw->tw_daddr;
2636 src = tw->tw_rcv_saddr;
2637 destp = ntohs(tw->tw_dport);
2638 srcp = ntohs(tw->tw_sport);
2639
2640 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2641 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2642 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2643 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2644 atomic_read(&tw->tw_refcnt), tw, len);
2645 }
2646
2647 #define TMPSZ 150
2648
2649 static int tcp4_seq_show(struct seq_file *seq, void *v)
2650 {
2651 struct tcp_iter_state *st;
2652 struct sock *sk = v;
2653 int len;
2654
2655 if (v == SEQ_START_TOKEN) {
2656 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2657 " sl local_address rem_address st tx_queue "
2658 "rx_queue tr tm->when retrnsmt uid timeout "
2659 "inode");
2660 goto out;
2661 }
2662 st = seq->private;
2663
2664 switch (st->state) {
2665 case TCP_SEQ_STATE_LISTENING:
2666 case TCP_SEQ_STATE_ESTABLISHED:
2667 if (sk->sk_state == TCP_TIME_WAIT)
2668 get_timewait4_sock(v, seq, st->num, &len);
2669 else
2670 get_tcp4_sock(v, seq, st->num, &len);
2671 break;
2672 case TCP_SEQ_STATE_OPENREQ:
2673 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2674 break;
2675 }
2676 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2677 out:
2678 return 0;
2679 }
2680
2681 static const struct file_operations tcp_afinfo_seq_fops = {
2682 .owner = THIS_MODULE,
2683 .open = tcp_seq_open,
2684 .read = seq_read,
2685 .llseek = seq_lseek,
2686 .release = seq_release_net
2687 };
2688
2689 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2690 .name = "tcp",
2691 .family = AF_INET,
2692 .seq_fops = &tcp_afinfo_seq_fops,
2693 .seq_ops = {
2694 .show = tcp4_seq_show,
2695 },
2696 };
2697
2698 static int __net_init tcp4_proc_init_net(struct net *net)
2699 {
2700 return tcp_proc_register(net, &tcp4_seq_afinfo);
2701 }
2702
2703 static void __net_exit tcp4_proc_exit_net(struct net *net)
2704 {
2705 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2706 }
2707
2708 static struct pernet_operations tcp4_net_ops = {
2709 .init = tcp4_proc_init_net,
2710 .exit = tcp4_proc_exit_net,
2711 };
2712
2713 int __init tcp4_proc_init(void)
2714 {
2715 return register_pernet_subsys(&tcp4_net_ops);
2716 }
2717
2718 void tcp4_proc_exit(void)
2719 {
2720 unregister_pernet_subsys(&tcp4_net_ops);
2721 }
2722 #endif /* CONFIG_PROC_FS */
2723
2724 struct proto tcp_prot = {
2725 .name = "TCP",
2726 .owner = THIS_MODULE,
2727 .close = tcp_close,
2728 .connect = tcp_v4_connect,
2729 .disconnect = tcp_disconnect,
2730 .accept = inet_csk_accept,
2731 .ioctl = tcp_ioctl,
2732 .init = tcp_v4_init_sock,
2733 .destroy = tcp_v4_destroy_sock,
2734 .shutdown = tcp_shutdown,
2735 .setsockopt = tcp_setsockopt,
2736 .getsockopt = tcp_getsockopt,
2737 .recvmsg = tcp_recvmsg,
2738 .sendmsg = tcp_sendmsg,
2739 .sendpage = tcp_sendpage,
2740 .backlog_rcv = tcp_v4_do_rcv,
2741 .release_cb = tcp_release_cb,
2742 .mtu_reduced = tcp_v4_mtu_reduced,
2743 .hash = inet_hash,
2744 .unhash = inet_unhash,
2745 .get_port = inet_csk_get_port,
2746 .enter_memory_pressure = tcp_enter_memory_pressure,
2747 .stream_memory_free = tcp_stream_memory_free,
2748 .sockets_allocated = &tcp_sockets_allocated,
2749 .orphan_count = &tcp_orphan_count,
2750 .memory_allocated = &tcp_memory_allocated,
2751 .memory_pressure = &tcp_memory_pressure,
2752 .sysctl_wmem = sysctl_tcp_wmem,
2753 .sysctl_rmem = sysctl_tcp_rmem,
2754 .max_header = MAX_TCP_HEADER,
2755 .obj_size = sizeof(struct tcp_sock),
2756 .slab_flags = SLAB_DESTROY_BY_RCU,
2757 .twsk_prot = &tcp_timewait_sock_ops,
2758 .rsk_prot = &tcp_request_sock_ops,
2759 .h.hashinfo = &tcp_hashinfo,
2760 .no_autobind = true,
2761 #ifdef CONFIG_COMPAT
2762 .compat_setsockopt = compat_tcp_setsockopt,
2763 .compat_getsockopt = compat_tcp_getsockopt,
2764 #endif
2765 #ifdef CONFIG_MEMCG_KMEM
2766 .init_cgroup = tcp_init_cgroup,
2767 .destroy_cgroup = tcp_destroy_cgroup,
2768 .proto_cgroup = tcp_proto_cgroup,
2769 #endif
2770 };
2771 EXPORT_SYMBOL(tcp_prot);
2772
2773 static int __net_init tcp_sk_init(struct net *net)
2774 {
2775 net->ipv4.sysctl_tcp_ecn = 2;
2776 return 0;
2777 }
2778
2779 static void __net_exit tcp_sk_exit(struct net *net)
2780 {
2781 }
2782
2783 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2784 {
2785 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2786 }
2787
2788 static struct pernet_operations __net_initdata tcp_sk_ops = {
2789 .init = tcp_sk_init,
2790 .exit = tcp_sk_exit,
2791 .exit_batch = tcp_sk_exit_batch,
2792 };
2793
2794 void __init tcp_v4_init(void)
2795 {
2796 inet_hashinfo_init(&tcp_hashinfo);
2797 if (register_pernet_subsys(&tcp_sk_ops))
2798 panic("Failed to create the TCP control socket.\n");
2799 }
This page took 0.13389 seconds and 5 git commands to generate.