1781dc650b9d3f07408e253a6b6258440acd3ac8
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
214 /*
215 * VJ's idea. We save last timestamp seen from
216 * the destination in peer table, when entering state
217 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218 * when trying new connection.
219 */
220 if (peer) {
221 inet_peer_refcheck(peer);
222 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224 tp->rx_opt.ts_recent = peer->tcp_ts;
225 }
226 }
227 }
228
229 inet->inet_dport = usin->sin_port;
230 inet->inet_daddr = daddr;
231
232 inet_csk(sk)->icsk_ext_hdr_len = 0;
233 if (inet_opt)
234 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
235
236 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
237
238 /* Socket identity is still unknown (sport may be zero).
239 * However we set state to SYN-SENT and not releasing socket
240 * lock select source port, enter ourselves into the hash tables and
241 * complete initialization after this.
242 */
243 tcp_set_state(sk, TCP_SYN_SENT);
244 err = inet_hash_connect(&tcp_death_row, sk);
245 if (err)
246 goto failure;
247
248 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249 inet->inet_sport, inet->inet_dport, sk);
250 if (IS_ERR(rt)) {
251 err = PTR_ERR(rt);
252 rt = NULL;
253 goto failure;
254 }
255 /* OK, now commit destination to socket. */
256 sk->sk_gso_type = SKB_GSO_TCPV4;
257 sk_setup_caps(sk, &rt->dst);
258
259 if (!tp->write_seq && likely(!tp->repair))
260 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261 inet->inet_daddr,
262 inet->inet_sport,
263 usin->sin_port);
264
265 inet->inet_id = tp->write_seq ^ jiffies;
266
267 if (likely(!tp->repair))
268 err = tcp_connect(sk);
269 else
270 err = tcp_repair_connect(sk);
271
272 rt = NULL;
273 if (err)
274 goto failure;
275
276 return 0;
277
278 failure:
279 /*
280 * This unhashes the socket and releases the local port,
281 * if necessary.
282 */
283 tcp_set_state(sk, TCP_CLOSE);
284 ip_rt_put(rt);
285 sk->sk_route_caps = 0;
286 inet->inet_dport = 0;
287 return err;
288 }
289 EXPORT_SYMBOL(tcp_v4_connect);
290
291 /*
292 * This routine does path mtu discovery as defined in RFC1191.
293 */
294 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
295 {
296 struct dst_entry *dst;
297 struct inet_sock *inet = inet_sk(sk);
298
299 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300 * send out by Linux are always <576bytes so they should go through
301 * unfragmented).
302 */
303 if (sk->sk_state == TCP_LISTEN)
304 return;
305
306 /* We don't check in the destentry if pmtu discovery is forbidden
307 * on this route. We just assume that no packet_to_big packets
308 * are send back when pmtu discovery is not active.
309 * There is a small race when the user changes this flag in the
310 * route, but I think that's acceptable.
311 */
312 if ((dst = __sk_dst_check(sk, 0)) == NULL)
313 return;
314
315 dst->ops->update_pmtu(dst, mtu);
316
317 /* Something is about to be wrong... Remember soft error
318 * for the case, if this connection will not able to recover.
319 */
320 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321 sk->sk_err_soft = EMSGSIZE;
322
323 mtu = dst_mtu(dst);
324
325 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327 tcp_sync_mss(sk, mtu);
328
329 /* Resend the TCP packet because it's
330 * clear that the old packet has been
331 * dropped. This is the new "fast" path mtu
332 * discovery.
333 */
334 tcp_simple_retransmit(sk);
335 } /* else let the usual retransmit timer handle it */
336 }
337
338 /*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355 {
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 __u32 seq;
366 __u32 remaining;
367 int err;
368 struct net *net = dev_net(icmp_skb->dev);
369
370 if (icmp_skb->len < (iph->ihl << 2) + 8) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
373 }
374
375 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376 iph->saddr, th->source, inet_iif(icmp_skb));
377 if (!sk) {
378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 return;
380 }
381 if (sk->sk_state == TCP_TIME_WAIT) {
382 inet_twsk_put(inet_twsk(sk));
383 return;
384 }
385
386 bh_lock_sock(sk);
387 /* If too many ICMPs get dropped on busy
388 * servers this needs to be solved differently.
389 */
390 if (sock_owned_by_user(sk))
391 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
392
393 if (sk->sk_state == TCP_CLOSE)
394 goto out;
395
396 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398 goto out;
399 }
400
401 icsk = inet_csk(sk);
402 tp = tcp_sk(sk);
403 seq = ntohl(th->seq);
404 if (sk->sk_state != TCP_LISTEN &&
405 !between(seq, tp->snd_una, tp->snd_nxt)) {
406 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407 goto out;
408 }
409
410 switch (type) {
411 case ICMP_SOURCE_QUENCH:
412 /* Just silently ignore these. */
413 goto out;
414 case ICMP_PARAMETERPROB:
415 err = EPROTO;
416 break;
417 case ICMP_DEST_UNREACH:
418 if (code > NR_ICMP_UNREACH)
419 goto out;
420
421 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422 if (!sock_owned_by_user(sk))
423 do_pmtu_discovery(sk, iph, info);
424 goto out;
425 }
426
427 err = icmp_err_convert[code].errno;
428 /* check if icmp_skb allows revert of backoff
429 * (see draft-zimmermann-tcp-lcd) */
430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431 break;
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 break;
435
436 if (sock_owned_by_user(sk))
437 break;
438
439 icsk->icsk_backoff--;
440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442 tcp_bound_rto(sk);
443
444 skb = tcp_write_queue_head(sk);
445 BUG_ON(!skb);
446
447 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450 if (remaining) {
451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452 remaining, TCP_RTO_MAX);
453 } else {
454 /* RTO revert clocked out retransmission.
455 * Will retransmit now */
456 tcp_retransmit_timer(sk);
457 }
458
459 break;
460 case ICMP_TIME_EXCEEDED:
461 err = EHOSTUNREACH;
462 break;
463 default:
464 goto out;
465 }
466
467 switch (sk->sk_state) {
468 struct request_sock *req, **prev;
469 case TCP_LISTEN:
470 if (sock_owned_by_user(sk))
471 goto out;
472
473 req = inet_csk_search_req(sk, &prev, th->dest,
474 iph->daddr, iph->saddr);
475 if (!req)
476 goto out;
477
478 /* ICMPs are not backlogged, hence we cannot get
479 an established socket here.
480 */
481 WARN_ON(req->sk);
482
483 if (seq != tcp_rsk(req)->snt_isn) {
484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485 goto out;
486 }
487
488 /*
489 * Still in SYN_RECV, just remove it silently.
490 * There is no good way to pass the error to the newly
491 * created socket, and POSIX does not want network
492 * errors returned from accept().
493 */
494 inet_csk_reqsk_queue_drop(sk, req, prev);
495 goto out;
496
497 case TCP_SYN_SENT:
498 case TCP_SYN_RECV: /* Cannot happen.
499 It can f.e. if SYNs crossed.
500 */
501 if (!sock_owned_by_user(sk)) {
502 sk->sk_err = err;
503
504 sk->sk_error_report(sk);
505
506 tcp_done(sk);
507 } else {
508 sk->sk_err_soft = err;
509 }
510 goto out;
511 }
512
513 /* If we've already connected we will keep trying
514 * until we time out, or the user gives up.
515 *
516 * rfc1122 4.2.3.9 allows to consider as hard errors
517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518 * but it is obsoleted by pmtu discovery).
519 *
520 * Note, that in modern internet, where routing is unreliable
521 * and in each dark corner broken firewalls sit, sending random
522 * errors ordered by their masters even this two messages finally lose
523 * their original sense (even Linux sends invalid PORT_UNREACHs)
524 *
525 * Now we are in compliance with RFCs.
526 * --ANK (980905)
527 */
528
529 inet = inet_sk(sk);
530 if (!sock_owned_by_user(sk) && inet->recverr) {
531 sk->sk_err = err;
532 sk->sk_error_report(sk);
533 } else { /* Only an error on timeout */
534 sk->sk_err_soft = err;
535 }
536
537 out:
538 bh_unlock_sock(sk);
539 sock_put(sk);
540 }
541
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543 __be32 saddr, __be32 daddr)
544 {
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
569 {
570 const struct iphdr *iph;
571 struct tcphdr *th;
572
573 if (!pskb_may_pull(skb, sizeof(*th)))
574 return -EINVAL;
575
576 iph = ip_hdr(skb);
577 th = tcp_hdr(skb);
578
579 th->check = 0;
580 skb->ip_summed = CHECKSUM_PARTIAL;
581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582 return 0;
583 }
584
585 /*
586 * This routine will send an RST to the other tcp.
587 *
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
596 */
597
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599 {
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606 } rep;
607 struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614 #endif
615 struct net *net;
616
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
620
621 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622 return;
623
624 /* Swap the send and the receive. */
625 memset(&rep, 0, sizeof(rep));
626 rep.th.dest = th->source;
627 rep.th.source = th->dest;
628 rep.th.doff = sizeof(struct tcphdr) / 4;
629 rep.th.rst = 1;
630
631 if (th->ack) {
632 rep.th.seq = th->ack_seq;
633 } else {
634 rep.th.ack = 1;
635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 skb->len - (th->doff << 2));
637 }
638
639 memset(&arg, 0, sizeof(arg));
640 arg.iov[0].iov_base = (unsigned char *)&rep;
641 arg.iov[0].iov_len = sizeof(rep.th);
642
643 #ifdef CONFIG_TCP_MD5SIG
644 hash_location = tcp_parse_md5sig_option(th);
645 if (!sk && hash_location) {
646 /*
647 * active side is lost. Try to find listening socket through
648 * source port, and then find md5 key through listening socket.
649 * we are not loose security here:
650 * Incoming packet is checked with md5 hash with finding key,
651 * no RST generated if md5 hash doesn't match.
652 */
653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654 &tcp_hashinfo, ip_hdr(skb)->daddr,
655 ntohs(th->source), inet_iif(skb));
656 /* don't send rst if it can't find key */
657 if (!sk1)
658 return;
659 rcu_read_lock();
660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr, AF_INET);
662 if (!key)
663 goto release_sk1;
664
665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667 goto release_sk1;
668 } else {
669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670 &ip_hdr(skb)->saddr,
671 AF_INET) : NULL;
672 }
673
674 if (key) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676 (TCPOPT_NOP << 16) |
677 (TCPOPT_MD5SIG << 8) |
678 TCPOLEN_MD5SIG);
679 /* Update length and the length the header thinks exists */
680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681 rep.th.doff = arg.iov[0].iov_len / 4;
682
683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684 key, ip_hdr(skb)->saddr,
685 ip_hdr(skb)->daddr, &rep.th);
686 }
687 #endif
688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689 ip_hdr(skb)->saddr, /* XXX */
690 arg.iov[0].iov_len, IPPROTO_TCP, 0);
691 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693 /* When socket is gone, all binding information is lost.
694 * routing might fail in this case. using iif for oif to
695 * make sure we can deliver it
696 */
697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699 net = dev_net(skb_dst(skb)->dev);
700 arg.tos = ip_hdr(skb)->tos;
701 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702 &arg, arg.iov[0].iov_len);
703
704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709 if (sk1) {
710 rcu_read_unlock();
711 sock_put(sk1);
712 }
713 #endif
714 }
715
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717 outside socket context is ugly, certainly. What can I do?
718 */
719
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721 u32 win, u32 ts, int oif,
722 struct tcp_md5sig_key *key,
723 int reply_flags, u8 tos)
724 {
725 const struct tcphdr *th = tcp_hdr(skb);
726 struct {
727 struct tcphdr th;
728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
732 ];
733 } rep;
734 struct ip_reply_arg arg;
735 struct net *net = dev_net(skb_dst(skb)->dev);
736
737 memset(&rep.th, 0, sizeof(struct tcphdr));
738 memset(&arg, 0, sizeof(arg));
739
740 arg.iov[0].iov_base = (unsigned char *)&rep;
741 arg.iov[0].iov_len = sizeof(rep.th);
742 if (ts) {
743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744 (TCPOPT_TIMESTAMP << 8) |
745 TCPOLEN_TIMESTAMP);
746 rep.opt[1] = htonl(tcp_time_stamp);
747 rep.opt[2] = htonl(ts);
748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749 }
750
751 /* Swap the send and the receive. */
752 rep.th.dest = th->source;
753 rep.th.source = th->dest;
754 rep.th.doff = arg.iov[0].iov_len / 4;
755 rep.th.seq = htonl(seq);
756 rep.th.ack_seq = htonl(ack);
757 rep.th.ack = 1;
758 rep.th.window = htons(win);
759
760 #ifdef CONFIG_TCP_MD5SIG
761 if (key) {
762 int offset = (ts) ? 3 : 0;
763
764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769 rep.th.doff = arg.iov[0].iov_len/4;
770
771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772 key, ip_hdr(skb)->saddr,
773 ip_hdr(skb)->daddr, &rep.th);
774 }
775 #endif
776 arg.flags = reply_flags;
777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778 ip_hdr(skb)->saddr, /* XXX */
779 arg.iov[0].iov_len, IPPROTO_TCP, 0);
780 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781 if (oif)
782 arg.bound_dev_if = oif;
783 arg.tos = tos;
784 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785 &arg, arg.iov[0].iov_len);
786
787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788 }
789
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791 {
792 struct inet_timewait_sock *tw = inet_twsk(sk);
793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcptw->tw_ts_recent,
798 tw->tw_bound_dev_if,
799 tcp_twsk_md5_key(tcptw),
800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801 tw->tw_tos
802 );
803
804 inet_twsk_put(tw);
805 }
806
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808 struct request_sock *req)
809 {
810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812 req->ts_recent,
813 0,
814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815 AF_INET),
816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817 ip_hdr(skb)->tos);
818 }
819
820 /*
821 * Send a SYN-ACK after having received a SYN.
822 * This still operates on a request_sock only, not on a big
823 * socket.
824 */
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826 struct request_sock *req,
827 struct request_values *rvp,
828 u16 queue_mapping,
829 bool nocache)
830 {
831 const struct inet_request_sock *ireq = inet_rsk(req);
832 struct flowi4 fl4;
833 int err = -1;
834 struct sk_buff * skb;
835
836 /* First, grab a route. */
837 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req, nocache)) == NULL)
838 return -1;
839
840 skb = tcp_make_synack(sk, dst, req, rvp);
841
842 if (skb) {
843 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
844
845 skb_set_queue_mapping(skb, queue_mapping);
846 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
847 ireq->rmt_addr,
848 ireq->opt);
849 err = net_xmit_eval(err);
850 }
851
852 return err;
853 }
854
855 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
856 struct request_values *rvp)
857 {
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
860 }
861
862 /*
863 * IPv4 request_sock destructor.
864 */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867 kfree(inet_rsk(req)->opt);
868 }
869
870 /*
871 * Return true if a syncookie should be sent
872 */
873 bool tcp_syn_flood_action(struct sock *sk,
874 const struct sk_buff *skb,
875 const char *proto)
876 {
877 const char *msg = "Dropping request";
878 bool want_cookie = false;
879 struct listen_sock *lopt;
880
881
882
883 #ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889 #endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901
902 /*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
906 struct sk_buff *skb)
907 {
908 const struct ip_options *opt = &(IPCB(skb)->opt);
909 struct ip_options_rcu *dopt = NULL;
910
911 if (opt && opt->optlen) {
912 int opt_size = sizeof(*dopt) + opt->optlen;
913
914 dopt = kmalloc(opt_size, GFP_ATOMIC);
915 if (dopt) {
916 if (ip_options_echo(&dopt->opt, skb)) {
917 kfree(dopt);
918 dopt = NULL;
919 }
920 }
921 }
922 return dopt;
923 }
924
925 #ifdef CONFIG_TCP_MD5SIG
926 /*
927 * RFC2385 MD5 checksumming requires a mapping of
928 * IP address->MD5 Key.
929 * We need to maintain these in the sk structure.
930 */
931
932 /* Find the Key structure for an address. */
933 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
934 const union tcp_md5_addr *addr,
935 int family)
936 {
937 struct tcp_sock *tp = tcp_sk(sk);
938 struct tcp_md5sig_key *key;
939 struct hlist_node *pos;
940 unsigned int size = sizeof(struct in_addr);
941 struct tcp_md5sig_info *md5sig;
942
943 /* caller either holds rcu_read_lock() or socket lock */
944 md5sig = rcu_dereference_check(tp->md5sig_info,
945 sock_owned_by_user(sk) ||
946 lockdep_is_held(&sk->sk_lock.slock));
947 if (!md5sig)
948 return NULL;
949 #if IS_ENABLED(CONFIG_IPV6)
950 if (family == AF_INET6)
951 size = sizeof(struct in6_addr);
952 #endif
953 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
954 if (key->family != family)
955 continue;
956 if (!memcmp(&key->addr, addr, size))
957 return key;
958 }
959 return NULL;
960 }
961 EXPORT_SYMBOL(tcp_md5_do_lookup);
962
963 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
964 struct sock *addr_sk)
965 {
966 union tcp_md5_addr *addr;
967
968 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
969 return tcp_md5_do_lookup(sk, addr, AF_INET);
970 }
971 EXPORT_SYMBOL(tcp_v4_md5_lookup);
972
973 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
974 struct request_sock *req)
975 {
976 union tcp_md5_addr *addr;
977
978 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
979 return tcp_md5_do_lookup(sk, addr, AF_INET);
980 }
981
982 /* This can be called on a newly created socket, from other files */
983 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
984 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
985 {
986 /* Add Key to the list */
987 struct tcp_md5sig_key *key;
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct tcp_md5sig_info *md5sig;
990
991 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
992 if (key) {
993 /* Pre-existing entry - just update that one. */
994 memcpy(key->key, newkey, newkeylen);
995 key->keylen = newkeylen;
996 return 0;
997 }
998
999 md5sig = rcu_dereference_protected(tp->md5sig_info,
1000 sock_owned_by_user(sk));
1001 if (!md5sig) {
1002 md5sig = kmalloc(sizeof(*md5sig), gfp);
1003 if (!md5sig)
1004 return -ENOMEM;
1005
1006 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007 INIT_HLIST_HEAD(&md5sig->head);
1008 rcu_assign_pointer(tp->md5sig_info, md5sig);
1009 }
1010
1011 key = sock_kmalloc(sk, sizeof(*key), gfp);
1012 if (!key)
1013 return -ENOMEM;
1014 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015 sock_kfree_s(sk, key, sizeof(*key));
1016 return -ENOMEM;
1017 }
1018
1019 memcpy(key->key, newkey, newkeylen);
1020 key->keylen = newkeylen;
1021 key->family = family;
1022 memcpy(&key->addr, addr,
1023 (family == AF_INET6) ? sizeof(struct in6_addr) :
1024 sizeof(struct in_addr));
1025 hlist_add_head_rcu(&key->node, &md5sig->head);
1026 return 0;
1027 }
1028 EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031 {
1032 struct tcp_sock *tp = tcp_sk(sk);
1033 struct tcp_md5sig_key *key;
1034 struct tcp_md5sig_info *md5sig;
1035
1036 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037 if (!key)
1038 return -ENOENT;
1039 hlist_del_rcu(&key->node);
1040 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041 kfree_rcu(key, rcu);
1042 md5sig = rcu_dereference_protected(tp->md5sig_info,
1043 sock_owned_by_user(sk));
1044 if (hlist_empty(&md5sig->head))
1045 tcp_free_md5sig_pool();
1046 return 0;
1047 }
1048 EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050 void tcp_clear_md5_list(struct sock *sk)
1051 {
1052 struct tcp_sock *tp = tcp_sk(sk);
1053 struct tcp_md5sig_key *key;
1054 struct hlist_node *pos, *n;
1055 struct tcp_md5sig_info *md5sig;
1056
1057 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059 if (!hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062 hlist_del_rcu(&key->node);
1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 kfree_rcu(key, rcu);
1065 }
1066 }
1067
1068 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069 int optlen)
1070 {
1071 struct tcp_md5sig cmd;
1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073
1074 if (optlen < sizeof(cmd))
1075 return -EINVAL;
1076
1077 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078 return -EFAULT;
1079
1080 if (sin->sin_family != AF_INET)
1081 return -EINVAL;
1082
1083 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085 AF_INET);
1086
1087 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088 return -EINVAL;
1089
1090 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092 GFP_KERNEL);
1093 }
1094
1095 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096 __be32 daddr, __be32 saddr, int nbytes)
1097 {
1098 struct tcp4_pseudohdr *bp;
1099 struct scatterlist sg;
1100
1101 bp = &hp->md5_blk.ip4;
1102
1103 /*
1104 * 1. the TCP pseudo-header (in the order: source IP address,
1105 * destination IP address, zero-padded protocol number, and
1106 * segment length)
1107 */
1108 bp->saddr = saddr;
1109 bp->daddr = daddr;
1110 bp->pad = 0;
1111 bp->protocol = IPPROTO_TCP;
1112 bp->len = cpu_to_be16(nbytes);
1113
1114 sg_init_one(&sg, bp, sizeof(*bp));
1115 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116 }
1117
1118 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120 {
1121 struct tcp_md5sig_pool *hp;
1122 struct hash_desc *desc;
1123
1124 hp = tcp_get_md5sig_pool();
1125 if (!hp)
1126 goto clear_hash_noput;
1127 desc = &hp->md5_desc;
1128
1129 if (crypto_hash_init(desc))
1130 goto clear_hash;
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_key(hp, key))
1136 goto clear_hash;
1137 if (crypto_hash_final(desc, md5_hash))
1138 goto clear_hash;
1139
1140 tcp_put_md5sig_pool();
1141 return 0;
1142
1143 clear_hash:
1144 tcp_put_md5sig_pool();
1145 clear_hash_noput:
1146 memset(md5_hash, 0, 16);
1147 return 1;
1148 }
1149
1150 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151 const struct sock *sk, const struct request_sock *req,
1152 const struct sk_buff *skb)
1153 {
1154 struct tcp_md5sig_pool *hp;
1155 struct hash_desc *desc;
1156 const struct tcphdr *th = tcp_hdr(skb);
1157 __be32 saddr, daddr;
1158
1159 if (sk) {
1160 saddr = inet_sk(sk)->inet_saddr;
1161 daddr = inet_sk(sk)->inet_daddr;
1162 } else if (req) {
1163 saddr = inet_rsk(req)->loc_addr;
1164 daddr = inet_rsk(req)->rmt_addr;
1165 } else {
1166 const struct iphdr *iph = ip_hdr(skb);
1167 saddr = iph->saddr;
1168 daddr = iph->daddr;
1169 }
1170
1171 hp = tcp_get_md5sig_pool();
1172 if (!hp)
1173 goto clear_hash_noput;
1174 desc = &hp->md5_desc;
1175
1176 if (crypto_hash_init(desc))
1177 goto clear_hash;
1178
1179 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180 goto clear_hash;
1181 if (tcp_md5_hash_header(hp, th))
1182 goto clear_hash;
1183 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184 goto clear_hash;
1185 if (tcp_md5_hash_key(hp, key))
1186 goto clear_hash;
1187 if (crypto_hash_final(desc, md5_hash))
1188 goto clear_hash;
1189
1190 tcp_put_md5sig_pool();
1191 return 0;
1192
1193 clear_hash:
1194 tcp_put_md5sig_pool();
1195 clear_hash_noput:
1196 memset(md5_hash, 0, 16);
1197 return 1;
1198 }
1199 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202 {
1203 /*
1204 * This gets called for each TCP segment that arrives
1205 * so we want to be efficient.
1206 * We have 3 drop cases:
1207 * o No MD5 hash and one expected.
1208 * o MD5 hash and we're not expecting one.
1209 * o MD5 hash and its wrong.
1210 */
1211 const __u8 *hash_location = NULL;
1212 struct tcp_md5sig_key *hash_expected;
1213 const struct iphdr *iph = ip_hdr(skb);
1214 const struct tcphdr *th = tcp_hdr(skb);
1215 int genhash;
1216 unsigned char newhash[16];
1217
1218 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219 AF_INET);
1220 hash_location = tcp_parse_md5sig_option(th);
1221
1222 /* We've parsed the options - do we have a hash? */
1223 if (!hash_expected && !hash_location)
1224 return false;
1225
1226 if (hash_expected && !hash_location) {
1227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228 return true;
1229 }
1230
1231 if (!hash_expected && hash_location) {
1232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233 return true;
1234 }
1235
1236 /* Okay, so this is hash_expected and hash_location -
1237 * so we need to calculate the checksum.
1238 */
1239 genhash = tcp_v4_md5_hash_skb(newhash,
1240 hash_expected,
1241 NULL, NULL, skb);
1242
1243 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245 &iph->saddr, ntohs(th->source),
1246 &iph->daddr, ntohs(th->dest),
1247 genhash ? " tcp_v4_calc_md5_hash failed"
1248 : "");
1249 return true;
1250 }
1251 return false;
1252 }
1253
1254 #endif
1255
1256 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257 .family = PF_INET,
1258 .obj_size = sizeof(struct tcp_request_sock),
1259 .rtx_syn_ack = tcp_v4_rtx_synack,
1260 .send_ack = tcp_v4_reqsk_send_ack,
1261 .destructor = tcp_v4_reqsk_destructor,
1262 .send_reset = tcp_v4_send_reset,
1263 .syn_ack_timeout = tcp_syn_ack_timeout,
1264 };
1265
1266 #ifdef CONFIG_TCP_MD5SIG
1267 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1269 .calc_md5_hash = tcp_v4_md5_hash_skb,
1270 };
1271 #endif
1272
1273 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274 {
1275 struct tcp_extend_values tmp_ext;
1276 struct tcp_options_received tmp_opt;
1277 const u8 *hash_location;
1278 struct request_sock *req;
1279 struct inet_request_sock *ireq;
1280 struct tcp_sock *tp = tcp_sk(sk);
1281 struct dst_entry *dst = NULL;
1282 __be32 saddr = ip_hdr(skb)->saddr;
1283 __be32 daddr = ip_hdr(skb)->daddr;
1284 __u32 isn = TCP_SKB_CB(skb)->when;
1285 bool want_cookie = false;
1286
1287 /* Never answer to SYNs send to broadcast or multicast */
1288 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289 goto drop;
1290
1291 /* TW buckets are converted to open requests without
1292 * limitations, they conserve resources and peer is
1293 * evidently real one.
1294 */
1295 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297 if (!want_cookie)
1298 goto drop;
1299 }
1300
1301 /* Accept backlog is full. If we have already queued enough
1302 * of warm entries in syn queue, drop request. It is better than
1303 * clogging syn queue with openreqs with exponentially increasing
1304 * timeout.
1305 */
1306 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307 goto drop;
1308
1309 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310 if (!req)
1311 goto drop;
1312
1313 #ifdef CONFIG_TCP_MD5SIG
1314 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315 #endif
1316
1317 tcp_clear_options(&tmp_opt);
1318 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319 tmp_opt.user_mss = tp->rx_opt.user_mss;
1320 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1321
1322 if (tmp_opt.cookie_plus > 0 &&
1323 tmp_opt.saw_tstamp &&
1324 !tp->rx_opt.cookie_out_never &&
1325 (sysctl_tcp_cookie_size > 0 ||
1326 (tp->cookie_values != NULL &&
1327 tp->cookie_values->cookie_desired > 0))) {
1328 u8 *c;
1329 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333 goto drop_and_release;
1334
1335 /* Secret recipe starts with IP addresses */
1336 *mess++ ^= (__force u32)daddr;
1337 *mess++ ^= (__force u32)saddr;
1338
1339 /* plus variable length Initiator Cookie */
1340 c = (u8 *)mess;
1341 while (l-- > 0)
1342 *c++ ^= *hash_location++;
1343
1344 want_cookie = false; /* not our kind of cookie */
1345 tmp_ext.cookie_out_never = 0; /* false */
1346 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347 } else if (!tp->rx_opt.cookie_in_always) {
1348 /* redundant indications, but ensure initialization. */
1349 tmp_ext.cookie_out_never = 1; /* true */
1350 tmp_ext.cookie_plus = 0;
1351 } else {
1352 goto drop_and_release;
1353 }
1354 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356 if (want_cookie && !tmp_opt.saw_tstamp)
1357 tcp_clear_options(&tmp_opt);
1358
1359 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360 tcp_openreq_init(req, &tmp_opt, skb);
1361
1362 ireq = inet_rsk(req);
1363 ireq->loc_addr = daddr;
1364 ireq->rmt_addr = saddr;
1365 ireq->no_srccheck = inet_sk(sk)->transparent;
1366 ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368 if (security_inet_conn_request(sk, skb, req))
1369 goto drop_and_free;
1370
1371 if (!want_cookie || tmp_opt.tstamp_ok)
1372 TCP_ECN_create_request(req, skb);
1373
1374 if (want_cookie) {
1375 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376 req->cookie_ts = tmp_opt.tstamp_ok;
1377 } else if (!isn) {
1378 struct inet_peer *peer = NULL;
1379 struct flowi4 fl4;
1380
1381 /* VJ's idea. We save last timestamp seen
1382 * from the destination in peer table, when entering
1383 * state TIME-WAIT, and check against it before
1384 * accepting new connection request.
1385 *
1386 * If "isn" is not zero, this request hit alive
1387 * timewait bucket, so that all the necessary checks
1388 * are made in the function processing timewait state.
1389 */
1390 if (tmp_opt.saw_tstamp &&
1391 tcp_death_row.sysctl_tw_recycle &&
1392 (dst = inet_csk_route_req(sk, &fl4, req, want_cookie)) != NULL &&
1393 fl4.daddr == saddr &&
1394 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395 inet_peer_refcheck(peer);
1396 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397 (s32)(peer->tcp_ts - req->ts_recent) >
1398 TCP_PAWS_WINDOW) {
1399 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400 goto drop_and_release;
1401 }
1402 }
1403 /* Kill the following clause, if you dislike this way. */
1404 else if (!sysctl_tcp_syncookies &&
1405 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406 (sysctl_max_syn_backlog >> 2)) &&
1407 (!peer || !peer->tcp_ts_stamp) &&
1408 (!dst || !dst_metric(dst, RTAX_RTT))) {
1409 /* Without syncookies last quarter of
1410 * backlog is filled with destinations,
1411 * proven to be alive.
1412 * It means that we continue to communicate
1413 * to destinations, already remembered
1414 * to the moment of synflood.
1415 */
1416 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417 &saddr, ntohs(tcp_hdr(skb)->source));
1418 goto drop_and_release;
1419 }
1420
1421 isn = tcp_v4_init_sequence(skb);
1422 }
1423 tcp_rsk(req)->snt_isn = isn;
1424 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1425
1426 if (tcp_v4_send_synack(sk, dst, req,
1427 (struct request_values *)&tmp_ext,
1428 skb_get_queue_mapping(skb),
1429 want_cookie) ||
1430 want_cookie)
1431 goto drop_and_free;
1432
1433 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1434 return 0;
1435
1436 drop_and_release:
1437 dst_release(dst);
1438 drop_and_free:
1439 reqsk_free(req);
1440 drop:
1441 return 0;
1442 }
1443 EXPORT_SYMBOL(tcp_v4_conn_request);
1444
1445
1446 /*
1447 * The three way handshake has completed - we got a valid synack -
1448 * now create the new socket.
1449 */
1450 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1451 struct request_sock *req,
1452 struct dst_entry *dst)
1453 {
1454 struct inet_request_sock *ireq;
1455 struct inet_sock *newinet;
1456 struct tcp_sock *newtp;
1457 struct sock *newsk;
1458 #ifdef CONFIG_TCP_MD5SIG
1459 struct tcp_md5sig_key *key;
1460 #endif
1461 struct ip_options_rcu *inet_opt;
1462
1463 if (sk_acceptq_is_full(sk))
1464 goto exit_overflow;
1465
1466 newsk = tcp_create_openreq_child(sk, req, skb);
1467 if (!newsk)
1468 goto exit_nonewsk;
1469
1470 newsk->sk_gso_type = SKB_GSO_TCPV4;
1471
1472 newtp = tcp_sk(newsk);
1473 newinet = inet_sk(newsk);
1474 ireq = inet_rsk(req);
1475 newinet->inet_daddr = ireq->rmt_addr;
1476 newinet->inet_rcv_saddr = ireq->loc_addr;
1477 newinet->inet_saddr = ireq->loc_addr;
1478 inet_opt = ireq->opt;
1479 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1480 ireq->opt = NULL;
1481 newinet->mc_index = inet_iif(skb);
1482 newinet->mc_ttl = ip_hdr(skb)->ttl;
1483 newinet->rcv_tos = ip_hdr(skb)->tos;
1484 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1485 if (inet_opt)
1486 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1487 newinet->inet_id = newtp->write_seq ^ jiffies;
1488
1489 if (!dst) {
1490 dst = inet_csk_route_child_sock(sk, newsk, req);
1491 if (!dst)
1492 goto put_and_exit;
1493 } else {
1494 /* syncookie case : see end of cookie_v4_check() */
1495 }
1496 sk_setup_caps(newsk, dst);
1497
1498 tcp_mtup_init(newsk);
1499 tcp_sync_mss(newsk, dst_mtu(dst));
1500 newtp->advmss = dst_metric_advmss(dst);
1501 if (tcp_sk(sk)->rx_opt.user_mss &&
1502 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1503 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1504
1505 tcp_initialize_rcv_mss(newsk);
1506 if (tcp_rsk(req)->snt_synack)
1507 tcp_valid_rtt_meas(newsk,
1508 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1509 newtp->total_retrans = req->retrans;
1510
1511 #ifdef CONFIG_TCP_MD5SIG
1512 /* Copy over the MD5 key from the original socket */
1513 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1514 AF_INET);
1515 if (key != NULL) {
1516 /*
1517 * We're using one, so create a matching key
1518 * on the newsk structure. If we fail to get
1519 * memory, then we end up not copying the key
1520 * across. Shucks.
1521 */
1522 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1523 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1524 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1525 }
1526 #endif
1527
1528 if (__inet_inherit_port(sk, newsk) < 0)
1529 goto put_and_exit;
1530 __inet_hash_nolisten(newsk, NULL);
1531
1532 return newsk;
1533
1534 exit_overflow:
1535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1536 exit_nonewsk:
1537 dst_release(dst);
1538 exit:
1539 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1540 return NULL;
1541 put_and_exit:
1542 tcp_clear_xmit_timers(newsk);
1543 tcp_cleanup_congestion_control(newsk);
1544 bh_unlock_sock(newsk);
1545 sock_put(newsk);
1546 goto exit;
1547 }
1548 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1549
1550 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1551 {
1552 struct tcphdr *th = tcp_hdr(skb);
1553 const struct iphdr *iph = ip_hdr(skb);
1554 struct sock *nsk;
1555 struct request_sock **prev;
1556 /* Find possible connection requests. */
1557 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1558 iph->saddr, iph->daddr);
1559 if (req)
1560 return tcp_check_req(sk, skb, req, prev);
1561
1562 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1563 th->source, iph->daddr, th->dest, inet_iif(skb));
1564
1565 if (nsk) {
1566 if (nsk->sk_state != TCP_TIME_WAIT) {
1567 bh_lock_sock(nsk);
1568 return nsk;
1569 }
1570 inet_twsk_put(inet_twsk(nsk));
1571 return NULL;
1572 }
1573
1574 #ifdef CONFIG_SYN_COOKIES
1575 if (!th->syn)
1576 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1577 #endif
1578 return sk;
1579 }
1580
1581 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1582 {
1583 const struct iphdr *iph = ip_hdr(skb);
1584
1585 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1586 if (!tcp_v4_check(skb->len, iph->saddr,
1587 iph->daddr, skb->csum)) {
1588 skb->ip_summed = CHECKSUM_UNNECESSARY;
1589 return 0;
1590 }
1591 }
1592
1593 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1594 skb->len, IPPROTO_TCP, 0);
1595
1596 if (skb->len <= 76) {
1597 return __skb_checksum_complete(skb);
1598 }
1599 return 0;
1600 }
1601
1602
1603 /* The socket must have it's spinlock held when we get
1604 * here.
1605 *
1606 * We have a potential double-lock case here, so even when
1607 * doing backlog processing we use the BH locking scheme.
1608 * This is because we cannot sleep with the original spinlock
1609 * held.
1610 */
1611 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1612 {
1613 struct sock *rsk;
1614 #ifdef CONFIG_TCP_MD5SIG
1615 /*
1616 * We really want to reject the packet as early as possible
1617 * if:
1618 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1619 * o There is an MD5 option and we're not expecting one
1620 */
1621 if (tcp_v4_inbound_md5_hash(sk, skb))
1622 goto discard;
1623 #endif
1624
1625 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1626 sock_rps_save_rxhash(sk, skb);
1627 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1628 rsk = sk;
1629 goto reset;
1630 }
1631 return 0;
1632 }
1633
1634 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1635 goto csum_err;
1636
1637 if (sk->sk_state == TCP_LISTEN) {
1638 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1639 if (!nsk)
1640 goto discard;
1641
1642 if (nsk != sk) {
1643 sock_rps_save_rxhash(nsk, skb);
1644 if (tcp_child_process(sk, nsk, skb)) {
1645 rsk = nsk;
1646 goto reset;
1647 }
1648 return 0;
1649 }
1650 } else
1651 sock_rps_save_rxhash(sk, skb);
1652
1653 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1654 rsk = sk;
1655 goto reset;
1656 }
1657 return 0;
1658
1659 reset:
1660 tcp_v4_send_reset(rsk, skb);
1661 discard:
1662 kfree_skb(skb);
1663 /* Be careful here. If this function gets more complicated and
1664 * gcc suffers from register pressure on the x86, sk (in %ebx)
1665 * might be destroyed here. This current version compiles correctly,
1666 * but you have been warned.
1667 */
1668 return 0;
1669
1670 csum_err:
1671 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1672 goto discard;
1673 }
1674 EXPORT_SYMBOL(tcp_v4_do_rcv);
1675
1676 int tcp_v4_early_demux(struct sk_buff *skb)
1677 {
1678 struct net *net = dev_net(skb->dev);
1679 const struct iphdr *iph;
1680 const struct tcphdr *th;
1681 struct net_device *dev;
1682 struct sock *sk;
1683 int err;
1684
1685 err = -ENOENT;
1686 if (skb->pkt_type != PACKET_HOST)
1687 goto out_err;
1688
1689 if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr)))
1690 goto out_err;
1691
1692 iph = ip_hdr(skb);
1693 th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb));
1694
1695 if (th->doff < sizeof(struct tcphdr) / 4)
1696 goto out_err;
1697
1698 if (!pskb_may_pull(skb, ip_hdrlen(skb) + th->doff * 4))
1699 goto out_err;
1700
1701 dev = skb->dev;
1702 sk = __inet_lookup_established(net, &tcp_hashinfo,
1703 iph->saddr, th->source,
1704 iph->daddr, ntohs(th->dest),
1705 dev->ifindex);
1706 if (sk) {
1707 skb->sk = sk;
1708 skb->destructor = sock_edemux;
1709 if (sk->sk_state != TCP_TIME_WAIT) {
1710 struct dst_entry *dst = sk->sk_rx_dst;
1711 if (dst)
1712 dst = dst_check(dst, 0);
1713 if (dst) {
1714 struct rtable *rt = (struct rtable *) dst;
1715
1716 if (rt->rt_iif == dev->ifindex) {
1717 skb_dst_set_noref(skb, dst);
1718 err = 0;
1719 }
1720 }
1721 }
1722 }
1723
1724 out_err:
1725 return err;
1726 }
1727
1728 /*
1729 * From tcp_input.c
1730 */
1731
1732 int tcp_v4_rcv(struct sk_buff *skb)
1733 {
1734 const struct iphdr *iph;
1735 const struct tcphdr *th;
1736 struct sock *sk;
1737 int ret;
1738 struct net *net = dev_net(skb->dev);
1739
1740 if (skb->pkt_type != PACKET_HOST)
1741 goto discard_it;
1742
1743 /* Count it even if it's bad */
1744 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1745
1746 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1747 goto discard_it;
1748
1749 th = tcp_hdr(skb);
1750
1751 if (th->doff < sizeof(struct tcphdr) / 4)
1752 goto bad_packet;
1753 if (!pskb_may_pull(skb, th->doff * 4))
1754 goto discard_it;
1755
1756 /* An explanation is required here, I think.
1757 * Packet length and doff are validated by header prediction,
1758 * provided case of th->doff==0 is eliminated.
1759 * So, we defer the checks. */
1760 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1761 goto bad_packet;
1762
1763 th = tcp_hdr(skb);
1764 iph = ip_hdr(skb);
1765 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1766 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1767 skb->len - th->doff * 4);
1768 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1769 TCP_SKB_CB(skb)->when = 0;
1770 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1771 TCP_SKB_CB(skb)->sacked = 0;
1772
1773 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1774 if (!sk)
1775 goto no_tcp_socket;
1776
1777 process:
1778 if (sk->sk_state == TCP_TIME_WAIT)
1779 goto do_time_wait;
1780
1781 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1782 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1783 goto discard_and_relse;
1784 }
1785
1786 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1787 goto discard_and_relse;
1788 nf_reset(skb);
1789
1790 if (sk_filter(sk, skb))
1791 goto discard_and_relse;
1792
1793 skb->dev = NULL;
1794
1795 bh_lock_sock_nested(sk);
1796 ret = 0;
1797 if (!sock_owned_by_user(sk)) {
1798 #ifdef CONFIG_NET_DMA
1799 struct tcp_sock *tp = tcp_sk(sk);
1800 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1801 tp->ucopy.dma_chan = net_dma_find_channel();
1802 if (tp->ucopy.dma_chan)
1803 ret = tcp_v4_do_rcv(sk, skb);
1804 else
1805 #endif
1806 {
1807 if (!tcp_prequeue(sk, skb))
1808 ret = tcp_v4_do_rcv(sk, skb);
1809 }
1810 } else if (unlikely(sk_add_backlog(sk, skb,
1811 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1812 bh_unlock_sock(sk);
1813 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1814 goto discard_and_relse;
1815 }
1816 bh_unlock_sock(sk);
1817
1818 sock_put(sk);
1819
1820 return ret;
1821
1822 no_tcp_socket:
1823 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1824 goto discard_it;
1825
1826 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1827 bad_packet:
1828 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1829 } else {
1830 tcp_v4_send_reset(NULL, skb);
1831 }
1832
1833 discard_it:
1834 /* Discard frame. */
1835 kfree_skb(skb);
1836 return 0;
1837
1838 discard_and_relse:
1839 sock_put(sk);
1840 goto discard_it;
1841
1842 do_time_wait:
1843 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1844 inet_twsk_put(inet_twsk(sk));
1845 goto discard_it;
1846 }
1847
1848 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1849 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1850 inet_twsk_put(inet_twsk(sk));
1851 goto discard_it;
1852 }
1853 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1854 case TCP_TW_SYN: {
1855 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1856 &tcp_hashinfo,
1857 iph->daddr, th->dest,
1858 inet_iif(skb));
1859 if (sk2) {
1860 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1861 inet_twsk_put(inet_twsk(sk));
1862 sk = sk2;
1863 goto process;
1864 }
1865 /* Fall through to ACK */
1866 }
1867 case TCP_TW_ACK:
1868 tcp_v4_timewait_ack(sk, skb);
1869 break;
1870 case TCP_TW_RST:
1871 goto no_tcp_socket;
1872 case TCP_TW_SUCCESS:;
1873 }
1874 goto discard_it;
1875 }
1876
1877 struct inet_peer *tcp_v4_get_peer(struct sock *sk)
1878 {
1879 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1880 struct inet_sock *inet = inet_sk(sk);
1881
1882 /* If we don't have a valid cached route, or we're doing IP
1883 * options which make the IPv4 header destination address
1884 * different from our peer's, do not bother with this.
1885 */
1886 if (!rt || inet->cork.fl.u.ip4.daddr != inet->inet_daddr)
1887 return NULL;
1888 return rt_get_peer_create(rt, inet->inet_daddr);
1889 }
1890 EXPORT_SYMBOL(tcp_v4_get_peer);
1891
1892 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1893 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1894 .twsk_unique = tcp_twsk_unique,
1895 .twsk_destructor= tcp_twsk_destructor,
1896 };
1897
1898 const struct inet_connection_sock_af_ops ipv4_specific = {
1899 .queue_xmit = ip_queue_xmit,
1900 .send_check = tcp_v4_send_check,
1901 .rebuild_header = inet_sk_rebuild_header,
1902 .conn_request = tcp_v4_conn_request,
1903 .syn_recv_sock = tcp_v4_syn_recv_sock,
1904 .get_peer = tcp_v4_get_peer,
1905 .net_header_len = sizeof(struct iphdr),
1906 .setsockopt = ip_setsockopt,
1907 .getsockopt = ip_getsockopt,
1908 .addr2sockaddr = inet_csk_addr2sockaddr,
1909 .sockaddr_len = sizeof(struct sockaddr_in),
1910 .bind_conflict = inet_csk_bind_conflict,
1911 #ifdef CONFIG_COMPAT
1912 .compat_setsockopt = compat_ip_setsockopt,
1913 .compat_getsockopt = compat_ip_getsockopt,
1914 #endif
1915 };
1916 EXPORT_SYMBOL(ipv4_specific);
1917
1918 #ifdef CONFIG_TCP_MD5SIG
1919 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1920 .md5_lookup = tcp_v4_md5_lookup,
1921 .calc_md5_hash = tcp_v4_md5_hash_skb,
1922 .md5_parse = tcp_v4_parse_md5_keys,
1923 };
1924 #endif
1925
1926 /* NOTE: A lot of things set to zero explicitly by call to
1927 * sk_alloc() so need not be done here.
1928 */
1929 static int tcp_v4_init_sock(struct sock *sk)
1930 {
1931 struct inet_connection_sock *icsk = inet_csk(sk);
1932
1933 tcp_init_sock(sk);
1934
1935 icsk->icsk_af_ops = &ipv4_specific;
1936
1937 #ifdef CONFIG_TCP_MD5SIG
1938 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1939 #endif
1940
1941 return 0;
1942 }
1943
1944 void tcp_v4_destroy_sock(struct sock *sk)
1945 {
1946 struct tcp_sock *tp = tcp_sk(sk);
1947
1948 tcp_clear_xmit_timers(sk);
1949
1950 tcp_cleanup_congestion_control(sk);
1951
1952 /* Cleanup up the write buffer. */
1953 tcp_write_queue_purge(sk);
1954
1955 /* Cleans up our, hopefully empty, out_of_order_queue. */
1956 __skb_queue_purge(&tp->out_of_order_queue);
1957
1958 #ifdef CONFIG_TCP_MD5SIG
1959 /* Clean up the MD5 key list, if any */
1960 if (tp->md5sig_info) {
1961 tcp_clear_md5_list(sk);
1962 kfree_rcu(tp->md5sig_info, rcu);
1963 tp->md5sig_info = NULL;
1964 }
1965 #endif
1966
1967 #ifdef CONFIG_NET_DMA
1968 /* Cleans up our sk_async_wait_queue */
1969 __skb_queue_purge(&sk->sk_async_wait_queue);
1970 #endif
1971
1972 /* Clean prequeue, it must be empty really */
1973 __skb_queue_purge(&tp->ucopy.prequeue);
1974
1975 /* Clean up a referenced TCP bind bucket. */
1976 if (inet_csk(sk)->icsk_bind_hash)
1977 inet_put_port(sk);
1978
1979 /*
1980 * If sendmsg cached page exists, toss it.
1981 */
1982 if (sk->sk_sndmsg_page) {
1983 __free_page(sk->sk_sndmsg_page);
1984 sk->sk_sndmsg_page = NULL;
1985 }
1986
1987 /* TCP Cookie Transactions */
1988 if (tp->cookie_values != NULL) {
1989 kref_put(&tp->cookie_values->kref,
1990 tcp_cookie_values_release);
1991 tp->cookie_values = NULL;
1992 }
1993
1994 sk_sockets_allocated_dec(sk);
1995 sock_release_memcg(sk);
1996 }
1997 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1998
1999 #ifdef CONFIG_PROC_FS
2000 /* Proc filesystem TCP sock list dumping. */
2001
2002 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2003 {
2004 return hlist_nulls_empty(head) ? NULL :
2005 list_entry(head->first, struct inet_timewait_sock, tw_node);
2006 }
2007
2008 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2009 {
2010 return !is_a_nulls(tw->tw_node.next) ?
2011 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2012 }
2013
2014 /*
2015 * Get next listener socket follow cur. If cur is NULL, get first socket
2016 * starting from bucket given in st->bucket; when st->bucket is zero the
2017 * very first socket in the hash table is returned.
2018 */
2019 static void *listening_get_next(struct seq_file *seq, void *cur)
2020 {
2021 struct inet_connection_sock *icsk;
2022 struct hlist_nulls_node *node;
2023 struct sock *sk = cur;
2024 struct inet_listen_hashbucket *ilb;
2025 struct tcp_iter_state *st = seq->private;
2026 struct net *net = seq_file_net(seq);
2027
2028 if (!sk) {
2029 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2030 spin_lock_bh(&ilb->lock);
2031 sk = sk_nulls_head(&ilb->head);
2032 st->offset = 0;
2033 goto get_sk;
2034 }
2035 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2036 ++st->num;
2037 ++st->offset;
2038
2039 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2040 struct request_sock *req = cur;
2041
2042 icsk = inet_csk(st->syn_wait_sk);
2043 req = req->dl_next;
2044 while (1) {
2045 while (req) {
2046 if (req->rsk_ops->family == st->family) {
2047 cur = req;
2048 goto out;
2049 }
2050 req = req->dl_next;
2051 }
2052 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2053 break;
2054 get_req:
2055 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2056 }
2057 sk = sk_nulls_next(st->syn_wait_sk);
2058 st->state = TCP_SEQ_STATE_LISTENING;
2059 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2060 } else {
2061 icsk = inet_csk(sk);
2062 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2063 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2064 goto start_req;
2065 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2066 sk = sk_nulls_next(sk);
2067 }
2068 get_sk:
2069 sk_nulls_for_each_from(sk, node) {
2070 if (!net_eq(sock_net(sk), net))
2071 continue;
2072 if (sk->sk_family == st->family) {
2073 cur = sk;
2074 goto out;
2075 }
2076 icsk = inet_csk(sk);
2077 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2078 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2079 start_req:
2080 st->uid = sock_i_uid(sk);
2081 st->syn_wait_sk = sk;
2082 st->state = TCP_SEQ_STATE_OPENREQ;
2083 st->sbucket = 0;
2084 goto get_req;
2085 }
2086 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2087 }
2088 spin_unlock_bh(&ilb->lock);
2089 st->offset = 0;
2090 if (++st->bucket < INET_LHTABLE_SIZE) {
2091 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2092 spin_lock_bh(&ilb->lock);
2093 sk = sk_nulls_head(&ilb->head);
2094 goto get_sk;
2095 }
2096 cur = NULL;
2097 out:
2098 return cur;
2099 }
2100
2101 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2102 {
2103 struct tcp_iter_state *st = seq->private;
2104 void *rc;
2105
2106 st->bucket = 0;
2107 st->offset = 0;
2108 rc = listening_get_next(seq, NULL);
2109
2110 while (rc && *pos) {
2111 rc = listening_get_next(seq, rc);
2112 --*pos;
2113 }
2114 return rc;
2115 }
2116
2117 static inline bool empty_bucket(struct tcp_iter_state *st)
2118 {
2119 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2120 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2121 }
2122
2123 /*
2124 * Get first established socket starting from bucket given in st->bucket.
2125 * If st->bucket is zero, the very first socket in the hash is returned.
2126 */
2127 static void *established_get_first(struct seq_file *seq)
2128 {
2129 struct tcp_iter_state *st = seq->private;
2130 struct net *net = seq_file_net(seq);
2131 void *rc = NULL;
2132
2133 st->offset = 0;
2134 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2135 struct sock *sk;
2136 struct hlist_nulls_node *node;
2137 struct inet_timewait_sock *tw;
2138 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2139
2140 /* Lockless fast path for the common case of empty buckets */
2141 if (empty_bucket(st))
2142 continue;
2143
2144 spin_lock_bh(lock);
2145 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2146 if (sk->sk_family != st->family ||
2147 !net_eq(sock_net(sk), net)) {
2148 continue;
2149 }
2150 rc = sk;
2151 goto out;
2152 }
2153 st->state = TCP_SEQ_STATE_TIME_WAIT;
2154 inet_twsk_for_each(tw, node,
2155 &tcp_hashinfo.ehash[st->bucket].twchain) {
2156 if (tw->tw_family != st->family ||
2157 !net_eq(twsk_net(tw), net)) {
2158 continue;
2159 }
2160 rc = tw;
2161 goto out;
2162 }
2163 spin_unlock_bh(lock);
2164 st->state = TCP_SEQ_STATE_ESTABLISHED;
2165 }
2166 out:
2167 return rc;
2168 }
2169
2170 static void *established_get_next(struct seq_file *seq, void *cur)
2171 {
2172 struct sock *sk = cur;
2173 struct inet_timewait_sock *tw;
2174 struct hlist_nulls_node *node;
2175 struct tcp_iter_state *st = seq->private;
2176 struct net *net = seq_file_net(seq);
2177
2178 ++st->num;
2179 ++st->offset;
2180
2181 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2182 tw = cur;
2183 tw = tw_next(tw);
2184 get_tw:
2185 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2186 tw = tw_next(tw);
2187 }
2188 if (tw) {
2189 cur = tw;
2190 goto out;
2191 }
2192 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2193 st->state = TCP_SEQ_STATE_ESTABLISHED;
2194
2195 /* Look for next non empty bucket */
2196 st->offset = 0;
2197 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2198 empty_bucket(st))
2199 ;
2200 if (st->bucket > tcp_hashinfo.ehash_mask)
2201 return NULL;
2202
2203 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2204 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2205 } else
2206 sk = sk_nulls_next(sk);
2207
2208 sk_nulls_for_each_from(sk, node) {
2209 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2210 goto found;
2211 }
2212
2213 st->state = TCP_SEQ_STATE_TIME_WAIT;
2214 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2215 goto get_tw;
2216 found:
2217 cur = sk;
2218 out:
2219 return cur;
2220 }
2221
2222 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2223 {
2224 struct tcp_iter_state *st = seq->private;
2225 void *rc;
2226
2227 st->bucket = 0;
2228 rc = established_get_first(seq);
2229
2230 while (rc && pos) {
2231 rc = established_get_next(seq, rc);
2232 --pos;
2233 }
2234 return rc;
2235 }
2236
2237 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2238 {
2239 void *rc;
2240 struct tcp_iter_state *st = seq->private;
2241
2242 st->state = TCP_SEQ_STATE_LISTENING;
2243 rc = listening_get_idx(seq, &pos);
2244
2245 if (!rc) {
2246 st->state = TCP_SEQ_STATE_ESTABLISHED;
2247 rc = established_get_idx(seq, pos);
2248 }
2249
2250 return rc;
2251 }
2252
2253 static void *tcp_seek_last_pos(struct seq_file *seq)
2254 {
2255 struct tcp_iter_state *st = seq->private;
2256 int offset = st->offset;
2257 int orig_num = st->num;
2258 void *rc = NULL;
2259
2260 switch (st->state) {
2261 case TCP_SEQ_STATE_OPENREQ:
2262 case TCP_SEQ_STATE_LISTENING:
2263 if (st->bucket >= INET_LHTABLE_SIZE)
2264 break;
2265 st->state = TCP_SEQ_STATE_LISTENING;
2266 rc = listening_get_next(seq, NULL);
2267 while (offset-- && rc)
2268 rc = listening_get_next(seq, rc);
2269 if (rc)
2270 break;
2271 st->bucket = 0;
2272 /* Fallthrough */
2273 case TCP_SEQ_STATE_ESTABLISHED:
2274 case TCP_SEQ_STATE_TIME_WAIT:
2275 st->state = TCP_SEQ_STATE_ESTABLISHED;
2276 if (st->bucket > tcp_hashinfo.ehash_mask)
2277 break;
2278 rc = established_get_first(seq);
2279 while (offset-- && rc)
2280 rc = established_get_next(seq, rc);
2281 }
2282
2283 st->num = orig_num;
2284
2285 return rc;
2286 }
2287
2288 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2289 {
2290 struct tcp_iter_state *st = seq->private;
2291 void *rc;
2292
2293 if (*pos && *pos == st->last_pos) {
2294 rc = tcp_seek_last_pos(seq);
2295 if (rc)
2296 goto out;
2297 }
2298
2299 st->state = TCP_SEQ_STATE_LISTENING;
2300 st->num = 0;
2301 st->bucket = 0;
2302 st->offset = 0;
2303 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2304
2305 out:
2306 st->last_pos = *pos;
2307 return rc;
2308 }
2309
2310 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2311 {
2312 struct tcp_iter_state *st = seq->private;
2313 void *rc = NULL;
2314
2315 if (v == SEQ_START_TOKEN) {
2316 rc = tcp_get_idx(seq, 0);
2317 goto out;
2318 }
2319
2320 switch (st->state) {
2321 case TCP_SEQ_STATE_OPENREQ:
2322 case TCP_SEQ_STATE_LISTENING:
2323 rc = listening_get_next(seq, v);
2324 if (!rc) {
2325 st->state = TCP_SEQ_STATE_ESTABLISHED;
2326 st->bucket = 0;
2327 st->offset = 0;
2328 rc = established_get_first(seq);
2329 }
2330 break;
2331 case TCP_SEQ_STATE_ESTABLISHED:
2332 case TCP_SEQ_STATE_TIME_WAIT:
2333 rc = established_get_next(seq, v);
2334 break;
2335 }
2336 out:
2337 ++*pos;
2338 st->last_pos = *pos;
2339 return rc;
2340 }
2341
2342 static void tcp_seq_stop(struct seq_file *seq, void *v)
2343 {
2344 struct tcp_iter_state *st = seq->private;
2345
2346 switch (st->state) {
2347 case TCP_SEQ_STATE_OPENREQ:
2348 if (v) {
2349 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2350 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2351 }
2352 case TCP_SEQ_STATE_LISTENING:
2353 if (v != SEQ_START_TOKEN)
2354 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2355 break;
2356 case TCP_SEQ_STATE_TIME_WAIT:
2357 case TCP_SEQ_STATE_ESTABLISHED:
2358 if (v)
2359 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2360 break;
2361 }
2362 }
2363
2364 int tcp_seq_open(struct inode *inode, struct file *file)
2365 {
2366 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2367 struct tcp_iter_state *s;
2368 int err;
2369
2370 err = seq_open_net(inode, file, &afinfo->seq_ops,
2371 sizeof(struct tcp_iter_state));
2372 if (err < 0)
2373 return err;
2374
2375 s = ((struct seq_file *)file->private_data)->private;
2376 s->family = afinfo->family;
2377 s->last_pos = 0;
2378 return 0;
2379 }
2380 EXPORT_SYMBOL(tcp_seq_open);
2381
2382 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2383 {
2384 int rc = 0;
2385 struct proc_dir_entry *p;
2386
2387 afinfo->seq_ops.start = tcp_seq_start;
2388 afinfo->seq_ops.next = tcp_seq_next;
2389 afinfo->seq_ops.stop = tcp_seq_stop;
2390
2391 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2392 afinfo->seq_fops, afinfo);
2393 if (!p)
2394 rc = -ENOMEM;
2395 return rc;
2396 }
2397 EXPORT_SYMBOL(tcp_proc_register);
2398
2399 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2400 {
2401 proc_net_remove(net, afinfo->name);
2402 }
2403 EXPORT_SYMBOL(tcp_proc_unregister);
2404
2405 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2406 struct seq_file *f, int i, int uid, int *len)
2407 {
2408 const struct inet_request_sock *ireq = inet_rsk(req);
2409 int ttd = req->expires - jiffies;
2410
2411 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2412 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2413 i,
2414 ireq->loc_addr,
2415 ntohs(inet_sk(sk)->inet_sport),
2416 ireq->rmt_addr,
2417 ntohs(ireq->rmt_port),
2418 TCP_SYN_RECV,
2419 0, 0, /* could print option size, but that is af dependent. */
2420 1, /* timers active (only the expire timer) */
2421 jiffies_to_clock_t(ttd),
2422 req->retrans,
2423 uid,
2424 0, /* non standard timer */
2425 0, /* open_requests have no inode */
2426 atomic_read(&sk->sk_refcnt),
2427 req,
2428 len);
2429 }
2430
2431 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2432 {
2433 int timer_active;
2434 unsigned long timer_expires;
2435 const struct tcp_sock *tp = tcp_sk(sk);
2436 const struct inet_connection_sock *icsk = inet_csk(sk);
2437 const struct inet_sock *inet = inet_sk(sk);
2438 __be32 dest = inet->inet_daddr;
2439 __be32 src = inet->inet_rcv_saddr;
2440 __u16 destp = ntohs(inet->inet_dport);
2441 __u16 srcp = ntohs(inet->inet_sport);
2442 int rx_queue;
2443
2444 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2445 timer_active = 1;
2446 timer_expires = icsk->icsk_timeout;
2447 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2448 timer_active = 4;
2449 timer_expires = icsk->icsk_timeout;
2450 } else if (timer_pending(&sk->sk_timer)) {
2451 timer_active = 2;
2452 timer_expires = sk->sk_timer.expires;
2453 } else {
2454 timer_active = 0;
2455 timer_expires = jiffies;
2456 }
2457
2458 if (sk->sk_state == TCP_LISTEN)
2459 rx_queue = sk->sk_ack_backlog;
2460 else
2461 /*
2462 * because we dont lock socket, we might find a transient negative value
2463 */
2464 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2465
2466 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2467 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2468 i, src, srcp, dest, destp, sk->sk_state,
2469 tp->write_seq - tp->snd_una,
2470 rx_queue,
2471 timer_active,
2472 jiffies_to_clock_t(timer_expires - jiffies),
2473 icsk->icsk_retransmits,
2474 sock_i_uid(sk),
2475 icsk->icsk_probes_out,
2476 sock_i_ino(sk),
2477 atomic_read(&sk->sk_refcnt), sk,
2478 jiffies_to_clock_t(icsk->icsk_rto),
2479 jiffies_to_clock_t(icsk->icsk_ack.ato),
2480 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2481 tp->snd_cwnd,
2482 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2483 len);
2484 }
2485
2486 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2487 struct seq_file *f, int i, int *len)
2488 {
2489 __be32 dest, src;
2490 __u16 destp, srcp;
2491 int ttd = tw->tw_ttd - jiffies;
2492
2493 if (ttd < 0)
2494 ttd = 0;
2495
2496 dest = tw->tw_daddr;
2497 src = tw->tw_rcv_saddr;
2498 destp = ntohs(tw->tw_dport);
2499 srcp = ntohs(tw->tw_sport);
2500
2501 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2502 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2503 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2504 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2505 atomic_read(&tw->tw_refcnt), tw, len);
2506 }
2507
2508 #define TMPSZ 150
2509
2510 static int tcp4_seq_show(struct seq_file *seq, void *v)
2511 {
2512 struct tcp_iter_state *st;
2513 int len;
2514
2515 if (v == SEQ_START_TOKEN) {
2516 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2517 " sl local_address rem_address st tx_queue "
2518 "rx_queue tr tm->when retrnsmt uid timeout "
2519 "inode");
2520 goto out;
2521 }
2522 st = seq->private;
2523
2524 switch (st->state) {
2525 case TCP_SEQ_STATE_LISTENING:
2526 case TCP_SEQ_STATE_ESTABLISHED:
2527 get_tcp4_sock(v, seq, st->num, &len);
2528 break;
2529 case TCP_SEQ_STATE_OPENREQ:
2530 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2531 break;
2532 case TCP_SEQ_STATE_TIME_WAIT:
2533 get_timewait4_sock(v, seq, st->num, &len);
2534 break;
2535 }
2536 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2537 out:
2538 return 0;
2539 }
2540
2541 static const struct file_operations tcp_afinfo_seq_fops = {
2542 .owner = THIS_MODULE,
2543 .open = tcp_seq_open,
2544 .read = seq_read,
2545 .llseek = seq_lseek,
2546 .release = seq_release_net
2547 };
2548
2549 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2550 .name = "tcp",
2551 .family = AF_INET,
2552 .seq_fops = &tcp_afinfo_seq_fops,
2553 .seq_ops = {
2554 .show = tcp4_seq_show,
2555 },
2556 };
2557
2558 static int __net_init tcp4_proc_init_net(struct net *net)
2559 {
2560 return tcp_proc_register(net, &tcp4_seq_afinfo);
2561 }
2562
2563 static void __net_exit tcp4_proc_exit_net(struct net *net)
2564 {
2565 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2566 }
2567
2568 static struct pernet_operations tcp4_net_ops = {
2569 .init = tcp4_proc_init_net,
2570 .exit = tcp4_proc_exit_net,
2571 };
2572
2573 int __init tcp4_proc_init(void)
2574 {
2575 return register_pernet_subsys(&tcp4_net_ops);
2576 }
2577
2578 void tcp4_proc_exit(void)
2579 {
2580 unregister_pernet_subsys(&tcp4_net_ops);
2581 }
2582 #endif /* CONFIG_PROC_FS */
2583
2584 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2585 {
2586 const struct iphdr *iph = skb_gro_network_header(skb);
2587
2588 switch (skb->ip_summed) {
2589 case CHECKSUM_COMPLETE:
2590 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2591 skb->csum)) {
2592 skb->ip_summed = CHECKSUM_UNNECESSARY;
2593 break;
2594 }
2595
2596 /* fall through */
2597 case CHECKSUM_NONE:
2598 NAPI_GRO_CB(skb)->flush = 1;
2599 return NULL;
2600 }
2601
2602 return tcp_gro_receive(head, skb);
2603 }
2604
2605 int tcp4_gro_complete(struct sk_buff *skb)
2606 {
2607 const struct iphdr *iph = ip_hdr(skb);
2608 struct tcphdr *th = tcp_hdr(skb);
2609
2610 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2611 iph->saddr, iph->daddr, 0);
2612 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2613
2614 return tcp_gro_complete(skb);
2615 }
2616
2617 struct proto tcp_prot = {
2618 .name = "TCP",
2619 .owner = THIS_MODULE,
2620 .close = tcp_close,
2621 .connect = tcp_v4_connect,
2622 .disconnect = tcp_disconnect,
2623 .accept = inet_csk_accept,
2624 .ioctl = tcp_ioctl,
2625 .init = tcp_v4_init_sock,
2626 .destroy = tcp_v4_destroy_sock,
2627 .shutdown = tcp_shutdown,
2628 .setsockopt = tcp_setsockopt,
2629 .getsockopt = tcp_getsockopt,
2630 .recvmsg = tcp_recvmsg,
2631 .sendmsg = tcp_sendmsg,
2632 .sendpage = tcp_sendpage,
2633 .backlog_rcv = tcp_v4_do_rcv,
2634 .hash = inet_hash,
2635 .unhash = inet_unhash,
2636 .get_port = inet_csk_get_port,
2637 .enter_memory_pressure = tcp_enter_memory_pressure,
2638 .sockets_allocated = &tcp_sockets_allocated,
2639 .orphan_count = &tcp_orphan_count,
2640 .memory_allocated = &tcp_memory_allocated,
2641 .memory_pressure = &tcp_memory_pressure,
2642 .sysctl_wmem = sysctl_tcp_wmem,
2643 .sysctl_rmem = sysctl_tcp_rmem,
2644 .max_header = MAX_TCP_HEADER,
2645 .obj_size = sizeof(struct tcp_sock),
2646 .slab_flags = SLAB_DESTROY_BY_RCU,
2647 .twsk_prot = &tcp_timewait_sock_ops,
2648 .rsk_prot = &tcp_request_sock_ops,
2649 .h.hashinfo = &tcp_hashinfo,
2650 .no_autobind = true,
2651 #ifdef CONFIG_COMPAT
2652 .compat_setsockopt = compat_tcp_setsockopt,
2653 .compat_getsockopt = compat_tcp_getsockopt,
2654 #endif
2655 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2656 .init_cgroup = tcp_init_cgroup,
2657 .destroy_cgroup = tcp_destroy_cgroup,
2658 .proto_cgroup = tcp_proto_cgroup,
2659 #endif
2660 };
2661 EXPORT_SYMBOL(tcp_prot);
2662
2663 static int __net_init tcp_sk_init(struct net *net)
2664 {
2665 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2666 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2667 }
2668
2669 static void __net_exit tcp_sk_exit(struct net *net)
2670 {
2671 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2672 }
2673
2674 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2675 {
2676 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2677 }
2678
2679 static struct pernet_operations __net_initdata tcp_sk_ops = {
2680 .init = tcp_sk_init,
2681 .exit = tcp_sk_exit,
2682 .exit_batch = tcp_sk_exit_batch,
2683 };
2684
2685 void __init tcp_v4_init(void)
2686 {
2687 inet_hashinfo_init(&tcp_hashinfo);
2688 if (register_pernet_subsys(&tcp_sk_ops))
2689 panic("Failed to create the TCP control socket.\n");
2690 }
This page took 0.290905 seconds and 4 git commands to generate.