202cf09c4cd4be9f8a556d2740a51ca4bba96e56
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87
88
89 #ifdef CONFIG_TCP_MD5SIG
90 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91 __be32 addr);
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, struct tcphdr *th);
94 #else
95 static inline
96 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 {
98 return NULL;
99 }
100 #endif
101
102 struct inet_hashinfo tcp_hashinfo;
103
104 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 {
106 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
107 ip_hdr(skb)->saddr,
108 tcp_hdr(skb)->dest,
109 tcp_hdr(skb)->source);
110 }
111
112 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 {
114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 struct tcp_sock *tp = tcp_sk(sk);
116
117 /* With PAWS, it is safe from the viewpoint
118 of data integrity. Even without PAWS it is safe provided sequence
119 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120
121 Actually, the idea is close to VJ's one, only timestamp cache is
122 held not per host, but per port pair and TW bucket is used as state
123 holder.
124
125 If TW bucket has been already destroyed we fall back to VJ's scheme
126 and use initial timestamp retrieved from peer table.
127 */
128 if (tcptw->tw_ts_recent_stamp &&
129 (twp == NULL || (sysctl_tcp_tw_reuse &&
130 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
131 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
132 if (tp->write_seq == 0)
133 tp->write_seq = 1;
134 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
135 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
136 sock_hold(sktw);
137 return 1;
138 }
139
140 return 0;
141 }
142
143 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144
145 /* This will initiate an outgoing connection. */
146 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 {
148 struct inet_sock *inet = inet_sk(sk);
149 struct tcp_sock *tp = tcp_sk(sk);
150 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 struct rtable *rt;
152 __be32 daddr, nexthop;
153 int tmp;
154 int err;
155
156 if (addr_len < sizeof(struct sockaddr_in))
157 return -EINVAL;
158
159 if (usin->sin_family != AF_INET)
160 return -EAFNOSUPPORT;
161
162 nexthop = daddr = usin->sin_addr.s_addr;
163 if (inet->opt && inet->opt->srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet->opt->faddr;
167 }
168
169 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
170 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171 IPPROTO_TCP,
172 inet->inet_sport, usin->sin_port, sk, 1);
173 if (tmp < 0) {
174 if (tmp == -ENETUNREACH)
175 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
176 return tmp;
177 }
178
179 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
180 ip_rt_put(rt);
181 return -ENETUNREACH;
182 }
183
184 if (!inet->opt || !inet->opt->srr)
185 daddr = rt->rt_dst;
186
187 if (!inet->inet_saddr)
188 inet->inet_saddr = rt->rt_src;
189 inet->inet_rcv_saddr = inet->inet_saddr;
190
191 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
192 /* Reset inherited state */
193 tp->rx_opt.ts_recent = 0;
194 tp->rx_opt.ts_recent_stamp = 0;
195 tp->write_seq = 0;
196 }
197
198 if (tcp_death_row.sysctl_tw_recycle &&
199 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
200 struct inet_peer *peer = rt_get_peer(rt);
201 /*
202 * VJ's idea. We save last timestamp seen from
203 * the destination in peer table, when entering state
204 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
205 * when trying new connection.
206 */
207 if (peer != NULL &&
208 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
209 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
210 tp->rx_opt.ts_recent = peer->tcp_ts;
211 }
212 }
213
214 inet->inet_dport = usin->sin_port;
215 inet->inet_daddr = daddr;
216
217 inet_csk(sk)->icsk_ext_hdr_len = 0;
218 if (inet->opt)
219 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220
221 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222
223 /* Socket identity is still unknown (sport may be zero).
224 * However we set state to SYN-SENT and not releasing socket
225 * lock select source port, enter ourselves into the hash tables and
226 * complete initialization after this.
227 */
228 tcp_set_state(sk, TCP_SYN_SENT);
229 err = inet_hash_connect(&tcp_death_row, sk);
230 if (err)
231 goto failure;
232
233 err = ip_route_newports(&rt, IPPROTO_TCP,
234 inet->inet_sport, inet->inet_dport, sk);
235 if (err)
236 goto failure;
237
238 /* OK, now commit destination to socket. */
239 sk->sk_gso_type = SKB_GSO_TCPV4;
240 sk_setup_caps(sk, &rt->u.dst);
241
242 if (!tp->write_seq)
243 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
244 inet->inet_daddr,
245 inet->inet_sport,
246 usin->sin_port);
247
248 inet->inet_id = tp->write_seq ^ jiffies;
249
250 err = tcp_connect(sk);
251 rt = NULL;
252 if (err)
253 goto failure;
254
255 return 0;
256
257 failure:
258 /*
259 * This unhashes the socket and releases the local port,
260 * if necessary.
261 */
262 tcp_set_state(sk, TCP_CLOSE);
263 ip_rt_put(rt);
264 sk->sk_route_caps = 0;
265 inet->inet_dport = 0;
266 return err;
267 }
268
269 /*
270 * This routine does path mtu discovery as defined in RFC1191.
271 */
272 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
280 */
281 if (sk->sk_state == TCP_LISTEN)
282 return;
283
284 /* We don't check in the destentry if pmtu discovery is forbidden
285 * on this route. We just assume that no packet_to_big packets
286 * are send back when pmtu discovery is not active.
287 * There is a small race when the user changes this flag in the
288 * route, but I think that's acceptable.
289 */
290 if ((dst = __sk_dst_check(sk, 0)) == NULL)
291 return;
292
293 dst->ops->update_pmtu(dst, mtu);
294
295 /* Something is about to be wrong... Remember soft error
296 * for the case, if this connection will not able to recover.
297 */
298 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299 sk->sk_err_soft = EMSGSIZE;
300
301 mtu = dst_mtu(dst);
302
303 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305 tcp_sync_mss(sk, mtu);
306
307 /* Resend the TCP packet because it's
308 * clear that the old packet has been
309 * dropped. This is the new "fast" path mtu
310 * discovery.
311 */
312 tcp_simple_retransmit(sk);
313 } /* else let the usual retransmit timer handle it */
314 }
315
316 /*
317 * This routine is called by the ICMP module when it gets some
318 * sort of error condition. If err < 0 then the socket should
319 * be closed and the error returned to the user. If err > 0
320 * it's just the icmp type << 8 | icmp code. After adjustment
321 * header points to the first 8 bytes of the tcp header. We need
322 * to find the appropriate port.
323 *
324 * The locking strategy used here is very "optimistic". When
325 * someone else accesses the socket the ICMP is just dropped
326 * and for some paths there is no check at all.
327 * A more general error queue to queue errors for later handling
328 * is probably better.
329 *
330 */
331
332 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 {
334 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
335 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
336 struct inet_connection_sock *icsk;
337 struct tcp_sock *tp;
338 struct inet_sock *inet;
339 const int type = icmp_hdr(icmp_skb)->type;
340 const int code = icmp_hdr(icmp_skb)->code;
341 struct sock *sk;
342 struct sk_buff *skb;
343 __u32 seq;
344 __u32 remaining;
345 int err;
346 struct net *net = dev_net(icmp_skb->dev);
347
348 if (icmp_skb->len < (iph->ihl << 2) + 8) {
349 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350 return;
351 }
352
353 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354 iph->saddr, th->source, inet_iif(icmp_skb));
355 if (!sk) {
356 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
357 return;
358 }
359 if (sk->sk_state == TCP_TIME_WAIT) {
360 inet_twsk_put(inet_twsk(sk));
361 return;
362 }
363
364 bh_lock_sock(sk);
365 /* If too many ICMPs get dropped on busy
366 * servers this needs to be solved differently.
367 */
368 if (sock_owned_by_user(sk))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
373
374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376 goto out;
377 }
378
379 icsk = inet_csk(sk);
380 tp = tcp_sk(sk);
381 seq = ntohl(th->seq);
382 if (sk->sk_state != TCP_LISTEN &&
383 !between(seq, tp->snd_una, tp->snd_nxt)) {
384 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385 goto out;
386 }
387
388 switch (type) {
389 case ICMP_SOURCE_QUENCH:
390 /* Just silently ignore these. */
391 goto out;
392 case ICMP_PARAMETERPROB:
393 err = EPROTO;
394 break;
395 case ICMP_DEST_UNREACH:
396 if (code > NR_ICMP_UNREACH)
397 goto out;
398
399 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
400 if (!sock_owned_by_user(sk))
401 do_pmtu_discovery(sk, iph, info);
402 goto out;
403 }
404
405 err = icmp_err_convert[code].errno;
406 /* check if icmp_skb allows revert of backoff
407 * (see draft-zimmermann-tcp-lcd) */
408 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
409 break;
410 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
411 !icsk->icsk_backoff)
412 break;
413
414 icsk->icsk_backoff--;
415 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
416 icsk->icsk_backoff;
417 tcp_bound_rto(sk);
418
419 skb = tcp_write_queue_head(sk);
420 BUG_ON(!skb);
421
422 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
423 tcp_time_stamp - TCP_SKB_CB(skb)->when);
424
425 if (remaining) {
426 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
427 remaining, TCP_RTO_MAX);
428 } else if (sock_owned_by_user(sk)) {
429 /* RTO revert clocked out retransmission,
430 * but socket is locked. Will defer. */
431 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
432 HZ/20, TCP_RTO_MAX);
433 } else {
434 /* RTO revert clocked out retransmission.
435 * Will retransmit now */
436 tcp_retransmit_timer(sk);
437 }
438
439 break;
440 case ICMP_TIME_EXCEEDED:
441 err = EHOSTUNREACH;
442 break;
443 default:
444 goto out;
445 }
446
447 switch (sk->sk_state) {
448 struct request_sock *req, **prev;
449 case TCP_LISTEN:
450 if (sock_owned_by_user(sk))
451 goto out;
452
453 req = inet_csk_search_req(sk, &prev, th->dest,
454 iph->daddr, iph->saddr);
455 if (!req)
456 goto out;
457
458 /* ICMPs are not backlogged, hence we cannot get
459 an established socket here.
460 */
461 WARN_ON(req->sk);
462
463 if (seq != tcp_rsk(req)->snt_isn) {
464 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
465 goto out;
466 }
467
468 /*
469 * Still in SYN_RECV, just remove it silently.
470 * There is no good way to pass the error to the newly
471 * created socket, and POSIX does not want network
472 * errors returned from accept().
473 */
474 inet_csk_reqsk_queue_drop(sk, req, prev);
475 goto out;
476
477 case TCP_SYN_SENT:
478 case TCP_SYN_RECV: /* Cannot happen.
479 It can f.e. if SYNs crossed.
480 */
481 if (!sock_owned_by_user(sk)) {
482 sk->sk_err = err;
483
484 sk->sk_error_report(sk);
485
486 tcp_done(sk);
487 } else {
488 sk->sk_err_soft = err;
489 }
490 goto out;
491 }
492
493 /* If we've already connected we will keep trying
494 * until we time out, or the user gives up.
495 *
496 * rfc1122 4.2.3.9 allows to consider as hard errors
497 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
498 * but it is obsoleted by pmtu discovery).
499 *
500 * Note, that in modern internet, where routing is unreliable
501 * and in each dark corner broken firewalls sit, sending random
502 * errors ordered by their masters even this two messages finally lose
503 * their original sense (even Linux sends invalid PORT_UNREACHs)
504 *
505 * Now we are in compliance with RFCs.
506 * --ANK (980905)
507 */
508
509 inet = inet_sk(sk);
510 if (!sock_owned_by_user(sk) && inet->recverr) {
511 sk->sk_err = err;
512 sk->sk_error_report(sk);
513 } else { /* Only an error on timeout */
514 sk->sk_err_soft = err;
515 }
516
517 out:
518 bh_unlock_sock(sk);
519 sock_put(sk);
520 }
521
522 static void __tcp_v4_send_check(struct sk_buff *skb,
523 __be32 saddr, __be32 daddr)
524 {
525 struct tcphdr *th = tcp_hdr(skb);
526
527 if (skb->ip_summed == CHECKSUM_PARTIAL) {
528 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
529 skb->csum_start = skb_transport_header(skb) - skb->head;
530 skb->csum_offset = offsetof(struct tcphdr, check);
531 } else {
532 th->check = tcp_v4_check(skb->len, saddr, daddr,
533 csum_partial(th,
534 th->doff << 2,
535 skb->csum));
536 }
537 }
538
539 /* This routine computes an IPv4 TCP checksum. */
540 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
541 {
542 struct inet_sock *inet = inet_sk(sk);
543
544 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
545 }
546
547 int tcp_v4_gso_send_check(struct sk_buff *skb)
548 {
549 const struct iphdr *iph;
550 struct tcphdr *th;
551
552 if (!pskb_may_pull(skb, sizeof(*th)))
553 return -EINVAL;
554
555 iph = ip_hdr(skb);
556 th = tcp_hdr(skb);
557
558 th->check = 0;
559 skb->ip_summed = CHECKSUM_PARTIAL;
560 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
561 return 0;
562 }
563
564 /*
565 * This routine will send an RST to the other tcp.
566 *
567 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
568 * for reset.
569 * Answer: if a packet caused RST, it is not for a socket
570 * existing in our system, if it is matched to a socket,
571 * it is just duplicate segment or bug in other side's TCP.
572 * So that we build reply only basing on parameters
573 * arrived with segment.
574 * Exception: precedence violation. We do not implement it in any case.
575 */
576
577 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
578 {
579 struct tcphdr *th = tcp_hdr(skb);
580 struct {
581 struct tcphdr th;
582 #ifdef CONFIG_TCP_MD5SIG
583 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
584 #endif
585 } rep;
586 struct ip_reply_arg arg;
587 #ifdef CONFIG_TCP_MD5SIG
588 struct tcp_md5sig_key *key;
589 #endif
590 struct net *net;
591
592 /* Never send a reset in response to a reset. */
593 if (th->rst)
594 return;
595
596 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
597 return;
598
599 /* Swap the send and the receive. */
600 memset(&rep, 0, sizeof(rep));
601 rep.th.dest = th->source;
602 rep.th.source = th->dest;
603 rep.th.doff = sizeof(struct tcphdr) / 4;
604 rep.th.rst = 1;
605
606 if (th->ack) {
607 rep.th.seq = th->ack_seq;
608 } else {
609 rep.th.ack = 1;
610 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
611 skb->len - (th->doff << 2));
612 }
613
614 memset(&arg, 0, sizeof(arg));
615 arg.iov[0].iov_base = (unsigned char *)&rep;
616 arg.iov[0].iov_len = sizeof(rep.th);
617
618 #ifdef CONFIG_TCP_MD5SIG
619 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
620 if (key) {
621 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
622 (TCPOPT_NOP << 16) |
623 (TCPOPT_MD5SIG << 8) |
624 TCPOLEN_MD5SIG);
625 /* Update length and the length the header thinks exists */
626 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
627 rep.th.doff = arg.iov[0].iov_len / 4;
628
629 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
630 key, ip_hdr(skb)->saddr,
631 ip_hdr(skb)->daddr, &rep.th);
632 }
633 #endif
634 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
635 ip_hdr(skb)->saddr, /* XXX */
636 arg.iov[0].iov_len, IPPROTO_TCP, 0);
637 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
638 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
639
640 net = dev_net(skb_dst(skb)->dev);
641 ip_send_reply(net->ipv4.tcp_sock, skb,
642 &arg, arg.iov[0].iov_len);
643
644 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
645 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
646 }
647
648 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
649 outside socket context is ugly, certainly. What can I do?
650 */
651
652 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
653 u32 win, u32 ts, int oif,
654 struct tcp_md5sig_key *key,
655 int reply_flags)
656 {
657 struct tcphdr *th = tcp_hdr(skb);
658 struct {
659 struct tcphdr th;
660 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
661 #ifdef CONFIG_TCP_MD5SIG
662 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
663 #endif
664 ];
665 } rep;
666 struct ip_reply_arg arg;
667 struct net *net = dev_net(skb_dst(skb)->dev);
668
669 memset(&rep.th, 0, sizeof(struct tcphdr));
670 memset(&arg, 0, sizeof(arg));
671
672 arg.iov[0].iov_base = (unsigned char *)&rep;
673 arg.iov[0].iov_len = sizeof(rep.th);
674 if (ts) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
676 (TCPOPT_TIMESTAMP << 8) |
677 TCPOLEN_TIMESTAMP);
678 rep.opt[1] = htonl(tcp_time_stamp);
679 rep.opt[2] = htonl(ts);
680 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
681 }
682
683 /* Swap the send and the receive. */
684 rep.th.dest = th->source;
685 rep.th.source = th->dest;
686 rep.th.doff = arg.iov[0].iov_len / 4;
687 rep.th.seq = htonl(seq);
688 rep.th.ack_seq = htonl(ack);
689 rep.th.ack = 1;
690 rep.th.window = htons(win);
691
692 #ifdef CONFIG_TCP_MD5SIG
693 if (key) {
694 int offset = (ts) ? 3 : 0;
695
696 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
697 (TCPOPT_NOP << 16) |
698 (TCPOPT_MD5SIG << 8) |
699 TCPOLEN_MD5SIG);
700 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
701 rep.th.doff = arg.iov[0].iov_len/4;
702
703 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
704 key, ip_hdr(skb)->saddr,
705 ip_hdr(skb)->daddr, &rep.th);
706 }
707 #endif
708 arg.flags = reply_flags;
709 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
710 ip_hdr(skb)->saddr, /* XXX */
711 arg.iov[0].iov_len, IPPROTO_TCP, 0);
712 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
713 if (oif)
714 arg.bound_dev_if = oif;
715
716 ip_send_reply(net->ipv4.tcp_sock, skb,
717 &arg, arg.iov[0].iov_len);
718
719 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
720 }
721
722 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
723 {
724 struct inet_timewait_sock *tw = inet_twsk(sk);
725 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
726
727 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
728 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
729 tcptw->tw_ts_recent,
730 tw->tw_bound_dev_if,
731 tcp_twsk_md5_key(tcptw),
732 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
733 );
734
735 inet_twsk_put(tw);
736 }
737
738 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
739 struct request_sock *req)
740 {
741 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
742 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
743 req->ts_recent,
744 0,
745 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
746 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
747 }
748
749 /*
750 * Send a SYN-ACK after having received a SYN.
751 * This still operates on a request_sock only, not on a big
752 * socket.
753 */
754 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
755 struct request_sock *req,
756 struct request_values *rvp)
757 {
758 const struct inet_request_sock *ireq = inet_rsk(req);
759 int err = -1;
760 struct sk_buff * skb;
761
762 /* First, grab a route. */
763 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
764 return -1;
765
766 skb = tcp_make_synack(sk, dst, req, rvp);
767
768 if (skb) {
769 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
770
771 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
772 ireq->rmt_addr,
773 ireq->opt);
774 err = net_xmit_eval(err);
775 }
776
777 dst_release(dst);
778 return err;
779 }
780
781 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
782 struct request_values *rvp)
783 {
784 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
785 return tcp_v4_send_synack(sk, NULL, req, rvp);
786 }
787
788 /*
789 * IPv4 request_sock destructor.
790 */
791 static void tcp_v4_reqsk_destructor(struct request_sock *req)
792 {
793 kfree(inet_rsk(req)->opt);
794 }
795
796 #ifdef CONFIG_SYN_COOKIES
797 static void syn_flood_warning(struct sk_buff *skb)
798 {
799 static unsigned long warntime;
800
801 if (time_after(jiffies, (warntime + HZ * 60))) {
802 warntime = jiffies;
803 printk(KERN_INFO
804 "possible SYN flooding on port %d. Sending cookies.\n",
805 ntohs(tcp_hdr(skb)->dest));
806 }
807 }
808 #endif
809
810 /*
811 * Save and compile IPv4 options into the request_sock if needed.
812 */
813 static struct ip_options *tcp_v4_save_options(struct sock *sk,
814 struct sk_buff *skb)
815 {
816 struct ip_options *opt = &(IPCB(skb)->opt);
817 struct ip_options *dopt = NULL;
818
819 if (opt && opt->optlen) {
820 int opt_size = optlength(opt);
821 dopt = kmalloc(opt_size, GFP_ATOMIC);
822 if (dopt) {
823 if (ip_options_echo(dopt, skb)) {
824 kfree(dopt);
825 dopt = NULL;
826 }
827 }
828 }
829 return dopt;
830 }
831
832 #ifdef CONFIG_TCP_MD5SIG
833 /*
834 * RFC2385 MD5 checksumming requires a mapping of
835 * IP address->MD5 Key.
836 * We need to maintain these in the sk structure.
837 */
838
839 /* Find the Key structure for an address. */
840 static struct tcp_md5sig_key *
841 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
842 {
843 struct tcp_sock *tp = tcp_sk(sk);
844 int i;
845
846 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
847 return NULL;
848 for (i = 0; i < tp->md5sig_info->entries4; i++) {
849 if (tp->md5sig_info->keys4[i].addr == addr)
850 return &tp->md5sig_info->keys4[i].base;
851 }
852 return NULL;
853 }
854
855 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
856 struct sock *addr_sk)
857 {
858 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
859 }
860
861 EXPORT_SYMBOL(tcp_v4_md5_lookup);
862
863 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
864 struct request_sock *req)
865 {
866 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
867 }
868
869 /* This can be called on a newly created socket, from other files */
870 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
871 u8 *newkey, u8 newkeylen)
872 {
873 /* Add Key to the list */
874 struct tcp_md5sig_key *key;
875 struct tcp_sock *tp = tcp_sk(sk);
876 struct tcp4_md5sig_key *keys;
877
878 key = tcp_v4_md5_do_lookup(sk, addr);
879 if (key) {
880 /* Pre-existing entry - just update that one. */
881 kfree(key->key);
882 key->key = newkey;
883 key->keylen = newkeylen;
884 } else {
885 struct tcp_md5sig_info *md5sig;
886
887 if (!tp->md5sig_info) {
888 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
889 GFP_ATOMIC);
890 if (!tp->md5sig_info) {
891 kfree(newkey);
892 return -ENOMEM;
893 }
894 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
895 }
896 if (tcp_alloc_md5sig_pool(sk) == NULL) {
897 kfree(newkey);
898 return -ENOMEM;
899 }
900 md5sig = tp->md5sig_info;
901
902 if (md5sig->alloced4 == md5sig->entries4) {
903 keys = kmalloc((sizeof(*keys) *
904 (md5sig->entries4 + 1)), GFP_ATOMIC);
905 if (!keys) {
906 kfree(newkey);
907 tcp_free_md5sig_pool();
908 return -ENOMEM;
909 }
910
911 if (md5sig->entries4)
912 memcpy(keys, md5sig->keys4,
913 sizeof(*keys) * md5sig->entries4);
914
915 /* Free old key list, and reference new one */
916 kfree(md5sig->keys4);
917 md5sig->keys4 = keys;
918 md5sig->alloced4++;
919 }
920 md5sig->entries4++;
921 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
922 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
923 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
924 }
925 return 0;
926 }
927
928 EXPORT_SYMBOL(tcp_v4_md5_do_add);
929
930 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
931 u8 *newkey, u8 newkeylen)
932 {
933 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
934 newkey, newkeylen);
935 }
936
937 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
938 {
939 struct tcp_sock *tp = tcp_sk(sk);
940 int i;
941
942 for (i = 0; i < tp->md5sig_info->entries4; i++) {
943 if (tp->md5sig_info->keys4[i].addr == addr) {
944 /* Free the key */
945 kfree(tp->md5sig_info->keys4[i].base.key);
946 tp->md5sig_info->entries4--;
947
948 if (tp->md5sig_info->entries4 == 0) {
949 kfree(tp->md5sig_info->keys4);
950 tp->md5sig_info->keys4 = NULL;
951 tp->md5sig_info->alloced4 = 0;
952 } else if (tp->md5sig_info->entries4 != i) {
953 /* Need to do some manipulation */
954 memmove(&tp->md5sig_info->keys4[i],
955 &tp->md5sig_info->keys4[i+1],
956 (tp->md5sig_info->entries4 - i) *
957 sizeof(struct tcp4_md5sig_key));
958 }
959 tcp_free_md5sig_pool();
960 return 0;
961 }
962 }
963 return -ENOENT;
964 }
965
966 EXPORT_SYMBOL(tcp_v4_md5_do_del);
967
968 static void tcp_v4_clear_md5_list(struct sock *sk)
969 {
970 struct tcp_sock *tp = tcp_sk(sk);
971
972 /* Free each key, then the set of key keys,
973 * the crypto element, and then decrement our
974 * hold on the last resort crypto.
975 */
976 if (tp->md5sig_info->entries4) {
977 int i;
978 for (i = 0; i < tp->md5sig_info->entries4; i++)
979 kfree(tp->md5sig_info->keys4[i].base.key);
980 tp->md5sig_info->entries4 = 0;
981 tcp_free_md5sig_pool();
982 }
983 if (tp->md5sig_info->keys4) {
984 kfree(tp->md5sig_info->keys4);
985 tp->md5sig_info->keys4 = NULL;
986 tp->md5sig_info->alloced4 = 0;
987 }
988 }
989
990 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
991 int optlen)
992 {
993 struct tcp_md5sig cmd;
994 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
995 u8 *newkey;
996
997 if (optlen < sizeof(cmd))
998 return -EINVAL;
999
1000 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1001 return -EFAULT;
1002
1003 if (sin->sin_family != AF_INET)
1004 return -EINVAL;
1005
1006 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1007 if (!tcp_sk(sk)->md5sig_info)
1008 return -ENOENT;
1009 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1010 }
1011
1012 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1013 return -EINVAL;
1014
1015 if (!tcp_sk(sk)->md5sig_info) {
1016 struct tcp_sock *tp = tcp_sk(sk);
1017 struct tcp_md5sig_info *p;
1018
1019 p = kzalloc(sizeof(*p), sk->sk_allocation);
1020 if (!p)
1021 return -EINVAL;
1022
1023 tp->md5sig_info = p;
1024 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1025 }
1026
1027 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1028 if (!newkey)
1029 return -ENOMEM;
1030 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1031 newkey, cmd.tcpm_keylen);
1032 }
1033
1034 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1035 __be32 daddr, __be32 saddr, int nbytes)
1036 {
1037 struct tcp4_pseudohdr *bp;
1038 struct scatterlist sg;
1039
1040 bp = &hp->md5_blk.ip4;
1041
1042 /*
1043 * 1. the TCP pseudo-header (in the order: source IP address,
1044 * destination IP address, zero-padded protocol number, and
1045 * segment length)
1046 */
1047 bp->saddr = saddr;
1048 bp->daddr = daddr;
1049 bp->pad = 0;
1050 bp->protocol = IPPROTO_TCP;
1051 bp->len = cpu_to_be16(nbytes);
1052
1053 sg_init_one(&sg, bp, sizeof(*bp));
1054 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1055 }
1056
1057 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1058 __be32 daddr, __be32 saddr, struct tcphdr *th)
1059 {
1060 struct tcp_md5sig_pool *hp;
1061 struct hash_desc *desc;
1062
1063 hp = tcp_get_md5sig_pool();
1064 if (!hp)
1065 goto clear_hash_noput;
1066 desc = &hp->md5_desc;
1067
1068 if (crypto_hash_init(desc))
1069 goto clear_hash;
1070 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1071 goto clear_hash;
1072 if (tcp_md5_hash_header(hp, th))
1073 goto clear_hash;
1074 if (tcp_md5_hash_key(hp, key))
1075 goto clear_hash;
1076 if (crypto_hash_final(desc, md5_hash))
1077 goto clear_hash;
1078
1079 tcp_put_md5sig_pool();
1080 return 0;
1081
1082 clear_hash:
1083 tcp_put_md5sig_pool();
1084 clear_hash_noput:
1085 memset(md5_hash, 0, 16);
1086 return 1;
1087 }
1088
1089 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1090 struct sock *sk, struct request_sock *req,
1091 struct sk_buff *skb)
1092 {
1093 struct tcp_md5sig_pool *hp;
1094 struct hash_desc *desc;
1095 struct tcphdr *th = tcp_hdr(skb);
1096 __be32 saddr, daddr;
1097
1098 if (sk) {
1099 saddr = inet_sk(sk)->inet_saddr;
1100 daddr = inet_sk(sk)->inet_daddr;
1101 } else if (req) {
1102 saddr = inet_rsk(req)->loc_addr;
1103 daddr = inet_rsk(req)->rmt_addr;
1104 } else {
1105 const struct iphdr *iph = ip_hdr(skb);
1106 saddr = iph->saddr;
1107 daddr = iph->daddr;
1108 }
1109
1110 hp = tcp_get_md5sig_pool();
1111 if (!hp)
1112 goto clear_hash_noput;
1113 desc = &hp->md5_desc;
1114
1115 if (crypto_hash_init(desc))
1116 goto clear_hash;
1117
1118 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1119 goto clear_hash;
1120 if (tcp_md5_hash_header(hp, th))
1121 goto clear_hash;
1122 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1123 goto clear_hash;
1124 if (tcp_md5_hash_key(hp, key))
1125 goto clear_hash;
1126 if (crypto_hash_final(desc, md5_hash))
1127 goto clear_hash;
1128
1129 tcp_put_md5sig_pool();
1130 return 0;
1131
1132 clear_hash:
1133 tcp_put_md5sig_pool();
1134 clear_hash_noput:
1135 memset(md5_hash, 0, 16);
1136 return 1;
1137 }
1138
1139 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1140
1141 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1142 {
1143 /*
1144 * This gets called for each TCP segment that arrives
1145 * so we want to be efficient.
1146 * We have 3 drop cases:
1147 * o No MD5 hash and one expected.
1148 * o MD5 hash and we're not expecting one.
1149 * o MD5 hash and its wrong.
1150 */
1151 __u8 *hash_location = NULL;
1152 struct tcp_md5sig_key *hash_expected;
1153 const struct iphdr *iph = ip_hdr(skb);
1154 struct tcphdr *th = tcp_hdr(skb);
1155 int genhash;
1156 unsigned char newhash[16];
1157
1158 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1159 hash_location = tcp_parse_md5sig_option(th);
1160
1161 /* We've parsed the options - do we have a hash? */
1162 if (!hash_expected && !hash_location)
1163 return 0;
1164
1165 if (hash_expected && !hash_location) {
1166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1167 return 1;
1168 }
1169
1170 if (!hash_expected && hash_location) {
1171 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1172 return 1;
1173 }
1174
1175 /* Okay, so this is hash_expected and hash_location -
1176 * so we need to calculate the checksum.
1177 */
1178 genhash = tcp_v4_md5_hash_skb(newhash,
1179 hash_expected,
1180 NULL, NULL, skb);
1181
1182 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1183 if (net_ratelimit()) {
1184 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1185 &iph->saddr, ntohs(th->source),
1186 &iph->daddr, ntohs(th->dest),
1187 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1188 }
1189 return 1;
1190 }
1191 return 0;
1192 }
1193
1194 #endif
1195
1196 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1197 .family = PF_INET,
1198 .obj_size = sizeof(struct tcp_request_sock),
1199 .rtx_syn_ack = tcp_v4_rtx_synack,
1200 .send_ack = tcp_v4_reqsk_send_ack,
1201 .destructor = tcp_v4_reqsk_destructor,
1202 .send_reset = tcp_v4_send_reset,
1203 .syn_ack_timeout = tcp_syn_ack_timeout,
1204 };
1205
1206 #ifdef CONFIG_TCP_MD5SIG
1207 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1208 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1209 .calc_md5_hash = tcp_v4_md5_hash_skb,
1210 };
1211 #endif
1212
1213 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1214 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1215 .twsk_unique = tcp_twsk_unique,
1216 .twsk_destructor= tcp_twsk_destructor,
1217 };
1218
1219 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1220 {
1221 struct tcp_extend_values tmp_ext;
1222 struct tcp_options_received tmp_opt;
1223 u8 *hash_location;
1224 struct request_sock *req;
1225 struct inet_request_sock *ireq;
1226 struct tcp_sock *tp = tcp_sk(sk);
1227 struct dst_entry *dst = NULL;
1228 __be32 saddr = ip_hdr(skb)->saddr;
1229 __be32 daddr = ip_hdr(skb)->daddr;
1230 __u32 isn = TCP_SKB_CB(skb)->when;
1231 #ifdef CONFIG_SYN_COOKIES
1232 int want_cookie = 0;
1233 #else
1234 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1235 #endif
1236
1237 /* Never answer to SYNs send to broadcast or multicast */
1238 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1239 goto drop;
1240
1241 /* TW buckets are converted to open requests without
1242 * limitations, they conserve resources and peer is
1243 * evidently real one.
1244 */
1245 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1246 #ifdef CONFIG_SYN_COOKIES
1247 if (sysctl_tcp_syncookies) {
1248 want_cookie = 1;
1249 } else
1250 #endif
1251 goto drop;
1252 }
1253
1254 /* Accept backlog is full. If we have already queued enough
1255 * of warm entries in syn queue, drop request. It is better than
1256 * clogging syn queue with openreqs with exponentially increasing
1257 * timeout.
1258 */
1259 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1260 goto drop;
1261
1262 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1263 if (!req)
1264 goto drop;
1265
1266 #ifdef CONFIG_TCP_MD5SIG
1267 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1268 #endif
1269
1270 tcp_clear_options(&tmp_opt);
1271 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1272 tmp_opt.user_mss = tp->rx_opt.user_mss;
1273 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1274
1275 if (tmp_opt.cookie_plus > 0 &&
1276 tmp_opt.saw_tstamp &&
1277 !tp->rx_opt.cookie_out_never &&
1278 (sysctl_tcp_cookie_size > 0 ||
1279 (tp->cookie_values != NULL &&
1280 tp->cookie_values->cookie_desired > 0))) {
1281 u8 *c;
1282 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1283 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1284
1285 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1286 goto drop_and_release;
1287
1288 /* Secret recipe starts with IP addresses */
1289 *mess++ ^= (__force u32)daddr;
1290 *mess++ ^= (__force u32)saddr;
1291
1292 /* plus variable length Initiator Cookie */
1293 c = (u8 *)mess;
1294 while (l-- > 0)
1295 *c++ ^= *hash_location++;
1296
1297 #ifdef CONFIG_SYN_COOKIES
1298 want_cookie = 0; /* not our kind of cookie */
1299 #endif
1300 tmp_ext.cookie_out_never = 0; /* false */
1301 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1302 } else if (!tp->rx_opt.cookie_in_always) {
1303 /* redundant indications, but ensure initialization. */
1304 tmp_ext.cookie_out_never = 1; /* true */
1305 tmp_ext.cookie_plus = 0;
1306 } else {
1307 goto drop_and_release;
1308 }
1309 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1310
1311 if (want_cookie && !tmp_opt.saw_tstamp)
1312 tcp_clear_options(&tmp_opt);
1313
1314 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1315 tcp_openreq_init(req, &tmp_opt, skb);
1316
1317 ireq = inet_rsk(req);
1318 ireq->loc_addr = daddr;
1319 ireq->rmt_addr = saddr;
1320 ireq->no_srccheck = inet_sk(sk)->transparent;
1321 ireq->opt = tcp_v4_save_options(sk, skb);
1322
1323 if (security_inet_conn_request(sk, skb, req))
1324 goto drop_and_free;
1325
1326 if (!want_cookie)
1327 TCP_ECN_create_request(req, tcp_hdr(skb));
1328
1329 if (want_cookie) {
1330 #ifdef CONFIG_SYN_COOKIES
1331 syn_flood_warning(skb);
1332 req->cookie_ts = tmp_opt.tstamp_ok;
1333 #endif
1334 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1335 } else if (!isn) {
1336 struct inet_peer *peer = NULL;
1337
1338 /* VJ's idea. We save last timestamp seen
1339 * from the destination in peer table, when entering
1340 * state TIME-WAIT, and check against it before
1341 * accepting new connection request.
1342 *
1343 * If "isn" is not zero, this request hit alive
1344 * timewait bucket, so that all the necessary checks
1345 * are made in the function processing timewait state.
1346 */
1347 if (tmp_opt.saw_tstamp &&
1348 tcp_death_row.sysctl_tw_recycle &&
1349 (dst = inet_csk_route_req(sk, req)) != NULL &&
1350 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1351 peer->v4daddr == saddr) {
1352 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1353 (s32)(peer->tcp_ts - req->ts_recent) >
1354 TCP_PAWS_WINDOW) {
1355 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1356 goto drop_and_release;
1357 }
1358 }
1359 /* Kill the following clause, if you dislike this way. */
1360 else if (!sysctl_tcp_syncookies &&
1361 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1362 (sysctl_max_syn_backlog >> 2)) &&
1363 (!peer || !peer->tcp_ts_stamp) &&
1364 (!dst || !dst_metric(dst, RTAX_RTT))) {
1365 /* Without syncookies last quarter of
1366 * backlog is filled with destinations,
1367 * proven to be alive.
1368 * It means that we continue to communicate
1369 * to destinations, already remembered
1370 * to the moment of synflood.
1371 */
1372 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1373 &saddr, ntohs(tcp_hdr(skb)->source));
1374 goto drop_and_release;
1375 }
1376
1377 isn = tcp_v4_init_sequence(skb);
1378 }
1379 tcp_rsk(req)->snt_isn = isn;
1380
1381 if (tcp_v4_send_synack(sk, dst, req,
1382 (struct request_values *)&tmp_ext) ||
1383 want_cookie)
1384 goto drop_and_free;
1385
1386 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1387 return 0;
1388
1389 drop_and_release:
1390 dst_release(dst);
1391 drop_and_free:
1392 reqsk_free(req);
1393 drop:
1394 return 0;
1395 }
1396
1397
1398 /*
1399 * The three way handshake has completed - we got a valid synack -
1400 * now create the new socket.
1401 */
1402 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1403 struct request_sock *req,
1404 struct dst_entry *dst)
1405 {
1406 struct inet_request_sock *ireq;
1407 struct inet_sock *newinet;
1408 struct tcp_sock *newtp;
1409 struct sock *newsk;
1410 #ifdef CONFIG_TCP_MD5SIG
1411 struct tcp_md5sig_key *key;
1412 #endif
1413
1414 if (sk_acceptq_is_full(sk))
1415 goto exit_overflow;
1416
1417 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1418 goto exit;
1419
1420 newsk = tcp_create_openreq_child(sk, req, skb);
1421 if (!newsk)
1422 goto exit;
1423
1424 newsk->sk_gso_type = SKB_GSO_TCPV4;
1425 sk_setup_caps(newsk, dst);
1426
1427 newtp = tcp_sk(newsk);
1428 newinet = inet_sk(newsk);
1429 ireq = inet_rsk(req);
1430 newinet->inet_daddr = ireq->rmt_addr;
1431 newinet->inet_rcv_saddr = ireq->loc_addr;
1432 newinet->inet_saddr = ireq->loc_addr;
1433 newinet->opt = ireq->opt;
1434 ireq->opt = NULL;
1435 newinet->mc_index = inet_iif(skb);
1436 newinet->mc_ttl = ip_hdr(skb)->ttl;
1437 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1438 if (newinet->opt)
1439 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1440 newinet->inet_id = newtp->write_seq ^ jiffies;
1441
1442 tcp_mtup_init(newsk);
1443 tcp_sync_mss(newsk, dst_mtu(dst));
1444 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1445 if (tcp_sk(sk)->rx_opt.user_mss &&
1446 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1447 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1448
1449 tcp_initialize_rcv_mss(newsk);
1450
1451 #ifdef CONFIG_TCP_MD5SIG
1452 /* Copy over the MD5 key from the original socket */
1453 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1454 if (key != NULL) {
1455 /*
1456 * We're using one, so create a matching key
1457 * on the newsk structure. If we fail to get
1458 * memory, then we end up not copying the key
1459 * across. Shucks.
1460 */
1461 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1462 if (newkey != NULL)
1463 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1464 newkey, key->keylen);
1465 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1466 }
1467 #endif
1468
1469 __inet_hash_nolisten(newsk, NULL);
1470 __inet_inherit_port(sk, newsk);
1471
1472 return newsk;
1473
1474 exit_overflow:
1475 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1476 exit:
1477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1478 dst_release(dst);
1479 return NULL;
1480 }
1481
1482 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1483 {
1484 struct tcphdr *th = tcp_hdr(skb);
1485 const struct iphdr *iph = ip_hdr(skb);
1486 struct sock *nsk;
1487 struct request_sock **prev;
1488 /* Find possible connection requests. */
1489 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1490 iph->saddr, iph->daddr);
1491 if (req)
1492 return tcp_check_req(sk, skb, req, prev);
1493
1494 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1495 th->source, iph->daddr, th->dest, inet_iif(skb));
1496
1497 if (nsk) {
1498 if (nsk->sk_state != TCP_TIME_WAIT) {
1499 bh_lock_sock(nsk);
1500 return nsk;
1501 }
1502 inet_twsk_put(inet_twsk(nsk));
1503 return NULL;
1504 }
1505
1506 #ifdef CONFIG_SYN_COOKIES
1507 if (!th->rst && !th->syn && th->ack)
1508 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1509 #endif
1510 return sk;
1511 }
1512
1513 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1514 {
1515 const struct iphdr *iph = ip_hdr(skb);
1516
1517 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1518 if (!tcp_v4_check(skb->len, iph->saddr,
1519 iph->daddr, skb->csum)) {
1520 skb->ip_summed = CHECKSUM_UNNECESSARY;
1521 return 0;
1522 }
1523 }
1524
1525 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1526 skb->len, IPPROTO_TCP, 0);
1527
1528 if (skb->len <= 76) {
1529 return __skb_checksum_complete(skb);
1530 }
1531 return 0;
1532 }
1533
1534
1535 /* The socket must have it's spinlock held when we get
1536 * here.
1537 *
1538 * We have a potential double-lock case here, so even when
1539 * doing backlog processing we use the BH locking scheme.
1540 * This is because we cannot sleep with the original spinlock
1541 * held.
1542 */
1543 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1544 {
1545 struct sock *rsk;
1546 #ifdef CONFIG_TCP_MD5SIG
1547 /*
1548 * We really want to reject the packet as early as possible
1549 * if:
1550 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1551 * o There is an MD5 option and we're not expecting one
1552 */
1553 if (tcp_v4_inbound_md5_hash(sk, skb))
1554 goto discard;
1555 #endif
1556
1557 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1558 TCP_CHECK_TIMER(sk);
1559 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1560 rsk = sk;
1561 goto reset;
1562 }
1563 TCP_CHECK_TIMER(sk);
1564 return 0;
1565 }
1566
1567 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1568 goto csum_err;
1569
1570 if (sk->sk_state == TCP_LISTEN) {
1571 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1572 if (!nsk)
1573 goto discard;
1574
1575 if (nsk != sk) {
1576 if (tcp_child_process(sk, nsk, skb)) {
1577 rsk = nsk;
1578 goto reset;
1579 }
1580 return 0;
1581 }
1582 }
1583
1584 TCP_CHECK_TIMER(sk);
1585 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1586 rsk = sk;
1587 goto reset;
1588 }
1589 TCP_CHECK_TIMER(sk);
1590 return 0;
1591
1592 reset:
1593 tcp_v4_send_reset(rsk, skb);
1594 discard:
1595 kfree_skb(skb);
1596 /* Be careful here. If this function gets more complicated and
1597 * gcc suffers from register pressure on the x86, sk (in %ebx)
1598 * might be destroyed here. This current version compiles correctly,
1599 * but you have been warned.
1600 */
1601 return 0;
1602
1603 csum_err:
1604 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1605 goto discard;
1606 }
1607
1608 /*
1609 * From tcp_input.c
1610 */
1611
1612 int tcp_v4_rcv(struct sk_buff *skb)
1613 {
1614 const struct iphdr *iph;
1615 struct tcphdr *th;
1616 struct sock *sk;
1617 int ret;
1618 struct net *net = dev_net(skb->dev);
1619
1620 if (skb->pkt_type != PACKET_HOST)
1621 goto discard_it;
1622
1623 /* Count it even if it's bad */
1624 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1625
1626 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1627 goto discard_it;
1628
1629 th = tcp_hdr(skb);
1630
1631 if (th->doff < sizeof(struct tcphdr) / 4)
1632 goto bad_packet;
1633 if (!pskb_may_pull(skb, th->doff * 4))
1634 goto discard_it;
1635
1636 /* An explanation is required here, I think.
1637 * Packet length and doff are validated by header prediction,
1638 * provided case of th->doff==0 is eliminated.
1639 * So, we defer the checks. */
1640 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1641 goto bad_packet;
1642
1643 th = tcp_hdr(skb);
1644 iph = ip_hdr(skb);
1645 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1646 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1647 skb->len - th->doff * 4);
1648 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1649 TCP_SKB_CB(skb)->when = 0;
1650 TCP_SKB_CB(skb)->flags = iph->tos;
1651 TCP_SKB_CB(skb)->sacked = 0;
1652
1653 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1654 if (!sk)
1655 goto no_tcp_socket;
1656
1657 process:
1658 if (sk->sk_state == TCP_TIME_WAIT)
1659 goto do_time_wait;
1660
1661 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1662 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1663 goto discard_and_relse;
1664 }
1665
1666 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1667 goto discard_and_relse;
1668 nf_reset(skb);
1669
1670 if (sk_filter(sk, skb))
1671 goto discard_and_relse;
1672
1673 skb->dev = NULL;
1674
1675 sock_rps_save_rxhash(sk, skb->rxhash);
1676
1677 bh_lock_sock_nested(sk);
1678 ret = 0;
1679 if (!sock_owned_by_user(sk)) {
1680 #ifdef CONFIG_NET_DMA
1681 struct tcp_sock *tp = tcp_sk(sk);
1682 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1683 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1684 if (tp->ucopy.dma_chan)
1685 ret = tcp_v4_do_rcv(sk, skb);
1686 else
1687 #endif
1688 {
1689 if (!tcp_prequeue(sk, skb))
1690 ret = tcp_v4_do_rcv(sk, skb);
1691 }
1692 } else if (unlikely(sk_add_backlog(sk, skb))) {
1693 bh_unlock_sock(sk);
1694 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1695 goto discard_and_relse;
1696 }
1697 bh_unlock_sock(sk);
1698
1699 sock_put(sk);
1700
1701 return ret;
1702
1703 no_tcp_socket:
1704 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1705 goto discard_it;
1706
1707 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1708 bad_packet:
1709 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1710 } else {
1711 tcp_v4_send_reset(NULL, skb);
1712 }
1713
1714 discard_it:
1715 /* Discard frame. */
1716 kfree_skb(skb);
1717 return 0;
1718
1719 discard_and_relse:
1720 sock_put(sk);
1721 goto discard_it;
1722
1723 do_time_wait:
1724 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1725 inet_twsk_put(inet_twsk(sk));
1726 goto discard_it;
1727 }
1728
1729 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1730 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1731 inet_twsk_put(inet_twsk(sk));
1732 goto discard_it;
1733 }
1734 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1735 case TCP_TW_SYN: {
1736 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1737 &tcp_hashinfo,
1738 iph->daddr, th->dest,
1739 inet_iif(skb));
1740 if (sk2) {
1741 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1742 inet_twsk_put(inet_twsk(sk));
1743 sk = sk2;
1744 goto process;
1745 }
1746 /* Fall through to ACK */
1747 }
1748 case TCP_TW_ACK:
1749 tcp_v4_timewait_ack(sk, skb);
1750 break;
1751 case TCP_TW_RST:
1752 goto no_tcp_socket;
1753 case TCP_TW_SUCCESS:;
1754 }
1755 goto discard_it;
1756 }
1757
1758 /* VJ's idea. Save last timestamp seen from this destination
1759 * and hold it at least for normal timewait interval to use for duplicate
1760 * segment detection in subsequent connections, before they enter synchronized
1761 * state.
1762 */
1763
1764 int tcp_v4_remember_stamp(struct sock *sk)
1765 {
1766 struct inet_sock *inet = inet_sk(sk);
1767 struct tcp_sock *tp = tcp_sk(sk);
1768 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1769 struct inet_peer *peer = NULL;
1770 int release_it = 0;
1771
1772 if (!rt || rt->rt_dst != inet->inet_daddr) {
1773 peer = inet_getpeer(inet->inet_daddr, 1);
1774 release_it = 1;
1775 } else {
1776 if (!rt->peer)
1777 rt_bind_peer(rt, 1);
1778 peer = rt->peer;
1779 }
1780
1781 if (peer) {
1782 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1783 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1784 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1785 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1786 peer->tcp_ts = tp->rx_opt.ts_recent;
1787 }
1788 if (release_it)
1789 inet_putpeer(peer);
1790 return 1;
1791 }
1792
1793 return 0;
1794 }
1795
1796 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1797 {
1798 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1799
1800 if (peer) {
1801 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1802
1803 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1804 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1805 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1806 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1807 peer->tcp_ts = tcptw->tw_ts_recent;
1808 }
1809 inet_putpeer(peer);
1810 return 1;
1811 }
1812
1813 return 0;
1814 }
1815
1816 const struct inet_connection_sock_af_ops ipv4_specific = {
1817 .queue_xmit = ip_queue_xmit,
1818 .send_check = tcp_v4_send_check,
1819 .rebuild_header = inet_sk_rebuild_header,
1820 .conn_request = tcp_v4_conn_request,
1821 .syn_recv_sock = tcp_v4_syn_recv_sock,
1822 .remember_stamp = tcp_v4_remember_stamp,
1823 .net_header_len = sizeof(struct iphdr),
1824 .setsockopt = ip_setsockopt,
1825 .getsockopt = ip_getsockopt,
1826 .addr2sockaddr = inet_csk_addr2sockaddr,
1827 .sockaddr_len = sizeof(struct sockaddr_in),
1828 .bind_conflict = inet_csk_bind_conflict,
1829 #ifdef CONFIG_COMPAT
1830 .compat_setsockopt = compat_ip_setsockopt,
1831 .compat_getsockopt = compat_ip_getsockopt,
1832 #endif
1833 };
1834
1835 #ifdef CONFIG_TCP_MD5SIG
1836 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1837 .md5_lookup = tcp_v4_md5_lookup,
1838 .calc_md5_hash = tcp_v4_md5_hash_skb,
1839 .md5_add = tcp_v4_md5_add_func,
1840 .md5_parse = tcp_v4_parse_md5_keys,
1841 };
1842 #endif
1843
1844 /* NOTE: A lot of things set to zero explicitly by call to
1845 * sk_alloc() so need not be done here.
1846 */
1847 static int tcp_v4_init_sock(struct sock *sk)
1848 {
1849 struct inet_connection_sock *icsk = inet_csk(sk);
1850 struct tcp_sock *tp = tcp_sk(sk);
1851
1852 skb_queue_head_init(&tp->out_of_order_queue);
1853 tcp_init_xmit_timers(sk);
1854 tcp_prequeue_init(tp);
1855
1856 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1857 tp->mdev = TCP_TIMEOUT_INIT;
1858
1859 /* So many TCP implementations out there (incorrectly) count the
1860 * initial SYN frame in their delayed-ACK and congestion control
1861 * algorithms that we must have the following bandaid to talk
1862 * efficiently to them. -DaveM
1863 */
1864 tp->snd_cwnd = 2;
1865
1866 /* See draft-stevens-tcpca-spec-01 for discussion of the
1867 * initialization of these values.
1868 */
1869 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1870 tp->snd_cwnd_clamp = ~0;
1871 tp->mss_cache = TCP_MSS_DEFAULT;
1872
1873 tp->reordering = sysctl_tcp_reordering;
1874 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1875
1876 sk->sk_state = TCP_CLOSE;
1877
1878 sk->sk_write_space = sk_stream_write_space;
1879 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1880
1881 icsk->icsk_af_ops = &ipv4_specific;
1882 icsk->icsk_sync_mss = tcp_sync_mss;
1883 #ifdef CONFIG_TCP_MD5SIG
1884 tp->af_specific = &tcp_sock_ipv4_specific;
1885 #endif
1886
1887 /* TCP Cookie Transactions */
1888 if (sysctl_tcp_cookie_size > 0) {
1889 /* Default, cookies without s_data_payload. */
1890 tp->cookie_values =
1891 kzalloc(sizeof(*tp->cookie_values),
1892 sk->sk_allocation);
1893 if (tp->cookie_values != NULL)
1894 kref_init(&tp->cookie_values->kref);
1895 }
1896 /* Presumed zeroed, in order of appearance:
1897 * cookie_in_always, cookie_out_never,
1898 * s_data_constant, s_data_in, s_data_out
1899 */
1900 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1901 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1902
1903 local_bh_disable();
1904 percpu_counter_inc(&tcp_sockets_allocated);
1905 local_bh_enable();
1906
1907 return 0;
1908 }
1909
1910 void tcp_v4_destroy_sock(struct sock *sk)
1911 {
1912 struct tcp_sock *tp = tcp_sk(sk);
1913
1914 tcp_clear_xmit_timers(sk);
1915
1916 tcp_cleanup_congestion_control(sk);
1917
1918 /* Cleanup up the write buffer. */
1919 tcp_write_queue_purge(sk);
1920
1921 /* Cleans up our, hopefully empty, out_of_order_queue. */
1922 __skb_queue_purge(&tp->out_of_order_queue);
1923
1924 #ifdef CONFIG_TCP_MD5SIG
1925 /* Clean up the MD5 key list, if any */
1926 if (tp->md5sig_info) {
1927 tcp_v4_clear_md5_list(sk);
1928 kfree(tp->md5sig_info);
1929 tp->md5sig_info = NULL;
1930 }
1931 #endif
1932
1933 #ifdef CONFIG_NET_DMA
1934 /* Cleans up our sk_async_wait_queue */
1935 __skb_queue_purge(&sk->sk_async_wait_queue);
1936 #endif
1937
1938 /* Clean prequeue, it must be empty really */
1939 __skb_queue_purge(&tp->ucopy.prequeue);
1940
1941 /* Clean up a referenced TCP bind bucket. */
1942 if (inet_csk(sk)->icsk_bind_hash)
1943 inet_put_port(sk);
1944
1945 /*
1946 * If sendmsg cached page exists, toss it.
1947 */
1948 if (sk->sk_sndmsg_page) {
1949 __free_page(sk->sk_sndmsg_page);
1950 sk->sk_sndmsg_page = NULL;
1951 }
1952
1953 /* TCP Cookie Transactions */
1954 if (tp->cookie_values != NULL) {
1955 kref_put(&tp->cookie_values->kref,
1956 tcp_cookie_values_release);
1957 tp->cookie_values = NULL;
1958 }
1959
1960 percpu_counter_dec(&tcp_sockets_allocated);
1961 }
1962
1963 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1964
1965 #ifdef CONFIG_PROC_FS
1966 /* Proc filesystem TCP sock list dumping. */
1967
1968 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1969 {
1970 return hlist_nulls_empty(head) ? NULL :
1971 list_entry(head->first, struct inet_timewait_sock, tw_node);
1972 }
1973
1974 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1975 {
1976 return !is_a_nulls(tw->tw_node.next) ?
1977 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1978 }
1979
1980 static void *listening_get_next(struct seq_file *seq, void *cur)
1981 {
1982 struct inet_connection_sock *icsk;
1983 struct hlist_nulls_node *node;
1984 struct sock *sk = cur;
1985 struct inet_listen_hashbucket *ilb;
1986 struct tcp_iter_state *st = seq->private;
1987 struct net *net = seq_file_net(seq);
1988
1989 if (!sk) {
1990 st->bucket = 0;
1991 ilb = &tcp_hashinfo.listening_hash[0];
1992 spin_lock_bh(&ilb->lock);
1993 sk = sk_nulls_head(&ilb->head);
1994 goto get_sk;
1995 }
1996 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1997 ++st->num;
1998
1999 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2000 struct request_sock *req = cur;
2001
2002 icsk = inet_csk(st->syn_wait_sk);
2003 req = req->dl_next;
2004 while (1) {
2005 while (req) {
2006 if (req->rsk_ops->family == st->family) {
2007 cur = req;
2008 goto out;
2009 }
2010 req = req->dl_next;
2011 }
2012 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2013 break;
2014 get_req:
2015 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2016 }
2017 sk = sk_next(st->syn_wait_sk);
2018 st->state = TCP_SEQ_STATE_LISTENING;
2019 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2020 } else {
2021 icsk = inet_csk(sk);
2022 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2023 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2024 goto start_req;
2025 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2026 sk = sk_next(sk);
2027 }
2028 get_sk:
2029 sk_nulls_for_each_from(sk, node) {
2030 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2031 cur = sk;
2032 goto out;
2033 }
2034 icsk = inet_csk(sk);
2035 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2036 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2037 start_req:
2038 st->uid = sock_i_uid(sk);
2039 st->syn_wait_sk = sk;
2040 st->state = TCP_SEQ_STATE_OPENREQ;
2041 st->sbucket = 0;
2042 goto get_req;
2043 }
2044 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2045 }
2046 spin_unlock_bh(&ilb->lock);
2047 if (++st->bucket < INET_LHTABLE_SIZE) {
2048 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2049 spin_lock_bh(&ilb->lock);
2050 sk = sk_nulls_head(&ilb->head);
2051 goto get_sk;
2052 }
2053 cur = NULL;
2054 out:
2055 return cur;
2056 }
2057
2058 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2059 {
2060 void *rc = listening_get_next(seq, NULL);
2061
2062 while (rc && *pos) {
2063 rc = listening_get_next(seq, rc);
2064 --*pos;
2065 }
2066 return rc;
2067 }
2068
2069 static inline int empty_bucket(struct tcp_iter_state *st)
2070 {
2071 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2072 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2073 }
2074
2075 static void *established_get_first(struct seq_file *seq)
2076 {
2077 struct tcp_iter_state *st = seq->private;
2078 struct net *net = seq_file_net(seq);
2079 void *rc = NULL;
2080
2081 for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2082 struct sock *sk;
2083 struct hlist_nulls_node *node;
2084 struct inet_timewait_sock *tw;
2085 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2086
2087 /* Lockless fast path for the common case of empty buckets */
2088 if (empty_bucket(st))
2089 continue;
2090
2091 spin_lock_bh(lock);
2092 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2093 if (sk->sk_family != st->family ||
2094 !net_eq(sock_net(sk), net)) {
2095 continue;
2096 }
2097 rc = sk;
2098 goto out;
2099 }
2100 st->state = TCP_SEQ_STATE_TIME_WAIT;
2101 inet_twsk_for_each(tw, node,
2102 &tcp_hashinfo.ehash[st->bucket].twchain) {
2103 if (tw->tw_family != st->family ||
2104 !net_eq(twsk_net(tw), net)) {
2105 continue;
2106 }
2107 rc = tw;
2108 goto out;
2109 }
2110 spin_unlock_bh(lock);
2111 st->state = TCP_SEQ_STATE_ESTABLISHED;
2112 }
2113 out:
2114 return rc;
2115 }
2116
2117 static void *established_get_next(struct seq_file *seq, void *cur)
2118 {
2119 struct sock *sk = cur;
2120 struct inet_timewait_sock *tw;
2121 struct hlist_nulls_node *node;
2122 struct tcp_iter_state *st = seq->private;
2123 struct net *net = seq_file_net(seq);
2124
2125 ++st->num;
2126
2127 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2128 tw = cur;
2129 tw = tw_next(tw);
2130 get_tw:
2131 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2132 tw = tw_next(tw);
2133 }
2134 if (tw) {
2135 cur = tw;
2136 goto out;
2137 }
2138 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2139 st->state = TCP_SEQ_STATE_ESTABLISHED;
2140
2141 /* Look for next non empty bucket */
2142 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2143 empty_bucket(st))
2144 ;
2145 if (st->bucket > tcp_hashinfo.ehash_mask)
2146 return NULL;
2147
2148 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2149 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2150 } else
2151 sk = sk_nulls_next(sk);
2152
2153 sk_nulls_for_each_from(sk, node) {
2154 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2155 goto found;
2156 }
2157
2158 st->state = TCP_SEQ_STATE_TIME_WAIT;
2159 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2160 goto get_tw;
2161 found:
2162 cur = sk;
2163 out:
2164 return cur;
2165 }
2166
2167 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2168 {
2169 void *rc = established_get_first(seq);
2170
2171 while (rc && pos) {
2172 rc = established_get_next(seq, rc);
2173 --pos;
2174 }
2175 return rc;
2176 }
2177
2178 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2179 {
2180 void *rc;
2181 struct tcp_iter_state *st = seq->private;
2182
2183 st->state = TCP_SEQ_STATE_LISTENING;
2184 rc = listening_get_idx(seq, &pos);
2185
2186 if (!rc) {
2187 st->state = TCP_SEQ_STATE_ESTABLISHED;
2188 rc = established_get_idx(seq, pos);
2189 }
2190
2191 return rc;
2192 }
2193
2194 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2195 {
2196 struct tcp_iter_state *st = seq->private;
2197 st->state = TCP_SEQ_STATE_LISTENING;
2198 st->num = 0;
2199 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2200 }
2201
2202 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2203 {
2204 void *rc = NULL;
2205 struct tcp_iter_state *st;
2206
2207 if (v == SEQ_START_TOKEN) {
2208 rc = tcp_get_idx(seq, 0);
2209 goto out;
2210 }
2211 st = seq->private;
2212
2213 switch (st->state) {
2214 case TCP_SEQ_STATE_OPENREQ:
2215 case TCP_SEQ_STATE_LISTENING:
2216 rc = listening_get_next(seq, v);
2217 if (!rc) {
2218 st->state = TCP_SEQ_STATE_ESTABLISHED;
2219 rc = established_get_first(seq);
2220 }
2221 break;
2222 case TCP_SEQ_STATE_ESTABLISHED:
2223 case TCP_SEQ_STATE_TIME_WAIT:
2224 rc = established_get_next(seq, v);
2225 break;
2226 }
2227 out:
2228 ++*pos;
2229 return rc;
2230 }
2231
2232 static void tcp_seq_stop(struct seq_file *seq, void *v)
2233 {
2234 struct tcp_iter_state *st = seq->private;
2235
2236 switch (st->state) {
2237 case TCP_SEQ_STATE_OPENREQ:
2238 if (v) {
2239 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2240 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2241 }
2242 case TCP_SEQ_STATE_LISTENING:
2243 if (v != SEQ_START_TOKEN)
2244 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2245 break;
2246 case TCP_SEQ_STATE_TIME_WAIT:
2247 case TCP_SEQ_STATE_ESTABLISHED:
2248 if (v)
2249 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2250 break;
2251 }
2252 }
2253
2254 static int tcp_seq_open(struct inode *inode, struct file *file)
2255 {
2256 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2257 struct tcp_iter_state *s;
2258 int err;
2259
2260 err = seq_open_net(inode, file, &afinfo->seq_ops,
2261 sizeof(struct tcp_iter_state));
2262 if (err < 0)
2263 return err;
2264
2265 s = ((struct seq_file *)file->private_data)->private;
2266 s->family = afinfo->family;
2267 return 0;
2268 }
2269
2270 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2271 {
2272 int rc = 0;
2273 struct proc_dir_entry *p;
2274
2275 afinfo->seq_fops.open = tcp_seq_open;
2276 afinfo->seq_fops.read = seq_read;
2277 afinfo->seq_fops.llseek = seq_lseek;
2278 afinfo->seq_fops.release = seq_release_net;
2279
2280 afinfo->seq_ops.start = tcp_seq_start;
2281 afinfo->seq_ops.next = tcp_seq_next;
2282 afinfo->seq_ops.stop = tcp_seq_stop;
2283
2284 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2285 &afinfo->seq_fops, afinfo);
2286 if (!p)
2287 rc = -ENOMEM;
2288 return rc;
2289 }
2290
2291 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2292 {
2293 proc_net_remove(net, afinfo->name);
2294 }
2295
2296 static void get_openreq4(struct sock *sk, struct request_sock *req,
2297 struct seq_file *f, int i, int uid, int *len)
2298 {
2299 const struct inet_request_sock *ireq = inet_rsk(req);
2300 int ttd = req->expires - jiffies;
2301
2302 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2303 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2304 i,
2305 ireq->loc_addr,
2306 ntohs(inet_sk(sk)->inet_sport),
2307 ireq->rmt_addr,
2308 ntohs(ireq->rmt_port),
2309 TCP_SYN_RECV,
2310 0, 0, /* could print option size, but that is af dependent. */
2311 1, /* timers active (only the expire timer) */
2312 jiffies_to_clock_t(ttd),
2313 req->retrans,
2314 uid,
2315 0, /* non standard timer */
2316 0, /* open_requests have no inode */
2317 atomic_read(&sk->sk_refcnt),
2318 req,
2319 len);
2320 }
2321
2322 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2323 {
2324 int timer_active;
2325 unsigned long timer_expires;
2326 struct tcp_sock *tp = tcp_sk(sk);
2327 const struct inet_connection_sock *icsk = inet_csk(sk);
2328 struct inet_sock *inet = inet_sk(sk);
2329 __be32 dest = inet->inet_daddr;
2330 __be32 src = inet->inet_rcv_saddr;
2331 __u16 destp = ntohs(inet->inet_dport);
2332 __u16 srcp = ntohs(inet->inet_sport);
2333 int rx_queue;
2334
2335 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2336 timer_active = 1;
2337 timer_expires = icsk->icsk_timeout;
2338 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2339 timer_active = 4;
2340 timer_expires = icsk->icsk_timeout;
2341 } else if (timer_pending(&sk->sk_timer)) {
2342 timer_active = 2;
2343 timer_expires = sk->sk_timer.expires;
2344 } else {
2345 timer_active = 0;
2346 timer_expires = jiffies;
2347 }
2348
2349 if (sk->sk_state == TCP_LISTEN)
2350 rx_queue = sk->sk_ack_backlog;
2351 else
2352 /*
2353 * because we dont lock socket, we might find a transient negative value
2354 */
2355 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2356
2357 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2358 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2359 i, src, srcp, dest, destp, sk->sk_state,
2360 tp->write_seq - tp->snd_una,
2361 rx_queue,
2362 timer_active,
2363 jiffies_to_clock_t(timer_expires - jiffies),
2364 icsk->icsk_retransmits,
2365 sock_i_uid(sk),
2366 icsk->icsk_probes_out,
2367 sock_i_ino(sk),
2368 atomic_read(&sk->sk_refcnt), sk,
2369 jiffies_to_clock_t(icsk->icsk_rto),
2370 jiffies_to_clock_t(icsk->icsk_ack.ato),
2371 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2372 tp->snd_cwnd,
2373 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2374 len);
2375 }
2376
2377 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2378 struct seq_file *f, int i, int *len)
2379 {
2380 __be32 dest, src;
2381 __u16 destp, srcp;
2382 int ttd = tw->tw_ttd - jiffies;
2383
2384 if (ttd < 0)
2385 ttd = 0;
2386
2387 dest = tw->tw_daddr;
2388 src = tw->tw_rcv_saddr;
2389 destp = ntohs(tw->tw_dport);
2390 srcp = ntohs(tw->tw_sport);
2391
2392 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2393 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2394 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2395 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2396 atomic_read(&tw->tw_refcnt), tw, len);
2397 }
2398
2399 #define TMPSZ 150
2400
2401 static int tcp4_seq_show(struct seq_file *seq, void *v)
2402 {
2403 struct tcp_iter_state *st;
2404 int len;
2405
2406 if (v == SEQ_START_TOKEN) {
2407 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2408 " sl local_address rem_address st tx_queue "
2409 "rx_queue tr tm->when retrnsmt uid timeout "
2410 "inode");
2411 goto out;
2412 }
2413 st = seq->private;
2414
2415 switch (st->state) {
2416 case TCP_SEQ_STATE_LISTENING:
2417 case TCP_SEQ_STATE_ESTABLISHED:
2418 get_tcp4_sock(v, seq, st->num, &len);
2419 break;
2420 case TCP_SEQ_STATE_OPENREQ:
2421 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2422 break;
2423 case TCP_SEQ_STATE_TIME_WAIT:
2424 get_timewait4_sock(v, seq, st->num, &len);
2425 break;
2426 }
2427 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2428 out:
2429 return 0;
2430 }
2431
2432 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2433 .name = "tcp",
2434 .family = AF_INET,
2435 .seq_fops = {
2436 .owner = THIS_MODULE,
2437 },
2438 .seq_ops = {
2439 .show = tcp4_seq_show,
2440 },
2441 };
2442
2443 static int __net_init tcp4_proc_init_net(struct net *net)
2444 {
2445 return tcp_proc_register(net, &tcp4_seq_afinfo);
2446 }
2447
2448 static void __net_exit tcp4_proc_exit_net(struct net *net)
2449 {
2450 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2451 }
2452
2453 static struct pernet_operations tcp4_net_ops = {
2454 .init = tcp4_proc_init_net,
2455 .exit = tcp4_proc_exit_net,
2456 };
2457
2458 int __init tcp4_proc_init(void)
2459 {
2460 return register_pernet_subsys(&tcp4_net_ops);
2461 }
2462
2463 void tcp4_proc_exit(void)
2464 {
2465 unregister_pernet_subsys(&tcp4_net_ops);
2466 }
2467 #endif /* CONFIG_PROC_FS */
2468
2469 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2470 {
2471 struct iphdr *iph = skb_gro_network_header(skb);
2472
2473 switch (skb->ip_summed) {
2474 case CHECKSUM_COMPLETE:
2475 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2476 skb->csum)) {
2477 skb->ip_summed = CHECKSUM_UNNECESSARY;
2478 break;
2479 }
2480
2481 /* fall through */
2482 case CHECKSUM_NONE:
2483 NAPI_GRO_CB(skb)->flush = 1;
2484 return NULL;
2485 }
2486
2487 return tcp_gro_receive(head, skb);
2488 }
2489 EXPORT_SYMBOL(tcp4_gro_receive);
2490
2491 int tcp4_gro_complete(struct sk_buff *skb)
2492 {
2493 struct iphdr *iph = ip_hdr(skb);
2494 struct tcphdr *th = tcp_hdr(skb);
2495
2496 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2497 iph->saddr, iph->daddr, 0);
2498 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2499
2500 return tcp_gro_complete(skb);
2501 }
2502 EXPORT_SYMBOL(tcp4_gro_complete);
2503
2504 struct proto tcp_prot = {
2505 .name = "TCP",
2506 .owner = THIS_MODULE,
2507 .close = tcp_close,
2508 .connect = tcp_v4_connect,
2509 .disconnect = tcp_disconnect,
2510 .accept = inet_csk_accept,
2511 .ioctl = tcp_ioctl,
2512 .init = tcp_v4_init_sock,
2513 .destroy = tcp_v4_destroy_sock,
2514 .shutdown = tcp_shutdown,
2515 .setsockopt = tcp_setsockopt,
2516 .getsockopt = tcp_getsockopt,
2517 .recvmsg = tcp_recvmsg,
2518 .backlog_rcv = tcp_v4_do_rcv,
2519 .hash = inet_hash,
2520 .unhash = inet_unhash,
2521 .get_port = inet_csk_get_port,
2522 .enter_memory_pressure = tcp_enter_memory_pressure,
2523 .sockets_allocated = &tcp_sockets_allocated,
2524 .orphan_count = &tcp_orphan_count,
2525 .memory_allocated = &tcp_memory_allocated,
2526 .memory_pressure = &tcp_memory_pressure,
2527 .sysctl_mem = sysctl_tcp_mem,
2528 .sysctl_wmem = sysctl_tcp_wmem,
2529 .sysctl_rmem = sysctl_tcp_rmem,
2530 .max_header = MAX_TCP_HEADER,
2531 .obj_size = sizeof(struct tcp_sock),
2532 .slab_flags = SLAB_DESTROY_BY_RCU,
2533 .twsk_prot = &tcp_timewait_sock_ops,
2534 .rsk_prot = &tcp_request_sock_ops,
2535 .h.hashinfo = &tcp_hashinfo,
2536 #ifdef CONFIG_COMPAT
2537 .compat_setsockopt = compat_tcp_setsockopt,
2538 .compat_getsockopt = compat_tcp_getsockopt,
2539 #endif
2540 };
2541
2542
2543 static int __net_init tcp_sk_init(struct net *net)
2544 {
2545 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2546 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2547 }
2548
2549 static void __net_exit tcp_sk_exit(struct net *net)
2550 {
2551 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2552 }
2553
2554 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2555 {
2556 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2557 }
2558
2559 static struct pernet_operations __net_initdata tcp_sk_ops = {
2560 .init = tcp_sk_init,
2561 .exit = tcp_sk_exit,
2562 .exit_batch = tcp_sk_exit_batch,
2563 };
2564
2565 void __init tcp_v4_init(void)
2566 {
2567 inet_hashinfo_init(&tcp_hashinfo);
2568 if (register_pernet_subsys(&tcp_sk_ops))
2569 panic("Failed to create the TCP control socket.\n");
2570 }
2571
2572 EXPORT_SYMBOL(ipv4_specific);
2573 EXPORT_SYMBOL(tcp_hashinfo);
2574 EXPORT_SYMBOL(tcp_prot);
2575 EXPORT_SYMBOL(tcp_v4_conn_request);
2576 EXPORT_SYMBOL(tcp_v4_connect);
2577 EXPORT_SYMBOL(tcp_v4_do_rcv);
2578 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2579 EXPORT_SYMBOL(tcp_v4_send_check);
2580 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2581
2582 #ifdef CONFIG_PROC_FS
2583 EXPORT_SYMBOL(tcp_proc_register);
2584 EXPORT_SYMBOL(tcp_proc_unregister);
2585 #endif
2586 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2587
This page took 0.088365 seconds and 5 git commands to generate.