[I/OAT]: TCP recv offload to I/OAT
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9 *
10 * IPv4 specific functions
11 *
12 *
13 * code split from:
14 * linux/ipv4/tcp.c
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
17 *
18 * See tcp.c for author information
19 *
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
24 */
25
26 /*
27 * Changes:
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
36 * ACK bit.
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
47 * coma.
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
53 */
54
55 #include <linux/config.h>
56
57 #include <linux/types.h>
58 #include <linux/fcntl.h>
59 #include <linux/module.h>
60 #include <linux/random.h>
61 #include <linux/cache.h>
62 #include <linux/jhash.h>
63 #include <linux/init.h>
64 #include <linux/times.h>
65
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 int sysctl_tcp_tw_reuse;
83 int sysctl_tcp_low_latency;
84
85 /* Check TCP sequence numbers in ICMP packets. */
86 #define ICMP_MIN_LENGTH 8
87
88 /* Socket used for sending RSTs */
89 static struct socket *tcp_socket;
90
91 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
92
93 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
94 .lhash_lock = RW_LOCK_UNLOCKED,
95 .lhash_users = ATOMIC_INIT(0),
96 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
97 };
98
99 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
100 {
101 return inet_csk_get_port(&tcp_hashinfo, sk, snum,
102 inet_csk_bind_conflict);
103 }
104
105 static void tcp_v4_hash(struct sock *sk)
106 {
107 inet_hash(&tcp_hashinfo, sk);
108 }
109
110 void tcp_unhash(struct sock *sk)
111 {
112 inet_unhash(&tcp_hashinfo, sk);
113 }
114
115 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
116 {
117 return secure_tcp_sequence_number(skb->nh.iph->daddr,
118 skb->nh.iph->saddr,
119 skb->h.th->dest,
120 skb->h.th->source);
121 }
122
123 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
124 {
125 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
126 struct tcp_sock *tp = tcp_sk(sk);
127
128 /* With PAWS, it is safe from the viewpoint
129 of data integrity. Even without PAWS it is safe provided sequence
130 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
131
132 Actually, the idea is close to VJ's one, only timestamp cache is
133 held not per host, but per port pair and TW bucket is used as state
134 holder.
135
136 If TW bucket has been already destroyed we fall back to VJ's scheme
137 and use initial timestamp retrieved from peer table.
138 */
139 if (tcptw->tw_ts_recent_stamp &&
140 (twp == NULL || (sysctl_tcp_tw_reuse &&
141 xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
142 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
143 if (tp->write_seq == 0)
144 tp->write_seq = 1;
145 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
146 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
147 sock_hold(sktw);
148 return 1;
149 }
150
151 return 0;
152 }
153
154 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
155
156 /* This will initiate an outgoing connection. */
157 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
158 {
159 struct inet_sock *inet = inet_sk(sk);
160 struct tcp_sock *tp = tcp_sk(sk);
161 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
162 struct rtable *rt;
163 u32 daddr, nexthop;
164 int tmp;
165 int err;
166
167 if (addr_len < sizeof(struct sockaddr_in))
168 return -EINVAL;
169
170 if (usin->sin_family != AF_INET)
171 return -EAFNOSUPPORT;
172
173 nexthop = daddr = usin->sin_addr.s_addr;
174 if (inet->opt && inet->opt->srr) {
175 if (!daddr)
176 return -EINVAL;
177 nexthop = inet->opt->faddr;
178 }
179
180 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 inet->sport, usin->sin_port, sk);
184 if (tmp < 0)
185 return tmp;
186
187 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
188 ip_rt_put(rt);
189 return -ENETUNREACH;
190 }
191
192 if (!inet->opt || !inet->opt->srr)
193 daddr = rt->rt_dst;
194
195 if (!inet->saddr)
196 inet->saddr = rt->rt_src;
197 inet->rcv_saddr = inet->saddr;
198
199 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
200 /* Reset inherited state */
201 tp->rx_opt.ts_recent = 0;
202 tp->rx_opt.ts_recent_stamp = 0;
203 tp->write_seq = 0;
204 }
205
206 if (tcp_death_row.sysctl_tw_recycle &&
207 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
208 struct inet_peer *peer = rt_get_peer(rt);
209
210 /* VJ's idea. We save last timestamp seen from
211 * the destination in peer table, when entering state TIME-WAIT
212 * and initialize rx_opt.ts_recent from it, when trying new connection.
213 */
214
215 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
216 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
217 tp->rx_opt.ts_recent = peer->tcp_ts;
218 }
219 }
220
221 inet->dport = usin->sin_port;
222 inet->daddr = daddr;
223
224 inet_csk(sk)->icsk_ext_hdr_len = 0;
225 if (inet->opt)
226 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
227
228 tp->rx_opt.mss_clamp = 536;
229
230 /* Socket identity is still unknown (sport may be zero).
231 * However we set state to SYN-SENT and not releasing socket
232 * lock select source port, enter ourselves into the hash tables and
233 * complete initialization after this.
234 */
235 tcp_set_state(sk, TCP_SYN_SENT);
236 err = inet_hash_connect(&tcp_death_row, sk);
237 if (err)
238 goto failure;
239
240 err = ip_route_newports(&rt, IPPROTO_TCP, inet->sport, inet->dport, sk);
241 if (err)
242 goto failure;
243
244 /* OK, now commit destination to socket. */
245 sk_setup_caps(sk, &rt->u.dst);
246
247 if (!tp->write_seq)
248 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
249 inet->daddr,
250 inet->sport,
251 usin->sin_port);
252
253 inet->id = tp->write_seq ^ jiffies;
254
255 err = tcp_connect(sk);
256 rt = NULL;
257 if (err)
258 goto failure;
259
260 return 0;
261
262 failure:
263 /* This unhashes the socket and releases the local port, if necessary. */
264 tcp_set_state(sk, TCP_CLOSE);
265 ip_rt_put(rt);
266 sk->sk_route_caps = 0;
267 inet->dport = 0;
268 return err;
269 }
270
271 /*
272 * This routine does path mtu discovery as defined in RFC1191.
273 */
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
275 {
276 struct dst_entry *dst;
277 struct inet_sock *inet = inet_sk(sk);
278
279 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 * send out by Linux are always <576bytes so they should go through
281 * unfragmented).
282 */
283 if (sk->sk_state == TCP_LISTEN)
284 return;
285
286 /* We don't check in the destentry if pmtu discovery is forbidden
287 * on this route. We just assume that no packet_to_big packets
288 * are send back when pmtu discovery is not active.
289 * There is a small race when the user changes this flag in the
290 * route, but I think that's acceptable.
291 */
292 if ((dst = __sk_dst_check(sk, 0)) == NULL)
293 return;
294
295 dst->ops->update_pmtu(dst, mtu);
296
297 /* Something is about to be wrong... Remember soft error
298 * for the case, if this connection will not able to recover.
299 */
300 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301 sk->sk_err_soft = EMSGSIZE;
302
303 mtu = dst_mtu(dst);
304
305 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307 tcp_sync_mss(sk, mtu);
308
309 /* Resend the TCP packet because it's
310 * clear that the old packet has been
311 * dropped. This is the new "fast" path mtu
312 * discovery.
313 */
314 tcp_simple_retransmit(sk);
315 } /* else let the usual retransmit timer handle it */
316 }
317
318 /*
319 * This routine is called by the ICMP module when it gets some
320 * sort of error condition. If err < 0 then the socket should
321 * be closed and the error returned to the user. If err > 0
322 * it's just the icmp type << 8 | icmp code. After adjustment
323 * header points to the first 8 bytes of the tcp header. We need
324 * to find the appropriate port.
325 *
326 * The locking strategy used here is very "optimistic". When
327 * someone else accesses the socket the ICMP is just dropped
328 * and for some paths there is no check at all.
329 * A more general error queue to queue errors for later handling
330 * is probably better.
331 *
332 */
333
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
335 {
336 struct iphdr *iph = (struct iphdr *)skb->data;
337 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
338 struct tcp_sock *tp;
339 struct inet_sock *inet;
340 int type = skb->h.icmph->type;
341 int code = skb->h.icmph->code;
342 struct sock *sk;
343 __u32 seq;
344 int err;
345
346 if (skb->len < (iph->ihl << 2) + 8) {
347 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
348 return;
349 }
350
351 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
352 th->source, inet_iif(skb));
353 if (!sk) {
354 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
355 return;
356 }
357 if (sk->sk_state == TCP_TIME_WAIT) {
358 inet_twsk_put((struct inet_timewait_sock *)sk);
359 return;
360 }
361
362 bh_lock_sock(sk);
363 /* If too many ICMPs get dropped on busy
364 * servers this needs to be solved differently.
365 */
366 if (sock_owned_by_user(sk))
367 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
368
369 if (sk->sk_state == TCP_CLOSE)
370 goto out;
371
372 tp = tcp_sk(sk);
373 seq = ntohl(th->seq);
374 if (sk->sk_state != TCP_LISTEN &&
375 !between(seq, tp->snd_una, tp->snd_nxt)) {
376 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
377 goto out;
378 }
379
380 switch (type) {
381 case ICMP_SOURCE_QUENCH:
382 /* Just silently ignore these. */
383 goto out;
384 case ICMP_PARAMETERPROB:
385 err = EPROTO;
386 break;
387 case ICMP_DEST_UNREACH:
388 if (code > NR_ICMP_UNREACH)
389 goto out;
390
391 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
392 if (!sock_owned_by_user(sk))
393 do_pmtu_discovery(sk, iph, info);
394 goto out;
395 }
396
397 err = icmp_err_convert[code].errno;
398 break;
399 case ICMP_TIME_EXCEEDED:
400 err = EHOSTUNREACH;
401 break;
402 default:
403 goto out;
404 }
405
406 switch (sk->sk_state) {
407 struct request_sock *req, **prev;
408 case TCP_LISTEN:
409 if (sock_owned_by_user(sk))
410 goto out;
411
412 req = inet_csk_search_req(sk, &prev, th->dest,
413 iph->daddr, iph->saddr);
414 if (!req)
415 goto out;
416
417 /* ICMPs are not backlogged, hence we cannot get
418 an established socket here.
419 */
420 BUG_TRAP(!req->sk);
421
422 if (seq != tcp_rsk(req)->snt_isn) {
423 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
424 goto out;
425 }
426
427 /*
428 * Still in SYN_RECV, just remove it silently.
429 * There is no good way to pass the error to the newly
430 * created socket, and POSIX does not want network
431 * errors returned from accept().
432 */
433 inet_csk_reqsk_queue_drop(sk, req, prev);
434 goto out;
435
436 case TCP_SYN_SENT:
437 case TCP_SYN_RECV: /* Cannot happen.
438 It can f.e. if SYNs crossed.
439 */
440 if (!sock_owned_by_user(sk)) {
441 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
442 sk->sk_err = err;
443
444 sk->sk_error_report(sk);
445
446 tcp_done(sk);
447 } else {
448 sk->sk_err_soft = err;
449 }
450 goto out;
451 }
452
453 /* If we've already connected we will keep trying
454 * until we time out, or the user gives up.
455 *
456 * rfc1122 4.2.3.9 allows to consider as hard errors
457 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
458 * but it is obsoleted by pmtu discovery).
459 *
460 * Note, that in modern internet, where routing is unreliable
461 * and in each dark corner broken firewalls sit, sending random
462 * errors ordered by their masters even this two messages finally lose
463 * their original sense (even Linux sends invalid PORT_UNREACHs)
464 *
465 * Now we are in compliance with RFCs.
466 * --ANK (980905)
467 */
468
469 inet = inet_sk(sk);
470 if (!sock_owned_by_user(sk) && inet->recverr) {
471 sk->sk_err = err;
472 sk->sk_error_report(sk);
473 } else { /* Only an error on timeout */
474 sk->sk_err_soft = err;
475 }
476
477 out:
478 bh_unlock_sock(sk);
479 sock_put(sk);
480 }
481
482 /* This routine computes an IPv4 TCP checksum. */
483 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
484 {
485 struct inet_sock *inet = inet_sk(sk);
486 struct tcphdr *th = skb->h.th;
487
488 if (skb->ip_summed == CHECKSUM_HW) {
489 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
490 skb->csum = offsetof(struct tcphdr, check);
491 } else {
492 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
493 csum_partial((char *)th,
494 th->doff << 2,
495 skb->csum));
496 }
497 }
498
499 /*
500 * This routine will send an RST to the other tcp.
501 *
502 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
503 * for reset.
504 * Answer: if a packet caused RST, it is not for a socket
505 * existing in our system, if it is matched to a socket,
506 * it is just duplicate segment or bug in other side's TCP.
507 * So that we build reply only basing on parameters
508 * arrived with segment.
509 * Exception: precedence violation. We do not implement it in any case.
510 */
511
512 static void tcp_v4_send_reset(struct sk_buff *skb)
513 {
514 struct tcphdr *th = skb->h.th;
515 struct tcphdr rth;
516 struct ip_reply_arg arg;
517
518 /* Never send a reset in response to a reset. */
519 if (th->rst)
520 return;
521
522 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
523 return;
524
525 /* Swap the send and the receive. */
526 memset(&rth, 0, sizeof(struct tcphdr));
527 rth.dest = th->source;
528 rth.source = th->dest;
529 rth.doff = sizeof(struct tcphdr) / 4;
530 rth.rst = 1;
531
532 if (th->ack) {
533 rth.seq = th->ack_seq;
534 } else {
535 rth.ack = 1;
536 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
537 skb->len - (th->doff << 2));
538 }
539
540 memset(&arg, 0, sizeof arg);
541 arg.iov[0].iov_base = (unsigned char *)&rth;
542 arg.iov[0].iov_len = sizeof rth;
543 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
544 skb->nh.iph->saddr, /*XXX*/
545 sizeof(struct tcphdr), IPPROTO_TCP, 0);
546 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
547
548 ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
549
550 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
551 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
552 }
553
554 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
555 outside socket context is ugly, certainly. What can I do?
556 */
557
558 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
559 u32 win, u32 ts)
560 {
561 struct tcphdr *th = skb->h.th;
562 struct {
563 struct tcphdr th;
564 u32 tsopt[3];
565 } rep;
566 struct ip_reply_arg arg;
567
568 memset(&rep.th, 0, sizeof(struct tcphdr));
569 memset(&arg, 0, sizeof arg);
570
571 arg.iov[0].iov_base = (unsigned char *)&rep;
572 arg.iov[0].iov_len = sizeof(rep.th);
573 if (ts) {
574 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
575 (TCPOPT_TIMESTAMP << 8) |
576 TCPOLEN_TIMESTAMP);
577 rep.tsopt[1] = htonl(tcp_time_stamp);
578 rep.tsopt[2] = htonl(ts);
579 arg.iov[0].iov_len = sizeof(rep);
580 }
581
582 /* Swap the send and the receive. */
583 rep.th.dest = th->source;
584 rep.th.source = th->dest;
585 rep.th.doff = arg.iov[0].iov_len / 4;
586 rep.th.seq = htonl(seq);
587 rep.th.ack_seq = htonl(ack);
588 rep.th.ack = 1;
589 rep.th.window = htons(win);
590
591 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
592 skb->nh.iph->saddr, /*XXX*/
593 arg.iov[0].iov_len, IPPROTO_TCP, 0);
594 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
595
596 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
597
598 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
599 }
600
601 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
602 {
603 struct inet_timewait_sock *tw = inet_twsk(sk);
604 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
605
606 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
607 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
608
609 inet_twsk_put(tw);
610 }
611
612 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
613 {
614 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
615 req->ts_recent);
616 }
617
618 /*
619 * Send a SYN-ACK after having received an ACK.
620 * This still operates on a request_sock only, not on a big
621 * socket.
622 */
623 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
624 struct dst_entry *dst)
625 {
626 const struct inet_request_sock *ireq = inet_rsk(req);
627 int err = -1;
628 struct sk_buff * skb;
629
630 /* First, grab a route. */
631 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
632 goto out;
633
634 skb = tcp_make_synack(sk, dst, req);
635
636 if (skb) {
637 struct tcphdr *th = skb->h.th;
638
639 th->check = tcp_v4_check(th, skb->len,
640 ireq->loc_addr,
641 ireq->rmt_addr,
642 csum_partial((char *)th, skb->len,
643 skb->csum));
644
645 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
646 ireq->rmt_addr,
647 ireq->opt);
648 if (err == NET_XMIT_CN)
649 err = 0;
650 }
651
652 out:
653 dst_release(dst);
654 return err;
655 }
656
657 /*
658 * IPv4 request_sock destructor.
659 */
660 static void tcp_v4_reqsk_destructor(struct request_sock *req)
661 {
662 kfree(inet_rsk(req)->opt);
663 }
664
665 #ifdef CONFIG_SYN_COOKIES
666 static void syn_flood_warning(struct sk_buff *skb)
667 {
668 static unsigned long warntime;
669
670 if (time_after(jiffies, (warntime + HZ * 60))) {
671 warntime = jiffies;
672 printk(KERN_INFO
673 "possible SYN flooding on port %d. Sending cookies.\n",
674 ntohs(skb->h.th->dest));
675 }
676 }
677 #endif
678
679 /*
680 * Save and compile IPv4 options into the request_sock if needed.
681 */
682 static struct ip_options *tcp_v4_save_options(struct sock *sk,
683 struct sk_buff *skb)
684 {
685 struct ip_options *opt = &(IPCB(skb)->opt);
686 struct ip_options *dopt = NULL;
687
688 if (opt && opt->optlen) {
689 int opt_size = optlength(opt);
690 dopt = kmalloc(opt_size, GFP_ATOMIC);
691 if (dopt) {
692 if (ip_options_echo(dopt, skb)) {
693 kfree(dopt);
694 dopt = NULL;
695 }
696 }
697 }
698 return dopt;
699 }
700
701 struct request_sock_ops tcp_request_sock_ops = {
702 .family = PF_INET,
703 .obj_size = sizeof(struct tcp_request_sock),
704 .rtx_syn_ack = tcp_v4_send_synack,
705 .send_ack = tcp_v4_reqsk_send_ack,
706 .destructor = tcp_v4_reqsk_destructor,
707 .send_reset = tcp_v4_send_reset,
708 };
709
710 static struct timewait_sock_ops tcp_timewait_sock_ops = {
711 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
712 .twsk_unique = tcp_twsk_unique,
713 };
714
715 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
716 {
717 struct inet_request_sock *ireq;
718 struct tcp_options_received tmp_opt;
719 struct request_sock *req;
720 __u32 saddr = skb->nh.iph->saddr;
721 __u32 daddr = skb->nh.iph->daddr;
722 __u32 isn = TCP_SKB_CB(skb)->when;
723 struct dst_entry *dst = NULL;
724 #ifdef CONFIG_SYN_COOKIES
725 int want_cookie = 0;
726 #else
727 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
728 #endif
729
730 /* Never answer to SYNs send to broadcast or multicast */
731 if (((struct rtable *)skb->dst)->rt_flags &
732 (RTCF_BROADCAST | RTCF_MULTICAST))
733 goto drop;
734
735 /* TW buckets are converted to open requests without
736 * limitations, they conserve resources and peer is
737 * evidently real one.
738 */
739 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
740 #ifdef CONFIG_SYN_COOKIES
741 if (sysctl_tcp_syncookies) {
742 want_cookie = 1;
743 } else
744 #endif
745 goto drop;
746 }
747
748 /* Accept backlog is full. If we have already queued enough
749 * of warm entries in syn queue, drop request. It is better than
750 * clogging syn queue with openreqs with exponentially increasing
751 * timeout.
752 */
753 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
754 goto drop;
755
756 req = reqsk_alloc(&tcp_request_sock_ops);
757 if (!req)
758 goto drop;
759
760 tcp_clear_options(&tmp_opt);
761 tmp_opt.mss_clamp = 536;
762 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
763
764 tcp_parse_options(skb, &tmp_opt, 0);
765
766 if (want_cookie) {
767 tcp_clear_options(&tmp_opt);
768 tmp_opt.saw_tstamp = 0;
769 }
770
771 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
772 /* Some OSes (unknown ones, but I see them on web server, which
773 * contains information interesting only for windows'
774 * users) do not send their stamp in SYN. It is easy case.
775 * We simply do not advertise TS support.
776 */
777 tmp_opt.saw_tstamp = 0;
778 tmp_opt.tstamp_ok = 0;
779 }
780 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
781
782 tcp_openreq_init(req, &tmp_opt, skb);
783
784 ireq = inet_rsk(req);
785 ireq->loc_addr = daddr;
786 ireq->rmt_addr = saddr;
787 ireq->opt = tcp_v4_save_options(sk, skb);
788 if (!want_cookie)
789 TCP_ECN_create_request(req, skb->h.th);
790
791 if (want_cookie) {
792 #ifdef CONFIG_SYN_COOKIES
793 syn_flood_warning(skb);
794 #endif
795 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
796 } else if (!isn) {
797 struct inet_peer *peer = NULL;
798
799 /* VJ's idea. We save last timestamp seen
800 * from the destination in peer table, when entering
801 * state TIME-WAIT, and check against it before
802 * accepting new connection request.
803 *
804 * If "isn" is not zero, this request hit alive
805 * timewait bucket, so that all the necessary checks
806 * are made in the function processing timewait state.
807 */
808 if (tmp_opt.saw_tstamp &&
809 tcp_death_row.sysctl_tw_recycle &&
810 (dst = inet_csk_route_req(sk, req)) != NULL &&
811 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
812 peer->v4daddr == saddr) {
813 if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
814 (s32)(peer->tcp_ts - req->ts_recent) >
815 TCP_PAWS_WINDOW) {
816 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
817 dst_release(dst);
818 goto drop_and_free;
819 }
820 }
821 /* Kill the following clause, if you dislike this way. */
822 else if (!sysctl_tcp_syncookies &&
823 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
824 (sysctl_max_syn_backlog >> 2)) &&
825 (!peer || !peer->tcp_ts_stamp) &&
826 (!dst || !dst_metric(dst, RTAX_RTT))) {
827 /* Without syncookies last quarter of
828 * backlog is filled with destinations,
829 * proven to be alive.
830 * It means that we continue to communicate
831 * to destinations, already remembered
832 * to the moment of synflood.
833 */
834 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
835 "request from %u.%u.%u.%u/%u\n",
836 NIPQUAD(saddr),
837 ntohs(skb->h.th->source));
838 dst_release(dst);
839 goto drop_and_free;
840 }
841
842 isn = tcp_v4_init_sequence(sk, skb);
843 }
844 tcp_rsk(req)->snt_isn = isn;
845
846 if (tcp_v4_send_synack(sk, req, dst))
847 goto drop_and_free;
848
849 if (want_cookie) {
850 reqsk_free(req);
851 } else {
852 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
853 }
854 return 0;
855
856 drop_and_free:
857 reqsk_free(req);
858 drop:
859 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
860 return 0;
861 }
862
863
864 /*
865 * The three way handshake has completed - we got a valid synack -
866 * now create the new socket.
867 */
868 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
869 struct request_sock *req,
870 struct dst_entry *dst)
871 {
872 struct inet_request_sock *ireq;
873 struct inet_sock *newinet;
874 struct tcp_sock *newtp;
875 struct sock *newsk;
876
877 if (sk_acceptq_is_full(sk))
878 goto exit_overflow;
879
880 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
881 goto exit;
882
883 newsk = tcp_create_openreq_child(sk, req, skb);
884 if (!newsk)
885 goto exit;
886
887 sk_setup_caps(newsk, dst);
888
889 newtp = tcp_sk(newsk);
890 newinet = inet_sk(newsk);
891 ireq = inet_rsk(req);
892 newinet->daddr = ireq->rmt_addr;
893 newinet->rcv_saddr = ireq->loc_addr;
894 newinet->saddr = ireq->loc_addr;
895 newinet->opt = ireq->opt;
896 ireq->opt = NULL;
897 newinet->mc_index = inet_iif(skb);
898 newinet->mc_ttl = skb->nh.iph->ttl;
899 inet_csk(newsk)->icsk_ext_hdr_len = 0;
900 if (newinet->opt)
901 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
902 newinet->id = newtp->write_seq ^ jiffies;
903
904 tcp_mtup_init(newsk);
905 tcp_sync_mss(newsk, dst_mtu(dst));
906 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
907 tcp_initialize_rcv_mss(newsk);
908
909 __inet_hash(&tcp_hashinfo, newsk, 0);
910 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
911
912 return newsk;
913
914 exit_overflow:
915 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
916 exit:
917 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
918 dst_release(dst);
919 return NULL;
920 }
921
922 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
923 {
924 struct tcphdr *th = skb->h.th;
925 struct iphdr *iph = skb->nh.iph;
926 struct sock *nsk;
927 struct request_sock **prev;
928 /* Find possible connection requests. */
929 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
930 iph->saddr, iph->daddr);
931 if (req)
932 return tcp_check_req(sk, skb, req, prev);
933
934 nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
935 th->source, skb->nh.iph->daddr,
936 ntohs(th->dest), inet_iif(skb));
937
938 if (nsk) {
939 if (nsk->sk_state != TCP_TIME_WAIT) {
940 bh_lock_sock(nsk);
941 return nsk;
942 }
943 inet_twsk_put((struct inet_timewait_sock *)nsk);
944 return NULL;
945 }
946
947 #ifdef CONFIG_SYN_COOKIES
948 if (!th->rst && !th->syn && th->ack)
949 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
950 #endif
951 return sk;
952 }
953
954 static int tcp_v4_checksum_init(struct sk_buff *skb)
955 {
956 if (skb->ip_summed == CHECKSUM_HW) {
957 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
958 skb->nh.iph->daddr, skb->csum)) {
959 skb->ip_summed = CHECKSUM_UNNECESSARY;
960 return 0;
961 }
962 }
963
964 skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
965 skb->len, IPPROTO_TCP, 0);
966
967 if (skb->len <= 76) {
968 return __skb_checksum_complete(skb);
969 }
970 return 0;
971 }
972
973
974 /* The socket must have it's spinlock held when we get
975 * here.
976 *
977 * We have a potential double-lock case here, so even when
978 * doing backlog processing we use the BH locking scheme.
979 * This is because we cannot sleep with the original spinlock
980 * held.
981 */
982 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
983 {
984 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
985 TCP_CHECK_TIMER(sk);
986 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
987 goto reset;
988 TCP_CHECK_TIMER(sk);
989 return 0;
990 }
991
992 if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
993 goto csum_err;
994
995 if (sk->sk_state == TCP_LISTEN) {
996 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
997 if (!nsk)
998 goto discard;
999
1000 if (nsk != sk) {
1001 if (tcp_child_process(sk, nsk, skb))
1002 goto reset;
1003 return 0;
1004 }
1005 }
1006
1007 TCP_CHECK_TIMER(sk);
1008 if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1009 goto reset;
1010 TCP_CHECK_TIMER(sk);
1011 return 0;
1012
1013 reset:
1014 tcp_v4_send_reset(skb);
1015 discard:
1016 kfree_skb(skb);
1017 /* Be careful here. If this function gets more complicated and
1018 * gcc suffers from register pressure on the x86, sk (in %ebx)
1019 * might be destroyed here. This current version compiles correctly,
1020 * but you have been warned.
1021 */
1022 return 0;
1023
1024 csum_err:
1025 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1026 goto discard;
1027 }
1028
1029 /*
1030 * From tcp_input.c
1031 */
1032
1033 int tcp_v4_rcv(struct sk_buff *skb)
1034 {
1035 struct tcphdr *th;
1036 struct sock *sk;
1037 int ret;
1038
1039 if (skb->pkt_type != PACKET_HOST)
1040 goto discard_it;
1041
1042 /* Count it even if it's bad */
1043 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1044
1045 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1046 goto discard_it;
1047
1048 th = skb->h.th;
1049
1050 if (th->doff < sizeof(struct tcphdr) / 4)
1051 goto bad_packet;
1052 if (!pskb_may_pull(skb, th->doff * 4))
1053 goto discard_it;
1054
1055 /* An explanation is required here, I think.
1056 * Packet length and doff are validated by header prediction,
1057 * provided case of th->doff==0 is eliminated.
1058 * So, we defer the checks. */
1059 if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1060 tcp_v4_checksum_init(skb)))
1061 goto bad_packet;
1062
1063 th = skb->h.th;
1064 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1065 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1066 skb->len - th->doff * 4);
1067 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1068 TCP_SKB_CB(skb)->when = 0;
1069 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
1070 TCP_SKB_CB(skb)->sacked = 0;
1071
1072 sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1073 skb->nh.iph->daddr, ntohs(th->dest),
1074 inet_iif(skb));
1075
1076 if (!sk)
1077 goto no_tcp_socket;
1078
1079 process:
1080 if (sk->sk_state == TCP_TIME_WAIT)
1081 goto do_time_wait;
1082
1083 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1084 goto discard_and_relse;
1085 nf_reset(skb);
1086
1087 if (sk_filter(sk, skb, 0))
1088 goto discard_and_relse;
1089
1090 skb->dev = NULL;
1091
1092 bh_lock_sock(sk);
1093 ret = 0;
1094 if (!sock_owned_by_user(sk)) {
1095 #ifdef CONFIG_NET_DMA
1096 struct tcp_sock *tp = tcp_sk(sk);
1097 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1098 tp->ucopy.dma_chan = get_softnet_dma();
1099 if (tp->ucopy.dma_chan)
1100 ret = tcp_v4_do_rcv(sk, skb);
1101 else
1102 #endif
1103 {
1104 if (!tcp_prequeue(sk, skb))
1105 ret = tcp_v4_do_rcv(sk, skb);
1106 }
1107 } else
1108 sk_add_backlog(sk, skb);
1109 bh_unlock_sock(sk);
1110
1111 sock_put(sk);
1112
1113 return ret;
1114
1115 no_tcp_socket:
1116 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1117 goto discard_it;
1118
1119 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1120 bad_packet:
1121 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1122 } else {
1123 tcp_v4_send_reset(skb);
1124 }
1125
1126 discard_it:
1127 /* Discard frame. */
1128 kfree_skb(skb);
1129 return 0;
1130
1131 discard_and_relse:
1132 sock_put(sk);
1133 goto discard_it;
1134
1135 do_time_wait:
1136 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1137 inet_twsk_put((struct inet_timewait_sock *) sk);
1138 goto discard_it;
1139 }
1140
1141 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1142 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1143 inet_twsk_put((struct inet_timewait_sock *) sk);
1144 goto discard_it;
1145 }
1146 switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1147 skb, th)) {
1148 case TCP_TW_SYN: {
1149 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1150 skb->nh.iph->daddr,
1151 ntohs(th->dest),
1152 inet_iif(skb));
1153 if (sk2) {
1154 inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1155 &tcp_death_row);
1156 inet_twsk_put((struct inet_timewait_sock *)sk);
1157 sk = sk2;
1158 goto process;
1159 }
1160 /* Fall through to ACK */
1161 }
1162 case TCP_TW_ACK:
1163 tcp_v4_timewait_ack(sk, skb);
1164 break;
1165 case TCP_TW_RST:
1166 goto no_tcp_socket;
1167 case TCP_TW_SUCCESS:;
1168 }
1169 goto discard_it;
1170 }
1171
1172 /* VJ's idea. Save last timestamp seen from this destination
1173 * and hold it at least for normal timewait interval to use for duplicate
1174 * segment detection in subsequent connections, before they enter synchronized
1175 * state.
1176 */
1177
1178 int tcp_v4_remember_stamp(struct sock *sk)
1179 {
1180 struct inet_sock *inet = inet_sk(sk);
1181 struct tcp_sock *tp = tcp_sk(sk);
1182 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1183 struct inet_peer *peer = NULL;
1184 int release_it = 0;
1185
1186 if (!rt || rt->rt_dst != inet->daddr) {
1187 peer = inet_getpeer(inet->daddr, 1);
1188 release_it = 1;
1189 } else {
1190 if (!rt->peer)
1191 rt_bind_peer(rt, 1);
1192 peer = rt->peer;
1193 }
1194
1195 if (peer) {
1196 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1197 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1198 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1199 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1200 peer->tcp_ts = tp->rx_opt.ts_recent;
1201 }
1202 if (release_it)
1203 inet_putpeer(peer);
1204 return 1;
1205 }
1206
1207 return 0;
1208 }
1209
1210 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1211 {
1212 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1213
1214 if (peer) {
1215 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1216
1217 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1218 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1219 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1220 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1221 peer->tcp_ts = tcptw->tw_ts_recent;
1222 }
1223 inet_putpeer(peer);
1224 return 1;
1225 }
1226
1227 return 0;
1228 }
1229
1230 struct inet_connection_sock_af_ops ipv4_specific = {
1231 .queue_xmit = ip_queue_xmit,
1232 .send_check = tcp_v4_send_check,
1233 .rebuild_header = inet_sk_rebuild_header,
1234 .conn_request = tcp_v4_conn_request,
1235 .syn_recv_sock = tcp_v4_syn_recv_sock,
1236 .remember_stamp = tcp_v4_remember_stamp,
1237 .net_header_len = sizeof(struct iphdr),
1238 .setsockopt = ip_setsockopt,
1239 .getsockopt = ip_getsockopt,
1240 .addr2sockaddr = inet_csk_addr2sockaddr,
1241 .sockaddr_len = sizeof(struct sockaddr_in),
1242 #ifdef CONFIG_COMPAT
1243 .compat_setsockopt = compat_ip_setsockopt,
1244 .compat_getsockopt = compat_ip_getsockopt,
1245 #endif
1246 };
1247
1248 /* NOTE: A lot of things set to zero explicitly by call to
1249 * sk_alloc() so need not be done here.
1250 */
1251 static int tcp_v4_init_sock(struct sock *sk)
1252 {
1253 struct inet_connection_sock *icsk = inet_csk(sk);
1254 struct tcp_sock *tp = tcp_sk(sk);
1255
1256 skb_queue_head_init(&tp->out_of_order_queue);
1257 tcp_init_xmit_timers(sk);
1258 tcp_prequeue_init(tp);
1259
1260 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1261 tp->mdev = TCP_TIMEOUT_INIT;
1262
1263 /* So many TCP implementations out there (incorrectly) count the
1264 * initial SYN frame in their delayed-ACK and congestion control
1265 * algorithms that we must have the following bandaid to talk
1266 * efficiently to them. -DaveM
1267 */
1268 tp->snd_cwnd = 2;
1269
1270 /* See draft-stevens-tcpca-spec-01 for discussion of the
1271 * initialization of these values.
1272 */
1273 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1274 tp->snd_cwnd_clamp = ~0;
1275 tp->mss_cache = 536;
1276
1277 tp->reordering = sysctl_tcp_reordering;
1278 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1279
1280 sk->sk_state = TCP_CLOSE;
1281
1282 sk->sk_write_space = sk_stream_write_space;
1283 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1284
1285 icsk->icsk_af_ops = &ipv4_specific;
1286 icsk->icsk_sync_mss = tcp_sync_mss;
1287
1288 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1289 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1290
1291 atomic_inc(&tcp_sockets_allocated);
1292
1293 return 0;
1294 }
1295
1296 int tcp_v4_destroy_sock(struct sock *sk)
1297 {
1298 struct tcp_sock *tp = tcp_sk(sk);
1299
1300 tcp_clear_xmit_timers(sk);
1301
1302 tcp_cleanup_congestion_control(sk);
1303
1304 /* Cleanup up the write buffer. */
1305 sk_stream_writequeue_purge(sk);
1306
1307 /* Cleans up our, hopefully empty, out_of_order_queue. */
1308 __skb_queue_purge(&tp->out_of_order_queue);
1309
1310 #ifdef CONFIG_NET_DMA
1311 /* Cleans up our sk_async_wait_queue */
1312 __skb_queue_purge(&sk->sk_async_wait_queue);
1313 #endif
1314
1315 /* Clean prequeue, it must be empty really */
1316 __skb_queue_purge(&tp->ucopy.prequeue);
1317
1318 /* Clean up a referenced TCP bind bucket. */
1319 if (inet_csk(sk)->icsk_bind_hash)
1320 inet_put_port(&tcp_hashinfo, sk);
1321
1322 /*
1323 * If sendmsg cached page exists, toss it.
1324 */
1325 if (sk->sk_sndmsg_page) {
1326 __free_page(sk->sk_sndmsg_page);
1327 sk->sk_sndmsg_page = NULL;
1328 }
1329
1330 atomic_dec(&tcp_sockets_allocated);
1331
1332 return 0;
1333 }
1334
1335 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1336
1337 #ifdef CONFIG_PROC_FS
1338 /* Proc filesystem TCP sock list dumping. */
1339
1340 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1341 {
1342 return hlist_empty(head) ? NULL :
1343 list_entry(head->first, struct inet_timewait_sock, tw_node);
1344 }
1345
1346 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1347 {
1348 return tw->tw_node.next ?
1349 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1350 }
1351
1352 static void *listening_get_next(struct seq_file *seq, void *cur)
1353 {
1354 struct inet_connection_sock *icsk;
1355 struct hlist_node *node;
1356 struct sock *sk = cur;
1357 struct tcp_iter_state* st = seq->private;
1358
1359 if (!sk) {
1360 st->bucket = 0;
1361 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1362 goto get_sk;
1363 }
1364
1365 ++st->num;
1366
1367 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1368 struct request_sock *req = cur;
1369
1370 icsk = inet_csk(st->syn_wait_sk);
1371 req = req->dl_next;
1372 while (1) {
1373 while (req) {
1374 if (req->rsk_ops->family == st->family) {
1375 cur = req;
1376 goto out;
1377 }
1378 req = req->dl_next;
1379 }
1380 if (++st->sbucket >= TCP_SYNQ_HSIZE)
1381 break;
1382 get_req:
1383 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1384 }
1385 sk = sk_next(st->syn_wait_sk);
1386 st->state = TCP_SEQ_STATE_LISTENING;
1387 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1388 } else {
1389 icsk = inet_csk(sk);
1390 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1391 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1392 goto start_req;
1393 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1394 sk = sk_next(sk);
1395 }
1396 get_sk:
1397 sk_for_each_from(sk, node) {
1398 if (sk->sk_family == st->family) {
1399 cur = sk;
1400 goto out;
1401 }
1402 icsk = inet_csk(sk);
1403 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1404 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1405 start_req:
1406 st->uid = sock_i_uid(sk);
1407 st->syn_wait_sk = sk;
1408 st->state = TCP_SEQ_STATE_OPENREQ;
1409 st->sbucket = 0;
1410 goto get_req;
1411 }
1412 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1413 }
1414 if (++st->bucket < INET_LHTABLE_SIZE) {
1415 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1416 goto get_sk;
1417 }
1418 cur = NULL;
1419 out:
1420 return cur;
1421 }
1422
1423 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1424 {
1425 void *rc = listening_get_next(seq, NULL);
1426
1427 while (rc && *pos) {
1428 rc = listening_get_next(seq, rc);
1429 --*pos;
1430 }
1431 return rc;
1432 }
1433
1434 static void *established_get_first(struct seq_file *seq)
1435 {
1436 struct tcp_iter_state* st = seq->private;
1437 void *rc = NULL;
1438
1439 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1440 struct sock *sk;
1441 struct hlist_node *node;
1442 struct inet_timewait_sock *tw;
1443
1444 /* We can reschedule _before_ having picked the target: */
1445 cond_resched_softirq();
1446
1447 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1448 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1449 if (sk->sk_family != st->family) {
1450 continue;
1451 }
1452 rc = sk;
1453 goto out;
1454 }
1455 st->state = TCP_SEQ_STATE_TIME_WAIT;
1456 inet_twsk_for_each(tw, node,
1457 &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1458 if (tw->tw_family != st->family) {
1459 continue;
1460 }
1461 rc = tw;
1462 goto out;
1463 }
1464 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1465 st->state = TCP_SEQ_STATE_ESTABLISHED;
1466 }
1467 out:
1468 return rc;
1469 }
1470
1471 static void *established_get_next(struct seq_file *seq, void *cur)
1472 {
1473 struct sock *sk = cur;
1474 struct inet_timewait_sock *tw;
1475 struct hlist_node *node;
1476 struct tcp_iter_state* st = seq->private;
1477
1478 ++st->num;
1479
1480 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1481 tw = cur;
1482 tw = tw_next(tw);
1483 get_tw:
1484 while (tw && tw->tw_family != st->family) {
1485 tw = tw_next(tw);
1486 }
1487 if (tw) {
1488 cur = tw;
1489 goto out;
1490 }
1491 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1492 st->state = TCP_SEQ_STATE_ESTABLISHED;
1493
1494 /* We can reschedule between buckets: */
1495 cond_resched_softirq();
1496
1497 if (++st->bucket < tcp_hashinfo.ehash_size) {
1498 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1499 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1500 } else {
1501 cur = NULL;
1502 goto out;
1503 }
1504 } else
1505 sk = sk_next(sk);
1506
1507 sk_for_each_from(sk, node) {
1508 if (sk->sk_family == st->family)
1509 goto found;
1510 }
1511
1512 st->state = TCP_SEQ_STATE_TIME_WAIT;
1513 tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1514 goto get_tw;
1515 found:
1516 cur = sk;
1517 out:
1518 return cur;
1519 }
1520
1521 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1522 {
1523 void *rc = established_get_first(seq);
1524
1525 while (rc && pos) {
1526 rc = established_get_next(seq, rc);
1527 --pos;
1528 }
1529 return rc;
1530 }
1531
1532 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1533 {
1534 void *rc;
1535 struct tcp_iter_state* st = seq->private;
1536
1537 inet_listen_lock(&tcp_hashinfo);
1538 st->state = TCP_SEQ_STATE_LISTENING;
1539 rc = listening_get_idx(seq, &pos);
1540
1541 if (!rc) {
1542 inet_listen_unlock(&tcp_hashinfo);
1543 local_bh_disable();
1544 st->state = TCP_SEQ_STATE_ESTABLISHED;
1545 rc = established_get_idx(seq, pos);
1546 }
1547
1548 return rc;
1549 }
1550
1551 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1552 {
1553 struct tcp_iter_state* st = seq->private;
1554 st->state = TCP_SEQ_STATE_LISTENING;
1555 st->num = 0;
1556 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1557 }
1558
1559 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1560 {
1561 void *rc = NULL;
1562 struct tcp_iter_state* st;
1563
1564 if (v == SEQ_START_TOKEN) {
1565 rc = tcp_get_idx(seq, 0);
1566 goto out;
1567 }
1568 st = seq->private;
1569
1570 switch (st->state) {
1571 case TCP_SEQ_STATE_OPENREQ:
1572 case TCP_SEQ_STATE_LISTENING:
1573 rc = listening_get_next(seq, v);
1574 if (!rc) {
1575 inet_listen_unlock(&tcp_hashinfo);
1576 local_bh_disable();
1577 st->state = TCP_SEQ_STATE_ESTABLISHED;
1578 rc = established_get_first(seq);
1579 }
1580 break;
1581 case TCP_SEQ_STATE_ESTABLISHED:
1582 case TCP_SEQ_STATE_TIME_WAIT:
1583 rc = established_get_next(seq, v);
1584 break;
1585 }
1586 out:
1587 ++*pos;
1588 return rc;
1589 }
1590
1591 static void tcp_seq_stop(struct seq_file *seq, void *v)
1592 {
1593 struct tcp_iter_state* st = seq->private;
1594
1595 switch (st->state) {
1596 case TCP_SEQ_STATE_OPENREQ:
1597 if (v) {
1598 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1599 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1600 }
1601 case TCP_SEQ_STATE_LISTENING:
1602 if (v != SEQ_START_TOKEN)
1603 inet_listen_unlock(&tcp_hashinfo);
1604 break;
1605 case TCP_SEQ_STATE_TIME_WAIT:
1606 case TCP_SEQ_STATE_ESTABLISHED:
1607 if (v)
1608 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1609 local_bh_enable();
1610 break;
1611 }
1612 }
1613
1614 static int tcp_seq_open(struct inode *inode, struct file *file)
1615 {
1616 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1617 struct seq_file *seq;
1618 struct tcp_iter_state *s;
1619 int rc;
1620
1621 if (unlikely(afinfo == NULL))
1622 return -EINVAL;
1623
1624 s = kmalloc(sizeof(*s), GFP_KERNEL);
1625 if (!s)
1626 return -ENOMEM;
1627 memset(s, 0, sizeof(*s));
1628 s->family = afinfo->family;
1629 s->seq_ops.start = tcp_seq_start;
1630 s->seq_ops.next = tcp_seq_next;
1631 s->seq_ops.show = afinfo->seq_show;
1632 s->seq_ops.stop = tcp_seq_stop;
1633
1634 rc = seq_open(file, &s->seq_ops);
1635 if (rc)
1636 goto out_kfree;
1637 seq = file->private_data;
1638 seq->private = s;
1639 out:
1640 return rc;
1641 out_kfree:
1642 kfree(s);
1643 goto out;
1644 }
1645
1646 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1647 {
1648 int rc = 0;
1649 struct proc_dir_entry *p;
1650
1651 if (!afinfo)
1652 return -EINVAL;
1653 afinfo->seq_fops->owner = afinfo->owner;
1654 afinfo->seq_fops->open = tcp_seq_open;
1655 afinfo->seq_fops->read = seq_read;
1656 afinfo->seq_fops->llseek = seq_lseek;
1657 afinfo->seq_fops->release = seq_release_private;
1658
1659 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1660 if (p)
1661 p->data = afinfo;
1662 else
1663 rc = -ENOMEM;
1664 return rc;
1665 }
1666
1667 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1668 {
1669 if (!afinfo)
1670 return;
1671 proc_net_remove(afinfo->name);
1672 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1673 }
1674
1675 static void get_openreq4(struct sock *sk, struct request_sock *req,
1676 char *tmpbuf, int i, int uid)
1677 {
1678 const struct inet_request_sock *ireq = inet_rsk(req);
1679 int ttd = req->expires - jiffies;
1680
1681 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1682 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1683 i,
1684 ireq->loc_addr,
1685 ntohs(inet_sk(sk)->sport),
1686 ireq->rmt_addr,
1687 ntohs(ireq->rmt_port),
1688 TCP_SYN_RECV,
1689 0, 0, /* could print option size, but that is af dependent. */
1690 1, /* timers active (only the expire timer) */
1691 jiffies_to_clock_t(ttd),
1692 req->retrans,
1693 uid,
1694 0, /* non standard timer */
1695 0, /* open_requests have no inode */
1696 atomic_read(&sk->sk_refcnt),
1697 req);
1698 }
1699
1700 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1701 {
1702 int timer_active;
1703 unsigned long timer_expires;
1704 struct tcp_sock *tp = tcp_sk(sp);
1705 const struct inet_connection_sock *icsk = inet_csk(sp);
1706 struct inet_sock *inet = inet_sk(sp);
1707 unsigned int dest = inet->daddr;
1708 unsigned int src = inet->rcv_saddr;
1709 __u16 destp = ntohs(inet->dport);
1710 __u16 srcp = ntohs(inet->sport);
1711
1712 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1713 timer_active = 1;
1714 timer_expires = icsk->icsk_timeout;
1715 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1716 timer_active = 4;
1717 timer_expires = icsk->icsk_timeout;
1718 } else if (timer_pending(&sp->sk_timer)) {
1719 timer_active = 2;
1720 timer_expires = sp->sk_timer.expires;
1721 } else {
1722 timer_active = 0;
1723 timer_expires = jiffies;
1724 }
1725
1726 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1727 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1728 i, src, srcp, dest, destp, sp->sk_state,
1729 tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
1730 timer_active,
1731 jiffies_to_clock_t(timer_expires - jiffies),
1732 icsk->icsk_retransmits,
1733 sock_i_uid(sp),
1734 icsk->icsk_probes_out,
1735 sock_i_ino(sp),
1736 atomic_read(&sp->sk_refcnt), sp,
1737 icsk->icsk_rto,
1738 icsk->icsk_ack.ato,
1739 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1740 tp->snd_cwnd,
1741 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1742 }
1743
1744 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1745 {
1746 unsigned int dest, src;
1747 __u16 destp, srcp;
1748 int ttd = tw->tw_ttd - jiffies;
1749
1750 if (ttd < 0)
1751 ttd = 0;
1752
1753 dest = tw->tw_daddr;
1754 src = tw->tw_rcv_saddr;
1755 destp = ntohs(tw->tw_dport);
1756 srcp = ntohs(tw->tw_sport);
1757
1758 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1759 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1760 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1761 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1762 atomic_read(&tw->tw_refcnt), tw);
1763 }
1764
1765 #define TMPSZ 150
1766
1767 static int tcp4_seq_show(struct seq_file *seq, void *v)
1768 {
1769 struct tcp_iter_state* st;
1770 char tmpbuf[TMPSZ + 1];
1771
1772 if (v == SEQ_START_TOKEN) {
1773 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1774 " sl local_address rem_address st tx_queue "
1775 "rx_queue tr tm->when retrnsmt uid timeout "
1776 "inode");
1777 goto out;
1778 }
1779 st = seq->private;
1780
1781 switch (st->state) {
1782 case TCP_SEQ_STATE_LISTENING:
1783 case TCP_SEQ_STATE_ESTABLISHED:
1784 get_tcp4_sock(v, tmpbuf, st->num);
1785 break;
1786 case TCP_SEQ_STATE_OPENREQ:
1787 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1788 break;
1789 case TCP_SEQ_STATE_TIME_WAIT:
1790 get_timewait4_sock(v, tmpbuf, st->num);
1791 break;
1792 }
1793 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1794 out:
1795 return 0;
1796 }
1797
1798 static struct file_operations tcp4_seq_fops;
1799 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1800 .owner = THIS_MODULE,
1801 .name = "tcp",
1802 .family = AF_INET,
1803 .seq_show = tcp4_seq_show,
1804 .seq_fops = &tcp4_seq_fops,
1805 };
1806
1807 int __init tcp4_proc_init(void)
1808 {
1809 return tcp_proc_register(&tcp4_seq_afinfo);
1810 }
1811
1812 void tcp4_proc_exit(void)
1813 {
1814 tcp_proc_unregister(&tcp4_seq_afinfo);
1815 }
1816 #endif /* CONFIG_PROC_FS */
1817
1818 struct proto tcp_prot = {
1819 .name = "TCP",
1820 .owner = THIS_MODULE,
1821 .close = tcp_close,
1822 .connect = tcp_v4_connect,
1823 .disconnect = tcp_disconnect,
1824 .accept = inet_csk_accept,
1825 .ioctl = tcp_ioctl,
1826 .init = tcp_v4_init_sock,
1827 .destroy = tcp_v4_destroy_sock,
1828 .shutdown = tcp_shutdown,
1829 .setsockopt = tcp_setsockopt,
1830 .getsockopt = tcp_getsockopt,
1831 .sendmsg = tcp_sendmsg,
1832 .recvmsg = tcp_recvmsg,
1833 .backlog_rcv = tcp_v4_do_rcv,
1834 .hash = tcp_v4_hash,
1835 .unhash = tcp_unhash,
1836 .get_port = tcp_v4_get_port,
1837 .enter_memory_pressure = tcp_enter_memory_pressure,
1838 .sockets_allocated = &tcp_sockets_allocated,
1839 .orphan_count = &tcp_orphan_count,
1840 .memory_allocated = &tcp_memory_allocated,
1841 .memory_pressure = &tcp_memory_pressure,
1842 .sysctl_mem = sysctl_tcp_mem,
1843 .sysctl_wmem = sysctl_tcp_wmem,
1844 .sysctl_rmem = sysctl_tcp_rmem,
1845 .max_header = MAX_TCP_HEADER,
1846 .obj_size = sizeof(struct tcp_sock),
1847 .twsk_prot = &tcp_timewait_sock_ops,
1848 .rsk_prot = &tcp_request_sock_ops,
1849 #ifdef CONFIG_COMPAT
1850 .compat_setsockopt = compat_tcp_setsockopt,
1851 .compat_getsockopt = compat_tcp_getsockopt,
1852 #endif
1853 };
1854
1855 void __init tcp_v4_init(struct net_proto_family *ops)
1856 {
1857 if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW, IPPROTO_TCP) < 0)
1858 panic("Failed to create the TCP control socket.\n");
1859 }
1860
1861 EXPORT_SYMBOL(ipv4_specific);
1862 EXPORT_SYMBOL(tcp_hashinfo);
1863 EXPORT_SYMBOL(tcp_prot);
1864 EXPORT_SYMBOL(tcp_unhash);
1865 EXPORT_SYMBOL(tcp_v4_conn_request);
1866 EXPORT_SYMBOL(tcp_v4_connect);
1867 EXPORT_SYMBOL(tcp_v4_do_rcv);
1868 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1869 EXPORT_SYMBOL(tcp_v4_send_check);
1870 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1871
1872 #ifdef CONFIG_PROC_FS
1873 EXPORT_SYMBOL(tcp_proc_register);
1874 EXPORT_SYMBOL(tcp_proc_unregister);
1875 #endif
1876 EXPORT_SYMBOL(sysctl_local_port_range);
1877 EXPORT_SYMBOL(sysctl_tcp_low_latency);
1878
This page took 0.067506 seconds and 5 git commands to generate.