ipv4: Use binary search to choose tcp PMTU probe_size
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77 #include <net/busy_poll.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
96
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
99
100 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
101 {
102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103 ip_hdr(skb)->saddr,
104 tcp_hdr(skb)->dest,
105 tcp_hdr(skb)->source);
106 }
107
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
109 {
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112
113 /* With PAWS, it is safe from the viewpoint
114 of data integrity. Even without PAWS it is safe provided sequence
115 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
116
117 Actually, the idea is close to VJ's one, only timestamp cache is
118 held not per host, but per port pair and TW bucket is used as state
119 holder.
120
121 If TW bucket has been already destroyed we fall back to VJ's scheme
122 and use initial timestamp retrieved from peer table.
123 */
124 if (tcptw->tw_ts_recent_stamp &&
125 (twp == NULL || (sysctl_tcp_tw_reuse &&
126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 if (tp->write_seq == 0)
129 tp->write_seq = 1;
130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132 sock_hold(sktw);
133 return 1;
134 }
135
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
139
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
142 {
143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 struct inet_sock *inet = inet_sk(sk);
145 struct tcp_sock *tp = tcp_sk(sk);
146 __be16 orig_sport, orig_dport;
147 __be32 daddr, nexthop;
148 struct flowi4 *fl4;
149 struct rtable *rt;
150 int err;
151 struct ip_options_rcu *inet_opt;
152
153 if (addr_len < sizeof(struct sockaddr_in))
154 return -EINVAL;
155
156 if (usin->sin_family != AF_INET)
157 return -EAFNOSUPPORT;
158
159 nexthop = daddr = usin->sin_addr.s_addr;
160 inet_opt = rcu_dereference_protected(inet->inet_opt,
161 sock_owned_by_user(sk));
162 if (inet_opt && inet_opt->opt.srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet_opt->opt.faddr;
166 }
167
168 orig_sport = inet->inet_sport;
169 orig_dport = usin->sin_port;
170 fl4 = &inet->cork.fl.u.ip4;
171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173 IPPROTO_TCP,
174 orig_sport, orig_dport, sk);
175 if (IS_ERR(rt)) {
176 err = PTR_ERR(rt);
177 if (err == -ENETUNREACH)
178 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 return err;
180 }
181
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 ip_rt_put(rt);
184 return -ENETUNREACH;
185 }
186
187 if (!inet_opt || !inet_opt->opt.srr)
188 daddr = fl4->daddr;
189
190 if (!inet->inet_saddr)
191 inet->inet_saddr = fl4->saddr;
192 inet->inet_rcv_saddr = inet->inet_saddr;
193
194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
198 if (likely(!tp->repair))
199 tp->write_seq = 0;
200 }
201
202 if (tcp_death_row.sysctl_tw_recycle &&
203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
204 tcp_fetch_timewait_stamp(sk, &rt->dst);
205
206 inet->inet_dport = usin->sin_port;
207 inet->inet_daddr = daddr;
208
209 inet_csk(sk)->icsk_ext_hdr_len = 0;
210 if (inet_opt)
211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212
213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214
215 /* Socket identity is still unknown (sport may be zero).
216 * However we set state to SYN-SENT and not releasing socket
217 * lock select source port, enter ourselves into the hash tables and
218 * complete initialization after this.
219 */
220 tcp_set_state(sk, TCP_SYN_SENT);
221 err = inet_hash_connect(&tcp_death_row, sk);
222 if (err)
223 goto failure;
224
225 inet_set_txhash(sk);
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254 failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272 void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302 }
303 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
304
305 static void do_redirect(struct sk_buff *skb, struct sock *sk)
306 {
307 struct dst_entry *dst = __sk_dst_check(sk, 0);
308
309 if (dst)
310 dst->ops->redirect(dst, sk, skb);
311 }
312
313 /*
314 * This routine is called by the ICMP module when it gets some
315 * sort of error condition. If err < 0 then the socket should
316 * be closed and the error returned to the user. If err > 0
317 * it's just the icmp type << 8 | icmp code. After adjustment
318 * header points to the first 8 bytes of the tcp header. We need
319 * to find the appropriate port.
320 *
321 * The locking strategy used here is very "optimistic". When
322 * someone else accesses the socket the ICMP is just dropped
323 * and for some paths there is no check at all.
324 * A more general error queue to queue errors for later handling
325 * is probably better.
326 *
327 */
328
329 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
330 {
331 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
332 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
333 struct inet_connection_sock *icsk;
334 struct tcp_sock *tp;
335 struct inet_sock *inet;
336 const int type = icmp_hdr(icmp_skb)->type;
337 const int code = icmp_hdr(icmp_skb)->code;
338 struct sock *sk;
339 struct sk_buff *skb;
340 struct request_sock *fastopen;
341 __u32 seq, snd_una;
342 __u32 remaining;
343 int err;
344 struct net *net = dev_net(icmp_skb->dev);
345
346 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
347 iph->saddr, th->source, inet_iif(icmp_skb));
348 if (!sk) {
349 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350 return;
351 }
352 if (sk->sk_state == TCP_TIME_WAIT) {
353 inet_twsk_put(inet_twsk(sk));
354 return;
355 }
356
357 bh_lock_sock(sk);
358 /* If too many ICMPs get dropped on busy
359 * servers this needs to be solved differently.
360 * We do take care of PMTU discovery (RFC1191) special case :
361 * we can receive locally generated ICMP messages while socket is held.
362 */
363 if (sock_owned_by_user(sk)) {
364 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
365 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
366 }
367 if (sk->sk_state == TCP_CLOSE)
368 goto out;
369
370 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
371 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
372 goto out;
373 }
374
375 icsk = inet_csk(sk);
376 tp = tcp_sk(sk);
377 seq = ntohl(th->seq);
378 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
379 fastopen = tp->fastopen_rsk;
380 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
381 if (sk->sk_state != TCP_LISTEN &&
382 !between(seq, snd_una, tp->snd_nxt)) {
383 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
384 goto out;
385 }
386
387 switch (type) {
388 case ICMP_REDIRECT:
389 do_redirect(icmp_skb, sk);
390 goto out;
391 case ICMP_SOURCE_QUENCH:
392 /* Just silently ignore these. */
393 goto out;
394 case ICMP_PARAMETERPROB:
395 err = EPROTO;
396 break;
397 case ICMP_DEST_UNREACH:
398 if (code > NR_ICMP_UNREACH)
399 goto out;
400
401 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
402 /* We are not interested in TCP_LISTEN and open_requests
403 * (SYN-ACKs send out by Linux are always <576bytes so
404 * they should go through unfragmented).
405 */
406 if (sk->sk_state == TCP_LISTEN)
407 goto out;
408
409 tp->mtu_info = info;
410 if (!sock_owned_by_user(sk)) {
411 tcp_v4_mtu_reduced(sk);
412 } else {
413 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
414 sock_hold(sk);
415 }
416 goto out;
417 }
418
419 err = icmp_err_convert[code].errno;
420 /* check if icmp_skb allows revert of backoff
421 * (see draft-zimmermann-tcp-lcd) */
422 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
423 break;
424 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
425 !icsk->icsk_backoff || fastopen)
426 break;
427
428 if (sock_owned_by_user(sk))
429 break;
430
431 icsk->icsk_backoff--;
432 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
433 TCP_TIMEOUT_INIT;
434 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
435
436 skb = tcp_write_queue_head(sk);
437 BUG_ON(!skb);
438
439 remaining = icsk->icsk_rto -
440 min(icsk->icsk_rto,
441 tcp_time_stamp - tcp_skb_timestamp(skb));
442
443 if (remaining) {
444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 remaining, TCP_RTO_MAX);
446 } else {
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk);
450 }
451
452 break;
453 case ICMP_TIME_EXCEEDED:
454 err = EHOSTUNREACH;
455 break;
456 default:
457 goto out;
458 }
459
460 switch (sk->sk_state) {
461 struct request_sock *req, **prev;
462 case TCP_LISTEN:
463 if (sock_owned_by_user(sk))
464 goto out;
465
466 req = inet_csk_search_req(sk, &prev, th->dest,
467 iph->daddr, iph->saddr);
468 if (!req)
469 goto out;
470
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
473 */
474 WARN_ON(req->sk);
475
476 if (seq != tcp_rsk(req)->snt_isn) {
477 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 goto out;
479 }
480
481 /*
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
486 */
487 inet_csk_reqsk_queue_drop(sk, req, prev);
488 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
489 goto out;
490
491 case TCP_SYN_SENT:
492 case TCP_SYN_RECV:
493 /* Only in fast or simultaneous open. If a fast open socket is
494 * is already accepted it is treated as a connected one below.
495 */
496 if (fastopen && fastopen->sk == NULL)
497 break;
498
499 if (!sock_owned_by_user(sk)) {
500 sk->sk_err = err;
501
502 sk->sk_error_report(sk);
503
504 tcp_done(sk);
505 } else {
506 sk->sk_err_soft = err;
507 }
508 goto out;
509 }
510
511 /* If we've already connected we will keep trying
512 * until we time out, or the user gives up.
513 *
514 * rfc1122 4.2.3.9 allows to consider as hard errors
515 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
516 * but it is obsoleted by pmtu discovery).
517 *
518 * Note, that in modern internet, where routing is unreliable
519 * and in each dark corner broken firewalls sit, sending random
520 * errors ordered by their masters even this two messages finally lose
521 * their original sense (even Linux sends invalid PORT_UNREACHs)
522 *
523 * Now we are in compliance with RFCs.
524 * --ANK (980905)
525 */
526
527 inet = inet_sk(sk);
528 if (!sock_owned_by_user(sk) && inet->recverr) {
529 sk->sk_err = err;
530 sk->sk_error_report(sk);
531 } else { /* Only an error on timeout */
532 sk->sk_err_soft = err;
533 }
534
535 out:
536 bh_unlock_sock(sk);
537 sock_put(sk);
538 }
539
540 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
541 {
542 struct tcphdr *th = tcp_hdr(skb);
543
544 if (skb->ip_summed == CHECKSUM_PARTIAL) {
545 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
546 skb->csum_start = skb_transport_header(skb) - skb->head;
547 skb->csum_offset = offsetof(struct tcphdr, check);
548 } else {
549 th->check = tcp_v4_check(skb->len, saddr, daddr,
550 csum_partial(th,
551 th->doff << 2,
552 skb->csum));
553 }
554 }
555
556 /* This routine computes an IPv4 TCP checksum. */
557 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
558 {
559 const struct inet_sock *inet = inet_sk(sk);
560
561 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
562 }
563 EXPORT_SYMBOL(tcp_v4_send_check);
564
565 /*
566 * This routine will send an RST to the other tcp.
567 *
568 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
569 * for reset.
570 * Answer: if a packet caused RST, it is not for a socket
571 * existing in our system, if it is matched to a socket,
572 * it is just duplicate segment or bug in other side's TCP.
573 * So that we build reply only basing on parameters
574 * arrived with segment.
575 * Exception: precedence violation. We do not implement it in any case.
576 */
577
578 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
579 {
580 const struct tcphdr *th = tcp_hdr(skb);
581 struct {
582 struct tcphdr th;
583 #ifdef CONFIG_TCP_MD5SIG
584 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
585 #endif
586 } rep;
587 struct ip_reply_arg arg;
588 #ifdef CONFIG_TCP_MD5SIG
589 struct tcp_md5sig_key *key;
590 const __u8 *hash_location = NULL;
591 unsigned char newhash[16];
592 int genhash;
593 struct sock *sk1 = NULL;
594 #endif
595 struct net *net;
596
597 /* Never send a reset in response to a reset. */
598 if (th->rst)
599 return;
600
601 /* If sk not NULL, it means we did a successful lookup and incoming
602 * route had to be correct. prequeue might have dropped our dst.
603 */
604 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
605 return;
606
607 /* Swap the send and the receive. */
608 memset(&rep, 0, sizeof(rep));
609 rep.th.dest = th->source;
610 rep.th.source = th->dest;
611 rep.th.doff = sizeof(struct tcphdr) / 4;
612 rep.th.rst = 1;
613
614 if (th->ack) {
615 rep.th.seq = th->ack_seq;
616 } else {
617 rep.th.ack = 1;
618 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
619 skb->len - (th->doff << 2));
620 }
621
622 memset(&arg, 0, sizeof(arg));
623 arg.iov[0].iov_base = (unsigned char *)&rep;
624 arg.iov[0].iov_len = sizeof(rep.th);
625
626 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
627 #ifdef CONFIG_TCP_MD5SIG
628 hash_location = tcp_parse_md5sig_option(th);
629 if (!sk && hash_location) {
630 /*
631 * active side is lost. Try to find listening socket through
632 * source port, and then find md5 key through listening socket.
633 * we are not loose security here:
634 * Incoming packet is checked with md5 hash with finding key,
635 * no RST generated if md5 hash doesn't match.
636 */
637 sk1 = __inet_lookup_listener(net,
638 &tcp_hashinfo, ip_hdr(skb)->saddr,
639 th->source, ip_hdr(skb)->daddr,
640 ntohs(th->source), inet_iif(skb));
641 /* don't send rst if it can't find key */
642 if (!sk1)
643 return;
644 rcu_read_lock();
645 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
646 &ip_hdr(skb)->saddr, AF_INET);
647 if (!key)
648 goto release_sk1;
649
650 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
651 if (genhash || memcmp(hash_location, newhash, 16) != 0)
652 goto release_sk1;
653 } else {
654 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
655 &ip_hdr(skb)->saddr,
656 AF_INET) : NULL;
657 }
658
659 if (key) {
660 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
661 (TCPOPT_NOP << 16) |
662 (TCPOPT_MD5SIG << 8) |
663 TCPOLEN_MD5SIG);
664 /* Update length and the length the header thinks exists */
665 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
666 rep.th.doff = arg.iov[0].iov_len / 4;
667
668 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
669 key, ip_hdr(skb)->saddr,
670 ip_hdr(skb)->daddr, &rep.th);
671 }
672 #endif
673 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
674 ip_hdr(skb)->saddr, /* XXX */
675 arg.iov[0].iov_len, IPPROTO_TCP, 0);
676 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
677 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
678 /* When socket is gone, all binding information is lost.
679 * routing might fail in this case. No choice here, if we choose to force
680 * input interface, we will misroute in case of asymmetric route.
681 */
682 if (sk)
683 arg.bound_dev_if = sk->sk_bound_dev_if;
684
685 arg.tos = ip_hdr(skb)->tos;
686 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
687 skb, &TCP_SKB_CB(skb)->header.h4.opt,
688 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
689 &arg, arg.iov[0].iov_len);
690
691 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
692 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
693
694 #ifdef CONFIG_TCP_MD5SIG
695 release_sk1:
696 if (sk1) {
697 rcu_read_unlock();
698 sock_put(sk1);
699 }
700 #endif
701 }
702
703 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
704 outside socket context is ugly, certainly. What can I do?
705 */
706
707 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
708 u32 win, u32 tsval, u32 tsecr, int oif,
709 struct tcp_md5sig_key *key,
710 int reply_flags, u8 tos)
711 {
712 const struct tcphdr *th = tcp_hdr(skb);
713 struct {
714 struct tcphdr th;
715 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
716 #ifdef CONFIG_TCP_MD5SIG
717 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
718 #endif
719 ];
720 } rep;
721 struct ip_reply_arg arg;
722 struct net *net = dev_net(skb_dst(skb)->dev);
723
724 memset(&rep.th, 0, sizeof(struct tcphdr));
725 memset(&arg, 0, sizeof(arg));
726
727 arg.iov[0].iov_base = (unsigned char *)&rep;
728 arg.iov[0].iov_len = sizeof(rep.th);
729 if (tsecr) {
730 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
731 (TCPOPT_TIMESTAMP << 8) |
732 TCPOLEN_TIMESTAMP);
733 rep.opt[1] = htonl(tsval);
734 rep.opt[2] = htonl(tsecr);
735 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
736 }
737
738 /* Swap the send and the receive. */
739 rep.th.dest = th->source;
740 rep.th.source = th->dest;
741 rep.th.doff = arg.iov[0].iov_len / 4;
742 rep.th.seq = htonl(seq);
743 rep.th.ack_seq = htonl(ack);
744 rep.th.ack = 1;
745 rep.th.window = htons(win);
746
747 #ifdef CONFIG_TCP_MD5SIG
748 if (key) {
749 int offset = (tsecr) ? 3 : 0;
750
751 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
752 (TCPOPT_NOP << 16) |
753 (TCPOPT_MD5SIG << 8) |
754 TCPOLEN_MD5SIG);
755 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
756 rep.th.doff = arg.iov[0].iov_len/4;
757
758 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
759 key, ip_hdr(skb)->saddr,
760 ip_hdr(skb)->daddr, &rep.th);
761 }
762 #endif
763 arg.flags = reply_flags;
764 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
765 ip_hdr(skb)->saddr, /* XXX */
766 arg.iov[0].iov_len, IPPROTO_TCP, 0);
767 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
768 if (oif)
769 arg.bound_dev_if = oif;
770 arg.tos = tos;
771 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
772 skb, &TCP_SKB_CB(skb)->header.h4.opt,
773 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
774 &arg, arg.iov[0].iov_len);
775
776 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
777 }
778
779 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
780 {
781 struct inet_timewait_sock *tw = inet_twsk(sk);
782 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
783
784 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
785 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
786 tcp_time_stamp + tcptw->tw_ts_offset,
787 tcptw->tw_ts_recent,
788 tw->tw_bound_dev_if,
789 tcp_twsk_md5_key(tcptw),
790 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
791 tw->tw_tos
792 );
793
794 inet_twsk_put(tw);
795 }
796
797 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
798 struct request_sock *req)
799 {
800 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
801 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
802 */
803 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
804 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
805 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
806 tcp_time_stamp,
807 req->ts_recent,
808 0,
809 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
810 AF_INET),
811 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
812 ip_hdr(skb)->tos);
813 }
814
815 /*
816 * Send a SYN-ACK after having received a SYN.
817 * This still operates on a request_sock only, not on a big
818 * socket.
819 */
820 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
821 struct flowi *fl,
822 struct request_sock *req,
823 u16 queue_mapping,
824 struct tcp_fastopen_cookie *foc)
825 {
826 const struct inet_request_sock *ireq = inet_rsk(req);
827 struct flowi4 fl4;
828 int err = -1;
829 struct sk_buff *skb;
830
831 /* First, grab a route. */
832 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
833 return -1;
834
835 skb = tcp_make_synack(sk, dst, req, foc);
836
837 if (skb) {
838 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
839
840 skb_set_queue_mapping(skb, queue_mapping);
841 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
842 ireq->ir_rmt_addr,
843 ireq->opt);
844 err = net_xmit_eval(err);
845 }
846
847 return err;
848 }
849
850 /*
851 * IPv4 request_sock destructor.
852 */
853 static void tcp_v4_reqsk_destructor(struct request_sock *req)
854 {
855 kfree(inet_rsk(req)->opt);
856 }
857
858 /*
859 * Return true if a syncookie should be sent
860 */
861 bool tcp_syn_flood_action(struct sock *sk,
862 const struct sk_buff *skb,
863 const char *proto)
864 {
865 const char *msg = "Dropping request";
866 bool want_cookie = false;
867 struct listen_sock *lopt;
868
869 #ifdef CONFIG_SYN_COOKIES
870 if (sysctl_tcp_syncookies) {
871 msg = "Sending cookies";
872 want_cookie = true;
873 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
874 } else
875 #endif
876 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
877
878 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
879 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
880 lopt->synflood_warned = 1;
881 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
882 proto, ntohs(tcp_hdr(skb)->dest), msg);
883 }
884 return want_cookie;
885 }
886 EXPORT_SYMBOL(tcp_syn_flood_action);
887
888 #ifdef CONFIG_TCP_MD5SIG
889 /*
890 * RFC2385 MD5 checksumming requires a mapping of
891 * IP address->MD5 Key.
892 * We need to maintain these in the sk structure.
893 */
894
895 /* Find the Key structure for an address. */
896 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
897 const union tcp_md5_addr *addr,
898 int family)
899 {
900 struct tcp_sock *tp = tcp_sk(sk);
901 struct tcp_md5sig_key *key;
902 unsigned int size = sizeof(struct in_addr);
903 struct tcp_md5sig_info *md5sig;
904
905 /* caller either holds rcu_read_lock() or socket lock */
906 md5sig = rcu_dereference_check(tp->md5sig_info,
907 sock_owned_by_user(sk) ||
908 lockdep_is_held(&sk->sk_lock.slock));
909 if (!md5sig)
910 return NULL;
911 #if IS_ENABLED(CONFIG_IPV6)
912 if (family == AF_INET6)
913 size = sizeof(struct in6_addr);
914 #endif
915 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
916 if (key->family != family)
917 continue;
918 if (!memcmp(&key->addr, addr, size))
919 return key;
920 }
921 return NULL;
922 }
923 EXPORT_SYMBOL(tcp_md5_do_lookup);
924
925 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
926 struct sock *addr_sk)
927 {
928 union tcp_md5_addr *addr;
929
930 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
931 return tcp_md5_do_lookup(sk, addr, AF_INET);
932 }
933 EXPORT_SYMBOL(tcp_v4_md5_lookup);
934
935 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
936 struct request_sock *req)
937 {
938 union tcp_md5_addr *addr;
939
940 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
941 return tcp_md5_do_lookup(sk, addr, AF_INET);
942 }
943
944 /* This can be called on a newly created socket, from other files */
945 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
946 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
947 {
948 /* Add Key to the list */
949 struct tcp_md5sig_key *key;
950 struct tcp_sock *tp = tcp_sk(sk);
951 struct tcp_md5sig_info *md5sig;
952
953 key = tcp_md5_do_lookup(sk, addr, family);
954 if (key) {
955 /* Pre-existing entry - just update that one. */
956 memcpy(key->key, newkey, newkeylen);
957 key->keylen = newkeylen;
958 return 0;
959 }
960
961 md5sig = rcu_dereference_protected(tp->md5sig_info,
962 sock_owned_by_user(sk));
963 if (!md5sig) {
964 md5sig = kmalloc(sizeof(*md5sig), gfp);
965 if (!md5sig)
966 return -ENOMEM;
967
968 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
969 INIT_HLIST_HEAD(&md5sig->head);
970 rcu_assign_pointer(tp->md5sig_info, md5sig);
971 }
972
973 key = sock_kmalloc(sk, sizeof(*key), gfp);
974 if (!key)
975 return -ENOMEM;
976 if (!tcp_alloc_md5sig_pool()) {
977 sock_kfree_s(sk, key, sizeof(*key));
978 return -ENOMEM;
979 }
980
981 memcpy(key->key, newkey, newkeylen);
982 key->keylen = newkeylen;
983 key->family = family;
984 memcpy(&key->addr, addr,
985 (family == AF_INET6) ? sizeof(struct in6_addr) :
986 sizeof(struct in_addr));
987 hlist_add_head_rcu(&key->node, &md5sig->head);
988 return 0;
989 }
990 EXPORT_SYMBOL(tcp_md5_do_add);
991
992 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
993 {
994 struct tcp_md5sig_key *key;
995
996 key = tcp_md5_do_lookup(sk, addr, family);
997 if (!key)
998 return -ENOENT;
999 hlist_del_rcu(&key->node);
1000 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1001 kfree_rcu(key, rcu);
1002 return 0;
1003 }
1004 EXPORT_SYMBOL(tcp_md5_do_del);
1005
1006 static void tcp_clear_md5_list(struct sock *sk)
1007 {
1008 struct tcp_sock *tp = tcp_sk(sk);
1009 struct tcp_md5sig_key *key;
1010 struct hlist_node *n;
1011 struct tcp_md5sig_info *md5sig;
1012
1013 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1014
1015 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1016 hlist_del_rcu(&key->node);
1017 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1018 kfree_rcu(key, rcu);
1019 }
1020 }
1021
1022 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1023 int optlen)
1024 {
1025 struct tcp_md5sig cmd;
1026 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1027
1028 if (optlen < sizeof(cmd))
1029 return -EINVAL;
1030
1031 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1032 return -EFAULT;
1033
1034 if (sin->sin_family != AF_INET)
1035 return -EINVAL;
1036
1037 if (!cmd.tcpm_keylen)
1038 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1039 AF_INET);
1040
1041 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1042 return -EINVAL;
1043
1044 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1045 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1046 GFP_KERNEL);
1047 }
1048
1049 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1050 __be32 daddr, __be32 saddr, int nbytes)
1051 {
1052 struct tcp4_pseudohdr *bp;
1053 struct scatterlist sg;
1054
1055 bp = &hp->md5_blk.ip4;
1056
1057 /*
1058 * 1. the TCP pseudo-header (in the order: source IP address,
1059 * destination IP address, zero-padded protocol number, and
1060 * segment length)
1061 */
1062 bp->saddr = saddr;
1063 bp->daddr = daddr;
1064 bp->pad = 0;
1065 bp->protocol = IPPROTO_TCP;
1066 bp->len = cpu_to_be16(nbytes);
1067
1068 sg_init_one(&sg, bp, sizeof(*bp));
1069 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1070 }
1071
1072 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1073 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1074 {
1075 struct tcp_md5sig_pool *hp;
1076 struct hash_desc *desc;
1077
1078 hp = tcp_get_md5sig_pool();
1079 if (!hp)
1080 goto clear_hash_noput;
1081 desc = &hp->md5_desc;
1082
1083 if (crypto_hash_init(desc))
1084 goto clear_hash;
1085 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1086 goto clear_hash;
1087 if (tcp_md5_hash_header(hp, th))
1088 goto clear_hash;
1089 if (tcp_md5_hash_key(hp, key))
1090 goto clear_hash;
1091 if (crypto_hash_final(desc, md5_hash))
1092 goto clear_hash;
1093
1094 tcp_put_md5sig_pool();
1095 return 0;
1096
1097 clear_hash:
1098 tcp_put_md5sig_pool();
1099 clear_hash_noput:
1100 memset(md5_hash, 0, 16);
1101 return 1;
1102 }
1103
1104 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1105 const struct sock *sk, const struct request_sock *req,
1106 const struct sk_buff *skb)
1107 {
1108 struct tcp_md5sig_pool *hp;
1109 struct hash_desc *desc;
1110 const struct tcphdr *th = tcp_hdr(skb);
1111 __be32 saddr, daddr;
1112
1113 if (sk) {
1114 saddr = inet_sk(sk)->inet_saddr;
1115 daddr = inet_sk(sk)->inet_daddr;
1116 } else if (req) {
1117 saddr = inet_rsk(req)->ir_loc_addr;
1118 daddr = inet_rsk(req)->ir_rmt_addr;
1119 } else {
1120 const struct iphdr *iph = ip_hdr(skb);
1121 saddr = iph->saddr;
1122 daddr = iph->daddr;
1123 }
1124
1125 hp = tcp_get_md5sig_pool();
1126 if (!hp)
1127 goto clear_hash_noput;
1128 desc = &hp->md5_desc;
1129
1130 if (crypto_hash_init(desc))
1131 goto clear_hash;
1132
1133 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1134 goto clear_hash;
1135 if (tcp_md5_hash_header(hp, th))
1136 goto clear_hash;
1137 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1138 goto clear_hash;
1139 if (tcp_md5_hash_key(hp, key))
1140 goto clear_hash;
1141 if (crypto_hash_final(desc, md5_hash))
1142 goto clear_hash;
1143
1144 tcp_put_md5sig_pool();
1145 return 0;
1146
1147 clear_hash:
1148 tcp_put_md5sig_pool();
1149 clear_hash_noput:
1150 memset(md5_hash, 0, 16);
1151 return 1;
1152 }
1153 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1154
1155 static bool __tcp_v4_inbound_md5_hash(struct sock *sk,
1156 const struct sk_buff *skb)
1157 {
1158 /*
1159 * This gets called for each TCP segment that arrives
1160 * so we want to be efficient.
1161 * We have 3 drop cases:
1162 * o No MD5 hash and one expected.
1163 * o MD5 hash and we're not expecting one.
1164 * o MD5 hash and its wrong.
1165 */
1166 const __u8 *hash_location = NULL;
1167 struct tcp_md5sig_key *hash_expected;
1168 const struct iphdr *iph = ip_hdr(skb);
1169 const struct tcphdr *th = tcp_hdr(skb);
1170 int genhash;
1171 unsigned char newhash[16];
1172
1173 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1174 AF_INET);
1175 hash_location = tcp_parse_md5sig_option(th);
1176
1177 /* We've parsed the options - do we have a hash? */
1178 if (!hash_expected && !hash_location)
1179 return false;
1180
1181 if (hash_expected && !hash_location) {
1182 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1183 return true;
1184 }
1185
1186 if (!hash_expected && hash_location) {
1187 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1188 return true;
1189 }
1190
1191 /* Okay, so this is hash_expected and hash_location -
1192 * so we need to calculate the checksum.
1193 */
1194 genhash = tcp_v4_md5_hash_skb(newhash,
1195 hash_expected,
1196 NULL, NULL, skb);
1197
1198 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1199 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1200 &iph->saddr, ntohs(th->source),
1201 &iph->daddr, ntohs(th->dest),
1202 genhash ? " tcp_v4_calc_md5_hash failed"
1203 : "");
1204 return true;
1205 }
1206 return false;
1207 }
1208
1209 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1210 {
1211 bool ret;
1212
1213 rcu_read_lock();
1214 ret = __tcp_v4_inbound_md5_hash(sk, skb);
1215 rcu_read_unlock();
1216
1217 return ret;
1218 }
1219
1220 #endif
1221
1222 static void tcp_v4_init_req(struct request_sock *req, struct sock *sk,
1223 struct sk_buff *skb)
1224 {
1225 struct inet_request_sock *ireq = inet_rsk(req);
1226
1227 ireq->ir_loc_addr = ip_hdr(skb)->daddr;
1228 ireq->ir_rmt_addr = ip_hdr(skb)->saddr;
1229 ireq->no_srccheck = inet_sk(sk)->transparent;
1230 ireq->opt = tcp_v4_save_options(skb);
1231 }
1232
1233 static struct dst_entry *tcp_v4_route_req(struct sock *sk, struct flowi *fl,
1234 const struct request_sock *req,
1235 bool *strict)
1236 {
1237 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1238
1239 if (strict) {
1240 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1241 *strict = true;
1242 else
1243 *strict = false;
1244 }
1245
1246 return dst;
1247 }
1248
1249 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1250 .family = PF_INET,
1251 .obj_size = sizeof(struct tcp_request_sock),
1252 .rtx_syn_ack = tcp_rtx_synack,
1253 .send_ack = tcp_v4_reqsk_send_ack,
1254 .destructor = tcp_v4_reqsk_destructor,
1255 .send_reset = tcp_v4_send_reset,
1256 .syn_ack_timeout = tcp_syn_ack_timeout,
1257 };
1258
1259 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1260 .mss_clamp = TCP_MSS_DEFAULT,
1261 #ifdef CONFIG_TCP_MD5SIG
1262 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1263 .calc_md5_hash = tcp_v4_md5_hash_skb,
1264 #endif
1265 .init_req = tcp_v4_init_req,
1266 #ifdef CONFIG_SYN_COOKIES
1267 .cookie_init_seq = cookie_v4_init_sequence,
1268 #endif
1269 .route_req = tcp_v4_route_req,
1270 .init_seq = tcp_v4_init_sequence,
1271 .send_synack = tcp_v4_send_synack,
1272 .queue_hash_add = inet_csk_reqsk_queue_hash_add,
1273 };
1274
1275 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1276 {
1277 /* Never answer to SYNs send to broadcast or multicast */
1278 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1279 goto drop;
1280
1281 return tcp_conn_request(&tcp_request_sock_ops,
1282 &tcp_request_sock_ipv4_ops, sk, skb);
1283
1284 drop:
1285 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1286 return 0;
1287 }
1288 EXPORT_SYMBOL(tcp_v4_conn_request);
1289
1290
1291 /*
1292 * The three way handshake has completed - we got a valid synack -
1293 * now create the new socket.
1294 */
1295 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1296 struct request_sock *req,
1297 struct dst_entry *dst)
1298 {
1299 struct inet_request_sock *ireq;
1300 struct inet_sock *newinet;
1301 struct tcp_sock *newtp;
1302 struct sock *newsk;
1303 #ifdef CONFIG_TCP_MD5SIG
1304 struct tcp_md5sig_key *key;
1305 #endif
1306 struct ip_options_rcu *inet_opt;
1307
1308 if (sk_acceptq_is_full(sk))
1309 goto exit_overflow;
1310
1311 newsk = tcp_create_openreq_child(sk, req, skb);
1312 if (!newsk)
1313 goto exit_nonewsk;
1314
1315 newsk->sk_gso_type = SKB_GSO_TCPV4;
1316 inet_sk_rx_dst_set(newsk, skb);
1317
1318 newtp = tcp_sk(newsk);
1319 newinet = inet_sk(newsk);
1320 ireq = inet_rsk(req);
1321 newinet->inet_daddr = ireq->ir_rmt_addr;
1322 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1323 newinet->inet_saddr = ireq->ir_loc_addr;
1324 inet_opt = ireq->opt;
1325 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1326 ireq->opt = NULL;
1327 newinet->mc_index = inet_iif(skb);
1328 newinet->mc_ttl = ip_hdr(skb)->ttl;
1329 newinet->rcv_tos = ip_hdr(skb)->tos;
1330 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1331 inet_set_txhash(newsk);
1332 if (inet_opt)
1333 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1334 newinet->inet_id = newtp->write_seq ^ jiffies;
1335
1336 if (!dst) {
1337 dst = inet_csk_route_child_sock(sk, newsk, req);
1338 if (!dst)
1339 goto put_and_exit;
1340 } else {
1341 /* syncookie case : see end of cookie_v4_check() */
1342 }
1343 sk_setup_caps(newsk, dst);
1344
1345 tcp_ca_openreq_child(newsk, dst);
1346
1347 tcp_sync_mss(newsk, dst_mtu(dst));
1348 newtp->advmss = dst_metric_advmss(dst);
1349 if (tcp_sk(sk)->rx_opt.user_mss &&
1350 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1351 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1352
1353 tcp_initialize_rcv_mss(newsk);
1354
1355 #ifdef CONFIG_TCP_MD5SIG
1356 /* Copy over the MD5 key from the original socket */
1357 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1358 AF_INET);
1359 if (key != NULL) {
1360 /*
1361 * We're using one, so create a matching key
1362 * on the newsk structure. If we fail to get
1363 * memory, then we end up not copying the key
1364 * across. Shucks.
1365 */
1366 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1367 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1368 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1369 }
1370 #endif
1371
1372 if (__inet_inherit_port(sk, newsk) < 0)
1373 goto put_and_exit;
1374 __inet_hash_nolisten(newsk, NULL);
1375
1376 return newsk;
1377
1378 exit_overflow:
1379 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1380 exit_nonewsk:
1381 dst_release(dst);
1382 exit:
1383 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1384 return NULL;
1385 put_and_exit:
1386 inet_csk_prepare_forced_close(newsk);
1387 tcp_done(newsk);
1388 goto exit;
1389 }
1390 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1391
1392 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1393 {
1394 struct tcphdr *th = tcp_hdr(skb);
1395 const struct iphdr *iph = ip_hdr(skb);
1396 struct sock *nsk;
1397 struct request_sock **prev;
1398 /* Find possible connection requests. */
1399 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1400 iph->saddr, iph->daddr);
1401 if (req)
1402 return tcp_check_req(sk, skb, req, prev, false);
1403
1404 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1405 th->source, iph->daddr, th->dest, inet_iif(skb));
1406
1407 if (nsk) {
1408 if (nsk->sk_state != TCP_TIME_WAIT) {
1409 bh_lock_sock(nsk);
1410 return nsk;
1411 }
1412 inet_twsk_put(inet_twsk(nsk));
1413 return NULL;
1414 }
1415
1416 #ifdef CONFIG_SYN_COOKIES
1417 if (!th->syn)
1418 sk = cookie_v4_check(sk, skb);
1419 #endif
1420 return sk;
1421 }
1422
1423 /* The socket must have it's spinlock held when we get
1424 * here.
1425 *
1426 * We have a potential double-lock case here, so even when
1427 * doing backlog processing we use the BH locking scheme.
1428 * This is because we cannot sleep with the original spinlock
1429 * held.
1430 */
1431 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1432 {
1433 struct sock *rsk;
1434
1435 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1436 struct dst_entry *dst = sk->sk_rx_dst;
1437
1438 sock_rps_save_rxhash(sk, skb);
1439 sk_mark_napi_id(sk, skb);
1440 if (dst) {
1441 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1442 dst->ops->check(dst, 0) == NULL) {
1443 dst_release(dst);
1444 sk->sk_rx_dst = NULL;
1445 }
1446 }
1447 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1448 return 0;
1449 }
1450
1451 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1452 goto csum_err;
1453
1454 if (sk->sk_state == TCP_LISTEN) {
1455 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1456 if (!nsk)
1457 goto discard;
1458
1459 if (nsk != sk) {
1460 sock_rps_save_rxhash(nsk, skb);
1461 sk_mark_napi_id(sk, skb);
1462 if (tcp_child_process(sk, nsk, skb)) {
1463 rsk = nsk;
1464 goto reset;
1465 }
1466 return 0;
1467 }
1468 } else
1469 sock_rps_save_rxhash(sk, skb);
1470
1471 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1472 rsk = sk;
1473 goto reset;
1474 }
1475 return 0;
1476
1477 reset:
1478 tcp_v4_send_reset(rsk, skb);
1479 discard:
1480 kfree_skb(skb);
1481 /* Be careful here. If this function gets more complicated and
1482 * gcc suffers from register pressure on the x86, sk (in %ebx)
1483 * might be destroyed here. This current version compiles correctly,
1484 * but you have been warned.
1485 */
1486 return 0;
1487
1488 csum_err:
1489 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1490 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1491 goto discard;
1492 }
1493 EXPORT_SYMBOL(tcp_v4_do_rcv);
1494
1495 void tcp_v4_early_demux(struct sk_buff *skb)
1496 {
1497 const struct iphdr *iph;
1498 const struct tcphdr *th;
1499 struct sock *sk;
1500
1501 if (skb->pkt_type != PACKET_HOST)
1502 return;
1503
1504 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1505 return;
1506
1507 iph = ip_hdr(skb);
1508 th = tcp_hdr(skb);
1509
1510 if (th->doff < sizeof(struct tcphdr) / 4)
1511 return;
1512
1513 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1514 iph->saddr, th->source,
1515 iph->daddr, ntohs(th->dest),
1516 skb->skb_iif);
1517 if (sk) {
1518 skb->sk = sk;
1519 skb->destructor = sock_edemux;
1520 if (sk->sk_state != TCP_TIME_WAIT) {
1521 struct dst_entry *dst = sk->sk_rx_dst;
1522
1523 if (dst)
1524 dst = dst_check(dst, 0);
1525 if (dst &&
1526 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1527 skb_dst_set_noref(skb, dst);
1528 }
1529 }
1530 }
1531
1532 /* Packet is added to VJ-style prequeue for processing in process
1533 * context, if a reader task is waiting. Apparently, this exciting
1534 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1535 * failed somewhere. Latency? Burstiness? Well, at least now we will
1536 * see, why it failed. 8)8) --ANK
1537 *
1538 */
1539 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1540 {
1541 struct tcp_sock *tp = tcp_sk(sk);
1542
1543 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1544 return false;
1545
1546 if (skb->len <= tcp_hdrlen(skb) &&
1547 skb_queue_len(&tp->ucopy.prequeue) == 0)
1548 return false;
1549
1550 /* Before escaping RCU protected region, we need to take care of skb
1551 * dst. Prequeue is only enabled for established sockets.
1552 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1553 * Instead of doing full sk_rx_dst validity here, let's perform
1554 * an optimistic check.
1555 */
1556 if (likely(sk->sk_rx_dst))
1557 skb_dst_drop(skb);
1558 else
1559 skb_dst_force(skb);
1560
1561 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1562 tp->ucopy.memory += skb->truesize;
1563 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1564 struct sk_buff *skb1;
1565
1566 BUG_ON(sock_owned_by_user(sk));
1567
1568 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1569 sk_backlog_rcv(sk, skb1);
1570 NET_INC_STATS_BH(sock_net(sk),
1571 LINUX_MIB_TCPPREQUEUEDROPPED);
1572 }
1573
1574 tp->ucopy.memory = 0;
1575 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1576 wake_up_interruptible_sync_poll(sk_sleep(sk),
1577 POLLIN | POLLRDNORM | POLLRDBAND);
1578 if (!inet_csk_ack_scheduled(sk))
1579 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1580 (3 * tcp_rto_min(sk)) / 4,
1581 TCP_RTO_MAX);
1582 }
1583 return true;
1584 }
1585 EXPORT_SYMBOL(tcp_prequeue);
1586
1587 /*
1588 * From tcp_input.c
1589 */
1590
1591 int tcp_v4_rcv(struct sk_buff *skb)
1592 {
1593 const struct iphdr *iph;
1594 const struct tcphdr *th;
1595 struct sock *sk;
1596 int ret;
1597 struct net *net = dev_net(skb->dev);
1598
1599 if (skb->pkt_type != PACKET_HOST)
1600 goto discard_it;
1601
1602 /* Count it even if it's bad */
1603 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1604
1605 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1606 goto discard_it;
1607
1608 th = tcp_hdr(skb);
1609
1610 if (th->doff < sizeof(struct tcphdr) / 4)
1611 goto bad_packet;
1612 if (!pskb_may_pull(skb, th->doff * 4))
1613 goto discard_it;
1614
1615 /* An explanation is required here, I think.
1616 * Packet length and doff are validated by header prediction,
1617 * provided case of th->doff==0 is eliminated.
1618 * So, we defer the checks. */
1619
1620 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1621 goto csum_error;
1622
1623 th = tcp_hdr(skb);
1624 iph = ip_hdr(skb);
1625 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1626 * barrier() makes sure compiler wont play fool^Waliasing games.
1627 */
1628 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1629 sizeof(struct inet_skb_parm));
1630 barrier();
1631
1632 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1633 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1634 skb->len - th->doff * 4);
1635 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1636 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1637 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1638 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1639 TCP_SKB_CB(skb)->sacked = 0;
1640
1641 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1642 if (!sk)
1643 goto no_tcp_socket;
1644
1645 process:
1646 if (sk->sk_state == TCP_TIME_WAIT)
1647 goto do_time_wait;
1648
1649 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1650 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1651 goto discard_and_relse;
1652 }
1653
1654 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1655 goto discard_and_relse;
1656
1657 #ifdef CONFIG_TCP_MD5SIG
1658 /*
1659 * We really want to reject the packet as early as possible
1660 * if:
1661 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1662 * o There is an MD5 option and we're not expecting one
1663 */
1664 if (tcp_v4_inbound_md5_hash(sk, skb))
1665 goto discard_and_relse;
1666 #endif
1667
1668 nf_reset(skb);
1669
1670 if (sk_filter(sk, skb))
1671 goto discard_and_relse;
1672
1673 sk_incoming_cpu_update(sk);
1674 skb->dev = NULL;
1675
1676 bh_lock_sock_nested(sk);
1677 ret = 0;
1678 if (!sock_owned_by_user(sk)) {
1679 if (!tcp_prequeue(sk, skb))
1680 ret = tcp_v4_do_rcv(sk, skb);
1681 } else if (unlikely(sk_add_backlog(sk, skb,
1682 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1683 bh_unlock_sock(sk);
1684 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1685 goto discard_and_relse;
1686 }
1687 bh_unlock_sock(sk);
1688
1689 sock_put(sk);
1690
1691 return ret;
1692
1693 no_tcp_socket:
1694 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1695 goto discard_it;
1696
1697 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1698 csum_error:
1699 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1700 bad_packet:
1701 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1702 } else {
1703 tcp_v4_send_reset(NULL, skb);
1704 }
1705
1706 discard_it:
1707 /* Discard frame. */
1708 kfree_skb(skb);
1709 return 0;
1710
1711 discard_and_relse:
1712 sock_put(sk);
1713 goto discard_it;
1714
1715 do_time_wait:
1716 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1717 inet_twsk_put(inet_twsk(sk));
1718 goto discard_it;
1719 }
1720
1721 if (skb->len < (th->doff << 2)) {
1722 inet_twsk_put(inet_twsk(sk));
1723 goto bad_packet;
1724 }
1725 if (tcp_checksum_complete(skb)) {
1726 inet_twsk_put(inet_twsk(sk));
1727 goto csum_error;
1728 }
1729 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1730 case TCP_TW_SYN: {
1731 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1732 &tcp_hashinfo,
1733 iph->saddr, th->source,
1734 iph->daddr, th->dest,
1735 inet_iif(skb));
1736 if (sk2) {
1737 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1738 inet_twsk_put(inet_twsk(sk));
1739 sk = sk2;
1740 goto process;
1741 }
1742 /* Fall through to ACK */
1743 }
1744 case TCP_TW_ACK:
1745 tcp_v4_timewait_ack(sk, skb);
1746 break;
1747 case TCP_TW_RST:
1748 goto no_tcp_socket;
1749 case TCP_TW_SUCCESS:;
1750 }
1751 goto discard_it;
1752 }
1753
1754 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1755 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1756 .twsk_unique = tcp_twsk_unique,
1757 .twsk_destructor= tcp_twsk_destructor,
1758 };
1759
1760 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1761 {
1762 struct dst_entry *dst = skb_dst(skb);
1763
1764 if (dst) {
1765 dst_hold(dst);
1766 sk->sk_rx_dst = dst;
1767 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1768 }
1769 }
1770 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1771
1772 const struct inet_connection_sock_af_ops ipv4_specific = {
1773 .queue_xmit = ip_queue_xmit,
1774 .send_check = tcp_v4_send_check,
1775 .rebuild_header = inet_sk_rebuild_header,
1776 .sk_rx_dst_set = inet_sk_rx_dst_set,
1777 .conn_request = tcp_v4_conn_request,
1778 .syn_recv_sock = tcp_v4_syn_recv_sock,
1779 .net_header_len = sizeof(struct iphdr),
1780 .setsockopt = ip_setsockopt,
1781 .getsockopt = ip_getsockopt,
1782 .addr2sockaddr = inet_csk_addr2sockaddr,
1783 .sockaddr_len = sizeof(struct sockaddr_in),
1784 .bind_conflict = inet_csk_bind_conflict,
1785 #ifdef CONFIG_COMPAT
1786 .compat_setsockopt = compat_ip_setsockopt,
1787 .compat_getsockopt = compat_ip_getsockopt,
1788 #endif
1789 .mtu_reduced = tcp_v4_mtu_reduced,
1790 };
1791 EXPORT_SYMBOL(ipv4_specific);
1792
1793 #ifdef CONFIG_TCP_MD5SIG
1794 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1795 .md5_lookup = tcp_v4_md5_lookup,
1796 .calc_md5_hash = tcp_v4_md5_hash_skb,
1797 .md5_parse = tcp_v4_parse_md5_keys,
1798 };
1799 #endif
1800
1801 /* NOTE: A lot of things set to zero explicitly by call to
1802 * sk_alloc() so need not be done here.
1803 */
1804 static int tcp_v4_init_sock(struct sock *sk)
1805 {
1806 struct inet_connection_sock *icsk = inet_csk(sk);
1807
1808 tcp_init_sock(sk);
1809
1810 icsk->icsk_af_ops = &ipv4_specific;
1811
1812 #ifdef CONFIG_TCP_MD5SIG
1813 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1814 #endif
1815
1816 return 0;
1817 }
1818
1819 void tcp_v4_destroy_sock(struct sock *sk)
1820 {
1821 struct tcp_sock *tp = tcp_sk(sk);
1822
1823 tcp_clear_xmit_timers(sk);
1824
1825 tcp_cleanup_congestion_control(sk);
1826
1827 /* Cleanup up the write buffer. */
1828 tcp_write_queue_purge(sk);
1829
1830 /* Cleans up our, hopefully empty, out_of_order_queue. */
1831 __skb_queue_purge(&tp->out_of_order_queue);
1832
1833 #ifdef CONFIG_TCP_MD5SIG
1834 /* Clean up the MD5 key list, if any */
1835 if (tp->md5sig_info) {
1836 tcp_clear_md5_list(sk);
1837 kfree_rcu(tp->md5sig_info, rcu);
1838 tp->md5sig_info = NULL;
1839 }
1840 #endif
1841
1842 /* Clean prequeue, it must be empty really */
1843 __skb_queue_purge(&tp->ucopy.prequeue);
1844
1845 /* Clean up a referenced TCP bind bucket. */
1846 if (inet_csk(sk)->icsk_bind_hash)
1847 inet_put_port(sk);
1848
1849 BUG_ON(tp->fastopen_rsk != NULL);
1850
1851 /* If socket is aborted during connect operation */
1852 tcp_free_fastopen_req(tp);
1853
1854 sk_sockets_allocated_dec(sk);
1855 sock_release_memcg(sk);
1856 }
1857 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1858
1859 #ifdef CONFIG_PROC_FS
1860 /* Proc filesystem TCP sock list dumping. */
1861
1862 /*
1863 * Get next listener socket follow cur. If cur is NULL, get first socket
1864 * starting from bucket given in st->bucket; when st->bucket is zero the
1865 * very first socket in the hash table is returned.
1866 */
1867 static void *listening_get_next(struct seq_file *seq, void *cur)
1868 {
1869 struct inet_connection_sock *icsk;
1870 struct hlist_nulls_node *node;
1871 struct sock *sk = cur;
1872 struct inet_listen_hashbucket *ilb;
1873 struct tcp_iter_state *st = seq->private;
1874 struct net *net = seq_file_net(seq);
1875
1876 if (!sk) {
1877 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1878 spin_lock_bh(&ilb->lock);
1879 sk = sk_nulls_head(&ilb->head);
1880 st->offset = 0;
1881 goto get_sk;
1882 }
1883 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1884 ++st->num;
1885 ++st->offset;
1886
1887 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1888 struct request_sock *req = cur;
1889
1890 icsk = inet_csk(st->syn_wait_sk);
1891 req = req->dl_next;
1892 while (1) {
1893 while (req) {
1894 if (req->rsk_ops->family == st->family) {
1895 cur = req;
1896 goto out;
1897 }
1898 req = req->dl_next;
1899 }
1900 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1901 break;
1902 get_req:
1903 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1904 }
1905 sk = sk_nulls_next(st->syn_wait_sk);
1906 st->state = TCP_SEQ_STATE_LISTENING;
1907 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1908 } else {
1909 icsk = inet_csk(sk);
1910 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1911 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1912 goto start_req;
1913 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1914 sk = sk_nulls_next(sk);
1915 }
1916 get_sk:
1917 sk_nulls_for_each_from(sk, node) {
1918 if (!net_eq(sock_net(sk), net))
1919 continue;
1920 if (sk->sk_family == st->family) {
1921 cur = sk;
1922 goto out;
1923 }
1924 icsk = inet_csk(sk);
1925 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1926 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1927 start_req:
1928 st->uid = sock_i_uid(sk);
1929 st->syn_wait_sk = sk;
1930 st->state = TCP_SEQ_STATE_OPENREQ;
1931 st->sbucket = 0;
1932 goto get_req;
1933 }
1934 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1935 }
1936 spin_unlock_bh(&ilb->lock);
1937 st->offset = 0;
1938 if (++st->bucket < INET_LHTABLE_SIZE) {
1939 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1940 spin_lock_bh(&ilb->lock);
1941 sk = sk_nulls_head(&ilb->head);
1942 goto get_sk;
1943 }
1944 cur = NULL;
1945 out:
1946 return cur;
1947 }
1948
1949 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1950 {
1951 struct tcp_iter_state *st = seq->private;
1952 void *rc;
1953
1954 st->bucket = 0;
1955 st->offset = 0;
1956 rc = listening_get_next(seq, NULL);
1957
1958 while (rc && *pos) {
1959 rc = listening_get_next(seq, rc);
1960 --*pos;
1961 }
1962 return rc;
1963 }
1964
1965 static inline bool empty_bucket(const struct tcp_iter_state *st)
1966 {
1967 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1968 }
1969
1970 /*
1971 * Get first established socket starting from bucket given in st->bucket.
1972 * If st->bucket is zero, the very first socket in the hash is returned.
1973 */
1974 static void *established_get_first(struct seq_file *seq)
1975 {
1976 struct tcp_iter_state *st = seq->private;
1977 struct net *net = seq_file_net(seq);
1978 void *rc = NULL;
1979
1980 st->offset = 0;
1981 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1982 struct sock *sk;
1983 struct hlist_nulls_node *node;
1984 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1985
1986 /* Lockless fast path for the common case of empty buckets */
1987 if (empty_bucket(st))
1988 continue;
1989
1990 spin_lock_bh(lock);
1991 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1992 if (sk->sk_family != st->family ||
1993 !net_eq(sock_net(sk), net)) {
1994 continue;
1995 }
1996 rc = sk;
1997 goto out;
1998 }
1999 spin_unlock_bh(lock);
2000 }
2001 out:
2002 return rc;
2003 }
2004
2005 static void *established_get_next(struct seq_file *seq, void *cur)
2006 {
2007 struct sock *sk = cur;
2008 struct hlist_nulls_node *node;
2009 struct tcp_iter_state *st = seq->private;
2010 struct net *net = seq_file_net(seq);
2011
2012 ++st->num;
2013 ++st->offset;
2014
2015 sk = sk_nulls_next(sk);
2016
2017 sk_nulls_for_each_from(sk, node) {
2018 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2019 return sk;
2020 }
2021
2022 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2023 ++st->bucket;
2024 return established_get_first(seq);
2025 }
2026
2027 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2028 {
2029 struct tcp_iter_state *st = seq->private;
2030 void *rc;
2031
2032 st->bucket = 0;
2033 rc = established_get_first(seq);
2034
2035 while (rc && pos) {
2036 rc = established_get_next(seq, rc);
2037 --pos;
2038 }
2039 return rc;
2040 }
2041
2042 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2043 {
2044 void *rc;
2045 struct tcp_iter_state *st = seq->private;
2046
2047 st->state = TCP_SEQ_STATE_LISTENING;
2048 rc = listening_get_idx(seq, &pos);
2049
2050 if (!rc) {
2051 st->state = TCP_SEQ_STATE_ESTABLISHED;
2052 rc = established_get_idx(seq, pos);
2053 }
2054
2055 return rc;
2056 }
2057
2058 static void *tcp_seek_last_pos(struct seq_file *seq)
2059 {
2060 struct tcp_iter_state *st = seq->private;
2061 int offset = st->offset;
2062 int orig_num = st->num;
2063 void *rc = NULL;
2064
2065 switch (st->state) {
2066 case TCP_SEQ_STATE_OPENREQ:
2067 case TCP_SEQ_STATE_LISTENING:
2068 if (st->bucket >= INET_LHTABLE_SIZE)
2069 break;
2070 st->state = TCP_SEQ_STATE_LISTENING;
2071 rc = listening_get_next(seq, NULL);
2072 while (offset-- && rc)
2073 rc = listening_get_next(seq, rc);
2074 if (rc)
2075 break;
2076 st->bucket = 0;
2077 st->state = TCP_SEQ_STATE_ESTABLISHED;
2078 /* Fallthrough */
2079 case TCP_SEQ_STATE_ESTABLISHED:
2080 if (st->bucket > tcp_hashinfo.ehash_mask)
2081 break;
2082 rc = established_get_first(seq);
2083 while (offset-- && rc)
2084 rc = established_get_next(seq, rc);
2085 }
2086
2087 st->num = orig_num;
2088
2089 return rc;
2090 }
2091
2092 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2093 {
2094 struct tcp_iter_state *st = seq->private;
2095 void *rc;
2096
2097 if (*pos && *pos == st->last_pos) {
2098 rc = tcp_seek_last_pos(seq);
2099 if (rc)
2100 goto out;
2101 }
2102
2103 st->state = TCP_SEQ_STATE_LISTENING;
2104 st->num = 0;
2105 st->bucket = 0;
2106 st->offset = 0;
2107 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2108
2109 out:
2110 st->last_pos = *pos;
2111 return rc;
2112 }
2113
2114 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2115 {
2116 struct tcp_iter_state *st = seq->private;
2117 void *rc = NULL;
2118
2119 if (v == SEQ_START_TOKEN) {
2120 rc = tcp_get_idx(seq, 0);
2121 goto out;
2122 }
2123
2124 switch (st->state) {
2125 case TCP_SEQ_STATE_OPENREQ:
2126 case TCP_SEQ_STATE_LISTENING:
2127 rc = listening_get_next(seq, v);
2128 if (!rc) {
2129 st->state = TCP_SEQ_STATE_ESTABLISHED;
2130 st->bucket = 0;
2131 st->offset = 0;
2132 rc = established_get_first(seq);
2133 }
2134 break;
2135 case TCP_SEQ_STATE_ESTABLISHED:
2136 rc = established_get_next(seq, v);
2137 break;
2138 }
2139 out:
2140 ++*pos;
2141 st->last_pos = *pos;
2142 return rc;
2143 }
2144
2145 static void tcp_seq_stop(struct seq_file *seq, void *v)
2146 {
2147 struct tcp_iter_state *st = seq->private;
2148
2149 switch (st->state) {
2150 case TCP_SEQ_STATE_OPENREQ:
2151 if (v) {
2152 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2153 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2154 }
2155 case TCP_SEQ_STATE_LISTENING:
2156 if (v != SEQ_START_TOKEN)
2157 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2158 break;
2159 case TCP_SEQ_STATE_ESTABLISHED:
2160 if (v)
2161 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2162 break;
2163 }
2164 }
2165
2166 int tcp_seq_open(struct inode *inode, struct file *file)
2167 {
2168 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2169 struct tcp_iter_state *s;
2170 int err;
2171
2172 err = seq_open_net(inode, file, &afinfo->seq_ops,
2173 sizeof(struct tcp_iter_state));
2174 if (err < 0)
2175 return err;
2176
2177 s = ((struct seq_file *)file->private_data)->private;
2178 s->family = afinfo->family;
2179 s->last_pos = 0;
2180 return 0;
2181 }
2182 EXPORT_SYMBOL(tcp_seq_open);
2183
2184 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2185 {
2186 int rc = 0;
2187 struct proc_dir_entry *p;
2188
2189 afinfo->seq_ops.start = tcp_seq_start;
2190 afinfo->seq_ops.next = tcp_seq_next;
2191 afinfo->seq_ops.stop = tcp_seq_stop;
2192
2193 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2194 afinfo->seq_fops, afinfo);
2195 if (!p)
2196 rc = -ENOMEM;
2197 return rc;
2198 }
2199 EXPORT_SYMBOL(tcp_proc_register);
2200
2201 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2202 {
2203 remove_proc_entry(afinfo->name, net->proc_net);
2204 }
2205 EXPORT_SYMBOL(tcp_proc_unregister);
2206
2207 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2208 struct seq_file *f, int i, kuid_t uid)
2209 {
2210 const struct inet_request_sock *ireq = inet_rsk(req);
2211 long delta = req->expires - jiffies;
2212
2213 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2214 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2215 i,
2216 ireq->ir_loc_addr,
2217 ntohs(inet_sk(sk)->inet_sport),
2218 ireq->ir_rmt_addr,
2219 ntohs(ireq->ir_rmt_port),
2220 TCP_SYN_RECV,
2221 0, 0, /* could print option size, but that is af dependent. */
2222 1, /* timers active (only the expire timer) */
2223 jiffies_delta_to_clock_t(delta),
2224 req->num_timeout,
2225 from_kuid_munged(seq_user_ns(f), uid),
2226 0, /* non standard timer */
2227 0, /* open_requests have no inode */
2228 atomic_read(&sk->sk_refcnt),
2229 req);
2230 }
2231
2232 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2233 {
2234 int timer_active;
2235 unsigned long timer_expires;
2236 const struct tcp_sock *tp = tcp_sk(sk);
2237 const struct inet_connection_sock *icsk = inet_csk(sk);
2238 const struct inet_sock *inet = inet_sk(sk);
2239 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2240 __be32 dest = inet->inet_daddr;
2241 __be32 src = inet->inet_rcv_saddr;
2242 __u16 destp = ntohs(inet->inet_dport);
2243 __u16 srcp = ntohs(inet->inet_sport);
2244 int rx_queue;
2245
2246 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2247 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2248 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2249 timer_active = 1;
2250 timer_expires = icsk->icsk_timeout;
2251 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2252 timer_active = 4;
2253 timer_expires = icsk->icsk_timeout;
2254 } else if (timer_pending(&sk->sk_timer)) {
2255 timer_active = 2;
2256 timer_expires = sk->sk_timer.expires;
2257 } else {
2258 timer_active = 0;
2259 timer_expires = jiffies;
2260 }
2261
2262 if (sk->sk_state == TCP_LISTEN)
2263 rx_queue = sk->sk_ack_backlog;
2264 else
2265 /*
2266 * because we dont lock socket, we might find a transient negative value
2267 */
2268 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2269
2270 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2271 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2272 i, src, srcp, dest, destp, sk->sk_state,
2273 tp->write_seq - tp->snd_una,
2274 rx_queue,
2275 timer_active,
2276 jiffies_delta_to_clock_t(timer_expires - jiffies),
2277 icsk->icsk_retransmits,
2278 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2279 icsk->icsk_probes_out,
2280 sock_i_ino(sk),
2281 atomic_read(&sk->sk_refcnt), sk,
2282 jiffies_to_clock_t(icsk->icsk_rto),
2283 jiffies_to_clock_t(icsk->icsk_ack.ato),
2284 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2285 tp->snd_cwnd,
2286 sk->sk_state == TCP_LISTEN ?
2287 (fastopenq ? fastopenq->max_qlen : 0) :
2288 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2289 }
2290
2291 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2292 struct seq_file *f, int i)
2293 {
2294 __be32 dest, src;
2295 __u16 destp, srcp;
2296 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2297
2298 dest = tw->tw_daddr;
2299 src = tw->tw_rcv_saddr;
2300 destp = ntohs(tw->tw_dport);
2301 srcp = ntohs(tw->tw_sport);
2302
2303 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2304 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2305 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2306 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2307 atomic_read(&tw->tw_refcnt), tw);
2308 }
2309
2310 #define TMPSZ 150
2311
2312 static int tcp4_seq_show(struct seq_file *seq, void *v)
2313 {
2314 struct tcp_iter_state *st;
2315 struct sock *sk = v;
2316
2317 seq_setwidth(seq, TMPSZ - 1);
2318 if (v == SEQ_START_TOKEN) {
2319 seq_puts(seq, " sl local_address rem_address st tx_queue "
2320 "rx_queue tr tm->when retrnsmt uid timeout "
2321 "inode");
2322 goto out;
2323 }
2324 st = seq->private;
2325
2326 switch (st->state) {
2327 case TCP_SEQ_STATE_LISTENING:
2328 case TCP_SEQ_STATE_ESTABLISHED:
2329 if (sk->sk_state == TCP_TIME_WAIT)
2330 get_timewait4_sock(v, seq, st->num);
2331 else
2332 get_tcp4_sock(v, seq, st->num);
2333 break;
2334 case TCP_SEQ_STATE_OPENREQ:
2335 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2336 break;
2337 }
2338 out:
2339 seq_pad(seq, '\n');
2340 return 0;
2341 }
2342
2343 static const struct file_operations tcp_afinfo_seq_fops = {
2344 .owner = THIS_MODULE,
2345 .open = tcp_seq_open,
2346 .read = seq_read,
2347 .llseek = seq_lseek,
2348 .release = seq_release_net
2349 };
2350
2351 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2352 .name = "tcp",
2353 .family = AF_INET,
2354 .seq_fops = &tcp_afinfo_seq_fops,
2355 .seq_ops = {
2356 .show = tcp4_seq_show,
2357 },
2358 };
2359
2360 static int __net_init tcp4_proc_init_net(struct net *net)
2361 {
2362 return tcp_proc_register(net, &tcp4_seq_afinfo);
2363 }
2364
2365 static void __net_exit tcp4_proc_exit_net(struct net *net)
2366 {
2367 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2368 }
2369
2370 static struct pernet_operations tcp4_net_ops = {
2371 .init = tcp4_proc_init_net,
2372 .exit = tcp4_proc_exit_net,
2373 };
2374
2375 int __init tcp4_proc_init(void)
2376 {
2377 return register_pernet_subsys(&tcp4_net_ops);
2378 }
2379
2380 void tcp4_proc_exit(void)
2381 {
2382 unregister_pernet_subsys(&tcp4_net_ops);
2383 }
2384 #endif /* CONFIG_PROC_FS */
2385
2386 struct proto tcp_prot = {
2387 .name = "TCP",
2388 .owner = THIS_MODULE,
2389 .close = tcp_close,
2390 .connect = tcp_v4_connect,
2391 .disconnect = tcp_disconnect,
2392 .accept = inet_csk_accept,
2393 .ioctl = tcp_ioctl,
2394 .init = tcp_v4_init_sock,
2395 .destroy = tcp_v4_destroy_sock,
2396 .shutdown = tcp_shutdown,
2397 .setsockopt = tcp_setsockopt,
2398 .getsockopt = tcp_getsockopt,
2399 .recvmsg = tcp_recvmsg,
2400 .sendmsg = tcp_sendmsg,
2401 .sendpage = tcp_sendpage,
2402 .backlog_rcv = tcp_v4_do_rcv,
2403 .release_cb = tcp_release_cb,
2404 .hash = inet_hash,
2405 .unhash = inet_unhash,
2406 .get_port = inet_csk_get_port,
2407 .enter_memory_pressure = tcp_enter_memory_pressure,
2408 .stream_memory_free = tcp_stream_memory_free,
2409 .sockets_allocated = &tcp_sockets_allocated,
2410 .orphan_count = &tcp_orphan_count,
2411 .memory_allocated = &tcp_memory_allocated,
2412 .memory_pressure = &tcp_memory_pressure,
2413 .sysctl_mem = sysctl_tcp_mem,
2414 .sysctl_wmem = sysctl_tcp_wmem,
2415 .sysctl_rmem = sysctl_tcp_rmem,
2416 .max_header = MAX_TCP_HEADER,
2417 .obj_size = sizeof(struct tcp_sock),
2418 .slab_flags = SLAB_DESTROY_BY_RCU,
2419 .twsk_prot = &tcp_timewait_sock_ops,
2420 .rsk_prot = &tcp_request_sock_ops,
2421 .h.hashinfo = &tcp_hashinfo,
2422 .no_autobind = true,
2423 #ifdef CONFIG_COMPAT
2424 .compat_setsockopt = compat_tcp_setsockopt,
2425 .compat_getsockopt = compat_tcp_getsockopt,
2426 #endif
2427 #ifdef CONFIG_MEMCG_KMEM
2428 .init_cgroup = tcp_init_cgroup,
2429 .destroy_cgroup = tcp_destroy_cgroup,
2430 .proto_cgroup = tcp_proto_cgroup,
2431 #endif
2432 };
2433 EXPORT_SYMBOL(tcp_prot);
2434
2435 static void __net_exit tcp_sk_exit(struct net *net)
2436 {
2437 int cpu;
2438
2439 for_each_possible_cpu(cpu)
2440 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2441 free_percpu(net->ipv4.tcp_sk);
2442 }
2443
2444 static int __net_init tcp_sk_init(struct net *net)
2445 {
2446 int res, cpu;
2447
2448 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2449 if (!net->ipv4.tcp_sk)
2450 return -ENOMEM;
2451
2452 for_each_possible_cpu(cpu) {
2453 struct sock *sk;
2454
2455 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2456 IPPROTO_TCP, net);
2457 if (res)
2458 goto fail;
2459 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2460 }
2461 net->ipv4.sysctl_tcp_ecn = 2;
2462 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2463 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2464 return 0;
2465
2466 fail:
2467 tcp_sk_exit(net);
2468
2469 return res;
2470 }
2471
2472 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2473 {
2474 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2475 }
2476
2477 static struct pernet_operations __net_initdata tcp_sk_ops = {
2478 .init = tcp_sk_init,
2479 .exit = tcp_sk_exit,
2480 .exit_batch = tcp_sk_exit_batch,
2481 };
2482
2483 void __init tcp_v4_init(void)
2484 {
2485 inet_hashinfo_init(&tcp_hashinfo);
2486 if (register_pernet_subsys(&tcp_sk_ops))
2487 panic("Failed to create the TCP control socket.\n");
2488 }
This page took 0.130681 seconds and 5 git commands to generate.