mm: convert printk(KERN_<LEVEL> to pr_<level>
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83
84 #include <linux/crypto.h>
85 #include <linux/scatterlist.h>
86
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91 #ifdef CONFIG_TCP_MD5SIG
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, const struct tcphdr *th);
94 #endif
95
96 struct inet_hashinfo tcp_hashinfo;
97 EXPORT_SYMBOL(tcp_hashinfo);
98
99 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
100 {
101 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
102 ip_hdr(skb)->saddr,
103 tcp_hdr(skb)->dest,
104 tcp_hdr(skb)->source);
105 }
106
107 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108 {
109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
110 struct tcp_sock *tp = tcp_sk(sk);
111
112 /* With PAWS, it is safe from the viewpoint
113 of data integrity. Even without PAWS it is safe provided sequence
114 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
115
116 Actually, the idea is close to VJ's one, only timestamp cache is
117 held not per host, but per port pair and TW bucket is used as state
118 holder.
119
120 If TW bucket has been already destroyed we fall back to VJ's scheme
121 and use initial timestamp retrieved from peer table.
122 */
123 if (tcptw->tw_ts_recent_stamp &&
124 (!twp || (sysctl_tcp_tw_reuse &&
125 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
126 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
127 if (tp->write_seq == 0)
128 tp->write_seq = 1;
129 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
130 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
131 sock_hold(sktw);
132 return 1;
133 }
134
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
138
139 /* This will initiate an outgoing connection. */
140 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
141 {
142 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
143 struct inet_sock *inet = inet_sk(sk);
144 struct tcp_sock *tp = tcp_sk(sk);
145 __be16 orig_sport, orig_dport;
146 __be32 daddr, nexthop;
147 struct flowi4 *fl4;
148 struct rtable *rt;
149 int err;
150 struct ip_options_rcu *inet_opt;
151
152 if (addr_len < sizeof(struct sockaddr_in))
153 return -EINVAL;
154
155 if (usin->sin_family != AF_INET)
156 return -EAFNOSUPPORT;
157
158 nexthop = daddr = usin->sin_addr.s_addr;
159 inet_opt = rcu_dereference_protected(inet->inet_opt,
160 sock_owned_by_user(sk));
161 if (inet_opt && inet_opt->opt.srr) {
162 if (!daddr)
163 return -EINVAL;
164 nexthop = inet_opt->opt.faddr;
165 }
166
167 orig_sport = inet->inet_sport;
168 orig_dport = usin->sin_port;
169 fl4 = &inet->cork.fl.u.ip4;
170 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 orig_sport, orig_dport, sk);
174 if (IS_ERR(rt)) {
175 err = PTR_ERR(rt);
176 if (err == -ENETUNREACH)
177 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178 return err;
179 }
180
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182 ip_rt_put(rt);
183 return -ENETUNREACH;
184 }
185
186 if (!inet_opt || !inet_opt->opt.srr)
187 daddr = fl4->daddr;
188
189 if (!inet->inet_saddr)
190 inet->inet_saddr = fl4->saddr;
191 sk_rcv_saddr_set(sk, inet->inet_saddr);
192
193 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
197 if (likely(!tp->repair))
198 tp->write_seq = 0;
199 }
200
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
203 tcp_fetch_timewait_stamp(sk, &rt->dst);
204
205 inet->inet_dport = usin->sin_port;
206 sk_daddr_set(sk, daddr);
207
208 inet_csk(sk)->icsk_ext_hdr_len = 0;
209 if (inet_opt)
210 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
211
212 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
213
214 /* Socket identity is still unknown (sport may be zero).
215 * However we set state to SYN-SENT and not releasing socket
216 * lock select source port, enter ourselves into the hash tables and
217 * complete initialization after this.
218 */
219 tcp_set_state(sk, TCP_SYN_SENT);
220 err = inet_hash_connect(&tcp_death_row, sk);
221 if (err)
222 goto failure;
223
224 sk_set_txhash(sk);
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 ip_sk_accept_pmtu(sk) &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
293
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
298 */
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
301 }
302 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
303
304 static void do_redirect(struct sk_buff *skb, struct sock *sk)
305 {
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310 }
311
312
313 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
314 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
315 {
316 struct request_sock *req = inet_reqsk(sk);
317 struct net *net = sock_net(sk);
318
319 /* ICMPs are not backlogged, hence we cannot get
320 * an established socket here.
321 */
322 WARN_ON(req->sk);
323
324 if (seq != tcp_rsk(req)->snt_isn) {
325 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
326 } else if (abort) {
327 /*
328 * Still in SYN_RECV, just remove it silently.
329 * There is no good way to pass the error to the newly
330 * created socket, and POSIX does not want network
331 * errors returned from accept().
332 */
333 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
334 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
335 }
336 reqsk_put(req);
337 }
338 EXPORT_SYMBOL(tcp_req_err);
339
340 /*
341 * This routine is called by the ICMP module when it gets some
342 * sort of error condition. If err < 0 then the socket should
343 * be closed and the error returned to the user. If err > 0
344 * it's just the icmp type << 8 | icmp code. After adjustment
345 * header points to the first 8 bytes of the tcp header. We need
346 * to find the appropriate port.
347 *
348 * The locking strategy used here is very "optimistic". When
349 * someone else accesses the socket the ICMP is just dropped
350 * and for some paths there is no check at all.
351 * A more general error queue to queue errors for later handling
352 * is probably better.
353 *
354 */
355
356 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
357 {
358 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
359 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
360 struct inet_connection_sock *icsk;
361 struct tcp_sock *tp;
362 struct inet_sock *inet;
363 const int type = icmp_hdr(icmp_skb)->type;
364 const int code = icmp_hdr(icmp_skb)->code;
365 struct sock *sk;
366 struct sk_buff *skb;
367 struct request_sock *fastopen;
368 __u32 seq, snd_una;
369 __u32 remaining;
370 int err;
371 struct net *net = dev_net(icmp_skb->dev);
372
373 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
374 th->dest, iph->saddr, ntohs(th->source),
375 inet_iif(icmp_skb));
376 if (!sk) {
377 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
378 return;
379 }
380 if (sk->sk_state == TCP_TIME_WAIT) {
381 inet_twsk_put(inet_twsk(sk));
382 return;
383 }
384 seq = ntohl(th->seq);
385 if (sk->sk_state == TCP_NEW_SYN_RECV)
386 return tcp_req_err(sk, seq,
387 type == ICMP_PARAMETERPROB ||
388 type == ICMP_TIME_EXCEEDED ||
389 (type == ICMP_DEST_UNREACH &&
390 (code == ICMP_NET_UNREACH ||
391 code == ICMP_HOST_UNREACH)));
392
393 bh_lock_sock(sk);
394 /* If too many ICMPs get dropped on busy
395 * servers this needs to be solved differently.
396 * We do take care of PMTU discovery (RFC1191) special case :
397 * we can receive locally generated ICMP messages while socket is held.
398 */
399 if (sock_owned_by_user(sk)) {
400 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
401 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
402 }
403 if (sk->sk_state == TCP_CLOSE)
404 goto out;
405
406 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
407 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
408 goto out;
409 }
410
411 icsk = inet_csk(sk);
412 tp = tcp_sk(sk);
413 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
414 fastopen = tp->fastopen_rsk;
415 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
416 if (sk->sk_state != TCP_LISTEN &&
417 !between(seq, snd_una, tp->snd_nxt)) {
418 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
419 goto out;
420 }
421
422 switch (type) {
423 case ICMP_REDIRECT:
424 do_redirect(icmp_skb, sk);
425 goto out;
426 case ICMP_SOURCE_QUENCH:
427 /* Just silently ignore these. */
428 goto out;
429 case ICMP_PARAMETERPROB:
430 err = EPROTO;
431 break;
432 case ICMP_DEST_UNREACH:
433 if (code > NR_ICMP_UNREACH)
434 goto out;
435
436 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
437 /* We are not interested in TCP_LISTEN and open_requests
438 * (SYN-ACKs send out by Linux are always <576bytes so
439 * they should go through unfragmented).
440 */
441 if (sk->sk_state == TCP_LISTEN)
442 goto out;
443
444 tp->mtu_info = info;
445 if (!sock_owned_by_user(sk)) {
446 tcp_v4_mtu_reduced(sk);
447 } else {
448 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
449 sock_hold(sk);
450 }
451 goto out;
452 }
453
454 err = icmp_err_convert[code].errno;
455 /* check if icmp_skb allows revert of backoff
456 * (see draft-zimmermann-tcp-lcd) */
457 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
458 break;
459 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
460 !icsk->icsk_backoff || fastopen)
461 break;
462
463 if (sock_owned_by_user(sk))
464 break;
465
466 icsk->icsk_backoff--;
467 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
468 TCP_TIMEOUT_INIT;
469 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
470
471 skb = tcp_write_queue_head(sk);
472 BUG_ON(!skb);
473
474 remaining = icsk->icsk_rto -
475 min(icsk->icsk_rto,
476 tcp_time_stamp - tcp_skb_timestamp(skb));
477
478 if (remaining) {
479 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
480 remaining, TCP_RTO_MAX);
481 } else {
482 /* RTO revert clocked out retransmission.
483 * Will retransmit now */
484 tcp_retransmit_timer(sk);
485 }
486
487 break;
488 case ICMP_TIME_EXCEEDED:
489 err = EHOSTUNREACH;
490 break;
491 default:
492 goto out;
493 }
494
495 switch (sk->sk_state) {
496 case TCP_SYN_SENT:
497 case TCP_SYN_RECV:
498 /* Only in fast or simultaneous open. If a fast open socket is
499 * is already accepted it is treated as a connected one below.
500 */
501 if (fastopen && !fastopen->sk)
502 break;
503
504 if (!sock_owned_by_user(sk)) {
505 sk->sk_err = err;
506
507 sk->sk_error_report(sk);
508
509 tcp_done(sk);
510 } else {
511 sk->sk_err_soft = err;
512 }
513 goto out;
514 }
515
516 /* If we've already connected we will keep trying
517 * until we time out, or the user gives up.
518 *
519 * rfc1122 4.2.3.9 allows to consider as hard errors
520 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
521 * but it is obsoleted by pmtu discovery).
522 *
523 * Note, that in modern internet, where routing is unreliable
524 * and in each dark corner broken firewalls sit, sending random
525 * errors ordered by their masters even this two messages finally lose
526 * their original sense (even Linux sends invalid PORT_UNREACHs)
527 *
528 * Now we are in compliance with RFCs.
529 * --ANK (980905)
530 */
531
532 inet = inet_sk(sk);
533 if (!sock_owned_by_user(sk) && inet->recverr) {
534 sk->sk_err = err;
535 sk->sk_error_report(sk);
536 } else { /* Only an error on timeout */
537 sk->sk_err_soft = err;
538 }
539
540 out:
541 bh_unlock_sock(sk);
542 sock_put(sk);
543 }
544
545 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
546 {
547 struct tcphdr *th = tcp_hdr(skb);
548
549 if (skb->ip_summed == CHECKSUM_PARTIAL) {
550 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
551 skb->csum_start = skb_transport_header(skb) - skb->head;
552 skb->csum_offset = offsetof(struct tcphdr, check);
553 } else {
554 th->check = tcp_v4_check(skb->len, saddr, daddr,
555 csum_partial(th,
556 th->doff << 2,
557 skb->csum));
558 }
559 }
560
561 /* This routine computes an IPv4 TCP checksum. */
562 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
563 {
564 const struct inet_sock *inet = inet_sk(sk);
565
566 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
567 }
568 EXPORT_SYMBOL(tcp_v4_send_check);
569
570 /*
571 * This routine will send an RST to the other tcp.
572 *
573 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
574 * for reset.
575 * Answer: if a packet caused RST, it is not for a socket
576 * existing in our system, if it is matched to a socket,
577 * it is just duplicate segment or bug in other side's TCP.
578 * So that we build reply only basing on parameters
579 * arrived with segment.
580 * Exception: precedence violation. We do not implement it in any case.
581 */
582
583 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
584 {
585 const struct tcphdr *th = tcp_hdr(skb);
586 struct {
587 struct tcphdr th;
588 #ifdef CONFIG_TCP_MD5SIG
589 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
590 #endif
591 } rep;
592 struct ip_reply_arg arg;
593 #ifdef CONFIG_TCP_MD5SIG
594 struct tcp_md5sig_key *key = NULL;
595 const __u8 *hash_location = NULL;
596 unsigned char newhash[16];
597 int genhash;
598 struct sock *sk1 = NULL;
599 #endif
600 struct net *net;
601
602 /* Never send a reset in response to a reset. */
603 if (th->rst)
604 return;
605
606 /* If sk not NULL, it means we did a successful lookup and incoming
607 * route had to be correct. prequeue might have dropped our dst.
608 */
609 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
610 return;
611
612 /* Swap the send and the receive. */
613 memset(&rep, 0, sizeof(rep));
614 rep.th.dest = th->source;
615 rep.th.source = th->dest;
616 rep.th.doff = sizeof(struct tcphdr) / 4;
617 rep.th.rst = 1;
618
619 if (th->ack) {
620 rep.th.seq = th->ack_seq;
621 } else {
622 rep.th.ack = 1;
623 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
624 skb->len - (th->doff << 2));
625 }
626
627 memset(&arg, 0, sizeof(arg));
628 arg.iov[0].iov_base = (unsigned char *)&rep;
629 arg.iov[0].iov_len = sizeof(rep.th);
630
631 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
632 #ifdef CONFIG_TCP_MD5SIG
633 hash_location = tcp_parse_md5sig_option(th);
634 if (sk && sk_fullsock(sk)) {
635 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
636 &ip_hdr(skb)->saddr, AF_INET);
637 } else if (hash_location) {
638 /*
639 * active side is lost. Try to find listening socket through
640 * source port, and then find md5 key through listening socket.
641 * we are not loose security here:
642 * Incoming packet is checked with md5 hash with finding key,
643 * no RST generated if md5 hash doesn't match.
644 */
645 sk1 = __inet_lookup_listener(net,
646 &tcp_hashinfo, ip_hdr(skb)->saddr,
647 th->source, ip_hdr(skb)->daddr,
648 ntohs(th->source), inet_iif(skb));
649 /* don't send rst if it can't find key */
650 if (!sk1)
651 return;
652 rcu_read_lock();
653 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
654 &ip_hdr(skb)->saddr, AF_INET);
655 if (!key)
656 goto release_sk1;
657
658 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
659 if (genhash || memcmp(hash_location, newhash, 16) != 0)
660 goto release_sk1;
661 }
662
663 if (key) {
664 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
665 (TCPOPT_NOP << 16) |
666 (TCPOPT_MD5SIG << 8) |
667 TCPOLEN_MD5SIG);
668 /* Update length and the length the header thinks exists */
669 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
670 rep.th.doff = arg.iov[0].iov_len / 4;
671
672 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
673 key, ip_hdr(skb)->saddr,
674 ip_hdr(skb)->daddr, &rep.th);
675 }
676 #endif
677 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
678 ip_hdr(skb)->saddr, /* XXX */
679 arg.iov[0].iov_len, IPPROTO_TCP, 0);
680 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
681 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
682
683 /* When socket is gone, all binding information is lost.
684 * routing might fail in this case. No choice here, if we choose to force
685 * input interface, we will misroute in case of asymmetric route.
686 */
687 if (sk)
688 arg.bound_dev_if = sk->sk_bound_dev_if;
689
690 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
691 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
692
693 arg.tos = ip_hdr(skb)->tos;
694 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
695 skb, &TCP_SKB_CB(skb)->header.h4.opt,
696 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
697 &arg, arg.iov[0].iov_len);
698
699 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
700 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
701
702 #ifdef CONFIG_TCP_MD5SIG
703 release_sk1:
704 if (sk1) {
705 rcu_read_unlock();
706 sock_put(sk1);
707 }
708 #endif
709 }
710
711 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
712 outside socket context is ugly, certainly. What can I do?
713 */
714
715 static void tcp_v4_send_ack(struct net *net,
716 struct sk_buff *skb, u32 seq, u32 ack,
717 u32 win, u32 tsval, u32 tsecr, int oif,
718 struct tcp_md5sig_key *key,
719 int reply_flags, u8 tos)
720 {
721 const struct tcphdr *th = tcp_hdr(skb);
722 struct {
723 struct tcphdr th;
724 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
725 #ifdef CONFIG_TCP_MD5SIG
726 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
727 #endif
728 ];
729 } rep;
730 struct ip_reply_arg arg;
731
732 memset(&rep.th, 0, sizeof(struct tcphdr));
733 memset(&arg, 0, sizeof(arg));
734
735 arg.iov[0].iov_base = (unsigned char *)&rep;
736 arg.iov[0].iov_len = sizeof(rep.th);
737 if (tsecr) {
738 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
739 (TCPOPT_TIMESTAMP << 8) |
740 TCPOLEN_TIMESTAMP);
741 rep.opt[1] = htonl(tsval);
742 rep.opt[2] = htonl(tsecr);
743 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
744 }
745
746 /* Swap the send and the receive. */
747 rep.th.dest = th->source;
748 rep.th.source = th->dest;
749 rep.th.doff = arg.iov[0].iov_len / 4;
750 rep.th.seq = htonl(seq);
751 rep.th.ack_seq = htonl(ack);
752 rep.th.ack = 1;
753 rep.th.window = htons(win);
754
755 #ifdef CONFIG_TCP_MD5SIG
756 if (key) {
757 int offset = (tsecr) ? 3 : 0;
758
759 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
760 (TCPOPT_NOP << 16) |
761 (TCPOPT_MD5SIG << 8) |
762 TCPOLEN_MD5SIG);
763 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
764 rep.th.doff = arg.iov[0].iov_len/4;
765
766 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
767 key, ip_hdr(skb)->saddr,
768 ip_hdr(skb)->daddr, &rep.th);
769 }
770 #endif
771 arg.flags = reply_flags;
772 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
773 ip_hdr(skb)->saddr, /* XXX */
774 arg.iov[0].iov_len, IPPROTO_TCP, 0);
775 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
776 if (oif)
777 arg.bound_dev_if = oif;
778 arg.tos = tos;
779 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
780 skb, &TCP_SKB_CB(skb)->header.h4.opt,
781 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
782 &arg, arg.iov[0].iov_len);
783
784 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
785 }
786
787 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
788 {
789 struct inet_timewait_sock *tw = inet_twsk(sk);
790 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
791
792 tcp_v4_send_ack(sock_net(sk), skb,
793 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
794 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
795 tcp_time_stamp + tcptw->tw_ts_offset,
796 tcptw->tw_ts_recent,
797 tw->tw_bound_dev_if,
798 tcp_twsk_md5_key(tcptw),
799 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
800 tw->tw_tos
801 );
802
803 inet_twsk_put(tw);
804 }
805
806 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
807 struct request_sock *req)
808 {
809 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
810 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
811 */
812 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
813 tcp_sk(sk)->snd_nxt;
814
815 tcp_v4_send_ack(sock_net(sk), skb, seq,
816 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
817 tcp_time_stamp,
818 req->ts_recent,
819 0,
820 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
821 AF_INET),
822 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
823 ip_hdr(skb)->tos);
824 }
825
826 /*
827 * Send a SYN-ACK after having received a SYN.
828 * This still operates on a request_sock only, not on a big
829 * socket.
830 */
831 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
832 struct flowi *fl,
833 struct request_sock *req,
834 struct tcp_fastopen_cookie *foc,
835 bool attach_req)
836 {
837 const struct inet_request_sock *ireq = inet_rsk(req);
838 struct flowi4 fl4;
839 int err = -1;
840 struct sk_buff *skb;
841
842 /* First, grab a route. */
843 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
844 return -1;
845
846 skb = tcp_make_synack(sk, dst, req, foc, attach_req);
847
848 if (skb) {
849 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
850
851 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
852 ireq->ir_rmt_addr,
853 ireq->opt);
854 err = net_xmit_eval(err);
855 }
856
857 return err;
858 }
859
860 /*
861 * IPv4 request_sock destructor.
862 */
863 static void tcp_v4_reqsk_destructor(struct request_sock *req)
864 {
865 kfree(inet_rsk(req)->opt);
866 }
867
868
869 #ifdef CONFIG_TCP_MD5SIG
870 /*
871 * RFC2385 MD5 checksumming requires a mapping of
872 * IP address->MD5 Key.
873 * We need to maintain these in the sk structure.
874 */
875
876 /* Find the Key structure for an address. */
877 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
878 const union tcp_md5_addr *addr,
879 int family)
880 {
881 const struct tcp_sock *tp = tcp_sk(sk);
882 struct tcp_md5sig_key *key;
883 unsigned int size = sizeof(struct in_addr);
884 const struct tcp_md5sig_info *md5sig;
885
886 /* caller either holds rcu_read_lock() or socket lock */
887 md5sig = rcu_dereference_check(tp->md5sig_info,
888 sock_owned_by_user(sk) ||
889 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
890 if (!md5sig)
891 return NULL;
892 #if IS_ENABLED(CONFIG_IPV6)
893 if (family == AF_INET6)
894 size = sizeof(struct in6_addr);
895 #endif
896 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
897 if (key->family != family)
898 continue;
899 if (!memcmp(&key->addr, addr, size))
900 return key;
901 }
902 return NULL;
903 }
904 EXPORT_SYMBOL(tcp_md5_do_lookup);
905
906 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
907 const struct sock *addr_sk)
908 {
909 const union tcp_md5_addr *addr;
910
911 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
912 return tcp_md5_do_lookup(sk, addr, AF_INET);
913 }
914 EXPORT_SYMBOL(tcp_v4_md5_lookup);
915
916 /* This can be called on a newly created socket, from other files */
917 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
918 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
919 {
920 /* Add Key to the list */
921 struct tcp_md5sig_key *key;
922 struct tcp_sock *tp = tcp_sk(sk);
923 struct tcp_md5sig_info *md5sig;
924
925 key = tcp_md5_do_lookup(sk, addr, family);
926 if (key) {
927 /* Pre-existing entry - just update that one. */
928 memcpy(key->key, newkey, newkeylen);
929 key->keylen = newkeylen;
930 return 0;
931 }
932
933 md5sig = rcu_dereference_protected(tp->md5sig_info,
934 sock_owned_by_user(sk) ||
935 lockdep_is_held(&sk->sk_lock.slock));
936 if (!md5sig) {
937 md5sig = kmalloc(sizeof(*md5sig), gfp);
938 if (!md5sig)
939 return -ENOMEM;
940
941 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
942 INIT_HLIST_HEAD(&md5sig->head);
943 rcu_assign_pointer(tp->md5sig_info, md5sig);
944 }
945
946 key = sock_kmalloc(sk, sizeof(*key), gfp);
947 if (!key)
948 return -ENOMEM;
949 if (!tcp_alloc_md5sig_pool()) {
950 sock_kfree_s(sk, key, sizeof(*key));
951 return -ENOMEM;
952 }
953
954 memcpy(key->key, newkey, newkeylen);
955 key->keylen = newkeylen;
956 key->family = family;
957 memcpy(&key->addr, addr,
958 (family == AF_INET6) ? sizeof(struct in6_addr) :
959 sizeof(struct in_addr));
960 hlist_add_head_rcu(&key->node, &md5sig->head);
961 return 0;
962 }
963 EXPORT_SYMBOL(tcp_md5_do_add);
964
965 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
966 {
967 struct tcp_md5sig_key *key;
968
969 key = tcp_md5_do_lookup(sk, addr, family);
970 if (!key)
971 return -ENOENT;
972 hlist_del_rcu(&key->node);
973 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
974 kfree_rcu(key, rcu);
975 return 0;
976 }
977 EXPORT_SYMBOL(tcp_md5_do_del);
978
979 static void tcp_clear_md5_list(struct sock *sk)
980 {
981 struct tcp_sock *tp = tcp_sk(sk);
982 struct tcp_md5sig_key *key;
983 struct hlist_node *n;
984 struct tcp_md5sig_info *md5sig;
985
986 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
987
988 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
989 hlist_del_rcu(&key->node);
990 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
991 kfree_rcu(key, rcu);
992 }
993 }
994
995 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
996 int optlen)
997 {
998 struct tcp_md5sig cmd;
999 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1000
1001 if (optlen < sizeof(cmd))
1002 return -EINVAL;
1003
1004 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1005 return -EFAULT;
1006
1007 if (sin->sin_family != AF_INET)
1008 return -EINVAL;
1009
1010 if (!cmd.tcpm_keylen)
1011 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1012 AF_INET);
1013
1014 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1015 return -EINVAL;
1016
1017 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1018 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1019 GFP_KERNEL);
1020 }
1021
1022 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1023 __be32 daddr, __be32 saddr, int nbytes)
1024 {
1025 struct tcp4_pseudohdr *bp;
1026 struct scatterlist sg;
1027
1028 bp = &hp->md5_blk.ip4;
1029
1030 /*
1031 * 1. the TCP pseudo-header (in the order: source IP address,
1032 * destination IP address, zero-padded protocol number, and
1033 * segment length)
1034 */
1035 bp->saddr = saddr;
1036 bp->daddr = daddr;
1037 bp->pad = 0;
1038 bp->protocol = IPPROTO_TCP;
1039 bp->len = cpu_to_be16(nbytes);
1040
1041 sg_init_one(&sg, bp, sizeof(*bp));
1042 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1043 }
1044
1045 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1046 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1047 {
1048 struct tcp_md5sig_pool *hp;
1049 struct hash_desc *desc;
1050
1051 hp = tcp_get_md5sig_pool();
1052 if (!hp)
1053 goto clear_hash_noput;
1054 desc = &hp->md5_desc;
1055
1056 if (crypto_hash_init(desc))
1057 goto clear_hash;
1058 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1059 goto clear_hash;
1060 if (tcp_md5_hash_header(hp, th))
1061 goto clear_hash;
1062 if (tcp_md5_hash_key(hp, key))
1063 goto clear_hash;
1064 if (crypto_hash_final(desc, md5_hash))
1065 goto clear_hash;
1066
1067 tcp_put_md5sig_pool();
1068 return 0;
1069
1070 clear_hash:
1071 tcp_put_md5sig_pool();
1072 clear_hash_noput:
1073 memset(md5_hash, 0, 16);
1074 return 1;
1075 }
1076
1077 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1078 const struct sock *sk,
1079 const struct sk_buff *skb)
1080 {
1081 struct tcp_md5sig_pool *hp;
1082 struct hash_desc *desc;
1083 const struct tcphdr *th = tcp_hdr(skb);
1084 __be32 saddr, daddr;
1085
1086 if (sk) { /* valid for establish/request sockets */
1087 saddr = sk->sk_rcv_saddr;
1088 daddr = sk->sk_daddr;
1089 } else {
1090 const struct iphdr *iph = ip_hdr(skb);
1091 saddr = iph->saddr;
1092 daddr = iph->daddr;
1093 }
1094
1095 hp = tcp_get_md5sig_pool();
1096 if (!hp)
1097 goto clear_hash_noput;
1098 desc = &hp->md5_desc;
1099
1100 if (crypto_hash_init(desc))
1101 goto clear_hash;
1102
1103 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1104 goto clear_hash;
1105 if (tcp_md5_hash_header(hp, th))
1106 goto clear_hash;
1107 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1108 goto clear_hash;
1109 if (tcp_md5_hash_key(hp, key))
1110 goto clear_hash;
1111 if (crypto_hash_final(desc, md5_hash))
1112 goto clear_hash;
1113
1114 tcp_put_md5sig_pool();
1115 return 0;
1116
1117 clear_hash:
1118 tcp_put_md5sig_pool();
1119 clear_hash_noput:
1120 memset(md5_hash, 0, 16);
1121 return 1;
1122 }
1123 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1124
1125 #endif
1126
1127 /* Called with rcu_read_lock() */
1128 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1129 const struct sk_buff *skb)
1130 {
1131 #ifdef CONFIG_TCP_MD5SIG
1132 /*
1133 * This gets called for each TCP segment that arrives
1134 * so we want to be efficient.
1135 * We have 3 drop cases:
1136 * o No MD5 hash and one expected.
1137 * o MD5 hash and we're not expecting one.
1138 * o MD5 hash and its wrong.
1139 */
1140 const __u8 *hash_location = NULL;
1141 struct tcp_md5sig_key *hash_expected;
1142 const struct iphdr *iph = ip_hdr(skb);
1143 const struct tcphdr *th = tcp_hdr(skb);
1144 int genhash;
1145 unsigned char newhash[16];
1146
1147 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1148 AF_INET);
1149 hash_location = tcp_parse_md5sig_option(th);
1150
1151 /* We've parsed the options - do we have a hash? */
1152 if (!hash_expected && !hash_location)
1153 return false;
1154
1155 if (hash_expected && !hash_location) {
1156 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1157 return true;
1158 }
1159
1160 if (!hash_expected && hash_location) {
1161 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1162 return true;
1163 }
1164
1165 /* Okay, so this is hash_expected and hash_location -
1166 * so we need to calculate the checksum.
1167 */
1168 genhash = tcp_v4_md5_hash_skb(newhash,
1169 hash_expected,
1170 NULL, skb);
1171
1172 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1173 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1174 &iph->saddr, ntohs(th->source),
1175 &iph->daddr, ntohs(th->dest),
1176 genhash ? " tcp_v4_calc_md5_hash failed"
1177 : "");
1178 return true;
1179 }
1180 return false;
1181 #endif
1182 return false;
1183 }
1184
1185 static void tcp_v4_init_req(struct request_sock *req,
1186 const struct sock *sk_listener,
1187 struct sk_buff *skb)
1188 {
1189 struct inet_request_sock *ireq = inet_rsk(req);
1190
1191 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1192 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1193 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1194 ireq->opt = tcp_v4_save_options(skb);
1195 }
1196
1197 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1198 struct flowi *fl,
1199 const struct request_sock *req,
1200 bool *strict)
1201 {
1202 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1203
1204 if (strict) {
1205 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1206 *strict = true;
1207 else
1208 *strict = false;
1209 }
1210
1211 return dst;
1212 }
1213
1214 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1215 .family = PF_INET,
1216 .obj_size = sizeof(struct tcp_request_sock),
1217 .rtx_syn_ack = tcp_rtx_synack,
1218 .send_ack = tcp_v4_reqsk_send_ack,
1219 .destructor = tcp_v4_reqsk_destructor,
1220 .send_reset = tcp_v4_send_reset,
1221 .syn_ack_timeout = tcp_syn_ack_timeout,
1222 };
1223
1224 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1225 .mss_clamp = TCP_MSS_DEFAULT,
1226 #ifdef CONFIG_TCP_MD5SIG
1227 .req_md5_lookup = tcp_v4_md5_lookup,
1228 .calc_md5_hash = tcp_v4_md5_hash_skb,
1229 #endif
1230 .init_req = tcp_v4_init_req,
1231 #ifdef CONFIG_SYN_COOKIES
1232 .cookie_init_seq = cookie_v4_init_sequence,
1233 #endif
1234 .route_req = tcp_v4_route_req,
1235 .init_seq = tcp_v4_init_sequence,
1236 .send_synack = tcp_v4_send_synack,
1237 };
1238
1239 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1240 {
1241 /* Never answer to SYNs send to broadcast or multicast */
1242 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1243 goto drop;
1244
1245 return tcp_conn_request(&tcp_request_sock_ops,
1246 &tcp_request_sock_ipv4_ops, sk, skb);
1247
1248 drop:
1249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1250 return 0;
1251 }
1252 EXPORT_SYMBOL(tcp_v4_conn_request);
1253
1254
1255 /*
1256 * The three way handshake has completed - we got a valid synack -
1257 * now create the new socket.
1258 */
1259 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1260 struct request_sock *req,
1261 struct dst_entry *dst,
1262 struct request_sock *req_unhash,
1263 bool *own_req)
1264 {
1265 struct inet_request_sock *ireq;
1266 struct inet_sock *newinet;
1267 struct tcp_sock *newtp;
1268 struct sock *newsk;
1269 #ifdef CONFIG_TCP_MD5SIG
1270 struct tcp_md5sig_key *key;
1271 #endif
1272 struct ip_options_rcu *inet_opt;
1273
1274 if (sk_acceptq_is_full(sk))
1275 goto exit_overflow;
1276
1277 newsk = tcp_create_openreq_child(sk, req, skb);
1278 if (!newsk)
1279 goto exit_nonewsk;
1280
1281 newsk->sk_gso_type = SKB_GSO_TCPV4;
1282 inet_sk_rx_dst_set(newsk, skb);
1283
1284 newtp = tcp_sk(newsk);
1285 newinet = inet_sk(newsk);
1286 ireq = inet_rsk(req);
1287 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1288 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1289 newsk->sk_bound_dev_if = ireq->ir_iif;
1290 newinet->inet_saddr = ireq->ir_loc_addr;
1291 inet_opt = ireq->opt;
1292 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1293 ireq->opt = NULL;
1294 newinet->mc_index = inet_iif(skb);
1295 newinet->mc_ttl = ip_hdr(skb)->ttl;
1296 newinet->rcv_tos = ip_hdr(skb)->tos;
1297 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1298 if (inet_opt)
1299 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1300 newinet->inet_id = newtp->write_seq ^ jiffies;
1301
1302 if (!dst) {
1303 dst = inet_csk_route_child_sock(sk, newsk, req);
1304 if (!dst)
1305 goto put_and_exit;
1306 } else {
1307 /* syncookie case : see end of cookie_v4_check() */
1308 }
1309 sk_setup_caps(newsk, dst);
1310
1311 tcp_ca_openreq_child(newsk, dst);
1312
1313 tcp_sync_mss(newsk, dst_mtu(dst));
1314 newtp->advmss = dst_metric_advmss(dst);
1315 if (tcp_sk(sk)->rx_opt.user_mss &&
1316 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1317 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1318
1319 tcp_initialize_rcv_mss(newsk);
1320
1321 #ifdef CONFIG_TCP_MD5SIG
1322 /* Copy over the MD5 key from the original socket */
1323 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1324 AF_INET);
1325 if (key) {
1326 /*
1327 * We're using one, so create a matching key
1328 * on the newsk structure. If we fail to get
1329 * memory, then we end up not copying the key
1330 * across. Shucks.
1331 */
1332 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1333 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1334 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1335 }
1336 #endif
1337
1338 if (__inet_inherit_port(sk, newsk) < 0)
1339 goto put_and_exit;
1340 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1341 if (*own_req)
1342 tcp_move_syn(newtp, req);
1343
1344 return newsk;
1345
1346 exit_overflow:
1347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1348 exit_nonewsk:
1349 dst_release(dst);
1350 exit:
1351 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1352 return NULL;
1353 put_and_exit:
1354 inet_csk_prepare_forced_close(newsk);
1355 tcp_done(newsk);
1356 goto exit;
1357 }
1358 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1359
1360 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1361 {
1362 #ifdef CONFIG_SYN_COOKIES
1363 const struct tcphdr *th = tcp_hdr(skb);
1364
1365 if (!th->syn)
1366 sk = cookie_v4_check(sk, skb);
1367 #endif
1368 return sk;
1369 }
1370
1371 /* The socket must have it's spinlock held when we get
1372 * here, unless it is a TCP_LISTEN socket.
1373 *
1374 * We have a potential double-lock case here, so even when
1375 * doing backlog processing we use the BH locking scheme.
1376 * This is because we cannot sleep with the original spinlock
1377 * held.
1378 */
1379 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1380 {
1381 struct sock *rsk;
1382
1383 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1384 struct dst_entry *dst = sk->sk_rx_dst;
1385
1386 sock_rps_save_rxhash(sk, skb);
1387 sk_mark_napi_id(sk, skb);
1388 if (dst) {
1389 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1390 !dst->ops->check(dst, 0)) {
1391 dst_release(dst);
1392 sk->sk_rx_dst = NULL;
1393 }
1394 }
1395 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1396 return 0;
1397 }
1398
1399 if (tcp_checksum_complete(skb))
1400 goto csum_err;
1401
1402 if (sk->sk_state == TCP_LISTEN) {
1403 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1404
1405 if (!nsk)
1406 goto discard;
1407 if (nsk != sk) {
1408 sock_rps_save_rxhash(nsk, skb);
1409 sk_mark_napi_id(nsk, skb);
1410 if (tcp_child_process(sk, nsk, skb)) {
1411 rsk = nsk;
1412 goto reset;
1413 }
1414 return 0;
1415 }
1416 } else
1417 sock_rps_save_rxhash(sk, skb);
1418
1419 if (tcp_rcv_state_process(sk, skb)) {
1420 rsk = sk;
1421 goto reset;
1422 }
1423 return 0;
1424
1425 reset:
1426 tcp_v4_send_reset(rsk, skb);
1427 discard:
1428 kfree_skb(skb);
1429 /* Be careful here. If this function gets more complicated and
1430 * gcc suffers from register pressure on the x86, sk (in %ebx)
1431 * might be destroyed here. This current version compiles correctly,
1432 * but you have been warned.
1433 */
1434 return 0;
1435
1436 csum_err:
1437 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1438 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1439 goto discard;
1440 }
1441 EXPORT_SYMBOL(tcp_v4_do_rcv);
1442
1443 void tcp_v4_early_demux(struct sk_buff *skb)
1444 {
1445 const struct iphdr *iph;
1446 const struct tcphdr *th;
1447 struct sock *sk;
1448
1449 if (skb->pkt_type != PACKET_HOST)
1450 return;
1451
1452 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1453 return;
1454
1455 iph = ip_hdr(skb);
1456 th = tcp_hdr(skb);
1457
1458 if (th->doff < sizeof(struct tcphdr) / 4)
1459 return;
1460
1461 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1462 iph->saddr, th->source,
1463 iph->daddr, ntohs(th->dest),
1464 skb->skb_iif);
1465 if (sk) {
1466 skb->sk = sk;
1467 skb->destructor = sock_edemux;
1468 if (sk_fullsock(sk)) {
1469 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1470
1471 if (dst)
1472 dst = dst_check(dst, 0);
1473 if (dst &&
1474 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1475 skb_dst_set_noref(skb, dst);
1476 }
1477 }
1478 }
1479
1480 /* Packet is added to VJ-style prequeue for processing in process
1481 * context, if a reader task is waiting. Apparently, this exciting
1482 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1483 * failed somewhere. Latency? Burstiness? Well, at least now we will
1484 * see, why it failed. 8)8) --ANK
1485 *
1486 */
1487 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1488 {
1489 struct tcp_sock *tp = tcp_sk(sk);
1490
1491 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1492 return false;
1493
1494 if (skb->len <= tcp_hdrlen(skb) &&
1495 skb_queue_len(&tp->ucopy.prequeue) == 0)
1496 return false;
1497
1498 /* Before escaping RCU protected region, we need to take care of skb
1499 * dst. Prequeue is only enabled for established sockets.
1500 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1501 * Instead of doing full sk_rx_dst validity here, let's perform
1502 * an optimistic check.
1503 */
1504 if (likely(sk->sk_rx_dst))
1505 skb_dst_drop(skb);
1506 else
1507 skb_dst_force_safe(skb);
1508
1509 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1510 tp->ucopy.memory += skb->truesize;
1511 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1512 struct sk_buff *skb1;
1513
1514 BUG_ON(sock_owned_by_user(sk));
1515
1516 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1517 sk_backlog_rcv(sk, skb1);
1518 NET_INC_STATS_BH(sock_net(sk),
1519 LINUX_MIB_TCPPREQUEUEDROPPED);
1520 }
1521
1522 tp->ucopy.memory = 0;
1523 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1524 wake_up_interruptible_sync_poll(sk_sleep(sk),
1525 POLLIN | POLLRDNORM | POLLRDBAND);
1526 if (!inet_csk_ack_scheduled(sk))
1527 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1528 (3 * tcp_rto_min(sk)) / 4,
1529 TCP_RTO_MAX);
1530 }
1531 return true;
1532 }
1533 EXPORT_SYMBOL(tcp_prequeue);
1534
1535 /*
1536 * From tcp_input.c
1537 */
1538
1539 int tcp_v4_rcv(struct sk_buff *skb)
1540 {
1541 const struct iphdr *iph;
1542 const struct tcphdr *th;
1543 struct sock *sk;
1544 int ret;
1545 struct net *net = dev_net(skb->dev);
1546
1547 if (skb->pkt_type != PACKET_HOST)
1548 goto discard_it;
1549
1550 /* Count it even if it's bad */
1551 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1552
1553 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1554 goto discard_it;
1555
1556 th = tcp_hdr(skb);
1557
1558 if (th->doff < sizeof(struct tcphdr) / 4)
1559 goto bad_packet;
1560 if (!pskb_may_pull(skb, th->doff * 4))
1561 goto discard_it;
1562
1563 /* An explanation is required here, I think.
1564 * Packet length and doff are validated by header prediction,
1565 * provided case of th->doff==0 is eliminated.
1566 * So, we defer the checks. */
1567
1568 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1569 goto csum_error;
1570
1571 th = tcp_hdr(skb);
1572 iph = ip_hdr(skb);
1573 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1574 * barrier() makes sure compiler wont play fool^Waliasing games.
1575 */
1576 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1577 sizeof(struct inet_skb_parm));
1578 barrier();
1579
1580 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1581 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1582 skb->len - th->doff * 4);
1583 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1584 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1585 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1586 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1587 TCP_SKB_CB(skb)->sacked = 0;
1588
1589 lookup:
1590 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1591 if (!sk)
1592 goto no_tcp_socket;
1593
1594 process:
1595 if (sk->sk_state == TCP_TIME_WAIT)
1596 goto do_time_wait;
1597
1598 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1599 struct request_sock *req = inet_reqsk(sk);
1600 struct sock *nsk;
1601
1602 sk = req->rsk_listener;
1603 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1604 reqsk_put(req);
1605 goto discard_it;
1606 }
1607 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1608 inet_csk_reqsk_queue_drop_and_put(sk, req);
1609 goto lookup;
1610 }
1611 sock_hold(sk);
1612 nsk = tcp_check_req(sk, skb, req, false);
1613 if (!nsk) {
1614 reqsk_put(req);
1615 goto discard_and_relse;
1616 }
1617 if (nsk == sk) {
1618 reqsk_put(req);
1619 } else if (tcp_child_process(sk, nsk, skb)) {
1620 tcp_v4_send_reset(nsk, skb);
1621 goto discard_and_relse;
1622 } else {
1623 sock_put(sk);
1624 return 0;
1625 }
1626 }
1627 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1628 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1629 goto discard_and_relse;
1630 }
1631
1632 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1633 goto discard_and_relse;
1634
1635 if (tcp_v4_inbound_md5_hash(sk, skb))
1636 goto discard_and_relse;
1637
1638 nf_reset(skb);
1639
1640 if (sk_filter(sk, skb))
1641 goto discard_and_relse;
1642
1643 skb->dev = NULL;
1644
1645 if (sk->sk_state == TCP_LISTEN) {
1646 ret = tcp_v4_do_rcv(sk, skb);
1647 goto put_and_return;
1648 }
1649
1650 sk_incoming_cpu_update(sk);
1651
1652 bh_lock_sock_nested(sk);
1653 tcp_sk(sk)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1654 ret = 0;
1655 if (!sock_owned_by_user(sk)) {
1656 if (!tcp_prequeue(sk, skb))
1657 ret = tcp_v4_do_rcv(sk, skb);
1658 } else if (unlikely(sk_add_backlog(sk, skb,
1659 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1660 bh_unlock_sock(sk);
1661 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1662 goto discard_and_relse;
1663 }
1664 bh_unlock_sock(sk);
1665
1666 put_and_return:
1667 sock_put(sk);
1668
1669 return ret;
1670
1671 no_tcp_socket:
1672 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1673 goto discard_it;
1674
1675 if (tcp_checksum_complete(skb)) {
1676 csum_error:
1677 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1678 bad_packet:
1679 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1680 } else {
1681 tcp_v4_send_reset(NULL, skb);
1682 }
1683
1684 discard_it:
1685 /* Discard frame. */
1686 kfree_skb(skb);
1687 return 0;
1688
1689 discard_and_relse:
1690 sock_put(sk);
1691 goto discard_it;
1692
1693 do_time_wait:
1694 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1695 inet_twsk_put(inet_twsk(sk));
1696 goto discard_it;
1697 }
1698
1699 if (tcp_checksum_complete(skb)) {
1700 inet_twsk_put(inet_twsk(sk));
1701 goto csum_error;
1702 }
1703 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1704 case TCP_TW_SYN: {
1705 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1706 &tcp_hashinfo,
1707 iph->saddr, th->source,
1708 iph->daddr, th->dest,
1709 inet_iif(skb));
1710 if (sk2) {
1711 inet_twsk_deschedule_put(inet_twsk(sk));
1712 sk = sk2;
1713 goto process;
1714 }
1715 /* Fall through to ACK */
1716 }
1717 case TCP_TW_ACK:
1718 tcp_v4_timewait_ack(sk, skb);
1719 break;
1720 case TCP_TW_RST:
1721 tcp_v4_send_reset(sk, skb);
1722 inet_twsk_deschedule_put(inet_twsk(sk));
1723 goto discard_it;
1724 case TCP_TW_SUCCESS:;
1725 }
1726 goto discard_it;
1727 }
1728
1729 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1730 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1731 .twsk_unique = tcp_twsk_unique,
1732 .twsk_destructor= tcp_twsk_destructor,
1733 };
1734
1735 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1736 {
1737 struct dst_entry *dst = skb_dst(skb);
1738
1739 if (dst && dst_hold_safe(dst)) {
1740 sk->sk_rx_dst = dst;
1741 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1742 }
1743 }
1744 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1745
1746 const struct inet_connection_sock_af_ops ipv4_specific = {
1747 .queue_xmit = ip_queue_xmit,
1748 .send_check = tcp_v4_send_check,
1749 .rebuild_header = inet_sk_rebuild_header,
1750 .sk_rx_dst_set = inet_sk_rx_dst_set,
1751 .conn_request = tcp_v4_conn_request,
1752 .syn_recv_sock = tcp_v4_syn_recv_sock,
1753 .net_header_len = sizeof(struct iphdr),
1754 .setsockopt = ip_setsockopt,
1755 .getsockopt = ip_getsockopt,
1756 .addr2sockaddr = inet_csk_addr2sockaddr,
1757 .sockaddr_len = sizeof(struct sockaddr_in),
1758 .bind_conflict = inet_csk_bind_conflict,
1759 #ifdef CONFIG_COMPAT
1760 .compat_setsockopt = compat_ip_setsockopt,
1761 .compat_getsockopt = compat_ip_getsockopt,
1762 #endif
1763 .mtu_reduced = tcp_v4_mtu_reduced,
1764 };
1765 EXPORT_SYMBOL(ipv4_specific);
1766
1767 #ifdef CONFIG_TCP_MD5SIG
1768 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1769 .md5_lookup = tcp_v4_md5_lookup,
1770 .calc_md5_hash = tcp_v4_md5_hash_skb,
1771 .md5_parse = tcp_v4_parse_md5_keys,
1772 };
1773 #endif
1774
1775 /* NOTE: A lot of things set to zero explicitly by call to
1776 * sk_alloc() so need not be done here.
1777 */
1778 static int tcp_v4_init_sock(struct sock *sk)
1779 {
1780 struct inet_connection_sock *icsk = inet_csk(sk);
1781
1782 tcp_init_sock(sk);
1783
1784 icsk->icsk_af_ops = &ipv4_specific;
1785
1786 #ifdef CONFIG_TCP_MD5SIG
1787 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1788 #endif
1789
1790 return 0;
1791 }
1792
1793 void tcp_v4_destroy_sock(struct sock *sk)
1794 {
1795 struct tcp_sock *tp = tcp_sk(sk);
1796
1797 tcp_clear_xmit_timers(sk);
1798
1799 tcp_cleanup_congestion_control(sk);
1800
1801 /* Cleanup up the write buffer. */
1802 tcp_write_queue_purge(sk);
1803
1804 /* Cleans up our, hopefully empty, out_of_order_queue. */
1805 __skb_queue_purge(&tp->out_of_order_queue);
1806
1807 #ifdef CONFIG_TCP_MD5SIG
1808 /* Clean up the MD5 key list, if any */
1809 if (tp->md5sig_info) {
1810 tcp_clear_md5_list(sk);
1811 kfree_rcu(tp->md5sig_info, rcu);
1812 tp->md5sig_info = NULL;
1813 }
1814 #endif
1815
1816 /* Clean prequeue, it must be empty really */
1817 __skb_queue_purge(&tp->ucopy.prequeue);
1818
1819 /* Clean up a referenced TCP bind bucket. */
1820 if (inet_csk(sk)->icsk_bind_hash)
1821 inet_put_port(sk);
1822
1823 BUG_ON(tp->fastopen_rsk);
1824
1825 /* If socket is aborted during connect operation */
1826 tcp_free_fastopen_req(tp);
1827 tcp_saved_syn_free(tp);
1828
1829 sk_sockets_allocated_dec(sk);
1830
1831 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1832 sock_release_memcg(sk);
1833 }
1834 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1835
1836 #ifdef CONFIG_PROC_FS
1837 /* Proc filesystem TCP sock list dumping. */
1838
1839 /*
1840 * Get next listener socket follow cur. If cur is NULL, get first socket
1841 * starting from bucket given in st->bucket; when st->bucket is zero the
1842 * very first socket in the hash table is returned.
1843 */
1844 static void *listening_get_next(struct seq_file *seq, void *cur)
1845 {
1846 struct inet_connection_sock *icsk;
1847 struct hlist_nulls_node *node;
1848 struct sock *sk = cur;
1849 struct inet_listen_hashbucket *ilb;
1850 struct tcp_iter_state *st = seq->private;
1851 struct net *net = seq_file_net(seq);
1852
1853 if (!sk) {
1854 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1855 spin_lock_bh(&ilb->lock);
1856 sk = sk_nulls_head(&ilb->head);
1857 st->offset = 0;
1858 goto get_sk;
1859 }
1860 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1861 ++st->num;
1862 ++st->offset;
1863
1864 sk = sk_nulls_next(sk);
1865 get_sk:
1866 sk_nulls_for_each_from(sk, node) {
1867 if (!net_eq(sock_net(sk), net))
1868 continue;
1869 if (sk->sk_family == st->family) {
1870 cur = sk;
1871 goto out;
1872 }
1873 icsk = inet_csk(sk);
1874 }
1875 spin_unlock_bh(&ilb->lock);
1876 st->offset = 0;
1877 if (++st->bucket < INET_LHTABLE_SIZE) {
1878 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1879 spin_lock_bh(&ilb->lock);
1880 sk = sk_nulls_head(&ilb->head);
1881 goto get_sk;
1882 }
1883 cur = NULL;
1884 out:
1885 return cur;
1886 }
1887
1888 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1889 {
1890 struct tcp_iter_state *st = seq->private;
1891 void *rc;
1892
1893 st->bucket = 0;
1894 st->offset = 0;
1895 rc = listening_get_next(seq, NULL);
1896
1897 while (rc && *pos) {
1898 rc = listening_get_next(seq, rc);
1899 --*pos;
1900 }
1901 return rc;
1902 }
1903
1904 static inline bool empty_bucket(const struct tcp_iter_state *st)
1905 {
1906 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1907 }
1908
1909 /*
1910 * Get first established socket starting from bucket given in st->bucket.
1911 * If st->bucket is zero, the very first socket in the hash is returned.
1912 */
1913 static void *established_get_first(struct seq_file *seq)
1914 {
1915 struct tcp_iter_state *st = seq->private;
1916 struct net *net = seq_file_net(seq);
1917 void *rc = NULL;
1918
1919 st->offset = 0;
1920 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1921 struct sock *sk;
1922 struct hlist_nulls_node *node;
1923 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1924
1925 /* Lockless fast path for the common case of empty buckets */
1926 if (empty_bucket(st))
1927 continue;
1928
1929 spin_lock_bh(lock);
1930 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1931 if (sk->sk_family != st->family ||
1932 !net_eq(sock_net(sk), net)) {
1933 continue;
1934 }
1935 rc = sk;
1936 goto out;
1937 }
1938 spin_unlock_bh(lock);
1939 }
1940 out:
1941 return rc;
1942 }
1943
1944 static void *established_get_next(struct seq_file *seq, void *cur)
1945 {
1946 struct sock *sk = cur;
1947 struct hlist_nulls_node *node;
1948 struct tcp_iter_state *st = seq->private;
1949 struct net *net = seq_file_net(seq);
1950
1951 ++st->num;
1952 ++st->offset;
1953
1954 sk = sk_nulls_next(sk);
1955
1956 sk_nulls_for_each_from(sk, node) {
1957 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1958 return sk;
1959 }
1960
1961 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1962 ++st->bucket;
1963 return established_get_first(seq);
1964 }
1965
1966 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1967 {
1968 struct tcp_iter_state *st = seq->private;
1969 void *rc;
1970
1971 st->bucket = 0;
1972 rc = established_get_first(seq);
1973
1974 while (rc && pos) {
1975 rc = established_get_next(seq, rc);
1976 --pos;
1977 }
1978 return rc;
1979 }
1980
1981 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1982 {
1983 void *rc;
1984 struct tcp_iter_state *st = seq->private;
1985
1986 st->state = TCP_SEQ_STATE_LISTENING;
1987 rc = listening_get_idx(seq, &pos);
1988
1989 if (!rc) {
1990 st->state = TCP_SEQ_STATE_ESTABLISHED;
1991 rc = established_get_idx(seq, pos);
1992 }
1993
1994 return rc;
1995 }
1996
1997 static void *tcp_seek_last_pos(struct seq_file *seq)
1998 {
1999 struct tcp_iter_state *st = seq->private;
2000 int offset = st->offset;
2001 int orig_num = st->num;
2002 void *rc = NULL;
2003
2004 switch (st->state) {
2005 case TCP_SEQ_STATE_LISTENING:
2006 if (st->bucket >= INET_LHTABLE_SIZE)
2007 break;
2008 st->state = TCP_SEQ_STATE_LISTENING;
2009 rc = listening_get_next(seq, NULL);
2010 while (offset-- && rc)
2011 rc = listening_get_next(seq, rc);
2012 if (rc)
2013 break;
2014 st->bucket = 0;
2015 st->state = TCP_SEQ_STATE_ESTABLISHED;
2016 /* Fallthrough */
2017 case TCP_SEQ_STATE_ESTABLISHED:
2018 if (st->bucket > tcp_hashinfo.ehash_mask)
2019 break;
2020 rc = established_get_first(seq);
2021 while (offset-- && rc)
2022 rc = established_get_next(seq, rc);
2023 }
2024
2025 st->num = orig_num;
2026
2027 return rc;
2028 }
2029
2030 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2031 {
2032 struct tcp_iter_state *st = seq->private;
2033 void *rc;
2034
2035 if (*pos && *pos == st->last_pos) {
2036 rc = tcp_seek_last_pos(seq);
2037 if (rc)
2038 goto out;
2039 }
2040
2041 st->state = TCP_SEQ_STATE_LISTENING;
2042 st->num = 0;
2043 st->bucket = 0;
2044 st->offset = 0;
2045 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2046
2047 out:
2048 st->last_pos = *pos;
2049 return rc;
2050 }
2051
2052 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2053 {
2054 struct tcp_iter_state *st = seq->private;
2055 void *rc = NULL;
2056
2057 if (v == SEQ_START_TOKEN) {
2058 rc = tcp_get_idx(seq, 0);
2059 goto out;
2060 }
2061
2062 switch (st->state) {
2063 case TCP_SEQ_STATE_LISTENING:
2064 rc = listening_get_next(seq, v);
2065 if (!rc) {
2066 st->state = TCP_SEQ_STATE_ESTABLISHED;
2067 st->bucket = 0;
2068 st->offset = 0;
2069 rc = established_get_first(seq);
2070 }
2071 break;
2072 case TCP_SEQ_STATE_ESTABLISHED:
2073 rc = established_get_next(seq, v);
2074 break;
2075 }
2076 out:
2077 ++*pos;
2078 st->last_pos = *pos;
2079 return rc;
2080 }
2081
2082 static void tcp_seq_stop(struct seq_file *seq, void *v)
2083 {
2084 struct tcp_iter_state *st = seq->private;
2085
2086 switch (st->state) {
2087 case TCP_SEQ_STATE_LISTENING:
2088 if (v != SEQ_START_TOKEN)
2089 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2090 break;
2091 case TCP_SEQ_STATE_ESTABLISHED:
2092 if (v)
2093 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2094 break;
2095 }
2096 }
2097
2098 int tcp_seq_open(struct inode *inode, struct file *file)
2099 {
2100 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2101 struct tcp_iter_state *s;
2102 int err;
2103
2104 err = seq_open_net(inode, file, &afinfo->seq_ops,
2105 sizeof(struct tcp_iter_state));
2106 if (err < 0)
2107 return err;
2108
2109 s = ((struct seq_file *)file->private_data)->private;
2110 s->family = afinfo->family;
2111 s->last_pos = 0;
2112 return 0;
2113 }
2114 EXPORT_SYMBOL(tcp_seq_open);
2115
2116 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2117 {
2118 int rc = 0;
2119 struct proc_dir_entry *p;
2120
2121 afinfo->seq_ops.start = tcp_seq_start;
2122 afinfo->seq_ops.next = tcp_seq_next;
2123 afinfo->seq_ops.stop = tcp_seq_stop;
2124
2125 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2126 afinfo->seq_fops, afinfo);
2127 if (!p)
2128 rc = -ENOMEM;
2129 return rc;
2130 }
2131 EXPORT_SYMBOL(tcp_proc_register);
2132
2133 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2134 {
2135 remove_proc_entry(afinfo->name, net->proc_net);
2136 }
2137 EXPORT_SYMBOL(tcp_proc_unregister);
2138
2139 static void get_openreq4(const struct request_sock *req,
2140 struct seq_file *f, int i)
2141 {
2142 const struct inet_request_sock *ireq = inet_rsk(req);
2143 long delta = req->rsk_timer.expires - jiffies;
2144
2145 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2146 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2147 i,
2148 ireq->ir_loc_addr,
2149 ireq->ir_num,
2150 ireq->ir_rmt_addr,
2151 ntohs(ireq->ir_rmt_port),
2152 TCP_SYN_RECV,
2153 0, 0, /* could print option size, but that is af dependent. */
2154 1, /* timers active (only the expire timer) */
2155 jiffies_delta_to_clock_t(delta),
2156 req->num_timeout,
2157 from_kuid_munged(seq_user_ns(f),
2158 sock_i_uid(req->rsk_listener)),
2159 0, /* non standard timer */
2160 0, /* open_requests have no inode */
2161 0,
2162 req);
2163 }
2164
2165 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2166 {
2167 int timer_active;
2168 unsigned long timer_expires;
2169 const struct tcp_sock *tp = tcp_sk(sk);
2170 const struct inet_connection_sock *icsk = inet_csk(sk);
2171 const struct inet_sock *inet = inet_sk(sk);
2172 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2173 __be32 dest = inet->inet_daddr;
2174 __be32 src = inet->inet_rcv_saddr;
2175 __u16 destp = ntohs(inet->inet_dport);
2176 __u16 srcp = ntohs(inet->inet_sport);
2177 int rx_queue;
2178 int state;
2179
2180 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2181 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2182 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2183 timer_active = 1;
2184 timer_expires = icsk->icsk_timeout;
2185 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2186 timer_active = 4;
2187 timer_expires = icsk->icsk_timeout;
2188 } else if (timer_pending(&sk->sk_timer)) {
2189 timer_active = 2;
2190 timer_expires = sk->sk_timer.expires;
2191 } else {
2192 timer_active = 0;
2193 timer_expires = jiffies;
2194 }
2195
2196 state = sk_state_load(sk);
2197 if (state == TCP_LISTEN)
2198 rx_queue = sk->sk_ack_backlog;
2199 else
2200 /* Because we don't lock the socket,
2201 * we might find a transient negative value.
2202 */
2203 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2204
2205 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2206 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2207 i, src, srcp, dest, destp, state,
2208 tp->write_seq - tp->snd_una,
2209 rx_queue,
2210 timer_active,
2211 jiffies_delta_to_clock_t(timer_expires - jiffies),
2212 icsk->icsk_retransmits,
2213 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2214 icsk->icsk_probes_out,
2215 sock_i_ino(sk),
2216 atomic_read(&sk->sk_refcnt), sk,
2217 jiffies_to_clock_t(icsk->icsk_rto),
2218 jiffies_to_clock_t(icsk->icsk_ack.ato),
2219 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2220 tp->snd_cwnd,
2221 state == TCP_LISTEN ?
2222 fastopenq->max_qlen :
2223 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2224 }
2225
2226 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2227 struct seq_file *f, int i)
2228 {
2229 long delta = tw->tw_timer.expires - jiffies;
2230 __be32 dest, src;
2231 __u16 destp, srcp;
2232
2233 dest = tw->tw_daddr;
2234 src = tw->tw_rcv_saddr;
2235 destp = ntohs(tw->tw_dport);
2236 srcp = ntohs(tw->tw_sport);
2237
2238 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2239 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2240 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2241 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2242 atomic_read(&tw->tw_refcnt), tw);
2243 }
2244
2245 #define TMPSZ 150
2246
2247 static int tcp4_seq_show(struct seq_file *seq, void *v)
2248 {
2249 struct tcp_iter_state *st;
2250 struct sock *sk = v;
2251
2252 seq_setwidth(seq, TMPSZ - 1);
2253 if (v == SEQ_START_TOKEN) {
2254 seq_puts(seq, " sl local_address rem_address st tx_queue "
2255 "rx_queue tr tm->when retrnsmt uid timeout "
2256 "inode");
2257 goto out;
2258 }
2259 st = seq->private;
2260
2261 if (sk->sk_state == TCP_TIME_WAIT)
2262 get_timewait4_sock(v, seq, st->num);
2263 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2264 get_openreq4(v, seq, st->num);
2265 else
2266 get_tcp4_sock(v, seq, st->num);
2267 out:
2268 seq_pad(seq, '\n');
2269 return 0;
2270 }
2271
2272 static const struct file_operations tcp_afinfo_seq_fops = {
2273 .owner = THIS_MODULE,
2274 .open = tcp_seq_open,
2275 .read = seq_read,
2276 .llseek = seq_lseek,
2277 .release = seq_release_net
2278 };
2279
2280 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2281 .name = "tcp",
2282 .family = AF_INET,
2283 .seq_fops = &tcp_afinfo_seq_fops,
2284 .seq_ops = {
2285 .show = tcp4_seq_show,
2286 },
2287 };
2288
2289 static int __net_init tcp4_proc_init_net(struct net *net)
2290 {
2291 return tcp_proc_register(net, &tcp4_seq_afinfo);
2292 }
2293
2294 static void __net_exit tcp4_proc_exit_net(struct net *net)
2295 {
2296 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2297 }
2298
2299 static struct pernet_operations tcp4_net_ops = {
2300 .init = tcp4_proc_init_net,
2301 .exit = tcp4_proc_exit_net,
2302 };
2303
2304 int __init tcp4_proc_init(void)
2305 {
2306 return register_pernet_subsys(&tcp4_net_ops);
2307 }
2308
2309 void tcp4_proc_exit(void)
2310 {
2311 unregister_pernet_subsys(&tcp4_net_ops);
2312 }
2313 #endif /* CONFIG_PROC_FS */
2314
2315 struct proto tcp_prot = {
2316 .name = "TCP",
2317 .owner = THIS_MODULE,
2318 .close = tcp_close,
2319 .connect = tcp_v4_connect,
2320 .disconnect = tcp_disconnect,
2321 .accept = inet_csk_accept,
2322 .ioctl = tcp_ioctl,
2323 .init = tcp_v4_init_sock,
2324 .destroy = tcp_v4_destroy_sock,
2325 .shutdown = tcp_shutdown,
2326 .setsockopt = tcp_setsockopt,
2327 .getsockopt = tcp_getsockopt,
2328 .recvmsg = tcp_recvmsg,
2329 .sendmsg = tcp_sendmsg,
2330 .sendpage = tcp_sendpage,
2331 .backlog_rcv = tcp_v4_do_rcv,
2332 .release_cb = tcp_release_cb,
2333 .hash = inet_hash,
2334 .unhash = inet_unhash,
2335 .get_port = inet_csk_get_port,
2336 .enter_memory_pressure = tcp_enter_memory_pressure,
2337 .stream_memory_free = tcp_stream_memory_free,
2338 .sockets_allocated = &tcp_sockets_allocated,
2339 .orphan_count = &tcp_orphan_count,
2340 .memory_allocated = &tcp_memory_allocated,
2341 .memory_pressure = &tcp_memory_pressure,
2342 .sysctl_mem = sysctl_tcp_mem,
2343 .sysctl_wmem = sysctl_tcp_wmem,
2344 .sysctl_rmem = sysctl_tcp_rmem,
2345 .max_header = MAX_TCP_HEADER,
2346 .obj_size = sizeof(struct tcp_sock),
2347 .slab_flags = SLAB_DESTROY_BY_RCU,
2348 .twsk_prot = &tcp_timewait_sock_ops,
2349 .rsk_prot = &tcp_request_sock_ops,
2350 .h.hashinfo = &tcp_hashinfo,
2351 .no_autobind = true,
2352 #ifdef CONFIG_COMPAT
2353 .compat_setsockopt = compat_tcp_setsockopt,
2354 .compat_getsockopt = compat_tcp_getsockopt,
2355 #endif
2356 .diag_destroy = tcp_abort,
2357 };
2358 EXPORT_SYMBOL(tcp_prot);
2359
2360 static void __net_exit tcp_sk_exit(struct net *net)
2361 {
2362 int cpu;
2363
2364 for_each_possible_cpu(cpu)
2365 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2366 free_percpu(net->ipv4.tcp_sk);
2367 }
2368
2369 static int __net_init tcp_sk_init(struct net *net)
2370 {
2371 int res, cpu;
2372
2373 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2374 if (!net->ipv4.tcp_sk)
2375 return -ENOMEM;
2376
2377 for_each_possible_cpu(cpu) {
2378 struct sock *sk;
2379
2380 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2381 IPPROTO_TCP, net);
2382 if (res)
2383 goto fail;
2384 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2385 }
2386
2387 net->ipv4.sysctl_tcp_ecn = 2;
2388 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2389
2390 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2391 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2392 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2393
2394 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2395 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2396 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2397
2398 return 0;
2399 fail:
2400 tcp_sk_exit(net);
2401
2402 return res;
2403 }
2404
2405 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2406 {
2407 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2408 }
2409
2410 static struct pernet_operations __net_initdata tcp_sk_ops = {
2411 .init = tcp_sk_init,
2412 .exit = tcp_sk_exit,
2413 .exit_batch = tcp_sk_exit_batch,
2414 };
2415
2416 void __init tcp_v4_init(void)
2417 {
2418 inet_hashinfo_init(&tcp_hashinfo);
2419 if (register_pernet_subsys(&tcp_sk_ops))
2420 panic("Failed to create the TCP control socket.\n");
2421 }
This page took 0.107864 seconds and 5 git commands to generate.