[NETFILTER]: ip_conntrack: fix NAT helper unload races
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9 *
10 * IPv4 specific functions
11 *
12 *
13 * code split from:
14 * linux/ipv4/tcp.c
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
17 *
18 * See tcp.c for author information
19 *
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
24 */
25
26 /*
27 * Changes:
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
36 * ACK bit.
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
47 * coma.
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
53 */
54
55
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
74
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
83
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
86
87 /* Check TCP sequence numbers in ICMP packets. */
88 #define ICMP_MIN_LENGTH 8
89
90 /* Socket used for sending RSTs */
91 static struct socket *tcp_socket;
92
93 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
94
95 #ifdef CONFIG_TCP_MD5SIG
96 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
97 __be32 addr);
98 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
99 __be32 saddr, __be32 daddr,
100 struct tcphdr *th, int protocol,
101 int tcplen);
102 #endif
103
104 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
105 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
106 .lhash_users = ATOMIC_INIT(0),
107 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
108 };
109
110 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
111 {
112 return inet_csk_get_port(&tcp_hashinfo, sk, snum,
113 inet_csk_bind_conflict);
114 }
115
116 static void tcp_v4_hash(struct sock *sk)
117 {
118 inet_hash(&tcp_hashinfo, sk);
119 }
120
121 void tcp_unhash(struct sock *sk)
122 {
123 inet_unhash(&tcp_hashinfo, sk);
124 }
125
126 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
127 {
128 return secure_tcp_sequence_number(skb->nh.iph->daddr,
129 skb->nh.iph->saddr,
130 skb->h.th->dest,
131 skb->h.th->source);
132 }
133
134 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
135 {
136 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
137 struct tcp_sock *tp = tcp_sk(sk);
138
139 /* With PAWS, it is safe from the viewpoint
140 of data integrity. Even without PAWS it is safe provided sequence
141 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
142
143 Actually, the idea is close to VJ's one, only timestamp cache is
144 held not per host, but per port pair and TW bucket is used as state
145 holder.
146
147 If TW bucket has been already destroyed we fall back to VJ's scheme
148 and use initial timestamp retrieved from peer table.
149 */
150 if (tcptw->tw_ts_recent_stamp &&
151 (twp == NULL || (sysctl_tcp_tw_reuse &&
152 xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
153 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
154 if (tp->write_seq == 0)
155 tp->write_seq = 1;
156 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
157 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
158 sock_hold(sktw);
159 return 1;
160 }
161
162 return 0;
163 }
164
165 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
166
167 /* This will initiate an outgoing connection. */
168 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
169 {
170 struct inet_sock *inet = inet_sk(sk);
171 struct tcp_sock *tp = tcp_sk(sk);
172 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
173 struct rtable *rt;
174 __be32 daddr, nexthop;
175 int tmp;
176 int err;
177
178 if (addr_len < sizeof(struct sockaddr_in))
179 return -EINVAL;
180
181 if (usin->sin_family != AF_INET)
182 return -EAFNOSUPPORT;
183
184 nexthop = daddr = usin->sin_addr.s_addr;
185 if (inet->opt && inet->opt->srr) {
186 if (!daddr)
187 return -EINVAL;
188 nexthop = inet->opt->faddr;
189 }
190
191 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
192 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
193 IPPROTO_TCP,
194 inet->sport, usin->sin_port, sk);
195 if (tmp < 0)
196 return tmp;
197
198 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
199 ip_rt_put(rt);
200 return -ENETUNREACH;
201 }
202
203 if (!inet->opt || !inet->opt->srr)
204 daddr = rt->rt_dst;
205
206 if (!inet->saddr)
207 inet->saddr = rt->rt_src;
208 inet->rcv_saddr = inet->saddr;
209
210 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
211 /* Reset inherited state */
212 tp->rx_opt.ts_recent = 0;
213 tp->rx_opt.ts_recent_stamp = 0;
214 tp->write_seq = 0;
215 }
216
217 if (tcp_death_row.sysctl_tw_recycle &&
218 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
219 struct inet_peer *peer = rt_get_peer(rt);
220 /*
221 * VJ's idea. We save last timestamp seen from
222 * the destination in peer table, when entering state
223 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
224 * when trying new connection.
225 */
226 if (peer != NULL &&
227 peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
228 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
229 tp->rx_opt.ts_recent = peer->tcp_ts;
230 }
231 }
232
233 inet->dport = usin->sin_port;
234 inet->daddr = daddr;
235
236 inet_csk(sk)->icsk_ext_hdr_len = 0;
237 if (inet->opt)
238 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
239
240 tp->rx_opt.mss_clamp = 536;
241
242 /* Socket identity is still unknown (sport may be zero).
243 * However we set state to SYN-SENT and not releasing socket
244 * lock select source port, enter ourselves into the hash tables and
245 * complete initialization after this.
246 */
247 tcp_set_state(sk, TCP_SYN_SENT);
248 err = inet_hash_connect(&tcp_death_row, sk);
249 if (err)
250 goto failure;
251
252 err = ip_route_newports(&rt, IPPROTO_TCP,
253 inet->sport, inet->dport, sk);
254 if (err)
255 goto failure;
256
257 /* OK, now commit destination to socket. */
258 sk->sk_gso_type = SKB_GSO_TCPV4;
259 sk_setup_caps(sk, &rt->u.dst);
260
261 if (!tp->write_seq)
262 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
263 inet->daddr,
264 inet->sport,
265 usin->sin_port);
266
267 inet->id = tp->write_seq ^ jiffies;
268
269 err = tcp_connect(sk);
270 rt = NULL;
271 if (err)
272 goto failure;
273
274 return 0;
275
276 failure:
277 /*
278 * This unhashes the socket and releases the local port,
279 * if necessary.
280 */
281 tcp_set_state(sk, TCP_CLOSE);
282 ip_rt_put(rt);
283 sk->sk_route_caps = 0;
284 inet->dport = 0;
285 return err;
286 }
287
288 /*
289 * This routine does path mtu discovery as defined in RFC1191.
290 */
291 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
292 {
293 struct dst_entry *dst;
294 struct inet_sock *inet = inet_sk(sk);
295
296 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
297 * send out by Linux are always <576bytes so they should go through
298 * unfragmented).
299 */
300 if (sk->sk_state == TCP_LISTEN)
301 return;
302
303 /* We don't check in the destentry if pmtu discovery is forbidden
304 * on this route. We just assume that no packet_to_big packets
305 * are send back when pmtu discovery is not active.
306 * There is a small race when the user changes this flag in the
307 * route, but I think that's acceptable.
308 */
309 if ((dst = __sk_dst_check(sk, 0)) == NULL)
310 return;
311
312 dst->ops->update_pmtu(dst, mtu);
313
314 /* Something is about to be wrong... Remember soft error
315 * for the case, if this connection will not able to recover.
316 */
317 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
318 sk->sk_err_soft = EMSGSIZE;
319
320 mtu = dst_mtu(dst);
321
322 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
323 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
324 tcp_sync_mss(sk, mtu);
325
326 /* Resend the TCP packet because it's
327 * clear that the old packet has been
328 * dropped. This is the new "fast" path mtu
329 * discovery.
330 */
331 tcp_simple_retransmit(sk);
332 } /* else let the usual retransmit timer handle it */
333 }
334
335 /*
336 * This routine is called by the ICMP module when it gets some
337 * sort of error condition. If err < 0 then the socket should
338 * be closed and the error returned to the user. If err > 0
339 * it's just the icmp type << 8 | icmp code. After adjustment
340 * header points to the first 8 bytes of the tcp header. We need
341 * to find the appropriate port.
342 *
343 * The locking strategy used here is very "optimistic". When
344 * someone else accesses the socket the ICMP is just dropped
345 * and for some paths there is no check at all.
346 * A more general error queue to queue errors for later handling
347 * is probably better.
348 *
349 */
350
351 void tcp_v4_err(struct sk_buff *skb, u32 info)
352 {
353 struct iphdr *iph = (struct iphdr *)skb->data;
354 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
355 struct tcp_sock *tp;
356 struct inet_sock *inet;
357 int type = skb->h.icmph->type;
358 int code = skb->h.icmph->code;
359 struct sock *sk;
360 __u32 seq;
361 int err;
362
363 if (skb->len < (iph->ihl << 2) + 8) {
364 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
365 return;
366 }
367
368 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
369 th->source, inet_iif(skb));
370 if (!sk) {
371 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
372 return;
373 }
374 if (sk->sk_state == TCP_TIME_WAIT) {
375 inet_twsk_put(inet_twsk(sk));
376 return;
377 }
378
379 bh_lock_sock(sk);
380 /* If too many ICMPs get dropped on busy
381 * servers this needs to be solved differently.
382 */
383 if (sock_owned_by_user(sk))
384 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
385
386 if (sk->sk_state == TCP_CLOSE)
387 goto out;
388
389 tp = tcp_sk(sk);
390 seq = ntohl(th->seq);
391 if (sk->sk_state != TCP_LISTEN &&
392 !between(seq, tp->snd_una, tp->snd_nxt)) {
393 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
394 goto out;
395 }
396
397 switch (type) {
398 case ICMP_SOURCE_QUENCH:
399 /* Just silently ignore these. */
400 goto out;
401 case ICMP_PARAMETERPROB:
402 err = EPROTO;
403 break;
404 case ICMP_DEST_UNREACH:
405 if (code > NR_ICMP_UNREACH)
406 goto out;
407
408 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
409 if (!sock_owned_by_user(sk))
410 do_pmtu_discovery(sk, iph, info);
411 goto out;
412 }
413
414 err = icmp_err_convert[code].errno;
415 break;
416 case ICMP_TIME_EXCEEDED:
417 err = EHOSTUNREACH;
418 break;
419 default:
420 goto out;
421 }
422
423 switch (sk->sk_state) {
424 struct request_sock *req, **prev;
425 case TCP_LISTEN:
426 if (sock_owned_by_user(sk))
427 goto out;
428
429 req = inet_csk_search_req(sk, &prev, th->dest,
430 iph->daddr, iph->saddr);
431 if (!req)
432 goto out;
433
434 /* ICMPs are not backlogged, hence we cannot get
435 an established socket here.
436 */
437 BUG_TRAP(!req->sk);
438
439 if (seq != tcp_rsk(req)->snt_isn) {
440 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
441 goto out;
442 }
443
444 /*
445 * Still in SYN_RECV, just remove it silently.
446 * There is no good way to pass the error to the newly
447 * created socket, and POSIX does not want network
448 * errors returned from accept().
449 */
450 inet_csk_reqsk_queue_drop(sk, req, prev);
451 goto out;
452
453 case TCP_SYN_SENT:
454 case TCP_SYN_RECV: /* Cannot happen.
455 It can f.e. if SYNs crossed.
456 */
457 if (!sock_owned_by_user(sk)) {
458 sk->sk_err = err;
459
460 sk->sk_error_report(sk);
461
462 tcp_done(sk);
463 } else {
464 sk->sk_err_soft = err;
465 }
466 goto out;
467 }
468
469 /* If we've already connected we will keep trying
470 * until we time out, or the user gives up.
471 *
472 * rfc1122 4.2.3.9 allows to consider as hard errors
473 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
474 * but it is obsoleted by pmtu discovery).
475 *
476 * Note, that in modern internet, where routing is unreliable
477 * and in each dark corner broken firewalls sit, sending random
478 * errors ordered by their masters even this two messages finally lose
479 * their original sense (even Linux sends invalid PORT_UNREACHs)
480 *
481 * Now we are in compliance with RFCs.
482 * --ANK (980905)
483 */
484
485 inet = inet_sk(sk);
486 if (!sock_owned_by_user(sk) && inet->recverr) {
487 sk->sk_err = err;
488 sk->sk_error_report(sk);
489 } else { /* Only an error on timeout */
490 sk->sk_err_soft = err;
491 }
492
493 out:
494 bh_unlock_sock(sk);
495 sock_put(sk);
496 }
497
498 /* This routine computes an IPv4 TCP checksum. */
499 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
500 {
501 struct inet_sock *inet = inet_sk(sk);
502 struct tcphdr *th = skb->h.th;
503
504 if (skb->ip_summed == CHECKSUM_PARTIAL) {
505 th->check = ~tcp_v4_check(th, len,
506 inet->saddr, inet->daddr, 0);
507 skb->csum_offset = offsetof(struct tcphdr, check);
508 } else {
509 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
510 csum_partial((char *)th,
511 th->doff << 2,
512 skb->csum));
513 }
514 }
515
516 int tcp_v4_gso_send_check(struct sk_buff *skb)
517 {
518 struct iphdr *iph;
519 struct tcphdr *th;
520
521 if (!pskb_may_pull(skb, sizeof(*th)))
522 return -EINVAL;
523
524 iph = skb->nh.iph;
525 th = skb->h.th;
526
527 th->check = 0;
528 th->check = ~tcp_v4_check(th, skb->len, iph->saddr, iph->daddr, 0);
529 skb->csum_offset = offsetof(struct tcphdr, check);
530 skb->ip_summed = CHECKSUM_PARTIAL;
531 return 0;
532 }
533
534 /*
535 * This routine will send an RST to the other tcp.
536 *
537 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
538 * for reset.
539 * Answer: if a packet caused RST, it is not for a socket
540 * existing in our system, if it is matched to a socket,
541 * it is just duplicate segment or bug in other side's TCP.
542 * So that we build reply only basing on parameters
543 * arrived with segment.
544 * Exception: precedence violation. We do not implement it in any case.
545 */
546
547 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
548 {
549 struct tcphdr *th = skb->h.th;
550 struct {
551 struct tcphdr th;
552 #ifdef CONFIG_TCP_MD5SIG
553 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
554 #endif
555 } rep;
556 struct ip_reply_arg arg;
557 #ifdef CONFIG_TCP_MD5SIG
558 struct tcp_md5sig_key *key;
559 #endif
560
561 /* Never send a reset in response to a reset. */
562 if (th->rst)
563 return;
564
565 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
566 return;
567
568 /* Swap the send and the receive. */
569 memset(&rep, 0, sizeof(rep));
570 rep.th.dest = th->source;
571 rep.th.source = th->dest;
572 rep.th.doff = sizeof(struct tcphdr) / 4;
573 rep.th.rst = 1;
574
575 if (th->ack) {
576 rep.th.seq = th->ack_seq;
577 } else {
578 rep.th.ack = 1;
579 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
580 skb->len - (th->doff << 2));
581 }
582
583 memset(&arg, 0, sizeof(arg));
584 arg.iov[0].iov_base = (unsigned char *)&rep;
585 arg.iov[0].iov_len = sizeof(rep.th);
586
587 #ifdef CONFIG_TCP_MD5SIG
588 key = sk ? tcp_v4_md5_do_lookup(sk, skb->nh.iph->daddr) : NULL;
589 if (key) {
590 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
591 (TCPOPT_NOP << 16) |
592 (TCPOPT_MD5SIG << 8) |
593 TCPOLEN_MD5SIG);
594 /* Update length and the length the header thinks exists */
595 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
596 rep.th.doff = arg.iov[0].iov_len / 4;
597
598 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
599 key,
600 skb->nh.iph->daddr,
601 skb->nh.iph->saddr,
602 &rep.th, IPPROTO_TCP,
603 arg.iov[0].iov_len);
604 }
605 #endif
606 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
607 skb->nh.iph->saddr, /* XXX */
608 sizeof(struct tcphdr), IPPROTO_TCP, 0);
609 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
610
611 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
612
613 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
614 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
615 }
616
617 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
618 outside socket context is ugly, certainly. What can I do?
619 */
620
621 static void tcp_v4_send_ack(struct tcp_timewait_sock *twsk,
622 struct sk_buff *skb, u32 seq, u32 ack,
623 u32 win, u32 ts)
624 {
625 struct tcphdr *th = skb->h.th;
626 struct {
627 struct tcphdr th;
628 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
629 #ifdef CONFIG_TCP_MD5SIG
630 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
631 #endif
632 ];
633 } rep;
634 struct ip_reply_arg arg;
635 #ifdef CONFIG_TCP_MD5SIG
636 struct tcp_md5sig_key *key;
637 struct tcp_md5sig_key tw_key;
638 #endif
639
640 memset(&rep.th, 0, sizeof(struct tcphdr));
641 memset(&arg, 0, sizeof(arg));
642
643 arg.iov[0].iov_base = (unsigned char *)&rep;
644 arg.iov[0].iov_len = sizeof(rep.th);
645 if (ts) {
646 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
647 (TCPOPT_TIMESTAMP << 8) |
648 TCPOLEN_TIMESTAMP);
649 rep.opt[1] = htonl(tcp_time_stamp);
650 rep.opt[2] = htonl(ts);
651 arg.iov[0].iov_len = TCPOLEN_TSTAMP_ALIGNED;
652 }
653
654 /* Swap the send and the receive. */
655 rep.th.dest = th->source;
656 rep.th.source = th->dest;
657 rep.th.doff = arg.iov[0].iov_len / 4;
658 rep.th.seq = htonl(seq);
659 rep.th.ack_seq = htonl(ack);
660 rep.th.ack = 1;
661 rep.th.window = htons(win);
662
663 #ifdef CONFIG_TCP_MD5SIG
664 /*
665 * The SKB holds an imcoming packet, but may not have a valid ->sk
666 * pointer. This is especially the case when we're dealing with a
667 * TIME_WAIT ack, because the sk structure is long gone, and only
668 * the tcp_timewait_sock remains. So the md5 key is stashed in that
669 * structure, and we use it in preference. I believe that (twsk ||
670 * skb->sk) holds true, but we program defensively.
671 */
672 if (!twsk && skb->sk) {
673 key = tcp_v4_md5_do_lookup(skb->sk, skb->nh.iph->daddr);
674 } else if (twsk && twsk->tw_md5_keylen) {
675 tw_key.key = twsk->tw_md5_key;
676 tw_key.keylen = twsk->tw_md5_keylen;
677 key = &tw_key;
678 } else
679 key = NULL;
680
681 if (key) {
682 int offset = (ts) ? 3 : 0;
683
684 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
685 (TCPOPT_NOP << 16) |
686 (TCPOPT_MD5SIG << 8) |
687 TCPOLEN_MD5SIG);
688 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
689 rep.th.doff = arg.iov[0].iov_len/4;
690
691 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
692 key,
693 skb->nh.iph->daddr,
694 skb->nh.iph->saddr,
695 &rep.th, IPPROTO_TCP,
696 arg.iov[0].iov_len);
697 }
698 #endif
699 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
700 skb->nh.iph->saddr, /* XXX */
701 arg.iov[0].iov_len, IPPROTO_TCP, 0);
702 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
703
704 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
705
706 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
707 }
708
709 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
710 {
711 struct inet_timewait_sock *tw = inet_twsk(sk);
712 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
713
714 tcp_v4_send_ack(tcptw, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
715 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
716 tcptw->tw_ts_recent);
717
718 inet_twsk_put(tw);
719 }
720
721 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
722 struct request_sock *req)
723 {
724 tcp_v4_send_ack(NULL, skb, tcp_rsk(req)->snt_isn + 1,
725 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
726 req->ts_recent);
727 }
728
729 /*
730 * Send a SYN-ACK after having received an ACK.
731 * This still operates on a request_sock only, not on a big
732 * socket.
733 */
734 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
735 struct dst_entry *dst)
736 {
737 const struct inet_request_sock *ireq = inet_rsk(req);
738 int err = -1;
739 struct sk_buff * skb;
740
741 /* First, grab a route. */
742 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
743 goto out;
744
745 skb = tcp_make_synack(sk, dst, req);
746
747 if (skb) {
748 struct tcphdr *th = skb->h.th;
749
750 th->check = tcp_v4_check(th, skb->len,
751 ireq->loc_addr,
752 ireq->rmt_addr,
753 csum_partial((char *)th, skb->len,
754 skb->csum));
755
756 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
757 ireq->rmt_addr,
758 ireq->opt);
759 err = net_xmit_eval(err);
760 }
761
762 out:
763 dst_release(dst);
764 return err;
765 }
766
767 /*
768 * IPv4 request_sock destructor.
769 */
770 static void tcp_v4_reqsk_destructor(struct request_sock *req)
771 {
772 kfree(inet_rsk(req)->opt);
773 }
774
775 #ifdef CONFIG_SYN_COOKIES
776 static void syn_flood_warning(struct sk_buff *skb)
777 {
778 static unsigned long warntime;
779
780 if (time_after(jiffies, (warntime + HZ * 60))) {
781 warntime = jiffies;
782 printk(KERN_INFO
783 "possible SYN flooding on port %d. Sending cookies.\n",
784 ntohs(skb->h.th->dest));
785 }
786 }
787 #endif
788
789 /*
790 * Save and compile IPv4 options into the request_sock if needed.
791 */
792 static struct ip_options *tcp_v4_save_options(struct sock *sk,
793 struct sk_buff *skb)
794 {
795 struct ip_options *opt = &(IPCB(skb)->opt);
796 struct ip_options *dopt = NULL;
797
798 if (opt && opt->optlen) {
799 int opt_size = optlength(opt);
800 dopt = kmalloc(opt_size, GFP_ATOMIC);
801 if (dopt) {
802 if (ip_options_echo(dopt, skb)) {
803 kfree(dopt);
804 dopt = NULL;
805 }
806 }
807 }
808 return dopt;
809 }
810
811 #ifdef CONFIG_TCP_MD5SIG
812 /*
813 * RFC2385 MD5 checksumming requires a mapping of
814 * IP address->MD5 Key.
815 * We need to maintain these in the sk structure.
816 */
817
818 /* Find the Key structure for an address. */
819 static struct tcp_md5sig_key *
820 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
821 {
822 struct tcp_sock *tp = tcp_sk(sk);
823 int i;
824
825 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
826 return NULL;
827 for (i = 0; i < tp->md5sig_info->entries4; i++) {
828 if (tp->md5sig_info->keys4[i].addr == addr)
829 return (struct tcp_md5sig_key *)
830 &tp->md5sig_info->keys4[i];
831 }
832 return NULL;
833 }
834
835 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
836 struct sock *addr_sk)
837 {
838 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
839 }
840
841 EXPORT_SYMBOL(tcp_v4_md5_lookup);
842
843 struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
844 struct request_sock *req)
845 {
846 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
847 }
848
849 /* This can be called on a newly created socket, from other files */
850 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
851 u8 *newkey, u8 newkeylen)
852 {
853 /* Add Key to the list */
854 struct tcp4_md5sig_key *key;
855 struct tcp_sock *tp = tcp_sk(sk);
856 struct tcp4_md5sig_key *keys;
857
858 key = (struct tcp4_md5sig_key *)tcp_v4_md5_do_lookup(sk, addr);
859 if (key) {
860 /* Pre-existing entry - just update that one. */
861 kfree(key->key);
862 key->key = newkey;
863 key->keylen = newkeylen;
864 } else {
865 struct tcp_md5sig_info *md5sig;
866
867 if (!tp->md5sig_info) {
868 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
869 GFP_ATOMIC);
870 if (!tp->md5sig_info) {
871 kfree(newkey);
872 return -ENOMEM;
873 }
874 }
875 if (tcp_alloc_md5sig_pool() == NULL) {
876 kfree(newkey);
877 return -ENOMEM;
878 }
879 md5sig = tp->md5sig_info;
880
881 if (md5sig->alloced4 == md5sig->entries4) {
882 keys = kmalloc((sizeof(*keys) *
883 (md5sig->entries4 + 1)), GFP_ATOMIC);
884 if (!keys) {
885 kfree(newkey);
886 tcp_free_md5sig_pool();
887 return -ENOMEM;
888 }
889
890 if (md5sig->entries4)
891 memcpy(keys, md5sig->keys4,
892 sizeof(*keys) * md5sig->entries4);
893
894 /* Free old key list, and reference new one */
895 if (md5sig->keys4)
896 kfree(md5sig->keys4);
897 md5sig->keys4 = keys;
898 md5sig->alloced4++;
899 }
900 md5sig->entries4++;
901 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
902 md5sig->keys4[md5sig->entries4 - 1].key = newkey;
903 md5sig->keys4[md5sig->entries4 - 1].keylen = newkeylen;
904 }
905 return 0;
906 }
907
908 EXPORT_SYMBOL(tcp_v4_md5_do_add);
909
910 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
911 u8 *newkey, u8 newkeylen)
912 {
913 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
914 newkey, newkeylen);
915 }
916
917 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
918 {
919 struct tcp_sock *tp = tcp_sk(sk);
920 int i;
921
922 for (i = 0; i < tp->md5sig_info->entries4; i++) {
923 if (tp->md5sig_info->keys4[i].addr == addr) {
924 /* Free the key */
925 kfree(tp->md5sig_info->keys4[i].key);
926 tp->md5sig_info->entries4--;
927
928 if (tp->md5sig_info->entries4 == 0) {
929 kfree(tp->md5sig_info->keys4);
930 tp->md5sig_info->keys4 = NULL;
931 } else if (tp->md5sig_info->entries4 != i) {
932 /* Need to do some manipulation */
933 memcpy(&tp->md5sig_info->keys4[i],
934 &tp->md5sig_info->keys4[i+1],
935 (tp->md5sig_info->entries4 - i) *
936 sizeof(struct tcp4_md5sig_key));
937 }
938 tcp_free_md5sig_pool();
939 return 0;
940 }
941 }
942 return -ENOENT;
943 }
944
945 EXPORT_SYMBOL(tcp_v4_md5_do_del);
946
947 static void tcp_v4_clear_md5_list(struct sock *sk)
948 {
949 struct tcp_sock *tp = tcp_sk(sk);
950
951 /* Free each key, then the set of key keys,
952 * the crypto element, and then decrement our
953 * hold on the last resort crypto.
954 */
955 if (tp->md5sig_info->entries4) {
956 int i;
957 for (i = 0; i < tp->md5sig_info->entries4; i++)
958 kfree(tp->md5sig_info->keys4[i].key);
959 tp->md5sig_info->entries4 = 0;
960 tcp_free_md5sig_pool();
961 }
962 if (tp->md5sig_info->keys4) {
963 kfree(tp->md5sig_info->keys4);
964 tp->md5sig_info->keys4 = NULL;
965 tp->md5sig_info->alloced4 = 0;
966 }
967 }
968
969 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
970 int optlen)
971 {
972 struct tcp_md5sig cmd;
973 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
974 u8 *newkey;
975
976 if (optlen < sizeof(cmd))
977 return -EINVAL;
978
979 if (copy_from_user(&cmd, optval, sizeof(cmd)))
980 return -EFAULT;
981
982 if (sin->sin_family != AF_INET)
983 return -EINVAL;
984
985 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
986 if (!tcp_sk(sk)->md5sig_info)
987 return -ENOENT;
988 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
989 }
990
991 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
992 return -EINVAL;
993
994 if (!tcp_sk(sk)->md5sig_info) {
995 struct tcp_sock *tp = tcp_sk(sk);
996 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
997
998 if (!p)
999 return -EINVAL;
1000
1001 tp->md5sig_info = p;
1002
1003 }
1004
1005 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1006 if (!newkey)
1007 return -ENOMEM;
1008 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1009 newkey, cmd.tcpm_keylen);
1010 }
1011
1012 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1013 __be32 saddr, __be32 daddr,
1014 struct tcphdr *th, int protocol,
1015 int tcplen)
1016 {
1017 struct scatterlist sg[4];
1018 __u16 data_len;
1019 int block = 0;
1020 #ifdef CONFIG_TCP_MD5SIG_DEBUG
1021 int i;
1022 #endif
1023 __sum16 old_checksum;
1024 struct tcp_md5sig_pool *hp;
1025 struct tcp4_pseudohdr *bp;
1026 struct hash_desc *desc;
1027 int err;
1028 unsigned int nbytes = 0;
1029
1030 /*
1031 * Okay, so RFC2385 is turned on for this connection,
1032 * so we need to generate the MD5 hash for the packet now.
1033 */
1034
1035 hp = tcp_get_md5sig_pool();
1036 if (!hp)
1037 goto clear_hash_noput;
1038
1039 bp = &hp->md5_blk.ip4;
1040 desc = &hp->md5_desc;
1041
1042 /*
1043 * 1. the TCP pseudo-header (in the order: source IP address,
1044 * destination IP address, zero-padded protocol number, and
1045 * segment length)
1046 */
1047 bp->saddr = saddr;
1048 bp->daddr = daddr;
1049 bp->pad = 0;
1050 bp->protocol = protocol;
1051 bp->len = htons(tcplen);
1052 sg_set_buf(&sg[block++], bp, sizeof(*bp));
1053 nbytes += sizeof(*bp);
1054
1055 #ifdef CONFIG_TCP_MD5SIG_DEBUG
1056 printk("Calcuating hash for: ");
1057 for (i = 0; i < sizeof(*bp); i++)
1058 printk("%02x ", (unsigned int)((unsigned char *)bp)[i]);
1059 printk(" ");
1060 #endif
1061
1062 /* 2. the TCP header, excluding options, and assuming a
1063 * checksum of zero/
1064 */
1065 old_checksum = th->check;
1066 th->check = 0;
1067 sg_set_buf(&sg[block++], th, sizeof(struct tcphdr));
1068 nbytes += sizeof(struct tcphdr);
1069 #ifdef CONFIG_TCP_MD5SIG_DEBUG
1070 for (i = 0; i < sizeof(struct tcphdr); i++)
1071 printk(" %02x", (unsigned int)((unsigned char *)th)[i]);
1072 #endif
1073 /* 3. the TCP segment data (if any) */
1074 data_len = tcplen - (th->doff << 2);
1075 if (data_len > 0) {
1076 unsigned char *data = (unsigned char *)th + (th->doff << 2);
1077 sg_set_buf(&sg[block++], data, data_len);
1078 nbytes += data_len;
1079 }
1080
1081 /* 4. an independently-specified key or password, known to both
1082 * TCPs and presumably connection-specific
1083 */
1084 sg_set_buf(&sg[block++], key->key, key->keylen);
1085 nbytes += key->keylen;
1086
1087 #ifdef CONFIG_TCP_MD5SIG_DEBUG
1088 printk(" and password: ");
1089 for (i = 0; i < key->keylen; i++)
1090 printk("%02x ", (unsigned int)key->key[i]);
1091 #endif
1092
1093 /* Now store the Hash into the packet */
1094 err = crypto_hash_init(desc);
1095 if (err)
1096 goto clear_hash;
1097 err = crypto_hash_update(desc, sg, nbytes);
1098 if (err)
1099 goto clear_hash;
1100 err = crypto_hash_final(desc, md5_hash);
1101 if (err)
1102 goto clear_hash;
1103
1104 /* Reset header, and free up the crypto */
1105 tcp_put_md5sig_pool();
1106 th->check = old_checksum;
1107
1108 out:
1109 #ifdef CONFIG_TCP_MD5SIG_DEBUG
1110 printk(" result:");
1111 for (i = 0; i < 16; i++)
1112 printk(" %02x", (unsigned int)(((u8*)md5_hash)[i]));
1113 printk("\n");
1114 #endif
1115 return 0;
1116 clear_hash:
1117 tcp_put_md5sig_pool();
1118 clear_hash_noput:
1119 memset(md5_hash, 0, 16);
1120 goto out;
1121 }
1122
1123 int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1124 struct sock *sk,
1125 struct dst_entry *dst,
1126 struct request_sock *req,
1127 struct tcphdr *th, int protocol,
1128 int tcplen)
1129 {
1130 __be32 saddr, daddr;
1131
1132 if (sk) {
1133 saddr = inet_sk(sk)->saddr;
1134 daddr = inet_sk(sk)->daddr;
1135 } else {
1136 struct rtable *rt = (struct rtable *)dst;
1137 BUG_ON(!rt);
1138 saddr = rt->rt_src;
1139 daddr = rt->rt_dst;
1140 }
1141 return tcp_v4_do_calc_md5_hash(md5_hash, key,
1142 saddr, daddr,
1143 th, protocol, tcplen);
1144 }
1145
1146 EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1147
1148 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1149 {
1150 /*
1151 * This gets called for each TCP segment that arrives
1152 * so we want to be efficient.
1153 * We have 3 drop cases:
1154 * o No MD5 hash and one expected.
1155 * o MD5 hash and we're not expecting one.
1156 * o MD5 hash and its wrong.
1157 */
1158 __u8 *hash_location = NULL;
1159 struct tcp_md5sig_key *hash_expected;
1160 struct iphdr *iph = skb->nh.iph;
1161 struct tcphdr *th = skb->h.th;
1162 int length = (th->doff << 2) - sizeof(struct tcphdr);
1163 int genhash;
1164 unsigned char *ptr;
1165 unsigned char newhash[16];
1166
1167 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1168
1169 /*
1170 * If the TCP option length is less than the TCP_MD5SIG
1171 * option length, then we can shortcut
1172 */
1173 if (length < TCPOLEN_MD5SIG) {
1174 if (hash_expected)
1175 return 1;
1176 else
1177 return 0;
1178 }
1179
1180 /* Okay, we can't shortcut - we have to grub through the options */
1181 ptr = (unsigned char *)(th + 1);
1182 while (length > 0) {
1183 int opcode = *ptr++;
1184 int opsize;
1185
1186 switch (opcode) {
1187 case TCPOPT_EOL:
1188 goto done_opts;
1189 case TCPOPT_NOP:
1190 length--;
1191 continue;
1192 default:
1193 opsize = *ptr++;
1194 if (opsize < 2)
1195 goto done_opts;
1196 if (opsize > length)
1197 goto done_opts;
1198
1199 if (opcode == TCPOPT_MD5SIG) {
1200 hash_location = ptr;
1201 goto done_opts;
1202 }
1203 }
1204 ptr += opsize-2;
1205 length -= opsize;
1206 }
1207 done_opts:
1208 /* We've parsed the options - do we have a hash? */
1209 if (!hash_expected && !hash_location)
1210 return 0;
1211
1212 if (hash_expected && !hash_location) {
1213 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1214 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1215 NIPQUAD(iph->saddr), ntohs(th->source),
1216 NIPQUAD(iph->daddr), ntohs(th->dest));
1217 return 1;
1218 }
1219
1220 if (!hash_expected && hash_location) {
1221 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1222 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1223 NIPQUAD(iph->saddr), ntohs(th->source),
1224 NIPQUAD(iph->daddr), ntohs(th->dest));
1225 return 1;
1226 }
1227
1228 /* Okay, so this is hash_expected and hash_location -
1229 * so we need to calculate the checksum.
1230 */
1231 genhash = tcp_v4_do_calc_md5_hash(newhash,
1232 hash_expected,
1233 iph->saddr, iph->daddr,
1234 th, sk->sk_protocol,
1235 skb->len);
1236
1237 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1238 if (net_ratelimit()) {
1239 printk(KERN_INFO "MD5 Hash failed for "
1240 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1241 NIPQUAD(iph->saddr), ntohs(th->source),
1242 NIPQUAD(iph->daddr), ntohs(th->dest),
1243 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1244 #ifdef CONFIG_TCP_MD5SIG_DEBUG
1245 do {
1246 int i;
1247 printk("Received: ");
1248 for (i = 0; i < 16; i++)
1249 printk("%02x ",
1250 0xff & (int)hash_location[i]);
1251 printk("\n");
1252 printk("Calculated: ");
1253 for (i = 0; i < 16; i++)
1254 printk("%02x ", 0xff & (int)newhash[i]);
1255 printk("\n");
1256 } while(0);
1257 #endif
1258 }
1259 return 1;
1260 }
1261 return 0;
1262 }
1263
1264 #endif
1265
1266 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1267 .family = PF_INET,
1268 .obj_size = sizeof(struct tcp_request_sock),
1269 .rtx_syn_ack = tcp_v4_send_synack,
1270 .send_ack = tcp_v4_reqsk_send_ack,
1271 .destructor = tcp_v4_reqsk_destructor,
1272 .send_reset = tcp_v4_send_reset,
1273 };
1274
1275 struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1276 #ifdef CONFIG_TCP_MD5SIG
1277 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1278 #endif
1279 };
1280
1281 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1282 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1283 .twsk_unique = tcp_twsk_unique,
1284 .twsk_destructor= tcp_twsk_destructor,
1285 };
1286
1287 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1288 {
1289 struct inet_request_sock *ireq;
1290 struct tcp_options_received tmp_opt;
1291 struct request_sock *req;
1292 __be32 saddr = skb->nh.iph->saddr;
1293 __be32 daddr = skb->nh.iph->daddr;
1294 __u32 isn = TCP_SKB_CB(skb)->when;
1295 struct dst_entry *dst = NULL;
1296 #ifdef CONFIG_SYN_COOKIES
1297 int want_cookie = 0;
1298 #else
1299 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1300 #endif
1301
1302 /* Never answer to SYNs send to broadcast or multicast */
1303 if (((struct rtable *)skb->dst)->rt_flags &
1304 (RTCF_BROADCAST | RTCF_MULTICAST))
1305 goto drop;
1306
1307 /* TW buckets are converted to open requests without
1308 * limitations, they conserve resources and peer is
1309 * evidently real one.
1310 */
1311 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1312 #ifdef CONFIG_SYN_COOKIES
1313 if (sysctl_tcp_syncookies) {
1314 want_cookie = 1;
1315 } else
1316 #endif
1317 goto drop;
1318 }
1319
1320 /* Accept backlog is full. If we have already queued enough
1321 * of warm entries in syn queue, drop request. It is better than
1322 * clogging syn queue with openreqs with exponentially increasing
1323 * timeout.
1324 */
1325 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1326 goto drop;
1327
1328 req = reqsk_alloc(&tcp_request_sock_ops);
1329 if (!req)
1330 goto drop;
1331
1332 #ifdef CONFIG_TCP_MD5SIG
1333 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1334 #endif
1335
1336 tcp_clear_options(&tmp_opt);
1337 tmp_opt.mss_clamp = 536;
1338 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1339
1340 tcp_parse_options(skb, &tmp_opt, 0);
1341
1342 if (want_cookie) {
1343 tcp_clear_options(&tmp_opt);
1344 tmp_opt.saw_tstamp = 0;
1345 }
1346
1347 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1348 /* Some OSes (unknown ones, but I see them on web server, which
1349 * contains information interesting only for windows'
1350 * users) do not send their stamp in SYN. It is easy case.
1351 * We simply do not advertise TS support.
1352 */
1353 tmp_opt.saw_tstamp = 0;
1354 tmp_opt.tstamp_ok = 0;
1355 }
1356 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1357
1358 tcp_openreq_init(req, &tmp_opt, skb);
1359
1360 if (security_inet_conn_request(sk, skb, req))
1361 goto drop_and_free;
1362
1363 ireq = inet_rsk(req);
1364 ireq->loc_addr = daddr;
1365 ireq->rmt_addr = saddr;
1366 ireq->opt = tcp_v4_save_options(sk, skb);
1367 if (!want_cookie)
1368 TCP_ECN_create_request(req, skb->h.th);
1369
1370 if (want_cookie) {
1371 #ifdef CONFIG_SYN_COOKIES
1372 syn_flood_warning(skb);
1373 #endif
1374 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1375 } else if (!isn) {
1376 struct inet_peer *peer = NULL;
1377
1378 /* VJ's idea. We save last timestamp seen
1379 * from the destination in peer table, when entering
1380 * state TIME-WAIT, and check against it before
1381 * accepting new connection request.
1382 *
1383 * If "isn" is not zero, this request hit alive
1384 * timewait bucket, so that all the necessary checks
1385 * are made in the function processing timewait state.
1386 */
1387 if (tmp_opt.saw_tstamp &&
1388 tcp_death_row.sysctl_tw_recycle &&
1389 (dst = inet_csk_route_req(sk, req)) != NULL &&
1390 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1391 peer->v4daddr == saddr) {
1392 if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1393 (s32)(peer->tcp_ts - req->ts_recent) >
1394 TCP_PAWS_WINDOW) {
1395 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1396 dst_release(dst);
1397 goto drop_and_free;
1398 }
1399 }
1400 /* Kill the following clause, if you dislike this way. */
1401 else if (!sysctl_tcp_syncookies &&
1402 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1403 (sysctl_max_syn_backlog >> 2)) &&
1404 (!peer || !peer->tcp_ts_stamp) &&
1405 (!dst || !dst_metric(dst, RTAX_RTT))) {
1406 /* Without syncookies last quarter of
1407 * backlog is filled with destinations,
1408 * proven to be alive.
1409 * It means that we continue to communicate
1410 * to destinations, already remembered
1411 * to the moment of synflood.
1412 */
1413 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1414 "request from %u.%u.%u.%u/%u\n",
1415 NIPQUAD(saddr),
1416 ntohs(skb->h.th->source));
1417 dst_release(dst);
1418 goto drop_and_free;
1419 }
1420
1421 isn = tcp_v4_init_sequence(skb);
1422 }
1423 tcp_rsk(req)->snt_isn = isn;
1424
1425 if (tcp_v4_send_synack(sk, req, dst))
1426 goto drop_and_free;
1427
1428 if (want_cookie) {
1429 reqsk_free(req);
1430 } else {
1431 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1432 }
1433 return 0;
1434
1435 drop_and_free:
1436 reqsk_free(req);
1437 drop:
1438 return 0;
1439 }
1440
1441
1442 /*
1443 * The three way handshake has completed - we got a valid synack -
1444 * now create the new socket.
1445 */
1446 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1447 struct request_sock *req,
1448 struct dst_entry *dst)
1449 {
1450 struct inet_request_sock *ireq;
1451 struct inet_sock *newinet;
1452 struct tcp_sock *newtp;
1453 struct sock *newsk;
1454 #ifdef CONFIG_TCP_MD5SIG
1455 struct tcp_md5sig_key *key;
1456 #endif
1457
1458 if (sk_acceptq_is_full(sk))
1459 goto exit_overflow;
1460
1461 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1462 goto exit;
1463
1464 newsk = tcp_create_openreq_child(sk, req, skb);
1465 if (!newsk)
1466 goto exit;
1467
1468 newsk->sk_gso_type = SKB_GSO_TCPV4;
1469 sk_setup_caps(newsk, dst);
1470
1471 newtp = tcp_sk(newsk);
1472 newinet = inet_sk(newsk);
1473 ireq = inet_rsk(req);
1474 newinet->daddr = ireq->rmt_addr;
1475 newinet->rcv_saddr = ireq->loc_addr;
1476 newinet->saddr = ireq->loc_addr;
1477 newinet->opt = ireq->opt;
1478 ireq->opt = NULL;
1479 newinet->mc_index = inet_iif(skb);
1480 newinet->mc_ttl = skb->nh.iph->ttl;
1481 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1482 if (newinet->opt)
1483 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1484 newinet->id = newtp->write_seq ^ jiffies;
1485
1486 tcp_mtup_init(newsk);
1487 tcp_sync_mss(newsk, dst_mtu(dst));
1488 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1489 tcp_initialize_rcv_mss(newsk);
1490
1491 #ifdef CONFIG_TCP_MD5SIG
1492 /* Copy over the MD5 key from the original socket */
1493 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1494 /*
1495 * We're using one, so create a matching key
1496 * on the newsk structure. If we fail to get
1497 * memory, then we end up not copying the key
1498 * across. Shucks.
1499 */
1500 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1501 if (newkey != NULL)
1502 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1503 newkey, key->keylen);
1504 }
1505 #endif
1506
1507 __inet_hash(&tcp_hashinfo, newsk, 0);
1508 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
1509
1510 return newsk;
1511
1512 exit_overflow:
1513 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1514 exit:
1515 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1516 dst_release(dst);
1517 return NULL;
1518 }
1519
1520 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1521 {
1522 struct tcphdr *th = skb->h.th;
1523 struct iphdr *iph = skb->nh.iph;
1524 struct sock *nsk;
1525 struct request_sock **prev;
1526 /* Find possible connection requests. */
1527 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1528 iph->saddr, iph->daddr);
1529 if (req)
1530 return tcp_check_req(sk, skb, req, prev);
1531
1532 nsk = inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
1533 th->source, skb->nh.iph->daddr,
1534 th->dest, inet_iif(skb));
1535
1536 if (nsk) {
1537 if (nsk->sk_state != TCP_TIME_WAIT) {
1538 bh_lock_sock(nsk);
1539 return nsk;
1540 }
1541 inet_twsk_put(inet_twsk(nsk));
1542 return NULL;
1543 }
1544
1545 #ifdef CONFIG_SYN_COOKIES
1546 if (!th->rst && !th->syn && th->ack)
1547 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1548 #endif
1549 return sk;
1550 }
1551
1552 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1553 {
1554 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1555 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
1556 skb->nh.iph->daddr, skb->csum)) {
1557 skb->ip_summed = CHECKSUM_UNNECESSARY;
1558 return 0;
1559 }
1560 }
1561
1562 skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
1563 skb->len, IPPROTO_TCP, 0);
1564
1565 if (skb->len <= 76) {
1566 return __skb_checksum_complete(skb);
1567 }
1568 return 0;
1569 }
1570
1571
1572 /* The socket must have it's spinlock held when we get
1573 * here.
1574 *
1575 * We have a potential double-lock case here, so even when
1576 * doing backlog processing we use the BH locking scheme.
1577 * This is because we cannot sleep with the original spinlock
1578 * held.
1579 */
1580 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1581 {
1582 struct sock *rsk;
1583 #ifdef CONFIG_TCP_MD5SIG
1584 /*
1585 * We really want to reject the packet as early as possible
1586 * if:
1587 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1588 * o There is an MD5 option and we're not expecting one
1589 */
1590 if (tcp_v4_inbound_md5_hash(sk, skb))
1591 goto discard;
1592 #endif
1593
1594 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1595 TCP_CHECK_TIMER(sk);
1596 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len)) {
1597 rsk = sk;
1598 goto reset;
1599 }
1600 TCP_CHECK_TIMER(sk);
1601 return 0;
1602 }
1603
1604 if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
1605 goto csum_err;
1606
1607 if (sk->sk_state == TCP_LISTEN) {
1608 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1609 if (!nsk)
1610 goto discard;
1611
1612 if (nsk != sk) {
1613 if (tcp_child_process(sk, nsk, skb)) {
1614 rsk = nsk;
1615 goto reset;
1616 }
1617 return 0;
1618 }
1619 }
1620
1621 TCP_CHECK_TIMER(sk);
1622 if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len)) {
1623 rsk = sk;
1624 goto reset;
1625 }
1626 TCP_CHECK_TIMER(sk);
1627 return 0;
1628
1629 reset:
1630 tcp_v4_send_reset(rsk, skb);
1631 discard:
1632 kfree_skb(skb);
1633 /* Be careful here. If this function gets more complicated and
1634 * gcc suffers from register pressure on the x86, sk (in %ebx)
1635 * might be destroyed here. This current version compiles correctly,
1636 * but you have been warned.
1637 */
1638 return 0;
1639
1640 csum_err:
1641 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1642 goto discard;
1643 }
1644
1645 /*
1646 * From tcp_input.c
1647 */
1648
1649 int tcp_v4_rcv(struct sk_buff *skb)
1650 {
1651 struct tcphdr *th;
1652 struct sock *sk;
1653 int ret;
1654
1655 if (skb->pkt_type != PACKET_HOST)
1656 goto discard_it;
1657
1658 /* Count it even if it's bad */
1659 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1660
1661 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1662 goto discard_it;
1663
1664 th = skb->h.th;
1665
1666 if (th->doff < sizeof(struct tcphdr) / 4)
1667 goto bad_packet;
1668 if (!pskb_may_pull(skb, th->doff * 4))
1669 goto discard_it;
1670
1671 /* An explanation is required here, I think.
1672 * Packet length and doff are validated by header prediction,
1673 * provided case of th->doff==0 is eliminated.
1674 * So, we defer the checks. */
1675 if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1676 tcp_v4_checksum_init(skb)))
1677 goto bad_packet;
1678
1679 th = skb->h.th;
1680 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1681 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1682 skb->len - th->doff * 4);
1683 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1684 TCP_SKB_CB(skb)->when = 0;
1685 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
1686 TCP_SKB_CB(skb)->sacked = 0;
1687
1688 sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1689 skb->nh.iph->daddr, th->dest,
1690 inet_iif(skb));
1691
1692 if (!sk)
1693 goto no_tcp_socket;
1694
1695 process:
1696 if (sk->sk_state == TCP_TIME_WAIT)
1697 goto do_time_wait;
1698
1699 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1700 goto discard_and_relse;
1701 nf_reset(skb);
1702
1703 if (sk_filter(sk, skb))
1704 goto discard_and_relse;
1705
1706 skb->dev = NULL;
1707
1708 bh_lock_sock_nested(sk);
1709 ret = 0;
1710 if (!sock_owned_by_user(sk)) {
1711 #ifdef CONFIG_NET_DMA
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1714 tp->ucopy.dma_chan = get_softnet_dma();
1715 if (tp->ucopy.dma_chan)
1716 ret = tcp_v4_do_rcv(sk, skb);
1717 else
1718 #endif
1719 {
1720 if (!tcp_prequeue(sk, skb))
1721 ret = tcp_v4_do_rcv(sk, skb);
1722 }
1723 } else
1724 sk_add_backlog(sk, skb);
1725 bh_unlock_sock(sk);
1726
1727 sock_put(sk);
1728
1729 return ret;
1730
1731 no_tcp_socket:
1732 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1733 goto discard_it;
1734
1735 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1736 bad_packet:
1737 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1738 } else {
1739 tcp_v4_send_reset(NULL, skb);
1740 }
1741
1742 discard_it:
1743 /* Discard frame. */
1744 kfree_skb(skb);
1745 return 0;
1746
1747 discard_and_relse:
1748 sock_put(sk);
1749 goto discard_it;
1750
1751 do_time_wait:
1752 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1753 inet_twsk_put(inet_twsk(sk));
1754 goto discard_it;
1755 }
1756
1757 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1758 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1759 inet_twsk_put(inet_twsk(sk));
1760 goto discard_it;
1761 }
1762 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1763 case TCP_TW_SYN: {
1764 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1765 skb->nh.iph->daddr,
1766 th->dest,
1767 inet_iif(skb));
1768 if (sk2) {
1769 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1770 inet_twsk_put(inet_twsk(sk));
1771 sk = sk2;
1772 goto process;
1773 }
1774 /* Fall through to ACK */
1775 }
1776 case TCP_TW_ACK:
1777 tcp_v4_timewait_ack(sk, skb);
1778 break;
1779 case TCP_TW_RST:
1780 goto no_tcp_socket;
1781 case TCP_TW_SUCCESS:;
1782 }
1783 goto discard_it;
1784 }
1785
1786 /* VJ's idea. Save last timestamp seen from this destination
1787 * and hold it at least for normal timewait interval to use for duplicate
1788 * segment detection in subsequent connections, before they enter synchronized
1789 * state.
1790 */
1791
1792 int tcp_v4_remember_stamp(struct sock *sk)
1793 {
1794 struct inet_sock *inet = inet_sk(sk);
1795 struct tcp_sock *tp = tcp_sk(sk);
1796 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1797 struct inet_peer *peer = NULL;
1798 int release_it = 0;
1799
1800 if (!rt || rt->rt_dst != inet->daddr) {
1801 peer = inet_getpeer(inet->daddr, 1);
1802 release_it = 1;
1803 } else {
1804 if (!rt->peer)
1805 rt_bind_peer(rt, 1);
1806 peer = rt->peer;
1807 }
1808
1809 if (peer) {
1810 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1811 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1812 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1813 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1814 peer->tcp_ts = tp->rx_opt.ts_recent;
1815 }
1816 if (release_it)
1817 inet_putpeer(peer);
1818 return 1;
1819 }
1820
1821 return 0;
1822 }
1823
1824 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1825 {
1826 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1827
1828 if (peer) {
1829 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1830
1831 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1832 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1833 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1834 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1835 peer->tcp_ts = tcptw->tw_ts_recent;
1836 }
1837 inet_putpeer(peer);
1838 return 1;
1839 }
1840
1841 return 0;
1842 }
1843
1844 struct inet_connection_sock_af_ops ipv4_specific = {
1845 .queue_xmit = ip_queue_xmit,
1846 .send_check = tcp_v4_send_check,
1847 .rebuild_header = inet_sk_rebuild_header,
1848 .conn_request = tcp_v4_conn_request,
1849 .syn_recv_sock = tcp_v4_syn_recv_sock,
1850 .remember_stamp = tcp_v4_remember_stamp,
1851 .net_header_len = sizeof(struct iphdr),
1852 .setsockopt = ip_setsockopt,
1853 .getsockopt = ip_getsockopt,
1854 .addr2sockaddr = inet_csk_addr2sockaddr,
1855 .sockaddr_len = sizeof(struct sockaddr_in),
1856 #ifdef CONFIG_COMPAT
1857 .compat_setsockopt = compat_ip_setsockopt,
1858 .compat_getsockopt = compat_ip_getsockopt,
1859 #endif
1860 };
1861
1862 struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1863 #ifdef CONFIG_TCP_MD5SIG
1864 .md5_lookup = tcp_v4_md5_lookup,
1865 .calc_md5_hash = tcp_v4_calc_md5_hash,
1866 .md5_add = tcp_v4_md5_add_func,
1867 .md5_parse = tcp_v4_parse_md5_keys,
1868 #endif
1869 };
1870
1871 /* NOTE: A lot of things set to zero explicitly by call to
1872 * sk_alloc() so need not be done here.
1873 */
1874 static int tcp_v4_init_sock(struct sock *sk)
1875 {
1876 struct inet_connection_sock *icsk = inet_csk(sk);
1877 struct tcp_sock *tp = tcp_sk(sk);
1878
1879 skb_queue_head_init(&tp->out_of_order_queue);
1880 tcp_init_xmit_timers(sk);
1881 tcp_prequeue_init(tp);
1882
1883 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1884 tp->mdev = TCP_TIMEOUT_INIT;
1885
1886 /* So many TCP implementations out there (incorrectly) count the
1887 * initial SYN frame in their delayed-ACK and congestion control
1888 * algorithms that we must have the following bandaid to talk
1889 * efficiently to them. -DaveM
1890 */
1891 tp->snd_cwnd = 2;
1892
1893 /* See draft-stevens-tcpca-spec-01 for discussion of the
1894 * initialization of these values.
1895 */
1896 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1897 tp->snd_cwnd_clamp = ~0;
1898 tp->mss_cache = 536;
1899
1900 tp->reordering = sysctl_tcp_reordering;
1901 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1902
1903 sk->sk_state = TCP_CLOSE;
1904
1905 sk->sk_write_space = sk_stream_write_space;
1906 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1907
1908 icsk->icsk_af_ops = &ipv4_specific;
1909 icsk->icsk_sync_mss = tcp_sync_mss;
1910 #ifdef CONFIG_TCP_MD5SIG
1911 tp->af_specific = &tcp_sock_ipv4_specific;
1912 #endif
1913
1914 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1915 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1916
1917 atomic_inc(&tcp_sockets_allocated);
1918
1919 return 0;
1920 }
1921
1922 int tcp_v4_destroy_sock(struct sock *sk)
1923 {
1924 struct tcp_sock *tp = tcp_sk(sk);
1925
1926 tcp_clear_xmit_timers(sk);
1927
1928 tcp_cleanup_congestion_control(sk);
1929
1930 /* Cleanup up the write buffer. */
1931 sk_stream_writequeue_purge(sk);
1932
1933 /* Cleans up our, hopefully empty, out_of_order_queue. */
1934 __skb_queue_purge(&tp->out_of_order_queue);
1935
1936 #ifdef CONFIG_TCP_MD5SIG
1937 /* Clean up the MD5 key list, if any */
1938 if (tp->md5sig_info) {
1939 tcp_v4_clear_md5_list(sk);
1940 kfree(tp->md5sig_info);
1941 tp->md5sig_info = NULL;
1942 }
1943 #endif
1944
1945 #ifdef CONFIG_NET_DMA
1946 /* Cleans up our sk_async_wait_queue */
1947 __skb_queue_purge(&sk->sk_async_wait_queue);
1948 #endif
1949
1950 /* Clean prequeue, it must be empty really */
1951 __skb_queue_purge(&tp->ucopy.prequeue);
1952
1953 /* Clean up a referenced TCP bind bucket. */
1954 if (inet_csk(sk)->icsk_bind_hash)
1955 inet_put_port(&tcp_hashinfo, sk);
1956
1957 /*
1958 * If sendmsg cached page exists, toss it.
1959 */
1960 if (sk->sk_sndmsg_page) {
1961 __free_page(sk->sk_sndmsg_page);
1962 sk->sk_sndmsg_page = NULL;
1963 }
1964
1965 atomic_dec(&tcp_sockets_allocated);
1966
1967 return 0;
1968 }
1969
1970 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1971
1972 #ifdef CONFIG_PROC_FS
1973 /* Proc filesystem TCP sock list dumping. */
1974
1975 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1976 {
1977 return hlist_empty(head) ? NULL :
1978 list_entry(head->first, struct inet_timewait_sock, tw_node);
1979 }
1980
1981 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1982 {
1983 return tw->tw_node.next ?
1984 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1985 }
1986
1987 static void *listening_get_next(struct seq_file *seq, void *cur)
1988 {
1989 struct inet_connection_sock *icsk;
1990 struct hlist_node *node;
1991 struct sock *sk = cur;
1992 struct tcp_iter_state* st = seq->private;
1993
1994 if (!sk) {
1995 st->bucket = 0;
1996 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1997 goto get_sk;
1998 }
1999
2000 ++st->num;
2001
2002 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2003 struct request_sock *req = cur;
2004
2005 icsk = inet_csk(st->syn_wait_sk);
2006 req = req->dl_next;
2007 while (1) {
2008 while (req) {
2009 if (req->rsk_ops->family == st->family) {
2010 cur = req;
2011 goto out;
2012 }
2013 req = req->dl_next;
2014 }
2015 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2016 break;
2017 get_req:
2018 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2019 }
2020 sk = sk_next(st->syn_wait_sk);
2021 st->state = TCP_SEQ_STATE_LISTENING;
2022 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2023 } else {
2024 icsk = inet_csk(sk);
2025 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2026 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2027 goto start_req;
2028 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2029 sk = sk_next(sk);
2030 }
2031 get_sk:
2032 sk_for_each_from(sk, node) {
2033 if (sk->sk_family == st->family) {
2034 cur = sk;
2035 goto out;
2036 }
2037 icsk = inet_csk(sk);
2038 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2039 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2040 start_req:
2041 st->uid = sock_i_uid(sk);
2042 st->syn_wait_sk = sk;
2043 st->state = TCP_SEQ_STATE_OPENREQ;
2044 st->sbucket = 0;
2045 goto get_req;
2046 }
2047 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2048 }
2049 if (++st->bucket < INET_LHTABLE_SIZE) {
2050 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
2051 goto get_sk;
2052 }
2053 cur = NULL;
2054 out:
2055 return cur;
2056 }
2057
2058 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2059 {
2060 void *rc = listening_get_next(seq, NULL);
2061
2062 while (rc && *pos) {
2063 rc = listening_get_next(seq, rc);
2064 --*pos;
2065 }
2066 return rc;
2067 }
2068
2069 static void *established_get_first(struct seq_file *seq)
2070 {
2071 struct tcp_iter_state* st = seq->private;
2072 void *rc = NULL;
2073
2074 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
2075 struct sock *sk;
2076 struct hlist_node *node;
2077 struct inet_timewait_sock *tw;
2078
2079 /* We can reschedule _before_ having picked the target: */
2080 cond_resched_softirq();
2081
2082 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
2083 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2084 if (sk->sk_family != st->family) {
2085 continue;
2086 }
2087 rc = sk;
2088 goto out;
2089 }
2090 st->state = TCP_SEQ_STATE_TIME_WAIT;
2091 inet_twsk_for_each(tw, node,
2092 &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
2093 if (tw->tw_family != st->family) {
2094 continue;
2095 }
2096 rc = tw;
2097 goto out;
2098 }
2099 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
2100 st->state = TCP_SEQ_STATE_ESTABLISHED;
2101 }
2102 out:
2103 return rc;
2104 }
2105
2106 static void *established_get_next(struct seq_file *seq, void *cur)
2107 {
2108 struct sock *sk = cur;
2109 struct inet_timewait_sock *tw;
2110 struct hlist_node *node;
2111 struct tcp_iter_state* st = seq->private;
2112
2113 ++st->num;
2114
2115 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2116 tw = cur;
2117 tw = tw_next(tw);
2118 get_tw:
2119 while (tw && tw->tw_family != st->family) {
2120 tw = tw_next(tw);
2121 }
2122 if (tw) {
2123 cur = tw;
2124 goto out;
2125 }
2126 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
2127 st->state = TCP_SEQ_STATE_ESTABLISHED;
2128
2129 /* We can reschedule between buckets: */
2130 cond_resched_softirq();
2131
2132 if (++st->bucket < tcp_hashinfo.ehash_size) {
2133 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
2134 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2135 } else {
2136 cur = NULL;
2137 goto out;
2138 }
2139 } else
2140 sk = sk_next(sk);
2141
2142 sk_for_each_from(sk, node) {
2143 if (sk->sk_family == st->family)
2144 goto found;
2145 }
2146
2147 st->state = TCP_SEQ_STATE_TIME_WAIT;
2148 tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
2149 goto get_tw;
2150 found:
2151 cur = sk;
2152 out:
2153 return cur;
2154 }
2155
2156 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2157 {
2158 void *rc = established_get_first(seq);
2159
2160 while (rc && pos) {
2161 rc = established_get_next(seq, rc);
2162 --pos;
2163 }
2164 return rc;
2165 }
2166
2167 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2168 {
2169 void *rc;
2170 struct tcp_iter_state* st = seq->private;
2171
2172 inet_listen_lock(&tcp_hashinfo);
2173 st->state = TCP_SEQ_STATE_LISTENING;
2174 rc = listening_get_idx(seq, &pos);
2175
2176 if (!rc) {
2177 inet_listen_unlock(&tcp_hashinfo);
2178 local_bh_disable();
2179 st->state = TCP_SEQ_STATE_ESTABLISHED;
2180 rc = established_get_idx(seq, pos);
2181 }
2182
2183 return rc;
2184 }
2185
2186 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2187 {
2188 struct tcp_iter_state* st = seq->private;
2189 st->state = TCP_SEQ_STATE_LISTENING;
2190 st->num = 0;
2191 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2192 }
2193
2194 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2195 {
2196 void *rc = NULL;
2197 struct tcp_iter_state* st;
2198
2199 if (v == SEQ_START_TOKEN) {
2200 rc = tcp_get_idx(seq, 0);
2201 goto out;
2202 }
2203 st = seq->private;
2204
2205 switch (st->state) {
2206 case TCP_SEQ_STATE_OPENREQ:
2207 case TCP_SEQ_STATE_LISTENING:
2208 rc = listening_get_next(seq, v);
2209 if (!rc) {
2210 inet_listen_unlock(&tcp_hashinfo);
2211 local_bh_disable();
2212 st->state = TCP_SEQ_STATE_ESTABLISHED;
2213 rc = established_get_first(seq);
2214 }
2215 break;
2216 case TCP_SEQ_STATE_ESTABLISHED:
2217 case TCP_SEQ_STATE_TIME_WAIT:
2218 rc = established_get_next(seq, v);
2219 break;
2220 }
2221 out:
2222 ++*pos;
2223 return rc;
2224 }
2225
2226 static void tcp_seq_stop(struct seq_file *seq, void *v)
2227 {
2228 struct tcp_iter_state* st = seq->private;
2229
2230 switch (st->state) {
2231 case TCP_SEQ_STATE_OPENREQ:
2232 if (v) {
2233 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2234 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2235 }
2236 case TCP_SEQ_STATE_LISTENING:
2237 if (v != SEQ_START_TOKEN)
2238 inet_listen_unlock(&tcp_hashinfo);
2239 break;
2240 case TCP_SEQ_STATE_TIME_WAIT:
2241 case TCP_SEQ_STATE_ESTABLISHED:
2242 if (v)
2243 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
2244 local_bh_enable();
2245 break;
2246 }
2247 }
2248
2249 static int tcp_seq_open(struct inode *inode, struct file *file)
2250 {
2251 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2252 struct seq_file *seq;
2253 struct tcp_iter_state *s;
2254 int rc;
2255
2256 if (unlikely(afinfo == NULL))
2257 return -EINVAL;
2258
2259 s = kzalloc(sizeof(*s), GFP_KERNEL);
2260 if (!s)
2261 return -ENOMEM;
2262 s->family = afinfo->family;
2263 s->seq_ops.start = tcp_seq_start;
2264 s->seq_ops.next = tcp_seq_next;
2265 s->seq_ops.show = afinfo->seq_show;
2266 s->seq_ops.stop = tcp_seq_stop;
2267
2268 rc = seq_open(file, &s->seq_ops);
2269 if (rc)
2270 goto out_kfree;
2271 seq = file->private_data;
2272 seq->private = s;
2273 out:
2274 return rc;
2275 out_kfree:
2276 kfree(s);
2277 goto out;
2278 }
2279
2280 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
2281 {
2282 int rc = 0;
2283 struct proc_dir_entry *p;
2284
2285 if (!afinfo)
2286 return -EINVAL;
2287 afinfo->seq_fops->owner = afinfo->owner;
2288 afinfo->seq_fops->open = tcp_seq_open;
2289 afinfo->seq_fops->read = seq_read;
2290 afinfo->seq_fops->llseek = seq_lseek;
2291 afinfo->seq_fops->release = seq_release_private;
2292
2293 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
2294 if (p)
2295 p->data = afinfo;
2296 else
2297 rc = -ENOMEM;
2298 return rc;
2299 }
2300
2301 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
2302 {
2303 if (!afinfo)
2304 return;
2305 proc_net_remove(afinfo->name);
2306 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
2307 }
2308
2309 static void get_openreq4(struct sock *sk, struct request_sock *req,
2310 char *tmpbuf, int i, int uid)
2311 {
2312 const struct inet_request_sock *ireq = inet_rsk(req);
2313 int ttd = req->expires - jiffies;
2314
2315 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2316 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
2317 i,
2318 ireq->loc_addr,
2319 ntohs(inet_sk(sk)->sport),
2320 ireq->rmt_addr,
2321 ntohs(ireq->rmt_port),
2322 TCP_SYN_RECV,
2323 0, 0, /* could print option size, but that is af dependent. */
2324 1, /* timers active (only the expire timer) */
2325 jiffies_to_clock_t(ttd),
2326 req->retrans,
2327 uid,
2328 0, /* non standard timer */
2329 0, /* open_requests have no inode */
2330 atomic_read(&sk->sk_refcnt),
2331 req);
2332 }
2333
2334 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
2335 {
2336 int timer_active;
2337 unsigned long timer_expires;
2338 struct tcp_sock *tp = tcp_sk(sp);
2339 const struct inet_connection_sock *icsk = inet_csk(sp);
2340 struct inet_sock *inet = inet_sk(sp);
2341 __be32 dest = inet->daddr;
2342 __be32 src = inet->rcv_saddr;
2343 __u16 destp = ntohs(inet->dport);
2344 __u16 srcp = ntohs(inet->sport);
2345
2346 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2347 timer_active = 1;
2348 timer_expires = icsk->icsk_timeout;
2349 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2350 timer_active = 4;
2351 timer_expires = icsk->icsk_timeout;
2352 } else if (timer_pending(&sp->sk_timer)) {
2353 timer_active = 2;
2354 timer_expires = sp->sk_timer.expires;
2355 } else {
2356 timer_active = 0;
2357 timer_expires = jiffies;
2358 }
2359
2360 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2361 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
2362 i, src, srcp, dest, destp, sp->sk_state,
2363 tp->write_seq - tp->snd_una,
2364 sp->sk_state == TCP_LISTEN ? sp->sk_ack_backlog :
2365 (tp->rcv_nxt - tp->copied_seq),
2366 timer_active,
2367 jiffies_to_clock_t(timer_expires - jiffies),
2368 icsk->icsk_retransmits,
2369 sock_i_uid(sp),
2370 icsk->icsk_probes_out,
2371 sock_i_ino(sp),
2372 atomic_read(&sp->sk_refcnt), sp,
2373 icsk->icsk_rto,
2374 icsk->icsk_ack.ato,
2375 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2376 tp->snd_cwnd,
2377 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
2378 }
2379
2380 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2381 char *tmpbuf, int i)
2382 {
2383 __be32 dest, src;
2384 __u16 destp, srcp;
2385 int ttd = tw->tw_ttd - jiffies;
2386
2387 if (ttd < 0)
2388 ttd = 0;
2389
2390 dest = tw->tw_daddr;
2391 src = tw->tw_rcv_saddr;
2392 destp = ntohs(tw->tw_dport);
2393 srcp = ntohs(tw->tw_sport);
2394
2395 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2396 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
2397 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2398 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2399 atomic_read(&tw->tw_refcnt), tw);
2400 }
2401
2402 #define TMPSZ 150
2403
2404 static int tcp4_seq_show(struct seq_file *seq, void *v)
2405 {
2406 struct tcp_iter_state* st;
2407 char tmpbuf[TMPSZ + 1];
2408
2409 if (v == SEQ_START_TOKEN) {
2410 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2411 " sl local_address rem_address st tx_queue "
2412 "rx_queue tr tm->when retrnsmt uid timeout "
2413 "inode");
2414 goto out;
2415 }
2416 st = seq->private;
2417
2418 switch (st->state) {
2419 case TCP_SEQ_STATE_LISTENING:
2420 case TCP_SEQ_STATE_ESTABLISHED:
2421 get_tcp4_sock(v, tmpbuf, st->num);
2422 break;
2423 case TCP_SEQ_STATE_OPENREQ:
2424 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
2425 break;
2426 case TCP_SEQ_STATE_TIME_WAIT:
2427 get_timewait4_sock(v, tmpbuf, st->num);
2428 break;
2429 }
2430 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
2431 out:
2432 return 0;
2433 }
2434
2435 static struct file_operations tcp4_seq_fops;
2436 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2437 .owner = THIS_MODULE,
2438 .name = "tcp",
2439 .family = AF_INET,
2440 .seq_show = tcp4_seq_show,
2441 .seq_fops = &tcp4_seq_fops,
2442 };
2443
2444 int __init tcp4_proc_init(void)
2445 {
2446 return tcp_proc_register(&tcp4_seq_afinfo);
2447 }
2448
2449 void tcp4_proc_exit(void)
2450 {
2451 tcp_proc_unregister(&tcp4_seq_afinfo);
2452 }
2453 #endif /* CONFIG_PROC_FS */
2454
2455 struct proto tcp_prot = {
2456 .name = "TCP",
2457 .owner = THIS_MODULE,
2458 .close = tcp_close,
2459 .connect = tcp_v4_connect,
2460 .disconnect = tcp_disconnect,
2461 .accept = inet_csk_accept,
2462 .ioctl = tcp_ioctl,
2463 .init = tcp_v4_init_sock,
2464 .destroy = tcp_v4_destroy_sock,
2465 .shutdown = tcp_shutdown,
2466 .setsockopt = tcp_setsockopt,
2467 .getsockopt = tcp_getsockopt,
2468 .sendmsg = tcp_sendmsg,
2469 .recvmsg = tcp_recvmsg,
2470 .backlog_rcv = tcp_v4_do_rcv,
2471 .hash = tcp_v4_hash,
2472 .unhash = tcp_unhash,
2473 .get_port = tcp_v4_get_port,
2474 .enter_memory_pressure = tcp_enter_memory_pressure,
2475 .sockets_allocated = &tcp_sockets_allocated,
2476 .orphan_count = &tcp_orphan_count,
2477 .memory_allocated = &tcp_memory_allocated,
2478 .memory_pressure = &tcp_memory_pressure,
2479 .sysctl_mem = sysctl_tcp_mem,
2480 .sysctl_wmem = sysctl_tcp_wmem,
2481 .sysctl_rmem = sysctl_tcp_rmem,
2482 .max_header = MAX_TCP_HEADER,
2483 .obj_size = sizeof(struct tcp_sock),
2484 .twsk_prot = &tcp_timewait_sock_ops,
2485 .rsk_prot = &tcp_request_sock_ops,
2486 #ifdef CONFIG_COMPAT
2487 .compat_setsockopt = compat_tcp_setsockopt,
2488 .compat_getsockopt = compat_tcp_getsockopt,
2489 #endif
2490 };
2491
2492 void __init tcp_v4_init(struct net_proto_family *ops)
2493 {
2494 if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW,
2495 IPPROTO_TCP) < 0)
2496 panic("Failed to create the TCP control socket.\n");
2497 }
2498
2499 EXPORT_SYMBOL(ipv4_specific);
2500 EXPORT_SYMBOL(tcp_hashinfo);
2501 EXPORT_SYMBOL(tcp_prot);
2502 EXPORT_SYMBOL(tcp_unhash);
2503 EXPORT_SYMBOL(tcp_v4_conn_request);
2504 EXPORT_SYMBOL(tcp_v4_connect);
2505 EXPORT_SYMBOL(tcp_v4_do_rcv);
2506 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2507 EXPORT_SYMBOL(tcp_v4_send_check);
2508 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2509
2510 #ifdef CONFIG_PROC_FS
2511 EXPORT_SYMBOL(tcp_proc_register);
2512 EXPORT_SYMBOL(tcp_proc_unregister);
2513 #endif
2514 EXPORT_SYMBOL(sysctl_local_port_range);
2515 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2516
This page took 0.090971 seconds and 5 git commands to generate.