Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83
84 #include <linux/crypto.h>
85 #include <linux/scatterlist.h>
86
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
96
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
99
100 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
101 {
102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103 ip_hdr(skb)->saddr,
104 tcp_hdr(skb)->dest,
105 tcp_hdr(skb)->source);
106 }
107
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
109 {
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112
113 /* With PAWS, it is safe from the viewpoint
114 of data integrity. Even without PAWS it is safe provided sequence
115 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
116
117 Actually, the idea is close to VJ's one, only timestamp cache is
118 held not per host, but per port pair and TW bucket is used as state
119 holder.
120
121 If TW bucket has been already destroyed we fall back to VJ's scheme
122 and use initial timestamp retrieved from peer table.
123 */
124 if (tcptw->tw_ts_recent_stamp &&
125 (twp == NULL || (sysctl_tcp_tw_reuse &&
126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 if (tp->write_seq == 0)
129 tp->write_seq = 1;
130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132 sock_hold(sktw);
133 return 1;
134 }
135
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
139
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
142 {
143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 struct inet_sock *inet = inet_sk(sk);
145 struct tcp_sock *tp = tcp_sk(sk);
146 __be16 orig_sport, orig_dport;
147 __be32 daddr, nexthop;
148 struct flowi4 *fl4;
149 struct rtable *rt;
150 int err;
151 struct ip_options_rcu *inet_opt;
152
153 if (addr_len < sizeof(struct sockaddr_in))
154 return -EINVAL;
155
156 if (usin->sin_family != AF_INET)
157 return -EAFNOSUPPORT;
158
159 nexthop = daddr = usin->sin_addr.s_addr;
160 inet_opt = rcu_dereference_protected(inet->inet_opt,
161 sock_owned_by_user(sk));
162 if (inet_opt && inet_opt->opt.srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet_opt->opt.faddr;
166 }
167
168 orig_sport = inet->inet_sport;
169 orig_dport = usin->sin_port;
170 fl4 = &inet->cork.fl.u.ip4;
171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173 IPPROTO_TCP,
174 orig_sport, orig_dport, sk, true);
175 if (IS_ERR(rt)) {
176 err = PTR_ERR(rt);
177 if (err == -ENETUNREACH)
178 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 return err;
180 }
181
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 ip_rt_put(rt);
184 return -ENETUNREACH;
185 }
186
187 if (!inet_opt || !inet_opt->opt.srr)
188 daddr = fl4->daddr;
189
190 if (!inet->inet_saddr)
191 inet->inet_saddr = fl4->saddr;
192 inet->inet_rcv_saddr = inet->inet_saddr;
193
194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
198 tp->write_seq = 0;
199 }
200
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
203 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
204 /*
205 * VJ's idea. We save last timestamp seen from
206 * the destination in peer table, when entering state
207 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
208 * when trying new connection.
209 */
210 if (peer) {
211 inet_peer_refcheck(peer);
212 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
213 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
214 tp->rx_opt.ts_recent = peer->tcp_ts;
215 }
216 }
217 }
218
219 inet->inet_dport = usin->sin_port;
220 inet->inet_daddr = daddr;
221
222 inet_csk(sk)->icsk_ext_hdr_len = 0;
223 if (inet_opt)
224 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
225
226 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
227
228 /* Socket identity is still unknown (sport may be zero).
229 * However we set state to SYN-SENT and not releasing socket
230 * lock select source port, enter ourselves into the hash tables and
231 * complete initialization after this.
232 */
233 tcp_set_state(sk, TCP_SYN_SENT);
234 err = inet_hash_connect(&tcp_death_row, sk);
235 if (err)
236 goto failure;
237
238 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
239 inet->inet_sport, inet->inet_dport, sk);
240 if (IS_ERR(rt)) {
241 err = PTR_ERR(rt);
242 rt = NULL;
243 goto failure;
244 }
245 /* OK, now commit destination to socket. */
246 sk->sk_gso_type = SKB_GSO_TCPV4;
247 sk_setup_caps(sk, &rt->dst);
248
249 if (!tp->write_seq)
250 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
251 inet->inet_daddr,
252 inet->inet_sport,
253 usin->sin_port);
254
255 inet->inet_id = tp->write_seq ^ jiffies;
256
257 err = tcp_connect(sk);
258 rt = NULL;
259 if (err)
260 goto failure;
261
262 return 0;
263
264 failure:
265 /*
266 * This unhashes the socket and releases the local port,
267 * if necessary.
268 */
269 tcp_set_state(sk, TCP_CLOSE);
270 ip_rt_put(rt);
271 sk->sk_route_caps = 0;
272 inet->inet_dport = 0;
273 return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278 * This routine does path mtu discovery as defined in RFC1191.
279 */
280 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
281 {
282 struct dst_entry *dst;
283 struct inet_sock *inet = inet_sk(sk);
284
285 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
286 * send out by Linux are always <576bytes so they should go through
287 * unfragmented).
288 */
289 if (sk->sk_state == TCP_LISTEN)
290 return;
291
292 /* We don't check in the destentry if pmtu discovery is forbidden
293 * on this route. We just assume that no packet_to_big packets
294 * are send back when pmtu discovery is not active.
295 * There is a small race when the user changes this flag in the
296 * route, but I think that's acceptable.
297 */
298 if ((dst = __sk_dst_check(sk, 0)) == NULL)
299 return;
300
301 dst->ops->update_pmtu(dst, mtu);
302
303 /* Something is about to be wrong... Remember soft error
304 * for the case, if this connection will not able to recover.
305 */
306 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
307 sk->sk_err_soft = EMSGSIZE;
308
309 mtu = dst_mtu(dst);
310
311 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
312 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
313 tcp_sync_mss(sk, mtu);
314
315 /* Resend the TCP packet because it's
316 * clear that the old packet has been
317 * dropped. This is the new "fast" path mtu
318 * discovery.
319 */
320 tcp_simple_retransmit(sk);
321 } /* else let the usual retransmit timer handle it */
322 }
323
324 /*
325 * This routine is called by the ICMP module when it gets some
326 * sort of error condition. If err < 0 then the socket should
327 * be closed and the error returned to the user. If err > 0
328 * it's just the icmp type << 8 | icmp code. After adjustment
329 * header points to the first 8 bytes of the tcp header. We need
330 * to find the appropriate port.
331 *
332 * The locking strategy used here is very "optimistic". When
333 * someone else accesses the socket the ICMP is just dropped
334 * and for some paths there is no check at all.
335 * A more general error queue to queue errors for later handling
336 * is probably better.
337 *
338 */
339
340 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
341 {
342 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
343 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
344 struct inet_connection_sock *icsk;
345 struct tcp_sock *tp;
346 struct inet_sock *inet;
347 const int type = icmp_hdr(icmp_skb)->type;
348 const int code = icmp_hdr(icmp_skb)->code;
349 struct sock *sk;
350 struct sk_buff *skb;
351 __u32 seq;
352 __u32 remaining;
353 int err;
354 struct net *net = dev_net(icmp_skb->dev);
355
356 if (icmp_skb->len < (iph->ihl << 2) + 8) {
357 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
358 return;
359 }
360
361 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
362 iph->saddr, th->source, inet_iif(icmp_skb));
363 if (!sk) {
364 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365 return;
366 }
367 if (sk->sk_state == TCP_TIME_WAIT) {
368 inet_twsk_put(inet_twsk(sk));
369 return;
370 }
371
372 bh_lock_sock(sk);
373 /* If too many ICMPs get dropped on busy
374 * servers this needs to be solved differently.
375 */
376 if (sock_owned_by_user(sk))
377 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
378
379 if (sk->sk_state == TCP_CLOSE)
380 goto out;
381
382 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
383 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
384 goto out;
385 }
386
387 icsk = inet_csk(sk);
388 tp = tcp_sk(sk);
389 seq = ntohl(th->seq);
390 if (sk->sk_state != TCP_LISTEN &&
391 !between(seq, tp->snd_una, tp->snd_nxt)) {
392 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393 goto out;
394 }
395
396 switch (type) {
397 case ICMP_SOURCE_QUENCH:
398 /* Just silently ignore these. */
399 goto out;
400 case ICMP_PARAMETERPROB:
401 err = EPROTO;
402 break;
403 case ICMP_DEST_UNREACH:
404 if (code > NR_ICMP_UNREACH)
405 goto out;
406
407 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
408 if (!sock_owned_by_user(sk))
409 do_pmtu_discovery(sk, iph, info);
410 goto out;
411 }
412
413 err = icmp_err_convert[code].errno;
414 /* check if icmp_skb allows revert of backoff
415 * (see draft-zimmermann-tcp-lcd) */
416 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
417 break;
418 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
419 !icsk->icsk_backoff)
420 break;
421
422 if (sock_owned_by_user(sk))
423 break;
424
425 icsk->icsk_backoff--;
426 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
427 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
428 tcp_bound_rto(sk);
429
430 skb = tcp_write_queue_head(sk);
431 BUG_ON(!skb);
432
433 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
434 tcp_time_stamp - TCP_SKB_CB(skb)->when);
435
436 if (remaining) {
437 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
438 remaining, TCP_RTO_MAX);
439 } else {
440 /* RTO revert clocked out retransmission.
441 * Will retransmit now */
442 tcp_retransmit_timer(sk);
443 }
444
445 break;
446 case ICMP_TIME_EXCEEDED:
447 err = EHOSTUNREACH;
448 break;
449 default:
450 goto out;
451 }
452
453 switch (sk->sk_state) {
454 struct request_sock *req, **prev;
455 case TCP_LISTEN:
456 if (sock_owned_by_user(sk))
457 goto out;
458
459 req = inet_csk_search_req(sk, &prev, th->dest,
460 iph->daddr, iph->saddr);
461 if (!req)
462 goto out;
463
464 /* ICMPs are not backlogged, hence we cannot get
465 an established socket here.
466 */
467 WARN_ON(req->sk);
468
469 if (seq != tcp_rsk(req)->snt_isn) {
470 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
471 goto out;
472 }
473
474 /*
475 * Still in SYN_RECV, just remove it silently.
476 * There is no good way to pass the error to the newly
477 * created socket, and POSIX does not want network
478 * errors returned from accept().
479 */
480 inet_csk_reqsk_queue_drop(sk, req, prev);
481 goto out;
482
483 case TCP_SYN_SENT:
484 case TCP_SYN_RECV: /* Cannot happen.
485 It can f.e. if SYNs crossed.
486 */
487 if (!sock_owned_by_user(sk)) {
488 sk->sk_err = err;
489
490 sk->sk_error_report(sk);
491
492 tcp_done(sk);
493 } else {
494 sk->sk_err_soft = err;
495 }
496 goto out;
497 }
498
499 /* If we've already connected we will keep trying
500 * until we time out, or the user gives up.
501 *
502 * rfc1122 4.2.3.9 allows to consider as hard errors
503 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
504 * but it is obsoleted by pmtu discovery).
505 *
506 * Note, that in modern internet, where routing is unreliable
507 * and in each dark corner broken firewalls sit, sending random
508 * errors ordered by their masters even this two messages finally lose
509 * their original sense (even Linux sends invalid PORT_UNREACHs)
510 *
511 * Now we are in compliance with RFCs.
512 * --ANK (980905)
513 */
514
515 inet = inet_sk(sk);
516 if (!sock_owned_by_user(sk) && inet->recverr) {
517 sk->sk_err = err;
518 sk->sk_error_report(sk);
519 } else { /* Only an error on timeout */
520 sk->sk_err_soft = err;
521 }
522
523 out:
524 bh_unlock_sock(sk);
525 sock_put(sk);
526 }
527
528 static void __tcp_v4_send_check(struct sk_buff *skb,
529 __be32 saddr, __be32 daddr)
530 {
531 struct tcphdr *th = tcp_hdr(skb);
532
533 if (skb->ip_summed == CHECKSUM_PARTIAL) {
534 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
535 skb->csum_start = skb_transport_header(skb) - skb->head;
536 skb->csum_offset = offsetof(struct tcphdr, check);
537 } else {
538 th->check = tcp_v4_check(skb->len, saddr, daddr,
539 csum_partial(th,
540 th->doff << 2,
541 skb->csum));
542 }
543 }
544
545 /* This routine computes an IPv4 TCP checksum. */
546 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
547 {
548 const struct inet_sock *inet = inet_sk(sk);
549
550 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
551 }
552 EXPORT_SYMBOL(tcp_v4_send_check);
553
554 int tcp_v4_gso_send_check(struct sk_buff *skb)
555 {
556 const struct iphdr *iph;
557 struct tcphdr *th;
558
559 if (!pskb_may_pull(skb, sizeof(*th)))
560 return -EINVAL;
561
562 iph = ip_hdr(skb);
563 th = tcp_hdr(skb);
564
565 th->check = 0;
566 skb->ip_summed = CHECKSUM_PARTIAL;
567 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
568 return 0;
569 }
570
571 /*
572 * This routine will send an RST to the other tcp.
573 *
574 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
575 * for reset.
576 * Answer: if a packet caused RST, it is not for a socket
577 * existing in our system, if it is matched to a socket,
578 * it is just duplicate segment or bug in other side's TCP.
579 * So that we build reply only basing on parameters
580 * arrived with segment.
581 * Exception: precedence violation. We do not implement it in any case.
582 */
583
584 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
585 {
586 const struct tcphdr *th = tcp_hdr(skb);
587 struct {
588 struct tcphdr th;
589 #ifdef CONFIG_TCP_MD5SIG
590 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
591 #endif
592 } rep;
593 struct ip_reply_arg arg;
594 #ifdef CONFIG_TCP_MD5SIG
595 struct tcp_md5sig_key *key;
596 const __u8 *hash_location = NULL;
597 unsigned char newhash[16];
598 int genhash;
599 struct sock *sk1 = NULL;
600 #endif
601 struct net *net;
602
603 /* Never send a reset in response to a reset. */
604 if (th->rst)
605 return;
606
607 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
608 return;
609
610 /* Swap the send and the receive. */
611 memset(&rep, 0, sizeof(rep));
612 rep.th.dest = th->source;
613 rep.th.source = th->dest;
614 rep.th.doff = sizeof(struct tcphdr) / 4;
615 rep.th.rst = 1;
616
617 if (th->ack) {
618 rep.th.seq = th->ack_seq;
619 } else {
620 rep.th.ack = 1;
621 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
622 skb->len - (th->doff << 2));
623 }
624
625 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
628
629 #ifdef CONFIG_TCP_MD5SIG
630 hash_location = tcp_parse_md5sig_option(th);
631 if (!sk && hash_location) {
632 /*
633 * active side is lost. Try to find listening socket through
634 * source port, and then find md5 key through listening socket.
635 * we are not loose security here:
636 * Incoming packet is checked with md5 hash with finding key,
637 * no RST generated if md5 hash doesn't match.
638 */
639 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
640 &tcp_hashinfo, ip_hdr(skb)->daddr,
641 ntohs(th->source), inet_iif(skb));
642 /* don't send rst if it can't find key */
643 if (!sk1)
644 return;
645 rcu_read_lock();
646 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
647 &ip_hdr(skb)->saddr, AF_INET);
648 if (!key)
649 goto release_sk1;
650
651 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
652 if (genhash || memcmp(hash_location, newhash, 16) != 0)
653 goto release_sk1;
654 } else {
655 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
656 &ip_hdr(skb)->saddr,
657 AF_INET) : NULL;
658 }
659
660 if (key) {
661 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
662 (TCPOPT_NOP << 16) |
663 (TCPOPT_MD5SIG << 8) |
664 TCPOLEN_MD5SIG);
665 /* Update length and the length the header thinks exists */
666 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
667 rep.th.doff = arg.iov[0].iov_len / 4;
668
669 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
670 key, ip_hdr(skb)->saddr,
671 ip_hdr(skb)->daddr, &rep.th);
672 }
673 #endif
674 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
675 ip_hdr(skb)->saddr, /* XXX */
676 arg.iov[0].iov_len, IPPROTO_TCP, 0);
677 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
678 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
679 /* When socket is gone, all binding information is lost.
680 * routing might fail in this case. using iif for oif to
681 * make sure we can deliver it
682 */
683 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
684
685 net = dev_net(skb_dst(skb)->dev);
686 arg.tos = ip_hdr(skb)->tos;
687 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
688 &arg, arg.iov[0].iov_len);
689
690 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
691 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
692
693 #ifdef CONFIG_TCP_MD5SIG
694 release_sk1:
695 if (sk1) {
696 rcu_read_unlock();
697 sock_put(sk1);
698 }
699 #endif
700 }
701
702 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
703 outside socket context is ugly, certainly. What can I do?
704 */
705
706 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
707 u32 win, u32 ts, int oif,
708 struct tcp_md5sig_key *key,
709 int reply_flags, u8 tos)
710 {
711 const struct tcphdr *th = tcp_hdr(skb);
712 struct {
713 struct tcphdr th;
714 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
715 #ifdef CONFIG_TCP_MD5SIG
716 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
717 #endif
718 ];
719 } rep;
720 struct ip_reply_arg arg;
721 struct net *net = dev_net(skb_dst(skb)->dev);
722
723 memset(&rep.th, 0, sizeof(struct tcphdr));
724 memset(&arg, 0, sizeof(arg));
725
726 arg.iov[0].iov_base = (unsigned char *)&rep;
727 arg.iov[0].iov_len = sizeof(rep.th);
728 if (ts) {
729 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
730 (TCPOPT_TIMESTAMP << 8) |
731 TCPOLEN_TIMESTAMP);
732 rep.opt[1] = htonl(tcp_time_stamp);
733 rep.opt[2] = htonl(ts);
734 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
735 }
736
737 /* Swap the send and the receive. */
738 rep.th.dest = th->source;
739 rep.th.source = th->dest;
740 rep.th.doff = arg.iov[0].iov_len / 4;
741 rep.th.seq = htonl(seq);
742 rep.th.ack_seq = htonl(ack);
743 rep.th.ack = 1;
744 rep.th.window = htons(win);
745
746 #ifdef CONFIG_TCP_MD5SIG
747 if (key) {
748 int offset = (ts) ? 3 : 0;
749
750 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
751 (TCPOPT_NOP << 16) |
752 (TCPOPT_MD5SIG << 8) |
753 TCPOLEN_MD5SIG);
754 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
755 rep.th.doff = arg.iov[0].iov_len/4;
756
757 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
758 key, ip_hdr(skb)->saddr,
759 ip_hdr(skb)->daddr, &rep.th);
760 }
761 #endif
762 arg.flags = reply_flags;
763 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
764 ip_hdr(skb)->saddr, /* XXX */
765 arg.iov[0].iov_len, IPPROTO_TCP, 0);
766 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
767 if (oif)
768 arg.bound_dev_if = oif;
769 arg.tos = tos;
770 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
771 &arg, arg.iov[0].iov_len);
772
773 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
774 }
775
776 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
777 {
778 struct inet_timewait_sock *tw = inet_twsk(sk);
779 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
780
781 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
782 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
783 tcptw->tw_ts_recent,
784 tw->tw_bound_dev_if,
785 tcp_twsk_md5_key(tcptw),
786 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
787 tw->tw_tos
788 );
789
790 inet_twsk_put(tw);
791 }
792
793 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
794 struct request_sock *req)
795 {
796 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
797 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
798 req->ts_recent,
799 0,
800 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
801 AF_INET),
802 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
803 ip_hdr(skb)->tos);
804 }
805
806 /*
807 * Send a SYN-ACK after having received a SYN.
808 * This still operates on a request_sock only, not on a big
809 * socket.
810 */
811 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
812 struct request_sock *req,
813 struct request_values *rvp)
814 {
815 const struct inet_request_sock *ireq = inet_rsk(req);
816 struct flowi4 fl4;
817 int err = -1;
818 struct sk_buff * skb;
819
820 /* First, grab a route. */
821 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
822 return -1;
823
824 skb = tcp_make_synack(sk, dst, req, rvp);
825
826 if (skb) {
827 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
828
829 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
830 ireq->rmt_addr,
831 ireq->opt);
832 err = net_xmit_eval(err);
833 }
834
835 dst_release(dst);
836 return err;
837 }
838
839 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
840 struct request_values *rvp)
841 {
842 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
843 return tcp_v4_send_synack(sk, NULL, req, rvp);
844 }
845
846 /*
847 * IPv4 request_sock destructor.
848 */
849 static void tcp_v4_reqsk_destructor(struct request_sock *req)
850 {
851 kfree(inet_rsk(req)->opt);
852 }
853
854 /*
855 * Return 1 if a syncookie should be sent
856 */
857 int tcp_syn_flood_action(struct sock *sk,
858 const struct sk_buff *skb,
859 const char *proto)
860 {
861 const char *msg = "Dropping request";
862 int want_cookie = 0;
863 struct listen_sock *lopt;
864
865
866
867 #ifdef CONFIG_SYN_COOKIES
868 if (sysctl_tcp_syncookies) {
869 msg = "Sending cookies";
870 want_cookie = 1;
871 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
872 } else
873 #endif
874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
875
876 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
877 if (!lopt->synflood_warned) {
878 lopt->synflood_warned = 1;
879 pr_info("%s: Possible SYN flooding on port %d. %s. "
880 " Check SNMP counters.\n",
881 proto, ntohs(tcp_hdr(skb)->dest), msg);
882 }
883 return want_cookie;
884 }
885 EXPORT_SYMBOL(tcp_syn_flood_action);
886
887 /*
888 * Save and compile IPv4 options into the request_sock if needed.
889 */
890 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
891 struct sk_buff *skb)
892 {
893 const struct ip_options *opt = &(IPCB(skb)->opt);
894 struct ip_options_rcu *dopt = NULL;
895
896 if (opt && opt->optlen) {
897 int opt_size = sizeof(*dopt) + opt->optlen;
898
899 dopt = kmalloc(opt_size, GFP_ATOMIC);
900 if (dopt) {
901 if (ip_options_echo(&dopt->opt, skb)) {
902 kfree(dopt);
903 dopt = NULL;
904 }
905 }
906 }
907 return dopt;
908 }
909
910 #ifdef CONFIG_TCP_MD5SIG
911 /*
912 * RFC2385 MD5 checksumming requires a mapping of
913 * IP address->MD5 Key.
914 * We need to maintain these in the sk structure.
915 */
916
917 /* Find the Key structure for an address. */
918 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
919 const union tcp_md5_addr *addr,
920 int family)
921 {
922 struct tcp_sock *tp = tcp_sk(sk);
923 struct tcp_md5sig_key *key;
924 struct hlist_node *pos;
925 unsigned int size = sizeof(struct in_addr);
926 struct tcp_md5sig_info *md5sig;
927
928 /* caller either holds rcu_read_lock() or socket lock */
929 md5sig = rcu_dereference_check(tp->md5sig_info,
930 sock_owned_by_user(sk));
931 if (!md5sig)
932 return NULL;
933 #if IS_ENABLED(CONFIG_IPV6)
934 if (family == AF_INET6)
935 size = sizeof(struct in6_addr);
936 #endif
937 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
938 if (key->family != family)
939 continue;
940 if (!memcmp(&key->addr, addr, size))
941 return key;
942 }
943 return NULL;
944 }
945 EXPORT_SYMBOL(tcp_md5_do_lookup);
946
947 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
948 struct sock *addr_sk)
949 {
950 union tcp_md5_addr *addr;
951
952 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
953 return tcp_md5_do_lookup(sk, addr, AF_INET);
954 }
955 EXPORT_SYMBOL(tcp_v4_md5_lookup);
956
957 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
958 struct request_sock *req)
959 {
960 union tcp_md5_addr *addr;
961
962 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
963 return tcp_md5_do_lookup(sk, addr, AF_INET);
964 }
965
966 /* This can be called on a newly created socket, from other files */
967 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
968 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
969 {
970 /* Add Key to the list */
971 struct tcp_md5sig_key *key;
972 struct tcp_sock *tp = tcp_sk(sk);
973 struct tcp_md5sig_info *md5sig;
974
975 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
976 if (key) {
977 /* Pre-existing entry - just update that one. */
978 memcpy(key->key, newkey, newkeylen);
979 key->keylen = newkeylen;
980 return 0;
981 }
982
983 md5sig = rcu_dereference_protected(tp->md5sig_info,
984 sock_owned_by_user(sk));
985 if (!md5sig) {
986 md5sig = kmalloc(sizeof(*md5sig), gfp);
987 if (!md5sig)
988 return -ENOMEM;
989
990 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
991 INIT_HLIST_HEAD(&md5sig->head);
992 rcu_assign_pointer(tp->md5sig_info, md5sig);
993 }
994
995 key = sock_kmalloc(sk, sizeof(*key), gfp);
996 if (!key)
997 return -ENOMEM;
998 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
999 sock_kfree_s(sk, key, sizeof(*key));
1000 return -ENOMEM;
1001 }
1002
1003 memcpy(key->key, newkey, newkeylen);
1004 key->keylen = newkeylen;
1005 key->family = family;
1006 memcpy(&key->addr, addr,
1007 (family == AF_INET6) ? sizeof(struct in6_addr) :
1008 sizeof(struct in_addr));
1009 hlist_add_head_rcu(&key->node, &md5sig->head);
1010 return 0;
1011 }
1012 EXPORT_SYMBOL(tcp_md5_do_add);
1013
1014 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1015 {
1016 struct tcp_sock *tp = tcp_sk(sk);
1017 struct tcp_md5sig_key *key;
1018 struct tcp_md5sig_info *md5sig;
1019
1020 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1021 if (!key)
1022 return -ENOENT;
1023 hlist_del_rcu(&key->node);
1024 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1025 kfree_rcu(key, rcu);
1026 md5sig = rcu_dereference_protected(tp->md5sig_info,
1027 sock_owned_by_user(sk));
1028 if (hlist_empty(&md5sig->head))
1029 tcp_free_md5sig_pool();
1030 return 0;
1031 }
1032 EXPORT_SYMBOL(tcp_md5_do_del);
1033
1034 void tcp_clear_md5_list(struct sock *sk)
1035 {
1036 struct tcp_sock *tp = tcp_sk(sk);
1037 struct tcp_md5sig_key *key;
1038 struct hlist_node *pos, *n;
1039 struct tcp_md5sig_info *md5sig;
1040
1041 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1042
1043 if (!hlist_empty(&md5sig->head))
1044 tcp_free_md5sig_pool();
1045 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1046 hlist_del_rcu(&key->node);
1047 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1048 kfree_rcu(key, rcu);
1049 }
1050 }
1051
1052 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1053 int optlen)
1054 {
1055 struct tcp_md5sig cmd;
1056 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1057
1058 if (optlen < sizeof(cmd))
1059 return -EINVAL;
1060
1061 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1062 return -EFAULT;
1063
1064 if (sin->sin_family != AF_INET)
1065 return -EINVAL;
1066
1067 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1068 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1069 AF_INET);
1070
1071 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1072 return -EINVAL;
1073
1074 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1076 GFP_KERNEL);
1077 }
1078
1079 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1080 __be32 daddr, __be32 saddr, int nbytes)
1081 {
1082 struct tcp4_pseudohdr *bp;
1083 struct scatterlist sg;
1084
1085 bp = &hp->md5_blk.ip4;
1086
1087 /*
1088 * 1. the TCP pseudo-header (in the order: source IP address,
1089 * destination IP address, zero-padded protocol number, and
1090 * segment length)
1091 */
1092 bp->saddr = saddr;
1093 bp->daddr = daddr;
1094 bp->pad = 0;
1095 bp->protocol = IPPROTO_TCP;
1096 bp->len = cpu_to_be16(nbytes);
1097
1098 sg_init_one(&sg, bp, sizeof(*bp));
1099 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1100 }
1101
1102 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1103 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1104 {
1105 struct tcp_md5sig_pool *hp;
1106 struct hash_desc *desc;
1107
1108 hp = tcp_get_md5sig_pool();
1109 if (!hp)
1110 goto clear_hash_noput;
1111 desc = &hp->md5_desc;
1112
1113 if (crypto_hash_init(desc))
1114 goto clear_hash;
1115 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1116 goto clear_hash;
1117 if (tcp_md5_hash_header(hp, th))
1118 goto clear_hash;
1119 if (tcp_md5_hash_key(hp, key))
1120 goto clear_hash;
1121 if (crypto_hash_final(desc, md5_hash))
1122 goto clear_hash;
1123
1124 tcp_put_md5sig_pool();
1125 return 0;
1126
1127 clear_hash:
1128 tcp_put_md5sig_pool();
1129 clear_hash_noput:
1130 memset(md5_hash, 0, 16);
1131 return 1;
1132 }
1133
1134 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1135 const struct sock *sk, const struct request_sock *req,
1136 const struct sk_buff *skb)
1137 {
1138 struct tcp_md5sig_pool *hp;
1139 struct hash_desc *desc;
1140 const struct tcphdr *th = tcp_hdr(skb);
1141 __be32 saddr, daddr;
1142
1143 if (sk) {
1144 saddr = inet_sk(sk)->inet_saddr;
1145 daddr = inet_sk(sk)->inet_daddr;
1146 } else if (req) {
1147 saddr = inet_rsk(req)->loc_addr;
1148 daddr = inet_rsk(req)->rmt_addr;
1149 } else {
1150 const struct iphdr *iph = ip_hdr(skb);
1151 saddr = iph->saddr;
1152 daddr = iph->daddr;
1153 }
1154
1155 hp = tcp_get_md5sig_pool();
1156 if (!hp)
1157 goto clear_hash_noput;
1158 desc = &hp->md5_desc;
1159
1160 if (crypto_hash_init(desc))
1161 goto clear_hash;
1162
1163 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1164 goto clear_hash;
1165 if (tcp_md5_hash_header(hp, th))
1166 goto clear_hash;
1167 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1168 goto clear_hash;
1169 if (tcp_md5_hash_key(hp, key))
1170 goto clear_hash;
1171 if (crypto_hash_final(desc, md5_hash))
1172 goto clear_hash;
1173
1174 tcp_put_md5sig_pool();
1175 return 0;
1176
1177 clear_hash:
1178 tcp_put_md5sig_pool();
1179 clear_hash_noput:
1180 memset(md5_hash, 0, 16);
1181 return 1;
1182 }
1183 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1184
1185 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1186 {
1187 /*
1188 * This gets called for each TCP segment that arrives
1189 * so we want to be efficient.
1190 * We have 3 drop cases:
1191 * o No MD5 hash and one expected.
1192 * o MD5 hash and we're not expecting one.
1193 * o MD5 hash and its wrong.
1194 */
1195 const __u8 *hash_location = NULL;
1196 struct tcp_md5sig_key *hash_expected;
1197 const struct iphdr *iph = ip_hdr(skb);
1198 const struct tcphdr *th = tcp_hdr(skb);
1199 int genhash;
1200 unsigned char newhash[16];
1201
1202 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1203 AF_INET);
1204 hash_location = tcp_parse_md5sig_option(th);
1205
1206 /* We've parsed the options - do we have a hash? */
1207 if (!hash_expected && !hash_location)
1208 return 0;
1209
1210 if (hash_expected && !hash_location) {
1211 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1212 return 1;
1213 }
1214
1215 if (!hash_expected && hash_location) {
1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1217 return 1;
1218 }
1219
1220 /* Okay, so this is hash_expected and hash_location -
1221 * so we need to calculate the checksum.
1222 */
1223 genhash = tcp_v4_md5_hash_skb(newhash,
1224 hash_expected,
1225 NULL, NULL, skb);
1226
1227 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1228 if (net_ratelimit()) {
1229 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1230 &iph->saddr, ntohs(th->source),
1231 &iph->daddr, ntohs(th->dest),
1232 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1233 }
1234 return 1;
1235 }
1236 return 0;
1237 }
1238
1239 #endif
1240
1241 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1242 .family = PF_INET,
1243 .obj_size = sizeof(struct tcp_request_sock),
1244 .rtx_syn_ack = tcp_v4_rtx_synack,
1245 .send_ack = tcp_v4_reqsk_send_ack,
1246 .destructor = tcp_v4_reqsk_destructor,
1247 .send_reset = tcp_v4_send_reset,
1248 .syn_ack_timeout = tcp_syn_ack_timeout,
1249 };
1250
1251 #ifdef CONFIG_TCP_MD5SIG
1252 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1253 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1254 .calc_md5_hash = tcp_v4_md5_hash_skb,
1255 };
1256 #endif
1257
1258 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1259 {
1260 struct tcp_extend_values tmp_ext;
1261 struct tcp_options_received tmp_opt;
1262 const u8 *hash_location;
1263 struct request_sock *req;
1264 struct inet_request_sock *ireq;
1265 struct tcp_sock *tp = tcp_sk(sk);
1266 struct dst_entry *dst = NULL;
1267 __be32 saddr = ip_hdr(skb)->saddr;
1268 __be32 daddr = ip_hdr(skb)->daddr;
1269 __u32 isn = TCP_SKB_CB(skb)->when;
1270 int want_cookie = 0;
1271
1272 /* Never answer to SYNs send to broadcast or multicast */
1273 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1274 goto drop;
1275
1276 /* TW buckets are converted to open requests without
1277 * limitations, they conserve resources and peer is
1278 * evidently real one.
1279 */
1280 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1281 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1282 if (!want_cookie)
1283 goto drop;
1284 }
1285
1286 /* Accept backlog is full. If we have already queued enough
1287 * of warm entries in syn queue, drop request. It is better than
1288 * clogging syn queue with openreqs with exponentially increasing
1289 * timeout.
1290 */
1291 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1292 goto drop;
1293
1294 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1295 if (!req)
1296 goto drop;
1297
1298 #ifdef CONFIG_TCP_MD5SIG
1299 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1300 #endif
1301
1302 tcp_clear_options(&tmp_opt);
1303 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1304 tmp_opt.user_mss = tp->rx_opt.user_mss;
1305 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1306
1307 if (tmp_opt.cookie_plus > 0 &&
1308 tmp_opt.saw_tstamp &&
1309 !tp->rx_opt.cookie_out_never &&
1310 (sysctl_tcp_cookie_size > 0 ||
1311 (tp->cookie_values != NULL &&
1312 tp->cookie_values->cookie_desired > 0))) {
1313 u8 *c;
1314 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1315 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1316
1317 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1318 goto drop_and_release;
1319
1320 /* Secret recipe starts with IP addresses */
1321 *mess++ ^= (__force u32)daddr;
1322 *mess++ ^= (__force u32)saddr;
1323
1324 /* plus variable length Initiator Cookie */
1325 c = (u8 *)mess;
1326 while (l-- > 0)
1327 *c++ ^= *hash_location++;
1328
1329 want_cookie = 0; /* not our kind of cookie */
1330 tmp_ext.cookie_out_never = 0; /* false */
1331 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1332 } else if (!tp->rx_opt.cookie_in_always) {
1333 /* redundant indications, but ensure initialization. */
1334 tmp_ext.cookie_out_never = 1; /* true */
1335 tmp_ext.cookie_plus = 0;
1336 } else {
1337 goto drop_and_release;
1338 }
1339 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1340
1341 if (want_cookie && !tmp_opt.saw_tstamp)
1342 tcp_clear_options(&tmp_opt);
1343
1344 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1345 tcp_openreq_init(req, &tmp_opt, skb);
1346
1347 ireq = inet_rsk(req);
1348 ireq->loc_addr = daddr;
1349 ireq->rmt_addr = saddr;
1350 ireq->no_srccheck = inet_sk(sk)->transparent;
1351 ireq->opt = tcp_v4_save_options(sk, skb);
1352
1353 if (security_inet_conn_request(sk, skb, req))
1354 goto drop_and_free;
1355
1356 if (!want_cookie || tmp_opt.tstamp_ok)
1357 TCP_ECN_create_request(req, tcp_hdr(skb));
1358
1359 if (want_cookie) {
1360 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1361 req->cookie_ts = tmp_opt.tstamp_ok;
1362 } else if (!isn) {
1363 struct inet_peer *peer = NULL;
1364 struct flowi4 fl4;
1365
1366 /* VJ's idea. We save last timestamp seen
1367 * from the destination in peer table, when entering
1368 * state TIME-WAIT, and check against it before
1369 * accepting new connection request.
1370 *
1371 * If "isn" is not zero, this request hit alive
1372 * timewait bucket, so that all the necessary checks
1373 * are made in the function processing timewait state.
1374 */
1375 if (tmp_opt.saw_tstamp &&
1376 tcp_death_row.sysctl_tw_recycle &&
1377 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1378 fl4.daddr == saddr &&
1379 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1380 inet_peer_refcheck(peer);
1381 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1382 (s32)(peer->tcp_ts - req->ts_recent) >
1383 TCP_PAWS_WINDOW) {
1384 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1385 goto drop_and_release;
1386 }
1387 }
1388 /* Kill the following clause, if you dislike this way. */
1389 else if (!sysctl_tcp_syncookies &&
1390 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1391 (sysctl_max_syn_backlog >> 2)) &&
1392 (!peer || !peer->tcp_ts_stamp) &&
1393 (!dst || !dst_metric(dst, RTAX_RTT))) {
1394 /* Without syncookies last quarter of
1395 * backlog is filled with destinations,
1396 * proven to be alive.
1397 * It means that we continue to communicate
1398 * to destinations, already remembered
1399 * to the moment of synflood.
1400 */
1401 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1402 &saddr, ntohs(tcp_hdr(skb)->source));
1403 goto drop_and_release;
1404 }
1405
1406 isn = tcp_v4_init_sequence(skb);
1407 }
1408 tcp_rsk(req)->snt_isn = isn;
1409 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1410
1411 if (tcp_v4_send_synack(sk, dst, req,
1412 (struct request_values *)&tmp_ext) ||
1413 want_cookie)
1414 goto drop_and_free;
1415
1416 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1417 return 0;
1418
1419 drop_and_release:
1420 dst_release(dst);
1421 drop_and_free:
1422 reqsk_free(req);
1423 drop:
1424 return 0;
1425 }
1426 EXPORT_SYMBOL(tcp_v4_conn_request);
1427
1428
1429 /*
1430 * The three way handshake has completed - we got a valid synack -
1431 * now create the new socket.
1432 */
1433 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1434 struct request_sock *req,
1435 struct dst_entry *dst)
1436 {
1437 struct inet_request_sock *ireq;
1438 struct inet_sock *newinet;
1439 struct tcp_sock *newtp;
1440 struct sock *newsk;
1441 #ifdef CONFIG_TCP_MD5SIG
1442 struct tcp_md5sig_key *key;
1443 #endif
1444 struct ip_options_rcu *inet_opt;
1445
1446 if (sk_acceptq_is_full(sk))
1447 goto exit_overflow;
1448
1449 newsk = tcp_create_openreq_child(sk, req, skb);
1450 if (!newsk)
1451 goto exit_nonewsk;
1452
1453 newsk->sk_gso_type = SKB_GSO_TCPV4;
1454
1455 newtp = tcp_sk(newsk);
1456 newinet = inet_sk(newsk);
1457 ireq = inet_rsk(req);
1458 newinet->inet_daddr = ireq->rmt_addr;
1459 newinet->inet_rcv_saddr = ireq->loc_addr;
1460 newinet->inet_saddr = ireq->loc_addr;
1461 inet_opt = ireq->opt;
1462 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1463 ireq->opt = NULL;
1464 newinet->mc_index = inet_iif(skb);
1465 newinet->mc_ttl = ip_hdr(skb)->ttl;
1466 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1467 if (inet_opt)
1468 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1469 newinet->inet_id = newtp->write_seq ^ jiffies;
1470
1471 if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1472 goto put_and_exit;
1473
1474 sk_setup_caps(newsk, dst);
1475
1476 tcp_mtup_init(newsk);
1477 tcp_sync_mss(newsk, dst_mtu(dst));
1478 newtp->advmss = dst_metric_advmss(dst);
1479 if (tcp_sk(sk)->rx_opt.user_mss &&
1480 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1481 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1482
1483 tcp_initialize_rcv_mss(newsk);
1484 if (tcp_rsk(req)->snt_synack)
1485 tcp_valid_rtt_meas(newsk,
1486 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1487 newtp->total_retrans = req->retrans;
1488
1489 #ifdef CONFIG_TCP_MD5SIG
1490 /* Copy over the MD5 key from the original socket */
1491 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1492 AF_INET);
1493 if (key != NULL) {
1494 /*
1495 * We're using one, so create a matching key
1496 * on the newsk structure. If we fail to get
1497 * memory, then we end up not copying the key
1498 * across. Shucks.
1499 */
1500 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1501 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1502 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1503 }
1504 #endif
1505
1506 if (__inet_inherit_port(sk, newsk) < 0)
1507 goto put_and_exit;
1508 __inet_hash_nolisten(newsk, NULL);
1509
1510 return newsk;
1511
1512 exit_overflow:
1513 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1514 exit_nonewsk:
1515 dst_release(dst);
1516 exit:
1517 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1518 return NULL;
1519 put_and_exit:
1520 tcp_clear_xmit_timers(newsk);
1521 tcp_cleanup_congestion_control(newsk);
1522 bh_unlock_sock(newsk);
1523 sock_put(newsk);
1524 goto exit;
1525 }
1526 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1527
1528 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1529 {
1530 struct tcphdr *th = tcp_hdr(skb);
1531 const struct iphdr *iph = ip_hdr(skb);
1532 struct sock *nsk;
1533 struct request_sock **prev;
1534 /* Find possible connection requests. */
1535 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1536 iph->saddr, iph->daddr);
1537 if (req)
1538 return tcp_check_req(sk, skb, req, prev);
1539
1540 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1541 th->source, iph->daddr, th->dest, inet_iif(skb));
1542
1543 if (nsk) {
1544 if (nsk->sk_state != TCP_TIME_WAIT) {
1545 bh_lock_sock(nsk);
1546 return nsk;
1547 }
1548 inet_twsk_put(inet_twsk(nsk));
1549 return NULL;
1550 }
1551
1552 #ifdef CONFIG_SYN_COOKIES
1553 if (!th->syn)
1554 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1555 #endif
1556 return sk;
1557 }
1558
1559 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1560 {
1561 const struct iphdr *iph = ip_hdr(skb);
1562
1563 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1564 if (!tcp_v4_check(skb->len, iph->saddr,
1565 iph->daddr, skb->csum)) {
1566 skb->ip_summed = CHECKSUM_UNNECESSARY;
1567 return 0;
1568 }
1569 }
1570
1571 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1572 skb->len, IPPROTO_TCP, 0);
1573
1574 if (skb->len <= 76) {
1575 return __skb_checksum_complete(skb);
1576 }
1577 return 0;
1578 }
1579
1580
1581 /* The socket must have it's spinlock held when we get
1582 * here.
1583 *
1584 * We have a potential double-lock case here, so even when
1585 * doing backlog processing we use the BH locking scheme.
1586 * This is because we cannot sleep with the original spinlock
1587 * held.
1588 */
1589 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1590 {
1591 struct sock *rsk;
1592 #ifdef CONFIG_TCP_MD5SIG
1593 /*
1594 * We really want to reject the packet as early as possible
1595 * if:
1596 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1597 * o There is an MD5 option and we're not expecting one
1598 */
1599 if (tcp_v4_inbound_md5_hash(sk, skb))
1600 goto discard;
1601 #endif
1602
1603 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1604 sock_rps_save_rxhash(sk, skb);
1605 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1606 rsk = sk;
1607 goto reset;
1608 }
1609 return 0;
1610 }
1611
1612 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1613 goto csum_err;
1614
1615 if (sk->sk_state == TCP_LISTEN) {
1616 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1617 if (!nsk)
1618 goto discard;
1619
1620 if (nsk != sk) {
1621 sock_rps_save_rxhash(nsk, skb);
1622 if (tcp_child_process(sk, nsk, skb)) {
1623 rsk = nsk;
1624 goto reset;
1625 }
1626 return 0;
1627 }
1628 } else
1629 sock_rps_save_rxhash(sk, skb);
1630
1631 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1632 rsk = sk;
1633 goto reset;
1634 }
1635 return 0;
1636
1637 reset:
1638 tcp_v4_send_reset(rsk, skb);
1639 discard:
1640 kfree_skb(skb);
1641 /* Be careful here. If this function gets more complicated and
1642 * gcc suffers from register pressure on the x86, sk (in %ebx)
1643 * might be destroyed here. This current version compiles correctly,
1644 * but you have been warned.
1645 */
1646 return 0;
1647
1648 csum_err:
1649 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1650 goto discard;
1651 }
1652 EXPORT_SYMBOL(tcp_v4_do_rcv);
1653
1654 /*
1655 * From tcp_input.c
1656 */
1657
1658 int tcp_v4_rcv(struct sk_buff *skb)
1659 {
1660 const struct iphdr *iph;
1661 const struct tcphdr *th;
1662 struct sock *sk;
1663 int ret;
1664 struct net *net = dev_net(skb->dev);
1665
1666 if (skb->pkt_type != PACKET_HOST)
1667 goto discard_it;
1668
1669 /* Count it even if it's bad */
1670 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1671
1672 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1673 goto discard_it;
1674
1675 th = tcp_hdr(skb);
1676
1677 if (th->doff < sizeof(struct tcphdr) / 4)
1678 goto bad_packet;
1679 if (!pskb_may_pull(skb, th->doff * 4))
1680 goto discard_it;
1681
1682 /* An explanation is required here, I think.
1683 * Packet length and doff are validated by header prediction,
1684 * provided case of th->doff==0 is eliminated.
1685 * So, we defer the checks. */
1686 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1687 goto bad_packet;
1688
1689 th = tcp_hdr(skb);
1690 iph = ip_hdr(skb);
1691 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1692 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1693 skb->len - th->doff * 4);
1694 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1695 TCP_SKB_CB(skb)->when = 0;
1696 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1697 TCP_SKB_CB(skb)->sacked = 0;
1698
1699 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1700 if (!sk)
1701 goto no_tcp_socket;
1702
1703 process:
1704 if (sk->sk_state == TCP_TIME_WAIT)
1705 goto do_time_wait;
1706
1707 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1708 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1709 goto discard_and_relse;
1710 }
1711
1712 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1713 goto discard_and_relse;
1714 nf_reset(skb);
1715
1716 if (sk_filter(sk, skb))
1717 goto discard_and_relse;
1718
1719 skb->dev = NULL;
1720
1721 bh_lock_sock_nested(sk);
1722 ret = 0;
1723 if (!sock_owned_by_user(sk)) {
1724 #ifdef CONFIG_NET_DMA
1725 struct tcp_sock *tp = tcp_sk(sk);
1726 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1727 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1728 if (tp->ucopy.dma_chan)
1729 ret = tcp_v4_do_rcv(sk, skb);
1730 else
1731 #endif
1732 {
1733 if (!tcp_prequeue(sk, skb))
1734 ret = tcp_v4_do_rcv(sk, skb);
1735 }
1736 } else if (unlikely(sk_add_backlog(sk, skb))) {
1737 bh_unlock_sock(sk);
1738 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1739 goto discard_and_relse;
1740 }
1741 bh_unlock_sock(sk);
1742
1743 sock_put(sk);
1744
1745 return ret;
1746
1747 no_tcp_socket:
1748 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1749 goto discard_it;
1750
1751 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1752 bad_packet:
1753 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1754 } else {
1755 tcp_v4_send_reset(NULL, skb);
1756 }
1757
1758 discard_it:
1759 /* Discard frame. */
1760 kfree_skb(skb);
1761 return 0;
1762
1763 discard_and_relse:
1764 sock_put(sk);
1765 goto discard_it;
1766
1767 do_time_wait:
1768 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1769 inet_twsk_put(inet_twsk(sk));
1770 goto discard_it;
1771 }
1772
1773 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1774 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1775 inet_twsk_put(inet_twsk(sk));
1776 goto discard_it;
1777 }
1778 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1779 case TCP_TW_SYN: {
1780 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1781 &tcp_hashinfo,
1782 iph->daddr, th->dest,
1783 inet_iif(skb));
1784 if (sk2) {
1785 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1786 inet_twsk_put(inet_twsk(sk));
1787 sk = sk2;
1788 goto process;
1789 }
1790 /* Fall through to ACK */
1791 }
1792 case TCP_TW_ACK:
1793 tcp_v4_timewait_ack(sk, skb);
1794 break;
1795 case TCP_TW_RST:
1796 goto no_tcp_socket;
1797 case TCP_TW_SUCCESS:;
1798 }
1799 goto discard_it;
1800 }
1801
1802 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1803 {
1804 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1805 struct inet_sock *inet = inet_sk(sk);
1806 struct inet_peer *peer;
1807
1808 if (!rt ||
1809 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1810 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1811 *release_it = true;
1812 } else {
1813 if (!rt->peer)
1814 rt_bind_peer(rt, inet->inet_daddr, 1);
1815 peer = rt->peer;
1816 *release_it = false;
1817 }
1818
1819 return peer;
1820 }
1821 EXPORT_SYMBOL(tcp_v4_get_peer);
1822
1823 void *tcp_v4_tw_get_peer(struct sock *sk)
1824 {
1825 const struct inet_timewait_sock *tw = inet_twsk(sk);
1826
1827 return inet_getpeer_v4(tw->tw_daddr, 1);
1828 }
1829 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1830
1831 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1832 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1833 .twsk_unique = tcp_twsk_unique,
1834 .twsk_destructor= tcp_twsk_destructor,
1835 .twsk_getpeer = tcp_v4_tw_get_peer,
1836 };
1837
1838 const struct inet_connection_sock_af_ops ipv4_specific = {
1839 .queue_xmit = ip_queue_xmit,
1840 .send_check = tcp_v4_send_check,
1841 .rebuild_header = inet_sk_rebuild_header,
1842 .conn_request = tcp_v4_conn_request,
1843 .syn_recv_sock = tcp_v4_syn_recv_sock,
1844 .get_peer = tcp_v4_get_peer,
1845 .net_header_len = sizeof(struct iphdr),
1846 .setsockopt = ip_setsockopt,
1847 .getsockopt = ip_getsockopt,
1848 .addr2sockaddr = inet_csk_addr2sockaddr,
1849 .sockaddr_len = sizeof(struct sockaddr_in),
1850 .bind_conflict = inet_csk_bind_conflict,
1851 #ifdef CONFIG_COMPAT
1852 .compat_setsockopt = compat_ip_setsockopt,
1853 .compat_getsockopt = compat_ip_getsockopt,
1854 #endif
1855 };
1856 EXPORT_SYMBOL(ipv4_specific);
1857
1858 #ifdef CONFIG_TCP_MD5SIG
1859 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1860 .md5_lookup = tcp_v4_md5_lookup,
1861 .calc_md5_hash = tcp_v4_md5_hash_skb,
1862 .md5_parse = tcp_v4_parse_md5_keys,
1863 };
1864 #endif
1865
1866 /* NOTE: A lot of things set to zero explicitly by call to
1867 * sk_alloc() so need not be done here.
1868 */
1869 static int tcp_v4_init_sock(struct sock *sk)
1870 {
1871 struct inet_connection_sock *icsk = inet_csk(sk);
1872 struct tcp_sock *tp = tcp_sk(sk);
1873
1874 skb_queue_head_init(&tp->out_of_order_queue);
1875 tcp_init_xmit_timers(sk);
1876 tcp_prequeue_init(tp);
1877
1878 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1879 tp->mdev = TCP_TIMEOUT_INIT;
1880
1881 /* So many TCP implementations out there (incorrectly) count the
1882 * initial SYN frame in their delayed-ACK and congestion control
1883 * algorithms that we must have the following bandaid to talk
1884 * efficiently to them. -DaveM
1885 */
1886 tp->snd_cwnd = TCP_INIT_CWND;
1887
1888 /* See draft-stevens-tcpca-spec-01 for discussion of the
1889 * initialization of these values.
1890 */
1891 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1892 tp->snd_cwnd_clamp = ~0;
1893 tp->mss_cache = TCP_MSS_DEFAULT;
1894
1895 tp->reordering = sysctl_tcp_reordering;
1896 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1897
1898 sk->sk_state = TCP_CLOSE;
1899
1900 sk->sk_write_space = sk_stream_write_space;
1901 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1902
1903 icsk->icsk_af_ops = &ipv4_specific;
1904 icsk->icsk_sync_mss = tcp_sync_mss;
1905 #ifdef CONFIG_TCP_MD5SIG
1906 tp->af_specific = &tcp_sock_ipv4_specific;
1907 #endif
1908
1909 /* TCP Cookie Transactions */
1910 if (sysctl_tcp_cookie_size > 0) {
1911 /* Default, cookies without s_data_payload. */
1912 tp->cookie_values =
1913 kzalloc(sizeof(*tp->cookie_values),
1914 sk->sk_allocation);
1915 if (tp->cookie_values != NULL)
1916 kref_init(&tp->cookie_values->kref);
1917 }
1918 /* Presumed zeroed, in order of appearance:
1919 * cookie_in_always, cookie_out_never,
1920 * s_data_constant, s_data_in, s_data_out
1921 */
1922 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1923 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1924
1925 local_bh_disable();
1926 sock_update_memcg(sk);
1927 sk_sockets_allocated_inc(sk);
1928 local_bh_enable();
1929
1930 return 0;
1931 }
1932
1933 void tcp_v4_destroy_sock(struct sock *sk)
1934 {
1935 struct tcp_sock *tp = tcp_sk(sk);
1936
1937 tcp_clear_xmit_timers(sk);
1938
1939 tcp_cleanup_congestion_control(sk);
1940
1941 /* Cleanup up the write buffer. */
1942 tcp_write_queue_purge(sk);
1943
1944 /* Cleans up our, hopefully empty, out_of_order_queue. */
1945 __skb_queue_purge(&tp->out_of_order_queue);
1946
1947 #ifdef CONFIG_TCP_MD5SIG
1948 /* Clean up the MD5 key list, if any */
1949 if (tp->md5sig_info) {
1950 tcp_clear_md5_list(sk);
1951 kfree_rcu(tp->md5sig_info, rcu);
1952 tp->md5sig_info = NULL;
1953 }
1954 #endif
1955
1956 #ifdef CONFIG_NET_DMA
1957 /* Cleans up our sk_async_wait_queue */
1958 __skb_queue_purge(&sk->sk_async_wait_queue);
1959 #endif
1960
1961 /* Clean prequeue, it must be empty really */
1962 __skb_queue_purge(&tp->ucopy.prequeue);
1963
1964 /* Clean up a referenced TCP bind bucket. */
1965 if (inet_csk(sk)->icsk_bind_hash)
1966 inet_put_port(sk);
1967
1968 /*
1969 * If sendmsg cached page exists, toss it.
1970 */
1971 if (sk->sk_sndmsg_page) {
1972 __free_page(sk->sk_sndmsg_page);
1973 sk->sk_sndmsg_page = NULL;
1974 }
1975
1976 /* TCP Cookie Transactions */
1977 if (tp->cookie_values != NULL) {
1978 kref_put(&tp->cookie_values->kref,
1979 tcp_cookie_values_release);
1980 tp->cookie_values = NULL;
1981 }
1982
1983 sk_sockets_allocated_dec(sk);
1984 sock_release_memcg(sk);
1985 }
1986 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1987
1988 #ifdef CONFIG_PROC_FS
1989 /* Proc filesystem TCP sock list dumping. */
1990
1991 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1992 {
1993 return hlist_nulls_empty(head) ? NULL :
1994 list_entry(head->first, struct inet_timewait_sock, tw_node);
1995 }
1996
1997 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1998 {
1999 return !is_a_nulls(tw->tw_node.next) ?
2000 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2001 }
2002
2003 /*
2004 * Get next listener socket follow cur. If cur is NULL, get first socket
2005 * starting from bucket given in st->bucket; when st->bucket is zero the
2006 * very first socket in the hash table is returned.
2007 */
2008 static void *listening_get_next(struct seq_file *seq, void *cur)
2009 {
2010 struct inet_connection_sock *icsk;
2011 struct hlist_nulls_node *node;
2012 struct sock *sk = cur;
2013 struct inet_listen_hashbucket *ilb;
2014 struct tcp_iter_state *st = seq->private;
2015 struct net *net = seq_file_net(seq);
2016
2017 if (!sk) {
2018 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2019 spin_lock_bh(&ilb->lock);
2020 sk = sk_nulls_head(&ilb->head);
2021 st->offset = 0;
2022 goto get_sk;
2023 }
2024 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2025 ++st->num;
2026 ++st->offset;
2027
2028 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2029 struct request_sock *req = cur;
2030
2031 icsk = inet_csk(st->syn_wait_sk);
2032 req = req->dl_next;
2033 while (1) {
2034 while (req) {
2035 if (req->rsk_ops->family == st->family) {
2036 cur = req;
2037 goto out;
2038 }
2039 req = req->dl_next;
2040 }
2041 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2042 break;
2043 get_req:
2044 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2045 }
2046 sk = sk_nulls_next(st->syn_wait_sk);
2047 st->state = TCP_SEQ_STATE_LISTENING;
2048 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049 } else {
2050 icsk = inet_csk(sk);
2051 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2052 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2053 goto start_req;
2054 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2055 sk = sk_nulls_next(sk);
2056 }
2057 get_sk:
2058 sk_nulls_for_each_from(sk, node) {
2059 if (!net_eq(sock_net(sk), net))
2060 continue;
2061 if (sk->sk_family == st->family) {
2062 cur = sk;
2063 goto out;
2064 }
2065 icsk = inet_csk(sk);
2066 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2067 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2068 start_req:
2069 st->uid = sock_i_uid(sk);
2070 st->syn_wait_sk = sk;
2071 st->state = TCP_SEQ_STATE_OPENREQ;
2072 st->sbucket = 0;
2073 goto get_req;
2074 }
2075 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2076 }
2077 spin_unlock_bh(&ilb->lock);
2078 st->offset = 0;
2079 if (++st->bucket < INET_LHTABLE_SIZE) {
2080 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2081 spin_lock_bh(&ilb->lock);
2082 sk = sk_nulls_head(&ilb->head);
2083 goto get_sk;
2084 }
2085 cur = NULL;
2086 out:
2087 return cur;
2088 }
2089
2090 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2091 {
2092 struct tcp_iter_state *st = seq->private;
2093 void *rc;
2094
2095 st->bucket = 0;
2096 st->offset = 0;
2097 rc = listening_get_next(seq, NULL);
2098
2099 while (rc && *pos) {
2100 rc = listening_get_next(seq, rc);
2101 --*pos;
2102 }
2103 return rc;
2104 }
2105
2106 static inline int empty_bucket(struct tcp_iter_state *st)
2107 {
2108 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2109 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2110 }
2111
2112 /*
2113 * Get first established socket starting from bucket given in st->bucket.
2114 * If st->bucket is zero, the very first socket in the hash is returned.
2115 */
2116 static void *established_get_first(struct seq_file *seq)
2117 {
2118 struct tcp_iter_state *st = seq->private;
2119 struct net *net = seq_file_net(seq);
2120 void *rc = NULL;
2121
2122 st->offset = 0;
2123 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2124 struct sock *sk;
2125 struct hlist_nulls_node *node;
2126 struct inet_timewait_sock *tw;
2127 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2128
2129 /* Lockless fast path for the common case of empty buckets */
2130 if (empty_bucket(st))
2131 continue;
2132
2133 spin_lock_bh(lock);
2134 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2135 if (sk->sk_family != st->family ||
2136 !net_eq(sock_net(sk), net)) {
2137 continue;
2138 }
2139 rc = sk;
2140 goto out;
2141 }
2142 st->state = TCP_SEQ_STATE_TIME_WAIT;
2143 inet_twsk_for_each(tw, node,
2144 &tcp_hashinfo.ehash[st->bucket].twchain) {
2145 if (tw->tw_family != st->family ||
2146 !net_eq(twsk_net(tw), net)) {
2147 continue;
2148 }
2149 rc = tw;
2150 goto out;
2151 }
2152 spin_unlock_bh(lock);
2153 st->state = TCP_SEQ_STATE_ESTABLISHED;
2154 }
2155 out:
2156 return rc;
2157 }
2158
2159 static void *established_get_next(struct seq_file *seq, void *cur)
2160 {
2161 struct sock *sk = cur;
2162 struct inet_timewait_sock *tw;
2163 struct hlist_nulls_node *node;
2164 struct tcp_iter_state *st = seq->private;
2165 struct net *net = seq_file_net(seq);
2166
2167 ++st->num;
2168 ++st->offset;
2169
2170 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2171 tw = cur;
2172 tw = tw_next(tw);
2173 get_tw:
2174 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2175 tw = tw_next(tw);
2176 }
2177 if (tw) {
2178 cur = tw;
2179 goto out;
2180 }
2181 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2182 st->state = TCP_SEQ_STATE_ESTABLISHED;
2183
2184 /* Look for next non empty bucket */
2185 st->offset = 0;
2186 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2187 empty_bucket(st))
2188 ;
2189 if (st->bucket > tcp_hashinfo.ehash_mask)
2190 return NULL;
2191
2192 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2193 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2194 } else
2195 sk = sk_nulls_next(sk);
2196
2197 sk_nulls_for_each_from(sk, node) {
2198 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2199 goto found;
2200 }
2201
2202 st->state = TCP_SEQ_STATE_TIME_WAIT;
2203 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2204 goto get_tw;
2205 found:
2206 cur = sk;
2207 out:
2208 return cur;
2209 }
2210
2211 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2212 {
2213 struct tcp_iter_state *st = seq->private;
2214 void *rc;
2215
2216 st->bucket = 0;
2217 rc = established_get_first(seq);
2218
2219 while (rc && pos) {
2220 rc = established_get_next(seq, rc);
2221 --pos;
2222 }
2223 return rc;
2224 }
2225
2226 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2227 {
2228 void *rc;
2229 struct tcp_iter_state *st = seq->private;
2230
2231 st->state = TCP_SEQ_STATE_LISTENING;
2232 rc = listening_get_idx(seq, &pos);
2233
2234 if (!rc) {
2235 st->state = TCP_SEQ_STATE_ESTABLISHED;
2236 rc = established_get_idx(seq, pos);
2237 }
2238
2239 return rc;
2240 }
2241
2242 static void *tcp_seek_last_pos(struct seq_file *seq)
2243 {
2244 struct tcp_iter_state *st = seq->private;
2245 int offset = st->offset;
2246 int orig_num = st->num;
2247 void *rc = NULL;
2248
2249 switch (st->state) {
2250 case TCP_SEQ_STATE_OPENREQ:
2251 case TCP_SEQ_STATE_LISTENING:
2252 if (st->bucket >= INET_LHTABLE_SIZE)
2253 break;
2254 st->state = TCP_SEQ_STATE_LISTENING;
2255 rc = listening_get_next(seq, NULL);
2256 while (offset-- && rc)
2257 rc = listening_get_next(seq, rc);
2258 if (rc)
2259 break;
2260 st->bucket = 0;
2261 /* Fallthrough */
2262 case TCP_SEQ_STATE_ESTABLISHED:
2263 case TCP_SEQ_STATE_TIME_WAIT:
2264 st->state = TCP_SEQ_STATE_ESTABLISHED;
2265 if (st->bucket > tcp_hashinfo.ehash_mask)
2266 break;
2267 rc = established_get_first(seq);
2268 while (offset-- && rc)
2269 rc = established_get_next(seq, rc);
2270 }
2271
2272 st->num = orig_num;
2273
2274 return rc;
2275 }
2276
2277 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2278 {
2279 struct tcp_iter_state *st = seq->private;
2280 void *rc;
2281
2282 if (*pos && *pos == st->last_pos) {
2283 rc = tcp_seek_last_pos(seq);
2284 if (rc)
2285 goto out;
2286 }
2287
2288 st->state = TCP_SEQ_STATE_LISTENING;
2289 st->num = 0;
2290 st->bucket = 0;
2291 st->offset = 0;
2292 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2293
2294 out:
2295 st->last_pos = *pos;
2296 return rc;
2297 }
2298
2299 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2300 {
2301 struct tcp_iter_state *st = seq->private;
2302 void *rc = NULL;
2303
2304 if (v == SEQ_START_TOKEN) {
2305 rc = tcp_get_idx(seq, 0);
2306 goto out;
2307 }
2308
2309 switch (st->state) {
2310 case TCP_SEQ_STATE_OPENREQ:
2311 case TCP_SEQ_STATE_LISTENING:
2312 rc = listening_get_next(seq, v);
2313 if (!rc) {
2314 st->state = TCP_SEQ_STATE_ESTABLISHED;
2315 st->bucket = 0;
2316 st->offset = 0;
2317 rc = established_get_first(seq);
2318 }
2319 break;
2320 case TCP_SEQ_STATE_ESTABLISHED:
2321 case TCP_SEQ_STATE_TIME_WAIT:
2322 rc = established_get_next(seq, v);
2323 break;
2324 }
2325 out:
2326 ++*pos;
2327 st->last_pos = *pos;
2328 return rc;
2329 }
2330
2331 static void tcp_seq_stop(struct seq_file *seq, void *v)
2332 {
2333 struct tcp_iter_state *st = seq->private;
2334
2335 switch (st->state) {
2336 case TCP_SEQ_STATE_OPENREQ:
2337 if (v) {
2338 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2339 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2340 }
2341 case TCP_SEQ_STATE_LISTENING:
2342 if (v != SEQ_START_TOKEN)
2343 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2344 break;
2345 case TCP_SEQ_STATE_TIME_WAIT:
2346 case TCP_SEQ_STATE_ESTABLISHED:
2347 if (v)
2348 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2349 break;
2350 }
2351 }
2352
2353 int tcp_seq_open(struct inode *inode, struct file *file)
2354 {
2355 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2356 struct tcp_iter_state *s;
2357 int err;
2358
2359 err = seq_open_net(inode, file, &afinfo->seq_ops,
2360 sizeof(struct tcp_iter_state));
2361 if (err < 0)
2362 return err;
2363
2364 s = ((struct seq_file *)file->private_data)->private;
2365 s->family = afinfo->family;
2366 s->last_pos = 0;
2367 return 0;
2368 }
2369 EXPORT_SYMBOL(tcp_seq_open);
2370
2371 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2372 {
2373 int rc = 0;
2374 struct proc_dir_entry *p;
2375
2376 afinfo->seq_ops.start = tcp_seq_start;
2377 afinfo->seq_ops.next = tcp_seq_next;
2378 afinfo->seq_ops.stop = tcp_seq_stop;
2379
2380 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2381 afinfo->seq_fops, afinfo);
2382 if (!p)
2383 rc = -ENOMEM;
2384 return rc;
2385 }
2386 EXPORT_SYMBOL(tcp_proc_register);
2387
2388 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2389 {
2390 proc_net_remove(net, afinfo->name);
2391 }
2392 EXPORT_SYMBOL(tcp_proc_unregister);
2393
2394 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2395 struct seq_file *f, int i, int uid, int *len)
2396 {
2397 const struct inet_request_sock *ireq = inet_rsk(req);
2398 int ttd = req->expires - jiffies;
2399
2400 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2401 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2402 i,
2403 ireq->loc_addr,
2404 ntohs(inet_sk(sk)->inet_sport),
2405 ireq->rmt_addr,
2406 ntohs(ireq->rmt_port),
2407 TCP_SYN_RECV,
2408 0, 0, /* could print option size, but that is af dependent. */
2409 1, /* timers active (only the expire timer) */
2410 jiffies_to_clock_t(ttd),
2411 req->retrans,
2412 uid,
2413 0, /* non standard timer */
2414 0, /* open_requests have no inode */
2415 atomic_read(&sk->sk_refcnt),
2416 req,
2417 len);
2418 }
2419
2420 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2421 {
2422 int timer_active;
2423 unsigned long timer_expires;
2424 const struct tcp_sock *tp = tcp_sk(sk);
2425 const struct inet_connection_sock *icsk = inet_csk(sk);
2426 const struct inet_sock *inet = inet_sk(sk);
2427 __be32 dest = inet->inet_daddr;
2428 __be32 src = inet->inet_rcv_saddr;
2429 __u16 destp = ntohs(inet->inet_dport);
2430 __u16 srcp = ntohs(inet->inet_sport);
2431 int rx_queue;
2432
2433 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2434 timer_active = 1;
2435 timer_expires = icsk->icsk_timeout;
2436 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2437 timer_active = 4;
2438 timer_expires = icsk->icsk_timeout;
2439 } else if (timer_pending(&sk->sk_timer)) {
2440 timer_active = 2;
2441 timer_expires = sk->sk_timer.expires;
2442 } else {
2443 timer_active = 0;
2444 timer_expires = jiffies;
2445 }
2446
2447 if (sk->sk_state == TCP_LISTEN)
2448 rx_queue = sk->sk_ack_backlog;
2449 else
2450 /*
2451 * because we dont lock socket, we might find a transient negative value
2452 */
2453 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2454
2455 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2456 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2457 i, src, srcp, dest, destp, sk->sk_state,
2458 tp->write_seq - tp->snd_una,
2459 rx_queue,
2460 timer_active,
2461 jiffies_to_clock_t(timer_expires - jiffies),
2462 icsk->icsk_retransmits,
2463 sock_i_uid(sk),
2464 icsk->icsk_probes_out,
2465 sock_i_ino(sk),
2466 atomic_read(&sk->sk_refcnt), sk,
2467 jiffies_to_clock_t(icsk->icsk_rto),
2468 jiffies_to_clock_t(icsk->icsk_ack.ato),
2469 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2470 tp->snd_cwnd,
2471 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2472 len);
2473 }
2474
2475 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2476 struct seq_file *f, int i, int *len)
2477 {
2478 __be32 dest, src;
2479 __u16 destp, srcp;
2480 int ttd = tw->tw_ttd - jiffies;
2481
2482 if (ttd < 0)
2483 ttd = 0;
2484
2485 dest = tw->tw_daddr;
2486 src = tw->tw_rcv_saddr;
2487 destp = ntohs(tw->tw_dport);
2488 srcp = ntohs(tw->tw_sport);
2489
2490 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2491 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2492 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2493 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2494 atomic_read(&tw->tw_refcnt), tw, len);
2495 }
2496
2497 #define TMPSZ 150
2498
2499 static int tcp4_seq_show(struct seq_file *seq, void *v)
2500 {
2501 struct tcp_iter_state *st;
2502 int len;
2503
2504 if (v == SEQ_START_TOKEN) {
2505 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2506 " sl local_address rem_address st tx_queue "
2507 "rx_queue tr tm->when retrnsmt uid timeout "
2508 "inode");
2509 goto out;
2510 }
2511 st = seq->private;
2512
2513 switch (st->state) {
2514 case TCP_SEQ_STATE_LISTENING:
2515 case TCP_SEQ_STATE_ESTABLISHED:
2516 get_tcp4_sock(v, seq, st->num, &len);
2517 break;
2518 case TCP_SEQ_STATE_OPENREQ:
2519 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2520 break;
2521 case TCP_SEQ_STATE_TIME_WAIT:
2522 get_timewait4_sock(v, seq, st->num, &len);
2523 break;
2524 }
2525 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2526 out:
2527 return 0;
2528 }
2529
2530 static const struct file_operations tcp_afinfo_seq_fops = {
2531 .owner = THIS_MODULE,
2532 .open = tcp_seq_open,
2533 .read = seq_read,
2534 .llseek = seq_lseek,
2535 .release = seq_release_net
2536 };
2537
2538 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2539 .name = "tcp",
2540 .family = AF_INET,
2541 .seq_fops = &tcp_afinfo_seq_fops,
2542 .seq_ops = {
2543 .show = tcp4_seq_show,
2544 },
2545 };
2546
2547 static int __net_init tcp4_proc_init_net(struct net *net)
2548 {
2549 return tcp_proc_register(net, &tcp4_seq_afinfo);
2550 }
2551
2552 static void __net_exit tcp4_proc_exit_net(struct net *net)
2553 {
2554 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2555 }
2556
2557 static struct pernet_operations tcp4_net_ops = {
2558 .init = tcp4_proc_init_net,
2559 .exit = tcp4_proc_exit_net,
2560 };
2561
2562 int __init tcp4_proc_init(void)
2563 {
2564 return register_pernet_subsys(&tcp4_net_ops);
2565 }
2566
2567 void tcp4_proc_exit(void)
2568 {
2569 unregister_pernet_subsys(&tcp4_net_ops);
2570 }
2571 #endif /* CONFIG_PROC_FS */
2572
2573 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2574 {
2575 const struct iphdr *iph = skb_gro_network_header(skb);
2576
2577 switch (skb->ip_summed) {
2578 case CHECKSUM_COMPLETE:
2579 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2580 skb->csum)) {
2581 skb->ip_summed = CHECKSUM_UNNECESSARY;
2582 break;
2583 }
2584
2585 /* fall through */
2586 case CHECKSUM_NONE:
2587 NAPI_GRO_CB(skb)->flush = 1;
2588 return NULL;
2589 }
2590
2591 return tcp_gro_receive(head, skb);
2592 }
2593
2594 int tcp4_gro_complete(struct sk_buff *skb)
2595 {
2596 const struct iphdr *iph = ip_hdr(skb);
2597 struct tcphdr *th = tcp_hdr(skb);
2598
2599 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2600 iph->saddr, iph->daddr, 0);
2601 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2602
2603 return tcp_gro_complete(skb);
2604 }
2605
2606 struct proto tcp_prot = {
2607 .name = "TCP",
2608 .owner = THIS_MODULE,
2609 .close = tcp_close,
2610 .connect = tcp_v4_connect,
2611 .disconnect = tcp_disconnect,
2612 .accept = inet_csk_accept,
2613 .ioctl = tcp_ioctl,
2614 .init = tcp_v4_init_sock,
2615 .destroy = tcp_v4_destroy_sock,
2616 .shutdown = tcp_shutdown,
2617 .setsockopt = tcp_setsockopt,
2618 .getsockopt = tcp_getsockopt,
2619 .recvmsg = tcp_recvmsg,
2620 .sendmsg = tcp_sendmsg,
2621 .sendpage = tcp_sendpage,
2622 .backlog_rcv = tcp_v4_do_rcv,
2623 .hash = inet_hash,
2624 .unhash = inet_unhash,
2625 .get_port = inet_csk_get_port,
2626 .enter_memory_pressure = tcp_enter_memory_pressure,
2627 .sockets_allocated = &tcp_sockets_allocated,
2628 .orphan_count = &tcp_orphan_count,
2629 .memory_allocated = &tcp_memory_allocated,
2630 .memory_pressure = &tcp_memory_pressure,
2631 .sysctl_wmem = sysctl_tcp_wmem,
2632 .sysctl_rmem = sysctl_tcp_rmem,
2633 .max_header = MAX_TCP_HEADER,
2634 .obj_size = sizeof(struct tcp_sock),
2635 .slab_flags = SLAB_DESTROY_BY_RCU,
2636 .twsk_prot = &tcp_timewait_sock_ops,
2637 .rsk_prot = &tcp_request_sock_ops,
2638 .h.hashinfo = &tcp_hashinfo,
2639 .no_autobind = true,
2640 #ifdef CONFIG_COMPAT
2641 .compat_setsockopt = compat_tcp_setsockopt,
2642 .compat_getsockopt = compat_tcp_getsockopt,
2643 #endif
2644 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2645 .init_cgroup = tcp_init_cgroup,
2646 .destroy_cgroup = tcp_destroy_cgroup,
2647 .proto_cgroup = tcp_proto_cgroup,
2648 #endif
2649 };
2650 EXPORT_SYMBOL(tcp_prot);
2651
2652 static int __net_init tcp_sk_init(struct net *net)
2653 {
2654 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2655 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2656 }
2657
2658 static void __net_exit tcp_sk_exit(struct net *net)
2659 {
2660 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2661 }
2662
2663 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2664 {
2665 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2666 }
2667
2668 static struct pernet_operations __net_initdata tcp_sk_ops = {
2669 .init = tcp_sk_init,
2670 .exit = tcp_sk_exit,
2671 .exit_batch = tcp_sk_exit_batch,
2672 };
2673
2674 void __init tcp_v4_init(void)
2675 {
2676 inet_hashinfo_init(&tcp_hashinfo);
2677 if (register_pernet_subsys(&tcp_sk_ops))
2678 panic("Failed to create the TCP control socket.\n");
2679 }
This page took 0.188103 seconds and 5 git commands to generate.