5dfebd2f2e382269f5327cef7f53ea1bc68a95fc
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 #include <net/busy_poll.h>
79
80 #include <linux/inet.h>
81 #include <linux/ipv6.h>
82 #include <linux/stddef.h>
83 #include <linux/proc_fs.h>
84 #include <linux/seq_file.h>
85
86 #include <linux/crypto.h>
87 #include <linux/scatterlist.h>
88
89 int sysctl_tcp_tw_reuse __read_mostly;
90 int sysctl_tcp_low_latency __read_mostly;
91 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94 #ifdef CONFIG_TCP_MD5SIG
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98
99 struct inet_hashinfo tcp_hashinfo;
100 EXPORT_SYMBOL(tcp_hashinfo);
101
102 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 {
104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 ip_hdr(skb)->saddr,
106 tcp_hdr(skb)->dest,
107 tcp_hdr(skb)->source);
108 }
109
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 struct tcp_sock *tp = tcp_sk(sk);
114
115 /* With PAWS, it is safe from the viewpoint
116 of data integrity. Even without PAWS it is safe provided sequence
117 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119 Actually, the idea is close to VJ's one, only timestamp cache is
120 held not per host, but per port pair and TW bucket is used as state
121 holder.
122
123 If TW bucket has been already destroyed we fall back to VJ's scheme
124 and use initial timestamp retrieved from peer table.
125 */
126 if (tcptw->tw_ts_recent_stamp &&
127 (twp == NULL || (sysctl_tcp_tw_reuse &&
128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 if (tp->write_seq == 0)
131 tp->write_seq = 1;
132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 sock_hold(sktw);
135 return 1;
136 }
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142 /* This will initiate an outgoing connection. */
143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 {
145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 struct inet_sock *inet = inet_sk(sk);
147 struct tcp_sock *tp = tcp_sk(sk);
148 __be16 orig_sport, orig_dport;
149 __be32 daddr, nexthop;
150 struct flowi4 *fl4;
151 struct rtable *rt;
152 int err;
153 struct ip_options_rcu *inet_opt;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 inet_opt = rcu_dereference_protected(inet->inet_opt,
163 sock_owned_by_user(sk));
164 if (inet_opt && inet_opt->opt.srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet_opt->opt.faddr;
168 }
169
170 orig_sport = inet->inet_sport;
171 orig_dport = usin->sin_port;
172 fl4 = &inet->cork.fl.u.ip4;
173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 IPPROTO_TCP,
176 orig_sport, orig_dport, sk);
177 if (IS_ERR(rt)) {
178 err = PTR_ERR(rt);
179 if (err == -ENETUNREACH)
180 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 return err;
182 }
183
184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 ip_rt_put(rt);
186 return -ENETUNREACH;
187 }
188
189 if (!inet_opt || !inet_opt->opt.srr)
190 daddr = fl4->daddr;
191
192 if (!inet->inet_saddr)
193 inet->inet_saddr = fl4->saddr;
194 inet->inet_rcv_saddr = inet->inet_saddr;
195
196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 /* Reset inherited state */
198 tp->rx_opt.ts_recent = 0;
199 tp->rx_opt.ts_recent_stamp = 0;
200 if (likely(!tp->repair))
201 tp->write_seq = 0;
202 }
203
204 if (tcp_death_row.sysctl_tw_recycle &&
205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208 inet->inet_dport = usin->sin_port;
209 inet->inet_daddr = daddr;
210
211 inet_csk(sk)->icsk_ext_hdr_len = 0;
212 if (inet_opt)
213 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214
215 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216
217 /* Socket identity is still unknown (sport may be zero).
218 * However we set state to SYN-SENT and not releasing socket
219 * lock select source port, enter ourselves into the hash tables and
220 * complete initialization after this.
221 */
222 tcp_set_state(sk, TCP_SYN_SENT);
223 err = inet_hash_connect(&tcp_death_row, sk);
224 if (err)
225 goto failure;
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254 failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272 static void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302 }
303
304 static void do_redirect(struct sk_buff *skb, struct sock *sk)
305 {
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310 }
311
312 /*
313 * This routine is called by the ICMP module when it gets some
314 * sort of error condition. If err < 0 then the socket should
315 * be closed and the error returned to the user. If err > 0
316 * it's just the icmp type << 8 | icmp code. After adjustment
317 * header points to the first 8 bytes of the tcp header. We need
318 * to find the appropriate port.
319 *
320 * The locking strategy used here is very "optimistic". When
321 * someone else accesses the socket the ICMP is just dropped
322 * and for some paths there is no check at all.
323 * A more general error queue to queue errors for later handling
324 * is probably better.
325 *
326 */
327
328 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
329 {
330 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
331 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
332 struct inet_connection_sock *icsk;
333 struct tcp_sock *tp;
334 struct inet_sock *inet;
335 const int type = icmp_hdr(icmp_skb)->type;
336 const int code = icmp_hdr(icmp_skb)->code;
337 struct sock *sk;
338 struct sk_buff *skb;
339 struct request_sock *fastopen;
340 __u32 seq, snd_una;
341 __u32 remaining;
342 int err;
343 struct net *net = dev_net(icmp_skb->dev);
344
345 if (icmp_skb->len < (iph->ihl << 2) + 8) {
346 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
347 return;
348 }
349
350 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
351 iph->saddr, th->source, inet_iif(icmp_skb));
352 if (!sk) {
353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
354 return;
355 }
356 if (sk->sk_state == TCP_TIME_WAIT) {
357 inet_twsk_put(inet_twsk(sk));
358 return;
359 }
360
361 bh_lock_sock(sk);
362 /* If too many ICMPs get dropped on busy
363 * servers this needs to be solved differently.
364 * We do take care of PMTU discovery (RFC1191) special case :
365 * we can receive locally generated ICMP messages while socket is held.
366 */
367 if (sock_owned_by_user(sk)) {
368 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 }
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
373
374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376 goto out;
377 }
378
379 icsk = inet_csk(sk);
380 tp = tcp_sk(sk);
381 seq = ntohl(th->seq);
382 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
383 fastopen = tp->fastopen_rsk;
384 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
385 if (sk->sk_state != TCP_LISTEN &&
386 !between(seq, snd_una, tp->snd_nxt)) {
387 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
388 goto out;
389 }
390
391 switch (type) {
392 case ICMP_REDIRECT:
393 do_redirect(icmp_skb, sk);
394 goto out;
395 case ICMP_SOURCE_QUENCH:
396 /* Just silently ignore these. */
397 goto out;
398 case ICMP_PARAMETERPROB:
399 err = EPROTO;
400 break;
401 case ICMP_DEST_UNREACH:
402 if (code > NR_ICMP_UNREACH)
403 goto out;
404
405 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
406 /* We are not interested in TCP_LISTEN and open_requests
407 * (SYN-ACKs send out by Linux are always <576bytes so
408 * they should go through unfragmented).
409 */
410 if (sk->sk_state == TCP_LISTEN)
411 goto out;
412
413 tp->mtu_info = info;
414 if (!sock_owned_by_user(sk)) {
415 tcp_v4_mtu_reduced(sk);
416 } else {
417 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
418 sock_hold(sk);
419 }
420 goto out;
421 }
422
423 err = icmp_err_convert[code].errno;
424 /* check if icmp_skb allows revert of backoff
425 * (see draft-zimmermann-tcp-lcd) */
426 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
427 break;
428 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
429 !icsk->icsk_backoff || fastopen)
430 break;
431
432 if (sock_owned_by_user(sk))
433 break;
434
435 icsk->icsk_backoff--;
436 inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
437 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
438 tcp_bound_rto(sk);
439
440 skb = tcp_write_queue_head(sk);
441 BUG_ON(!skb);
442
443 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
444 tcp_time_stamp - TCP_SKB_CB(skb)->when);
445
446 if (remaining) {
447 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
448 remaining, TCP_RTO_MAX);
449 } else {
450 /* RTO revert clocked out retransmission.
451 * Will retransmit now */
452 tcp_retransmit_timer(sk);
453 }
454
455 break;
456 case ICMP_TIME_EXCEEDED:
457 err = EHOSTUNREACH;
458 break;
459 default:
460 goto out;
461 }
462
463 switch (sk->sk_state) {
464 struct request_sock *req, **prev;
465 case TCP_LISTEN:
466 if (sock_owned_by_user(sk))
467 goto out;
468
469 req = inet_csk_search_req(sk, &prev, th->dest,
470 iph->daddr, iph->saddr);
471 if (!req)
472 goto out;
473
474 /* ICMPs are not backlogged, hence we cannot get
475 an established socket here.
476 */
477 WARN_ON(req->sk);
478
479 if (seq != tcp_rsk(req)->snt_isn) {
480 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
481 goto out;
482 }
483
484 /*
485 * Still in SYN_RECV, just remove it silently.
486 * There is no good way to pass the error to the newly
487 * created socket, and POSIX does not want network
488 * errors returned from accept().
489 */
490 inet_csk_reqsk_queue_drop(sk, req, prev);
491 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
492 goto out;
493
494 case TCP_SYN_SENT:
495 case TCP_SYN_RECV:
496 /* Only in fast or simultaneous open. If a fast open socket is
497 * is already accepted it is treated as a connected one below.
498 */
499 if (fastopen && fastopen->sk == NULL)
500 break;
501
502 if (!sock_owned_by_user(sk)) {
503 sk->sk_err = err;
504
505 sk->sk_error_report(sk);
506
507 tcp_done(sk);
508 } else {
509 sk->sk_err_soft = err;
510 }
511 goto out;
512 }
513
514 /* If we've already connected we will keep trying
515 * until we time out, or the user gives up.
516 *
517 * rfc1122 4.2.3.9 allows to consider as hard errors
518 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
519 * but it is obsoleted by pmtu discovery).
520 *
521 * Note, that in modern internet, where routing is unreliable
522 * and in each dark corner broken firewalls sit, sending random
523 * errors ordered by their masters even this two messages finally lose
524 * their original sense (even Linux sends invalid PORT_UNREACHs)
525 *
526 * Now we are in compliance with RFCs.
527 * --ANK (980905)
528 */
529
530 inet = inet_sk(sk);
531 if (!sock_owned_by_user(sk) && inet->recverr) {
532 sk->sk_err = err;
533 sk->sk_error_report(sk);
534 } else { /* Only an error on timeout */
535 sk->sk_err_soft = err;
536 }
537
538 out:
539 bh_unlock_sock(sk);
540 sock_put(sk);
541 }
542
543 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
544 {
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 /*
569 * This routine will send an RST to the other tcp.
570 *
571 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
572 * for reset.
573 * Answer: if a packet caused RST, it is not for a socket
574 * existing in our system, if it is matched to a socket,
575 * it is just duplicate segment or bug in other side's TCP.
576 * So that we build reply only basing on parameters
577 * arrived with segment.
578 * Exception: precedence violation. We do not implement it in any case.
579 */
580
581 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
582 {
583 const struct tcphdr *th = tcp_hdr(skb);
584 struct {
585 struct tcphdr th;
586 #ifdef CONFIG_TCP_MD5SIG
587 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
588 #endif
589 } rep;
590 struct ip_reply_arg arg;
591 #ifdef CONFIG_TCP_MD5SIG
592 struct tcp_md5sig_key *key;
593 const __u8 *hash_location = NULL;
594 unsigned char newhash[16];
595 int genhash;
596 struct sock *sk1 = NULL;
597 #endif
598 struct net *net;
599
600 /* Never send a reset in response to a reset. */
601 if (th->rst)
602 return;
603
604 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
605 return;
606
607 /* Swap the send and the receive. */
608 memset(&rep, 0, sizeof(rep));
609 rep.th.dest = th->source;
610 rep.th.source = th->dest;
611 rep.th.doff = sizeof(struct tcphdr) / 4;
612 rep.th.rst = 1;
613
614 if (th->ack) {
615 rep.th.seq = th->ack_seq;
616 } else {
617 rep.th.ack = 1;
618 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
619 skb->len - (th->doff << 2));
620 }
621
622 memset(&arg, 0, sizeof(arg));
623 arg.iov[0].iov_base = (unsigned char *)&rep;
624 arg.iov[0].iov_len = sizeof(rep.th);
625
626 #ifdef CONFIG_TCP_MD5SIG
627 hash_location = tcp_parse_md5sig_option(th);
628 if (!sk && hash_location) {
629 /*
630 * active side is lost. Try to find listening socket through
631 * source port, and then find md5 key through listening socket.
632 * we are not loose security here:
633 * Incoming packet is checked with md5 hash with finding key,
634 * no RST generated if md5 hash doesn't match.
635 */
636 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
637 &tcp_hashinfo, ip_hdr(skb)->saddr,
638 th->source, ip_hdr(skb)->daddr,
639 ntohs(th->source), inet_iif(skb));
640 /* don't send rst if it can't find key */
641 if (!sk1)
642 return;
643 rcu_read_lock();
644 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
645 &ip_hdr(skb)->saddr, AF_INET);
646 if (!key)
647 goto release_sk1;
648
649 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
650 if (genhash || memcmp(hash_location, newhash, 16) != 0)
651 goto release_sk1;
652 } else {
653 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
654 &ip_hdr(skb)->saddr,
655 AF_INET) : NULL;
656 }
657
658 if (key) {
659 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
660 (TCPOPT_NOP << 16) |
661 (TCPOPT_MD5SIG << 8) |
662 TCPOLEN_MD5SIG);
663 /* Update length and the length the header thinks exists */
664 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
665 rep.th.doff = arg.iov[0].iov_len / 4;
666
667 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
668 key, ip_hdr(skb)->saddr,
669 ip_hdr(skb)->daddr, &rep.th);
670 }
671 #endif
672 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
673 ip_hdr(skb)->saddr, /* XXX */
674 arg.iov[0].iov_len, IPPROTO_TCP, 0);
675 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
676 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
677 /* When socket is gone, all binding information is lost.
678 * routing might fail in this case. No choice here, if we choose to force
679 * input interface, we will misroute in case of asymmetric route.
680 */
681 if (sk)
682 arg.bound_dev_if = sk->sk_bound_dev_if;
683
684 net = dev_net(skb_dst(skb)->dev);
685 arg.tos = ip_hdr(skb)->tos;
686 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
687 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
688
689 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
690 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
691
692 #ifdef CONFIG_TCP_MD5SIG
693 release_sk1:
694 if (sk1) {
695 rcu_read_unlock();
696 sock_put(sk1);
697 }
698 #endif
699 }
700
701 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
702 outside socket context is ugly, certainly. What can I do?
703 */
704
705 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
706 u32 win, u32 tsval, u32 tsecr, int oif,
707 struct tcp_md5sig_key *key,
708 int reply_flags, u8 tos)
709 {
710 const struct tcphdr *th = tcp_hdr(skb);
711 struct {
712 struct tcphdr th;
713 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
714 #ifdef CONFIG_TCP_MD5SIG
715 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
716 #endif
717 ];
718 } rep;
719 struct ip_reply_arg arg;
720 struct net *net = dev_net(skb_dst(skb)->dev);
721
722 memset(&rep.th, 0, sizeof(struct tcphdr));
723 memset(&arg, 0, sizeof(arg));
724
725 arg.iov[0].iov_base = (unsigned char *)&rep;
726 arg.iov[0].iov_len = sizeof(rep.th);
727 if (tsecr) {
728 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
729 (TCPOPT_TIMESTAMP << 8) |
730 TCPOLEN_TIMESTAMP);
731 rep.opt[1] = htonl(tsval);
732 rep.opt[2] = htonl(tsecr);
733 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
734 }
735
736 /* Swap the send and the receive. */
737 rep.th.dest = th->source;
738 rep.th.source = th->dest;
739 rep.th.doff = arg.iov[0].iov_len / 4;
740 rep.th.seq = htonl(seq);
741 rep.th.ack_seq = htonl(ack);
742 rep.th.ack = 1;
743 rep.th.window = htons(win);
744
745 #ifdef CONFIG_TCP_MD5SIG
746 if (key) {
747 int offset = (tsecr) ? 3 : 0;
748
749 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
750 (TCPOPT_NOP << 16) |
751 (TCPOPT_MD5SIG << 8) |
752 TCPOLEN_MD5SIG);
753 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
754 rep.th.doff = arg.iov[0].iov_len/4;
755
756 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
757 key, ip_hdr(skb)->saddr,
758 ip_hdr(skb)->daddr, &rep.th);
759 }
760 #endif
761 arg.flags = reply_flags;
762 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
763 ip_hdr(skb)->saddr, /* XXX */
764 arg.iov[0].iov_len, IPPROTO_TCP, 0);
765 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
766 if (oif)
767 arg.bound_dev_if = oif;
768 arg.tos = tos;
769 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
770 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
771
772 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
773 }
774
775 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
776 {
777 struct inet_timewait_sock *tw = inet_twsk(sk);
778 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
779
780 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
781 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
782 tcp_time_stamp + tcptw->tw_ts_offset,
783 tcptw->tw_ts_recent,
784 tw->tw_bound_dev_if,
785 tcp_twsk_md5_key(tcptw),
786 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
787 tw->tw_tos
788 );
789
790 inet_twsk_put(tw);
791 }
792
793 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
794 struct request_sock *req)
795 {
796 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
797 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
798 */
799 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
800 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
801 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
802 tcp_time_stamp,
803 req->ts_recent,
804 0,
805 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
806 AF_INET),
807 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
808 ip_hdr(skb)->tos);
809 }
810
811 /*
812 * Send a SYN-ACK after having received a SYN.
813 * This still operates on a request_sock only, not on a big
814 * socket.
815 */
816 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
817 struct flowi *fl,
818 struct request_sock *req,
819 u16 queue_mapping,
820 struct tcp_fastopen_cookie *foc)
821 {
822 const struct inet_request_sock *ireq = inet_rsk(req);
823 struct flowi4 fl4;
824 int err = -1;
825 struct sk_buff *skb;
826
827 /* First, grab a route. */
828 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
829 return -1;
830
831 skb = tcp_make_synack(sk, dst, req, foc);
832
833 if (skb) {
834 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
835
836 skb_set_queue_mapping(skb, queue_mapping);
837 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
838 ireq->ir_rmt_addr,
839 ireq->opt);
840 err = net_xmit_eval(err);
841 if (!tcp_rsk(req)->snt_synack && !err)
842 tcp_rsk(req)->snt_synack = tcp_time_stamp;
843 }
844
845 return err;
846 }
847
848 /*
849 * IPv4 request_sock destructor.
850 */
851 static void tcp_v4_reqsk_destructor(struct request_sock *req)
852 {
853 kfree(inet_rsk(req)->opt);
854 }
855
856 /*
857 * Return true if a syncookie should be sent
858 */
859 bool tcp_syn_flood_action(struct sock *sk,
860 const struct sk_buff *skb,
861 const char *proto)
862 {
863 const char *msg = "Dropping request";
864 bool want_cookie = false;
865 struct listen_sock *lopt;
866
867 #ifdef CONFIG_SYN_COOKIES
868 if (sysctl_tcp_syncookies) {
869 msg = "Sending cookies";
870 want_cookie = true;
871 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
872 } else
873 #endif
874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
875
876 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
877 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
878 lopt->synflood_warned = 1;
879 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
880 proto, ntohs(tcp_hdr(skb)->dest), msg);
881 }
882 return want_cookie;
883 }
884 EXPORT_SYMBOL(tcp_syn_flood_action);
885
886 /*
887 * Save and compile IPv4 options into the request_sock if needed.
888 */
889 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
890 {
891 const struct ip_options *opt = &(IPCB(skb)->opt);
892 struct ip_options_rcu *dopt = NULL;
893
894 if (opt && opt->optlen) {
895 int opt_size = sizeof(*dopt) + opt->optlen;
896
897 dopt = kmalloc(opt_size, GFP_ATOMIC);
898 if (dopt) {
899 if (ip_options_echo(&dopt->opt, skb)) {
900 kfree(dopt);
901 dopt = NULL;
902 }
903 }
904 }
905 return dopt;
906 }
907
908 #ifdef CONFIG_TCP_MD5SIG
909 /*
910 * RFC2385 MD5 checksumming requires a mapping of
911 * IP address->MD5 Key.
912 * We need to maintain these in the sk structure.
913 */
914
915 /* Find the Key structure for an address. */
916 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
917 const union tcp_md5_addr *addr,
918 int family)
919 {
920 struct tcp_sock *tp = tcp_sk(sk);
921 struct tcp_md5sig_key *key;
922 unsigned int size = sizeof(struct in_addr);
923 struct tcp_md5sig_info *md5sig;
924
925 /* caller either holds rcu_read_lock() or socket lock */
926 md5sig = rcu_dereference_check(tp->md5sig_info,
927 sock_owned_by_user(sk) ||
928 lockdep_is_held(&sk->sk_lock.slock));
929 if (!md5sig)
930 return NULL;
931 #if IS_ENABLED(CONFIG_IPV6)
932 if (family == AF_INET6)
933 size = sizeof(struct in6_addr);
934 #endif
935 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
936 if (key->family != family)
937 continue;
938 if (!memcmp(&key->addr, addr, size))
939 return key;
940 }
941 return NULL;
942 }
943 EXPORT_SYMBOL(tcp_md5_do_lookup);
944
945 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
946 struct sock *addr_sk)
947 {
948 union tcp_md5_addr *addr;
949
950 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
951 return tcp_md5_do_lookup(sk, addr, AF_INET);
952 }
953 EXPORT_SYMBOL(tcp_v4_md5_lookup);
954
955 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
956 struct request_sock *req)
957 {
958 union tcp_md5_addr *addr;
959
960 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
961 return tcp_md5_do_lookup(sk, addr, AF_INET);
962 }
963
964 /* This can be called on a newly created socket, from other files */
965 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
966 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
967 {
968 /* Add Key to the list */
969 struct tcp_md5sig_key *key;
970 struct tcp_sock *tp = tcp_sk(sk);
971 struct tcp_md5sig_info *md5sig;
972
973 key = tcp_md5_do_lookup(sk, addr, family);
974 if (key) {
975 /* Pre-existing entry - just update that one. */
976 memcpy(key->key, newkey, newkeylen);
977 key->keylen = newkeylen;
978 return 0;
979 }
980
981 md5sig = rcu_dereference_protected(tp->md5sig_info,
982 sock_owned_by_user(sk));
983 if (!md5sig) {
984 md5sig = kmalloc(sizeof(*md5sig), gfp);
985 if (!md5sig)
986 return -ENOMEM;
987
988 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
989 INIT_HLIST_HEAD(&md5sig->head);
990 rcu_assign_pointer(tp->md5sig_info, md5sig);
991 }
992
993 key = sock_kmalloc(sk, sizeof(*key), gfp);
994 if (!key)
995 return -ENOMEM;
996 if (!tcp_alloc_md5sig_pool()) {
997 sock_kfree_s(sk, key, sizeof(*key));
998 return -ENOMEM;
999 }
1000
1001 memcpy(key->key, newkey, newkeylen);
1002 key->keylen = newkeylen;
1003 key->family = family;
1004 memcpy(&key->addr, addr,
1005 (family == AF_INET6) ? sizeof(struct in6_addr) :
1006 sizeof(struct in_addr));
1007 hlist_add_head_rcu(&key->node, &md5sig->head);
1008 return 0;
1009 }
1010 EXPORT_SYMBOL(tcp_md5_do_add);
1011
1012 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1013 {
1014 struct tcp_md5sig_key *key;
1015
1016 key = tcp_md5_do_lookup(sk, addr, family);
1017 if (!key)
1018 return -ENOENT;
1019 hlist_del_rcu(&key->node);
1020 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1021 kfree_rcu(key, rcu);
1022 return 0;
1023 }
1024 EXPORT_SYMBOL(tcp_md5_do_del);
1025
1026 static void tcp_clear_md5_list(struct sock *sk)
1027 {
1028 struct tcp_sock *tp = tcp_sk(sk);
1029 struct tcp_md5sig_key *key;
1030 struct hlist_node *n;
1031 struct tcp_md5sig_info *md5sig;
1032
1033 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1034
1035 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1036 hlist_del_rcu(&key->node);
1037 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1038 kfree_rcu(key, rcu);
1039 }
1040 }
1041
1042 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1043 int optlen)
1044 {
1045 struct tcp_md5sig cmd;
1046 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1047
1048 if (optlen < sizeof(cmd))
1049 return -EINVAL;
1050
1051 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1052 return -EFAULT;
1053
1054 if (sin->sin_family != AF_INET)
1055 return -EINVAL;
1056
1057 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1058 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1059 AF_INET);
1060
1061 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1062 return -EINVAL;
1063
1064 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1065 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1066 GFP_KERNEL);
1067 }
1068
1069 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1070 __be32 daddr, __be32 saddr, int nbytes)
1071 {
1072 struct tcp4_pseudohdr *bp;
1073 struct scatterlist sg;
1074
1075 bp = &hp->md5_blk.ip4;
1076
1077 /*
1078 * 1. the TCP pseudo-header (in the order: source IP address,
1079 * destination IP address, zero-padded protocol number, and
1080 * segment length)
1081 */
1082 bp->saddr = saddr;
1083 bp->daddr = daddr;
1084 bp->pad = 0;
1085 bp->protocol = IPPROTO_TCP;
1086 bp->len = cpu_to_be16(nbytes);
1087
1088 sg_init_one(&sg, bp, sizeof(*bp));
1089 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1090 }
1091
1092 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1093 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1094 {
1095 struct tcp_md5sig_pool *hp;
1096 struct hash_desc *desc;
1097
1098 hp = tcp_get_md5sig_pool();
1099 if (!hp)
1100 goto clear_hash_noput;
1101 desc = &hp->md5_desc;
1102
1103 if (crypto_hash_init(desc))
1104 goto clear_hash;
1105 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1106 goto clear_hash;
1107 if (tcp_md5_hash_header(hp, th))
1108 goto clear_hash;
1109 if (tcp_md5_hash_key(hp, key))
1110 goto clear_hash;
1111 if (crypto_hash_final(desc, md5_hash))
1112 goto clear_hash;
1113
1114 tcp_put_md5sig_pool();
1115 return 0;
1116
1117 clear_hash:
1118 tcp_put_md5sig_pool();
1119 clear_hash_noput:
1120 memset(md5_hash, 0, 16);
1121 return 1;
1122 }
1123
1124 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1125 const struct sock *sk, const struct request_sock *req,
1126 const struct sk_buff *skb)
1127 {
1128 struct tcp_md5sig_pool *hp;
1129 struct hash_desc *desc;
1130 const struct tcphdr *th = tcp_hdr(skb);
1131 __be32 saddr, daddr;
1132
1133 if (sk) {
1134 saddr = inet_sk(sk)->inet_saddr;
1135 daddr = inet_sk(sk)->inet_daddr;
1136 } else if (req) {
1137 saddr = inet_rsk(req)->ir_loc_addr;
1138 daddr = inet_rsk(req)->ir_rmt_addr;
1139 } else {
1140 const struct iphdr *iph = ip_hdr(skb);
1141 saddr = iph->saddr;
1142 daddr = iph->daddr;
1143 }
1144
1145 hp = tcp_get_md5sig_pool();
1146 if (!hp)
1147 goto clear_hash_noput;
1148 desc = &hp->md5_desc;
1149
1150 if (crypto_hash_init(desc))
1151 goto clear_hash;
1152
1153 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1154 goto clear_hash;
1155 if (tcp_md5_hash_header(hp, th))
1156 goto clear_hash;
1157 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1158 goto clear_hash;
1159 if (tcp_md5_hash_key(hp, key))
1160 goto clear_hash;
1161 if (crypto_hash_final(desc, md5_hash))
1162 goto clear_hash;
1163
1164 tcp_put_md5sig_pool();
1165 return 0;
1166
1167 clear_hash:
1168 tcp_put_md5sig_pool();
1169 clear_hash_noput:
1170 memset(md5_hash, 0, 16);
1171 return 1;
1172 }
1173 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1174
1175 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1176 {
1177 /*
1178 * This gets called for each TCP segment that arrives
1179 * so we want to be efficient.
1180 * We have 3 drop cases:
1181 * o No MD5 hash and one expected.
1182 * o MD5 hash and we're not expecting one.
1183 * o MD5 hash and its wrong.
1184 */
1185 const __u8 *hash_location = NULL;
1186 struct tcp_md5sig_key *hash_expected;
1187 const struct iphdr *iph = ip_hdr(skb);
1188 const struct tcphdr *th = tcp_hdr(skb);
1189 int genhash;
1190 unsigned char newhash[16];
1191
1192 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1193 AF_INET);
1194 hash_location = tcp_parse_md5sig_option(th);
1195
1196 /* We've parsed the options - do we have a hash? */
1197 if (!hash_expected && !hash_location)
1198 return false;
1199
1200 if (hash_expected && !hash_location) {
1201 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1202 return true;
1203 }
1204
1205 if (!hash_expected && hash_location) {
1206 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1207 return true;
1208 }
1209
1210 /* Okay, so this is hash_expected and hash_location -
1211 * so we need to calculate the checksum.
1212 */
1213 genhash = tcp_v4_md5_hash_skb(newhash,
1214 hash_expected,
1215 NULL, NULL, skb);
1216
1217 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1218 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219 &iph->saddr, ntohs(th->source),
1220 &iph->daddr, ntohs(th->dest),
1221 genhash ? " tcp_v4_calc_md5_hash failed"
1222 : "");
1223 return true;
1224 }
1225 return false;
1226 }
1227
1228 #endif
1229
1230 static void tcp_v4_init_req(struct request_sock *req, struct sock *sk,
1231 struct sk_buff *skb)
1232 {
1233 struct inet_request_sock *ireq = inet_rsk(req);
1234
1235 ireq->ir_loc_addr = ip_hdr(skb)->daddr;
1236 ireq->ir_rmt_addr = ip_hdr(skb)->saddr;
1237 ireq->no_srccheck = inet_sk(sk)->transparent;
1238 ireq->opt = tcp_v4_save_options(skb);
1239 }
1240
1241 static struct dst_entry *tcp_v4_route_req(struct sock *sk, struct flowi *fl,
1242 const struct request_sock *req,
1243 bool *strict)
1244 {
1245 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1246
1247 if (strict) {
1248 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1249 *strict = true;
1250 else
1251 *strict = false;
1252 }
1253
1254 return dst;
1255 }
1256
1257 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1258 .family = PF_INET,
1259 .obj_size = sizeof(struct tcp_request_sock),
1260 .rtx_syn_ack = tcp_rtx_synack,
1261 .send_ack = tcp_v4_reqsk_send_ack,
1262 .destructor = tcp_v4_reqsk_destructor,
1263 .send_reset = tcp_v4_send_reset,
1264 .syn_ack_timeout = tcp_syn_ack_timeout,
1265 };
1266
1267 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268 .mss_clamp = TCP_MSS_DEFAULT,
1269 #ifdef CONFIG_TCP_MD5SIG
1270 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1271 .calc_md5_hash = tcp_v4_md5_hash_skb,
1272 #endif
1273 .init_req = tcp_v4_init_req,
1274 #ifdef CONFIG_SYN_COOKIES
1275 .cookie_init_seq = cookie_v4_init_sequence,
1276 #endif
1277 .route_req = tcp_v4_route_req,
1278 .init_seq = tcp_v4_init_sequence,
1279 .send_synack = tcp_v4_send_synack,
1280 .queue_hash_add = inet_csk_reqsk_queue_hash_add,
1281 };
1282
1283 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1284 {
1285 /* Never answer to SYNs send to broadcast or multicast */
1286 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1287 goto drop;
1288
1289 return tcp_conn_request(&tcp_request_sock_ops,
1290 &tcp_request_sock_ipv4_ops, sk, skb);
1291
1292 drop:
1293 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1294 return 0;
1295 }
1296 EXPORT_SYMBOL(tcp_v4_conn_request);
1297
1298
1299 /*
1300 * The three way handshake has completed - we got a valid synack -
1301 * now create the new socket.
1302 */
1303 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1304 struct request_sock *req,
1305 struct dst_entry *dst)
1306 {
1307 struct inet_request_sock *ireq;
1308 struct inet_sock *newinet;
1309 struct tcp_sock *newtp;
1310 struct sock *newsk;
1311 #ifdef CONFIG_TCP_MD5SIG
1312 struct tcp_md5sig_key *key;
1313 #endif
1314 struct ip_options_rcu *inet_opt;
1315
1316 if (sk_acceptq_is_full(sk))
1317 goto exit_overflow;
1318
1319 newsk = tcp_create_openreq_child(sk, req, skb);
1320 if (!newsk)
1321 goto exit_nonewsk;
1322
1323 newsk->sk_gso_type = SKB_GSO_TCPV4;
1324 inet_sk_rx_dst_set(newsk, skb);
1325
1326 newtp = tcp_sk(newsk);
1327 newinet = inet_sk(newsk);
1328 ireq = inet_rsk(req);
1329 newinet->inet_daddr = ireq->ir_rmt_addr;
1330 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1331 newinet->inet_saddr = ireq->ir_loc_addr;
1332 inet_opt = ireq->opt;
1333 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1334 ireq->opt = NULL;
1335 newinet->mc_index = inet_iif(skb);
1336 newinet->mc_ttl = ip_hdr(skb)->ttl;
1337 newinet->rcv_tos = ip_hdr(skb)->tos;
1338 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1339 if (inet_opt)
1340 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1341 newinet->inet_id = newtp->write_seq ^ jiffies;
1342
1343 if (!dst) {
1344 dst = inet_csk_route_child_sock(sk, newsk, req);
1345 if (!dst)
1346 goto put_and_exit;
1347 } else {
1348 /* syncookie case : see end of cookie_v4_check() */
1349 }
1350 sk_setup_caps(newsk, dst);
1351
1352 tcp_sync_mss(newsk, dst_mtu(dst));
1353 newtp->advmss = dst_metric_advmss(dst);
1354 if (tcp_sk(sk)->rx_opt.user_mss &&
1355 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1356 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1357
1358 tcp_initialize_rcv_mss(newsk);
1359
1360 #ifdef CONFIG_TCP_MD5SIG
1361 /* Copy over the MD5 key from the original socket */
1362 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1363 AF_INET);
1364 if (key != NULL) {
1365 /*
1366 * We're using one, so create a matching key
1367 * on the newsk structure. If we fail to get
1368 * memory, then we end up not copying the key
1369 * across. Shucks.
1370 */
1371 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1372 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1373 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1374 }
1375 #endif
1376
1377 if (__inet_inherit_port(sk, newsk) < 0)
1378 goto put_and_exit;
1379 __inet_hash_nolisten(newsk, NULL);
1380
1381 return newsk;
1382
1383 exit_overflow:
1384 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1385 exit_nonewsk:
1386 dst_release(dst);
1387 exit:
1388 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1389 return NULL;
1390 put_and_exit:
1391 inet_csk_prepare_forced_close(newsk);
1392 tcp_done(newsk);
1393 goto exit;
1394 }
1395 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1396
1397 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1398 {
1399 struct tcphdr *th = tcp_hdr(skb);
1400 const struct iphdr *iph = ip_hdr(skb);
1401 struct sock *nsk;
1402 struct request_sock **prev;
1403 /* Find possible connection requests. */
1404 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1405 iph->saddr, iph->daddr);
1406 if (req)
1407 return tcp_check_req(sk, skb, req, prev, false);
1408
1409 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1410 th->source, iph->daddr, th->dest, inet_iif(skb));
1411
1412 if (nsk) {
1413 if (nsk->sk_state != TCP_TIME_WAIT) {
1414 bh_lock_sock(nsk);
1415 return nsk;
1416 }
1417 inet_twsk_put(inet_twsk(nsk));
1418 return NULL;
1419 }
1420
1421 #ifdef CONFIG_SYN_COOKIES
1422 if (!th->syn)
1423 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1424 #endif
1425 return sk;
1426 }
1427
1428 /* The socket must have it's spinlock held when we get
1429 * here.
1430 *
1431 * We have a potential double-lock case here, so even when
1432 * doing backlog processing we use the BH locking scheme.
1433 * This is because we cannot sleep with the original spinlock
1434 * held.
1435 */
1436 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1437 {
1438 struct sock *rsk;
1439 #ifdef CONFIG_TCP_MD5SIG
1440 /*
1441 * We really want to reject the packet as early as possible
1442 * if:
1443 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1444 * o There is an MD5 option and we're not expecting one
1445 */
1446 if (tcp_v4_inbound_md5_hash(sk, skb))
1447 goto discard;
1448 #endif
1449
1450 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1451 struct dst_entry *dst = sk->sk_rx_dst;
1452
1453 sock_rps_save_rxhash(sk, skb);
1454 if (dst) {
1455 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1456 dst->ops->check(dst, 0) == NULL) {
1457 dst_release(dst);
1458 sk->sk_rx_dst = NULL;
1459 }
1460 }
1461 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1462 return 0;
1463 }
1464
1465 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1466 goto csum_err;
1467
1468 if (sk->sk_state == TCP_LISTEN) {
1469 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1470 if (!nsk)
1471 goto discard;
1472
1473 if (nsk != sk) {
1474 sock_rps_save_rxhash(nsk, skb);
1475 if (tcp_child_process(sk, nsk, skb)) {
1476 rsk = nsk;
1477 goto reset;
1478 }
1479 return 0;
1480 }
1481 } else
1482 sock_rps_save_rxhash(sk, skb);
1483
1484 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1485 rsk = sk;
1486 goto reset;
1487 }
1488 return 0;
1489
1490 reset:
1491 tcp_v4_send_reset(rsk, skb);
1492 discard:
1493 kfree_skb(skb);
1494 /* Be careful here. If this function gets more complicated and
1495 * gcc suffers from register pressure on the x86, sk (in %ebx)
1496 * might be destroyed here. This current version compiles correctly,
1497 * but you have been warned.
1498 */
1499 return 0;
1500
1501 csum_err:
1502 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1503 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1504 goto discard;
1505 }
1506 EXPORT_SYMBOL(tcp_v4_do_rcv);
1507
1508 void tcp_v4_early_demux(struct sk_buff *skb)
1509 {
1510 const struct iphdr *iph;
1511 const struct tcphdr *th;
1512 struct sock *sk;
1513
1514 if (skb->pkt_type != PACKET_HOST)
1515 return;
1516
1517 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1518 return;
1519
1520 iph = ip_hdr(skb);
1521 th = tcp_hdr(skb);
1522
1523 if (th->doff < sizeof(struct tcphdr) / 4)
1524 return;
1525
1526 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1527 iph->saddr, th->source,
1528 iph->daddr, ntohs(th->dest),
1529 skb->skb_iif);
1530 if (sk) {
1531 skb->sk = sk;
1532 skb->destructor = sock_edemux;
1533 if (sk->sk_state != TCP_TIME_WAIT) {
1534 struct dst_entry *dst = sk->sk_rx_dst;
1535
1536 if (dst)
1537 dst = dst_check(dst, 0);
1538 if (dst &&
1539 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1540 skb_dst_set_noref(skb, dst);
1541 }
1542 }
1543 }
1544
1545 /* Packet is added to VJ-style prequeue for processing in process
1546 * context, if a reader task is waiting. Apparently, this exciting
1547 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1548 * failed somewhere. Latency? Burstiness? Well, at least now we will
1549 * see, why it failed. 8)8) --ANK
1550 *
1551 */
1552 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1553 {
1554 struct tcp_sock *tp = tcp_sk(sk);
1555
1556 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1557 return false;
1558
1559 if (skb->len <= tcp_hdrlen(skb) &&
1560 skb_queue_len(&tp->ucopy.prequeue) == 0)
1561 return false;
1562
1563 skb_dst_force(skb);
1564 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1565 tp->ucopy.memory += skb->truesize;
1566 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1567 struct sk_buff *skb1;
1568
1569 BUG_ON(sock_owned_by_user(sk));
1570
1571 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1572 sk_backlog_rcv(sk, skb1);
1573 NET_INC_STATS_BH(sock_net(sk),
1574 LINUX_MIB_TCPPREQUEUEDROPPED);
1575 }
1576
1577 tp->ucopy.memory = 0;
1578 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1579 wake_up_interruptible_sync_poll(sk_sleep(sk),
1580 POLLIN | POLLRDNORM | POLLRDBAND);
1581 if (!inet_csk_ack_scheduled(sk))
1582 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1583 (3 * tcp_rto_min(sk)) / 4,
1584 TCP_RTO_MAX);
1585 }
1586 return true;
1587 }
1588 EXPORT_SYMBOL(tcp_prequeue);
1589
1590 /*
1591 * From tcp_input.c
1592 */
1593
1594 int tcp_v4_rcv(struct sk_buff *skb)
1595 {
1596 const struct iphdr *iph;
1597 const struct tcphdr *th;
1598 struct sock *sk;
1599 int ret;
1600 struct net *net = dev_net(skb->dev);
1601
1602 if (skb->pkt_type != PACKET_HOST)
1603 goto discard_it;
1604
1605 /* Count it even if it's bad */
1606 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1607
1608 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1609 goto discard_it;
1610
1611 th = tcp_hdr(skb);
1612
1613 if (th->doff < sizeof(struct tcphdr) / 4)
1614 goto bad_packet;
1615 if (!pskb_may_pull(skb, th->doff * 4))
1616 goto discard_it;
1617
1618 /* An explanation is required here, I think.
1619 * Packet length and doff are validated by header prediction,
1620 * provided case of th->doff==0 is eliminated.
1621 * So, we defer the checks. */
1622
1623 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1624 goto csum_error;
1625
1626 th = tcp_hdr(skb);
1627 iph = ip_hdr(skb);
1628 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1629 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1630 skb->len - th->doff * 4);
1631 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1632 TCP_SKB_CB(skb)->when = 0;
1633 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1634 TCP_SKB_CB(skb)->sacked = 0;
1635
1636 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1637 if (!sk)
1638 goto no_tcp_socket;
1639
1640 process:
1641 if (sk->sk_state == TCP_TIME_WAIT)
1642 goto do_time_wait;
1643
1644 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1645 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1646 goto discard_and_relse;
1647 }
1648
1649 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1650 goto discard_and_relse;
1651 nf_reset(skb);
1652
1653 if (sk_filter(sk, skb))
1654 goto discard_and_relse;
1655
1656 sk_mark_napi_id(sk, skb);
1657 skb->dev = NULL;
1658
1659 bh_lock_sock_nested(sk);
1660 ret = 0;
1661 if (!sock_owned_by_user(sk)) {
1662 #ifdef CONFIG_NET_DMA
1663 struct tcp_sock *tp = tcp_sk(sk);
1664 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1665 tp->ucopy.dma_chan = net_dma_find_channel();
1666 if (tp->ucopy.dma_chan)
1667 ret = tcp_v4_do_rcv(sk, skb);
1668 else
1669 #endif
1670 {
1671 if (!tcp_prequeue(sk, skb))
1672 ret = tcp_v4_do_rcv(sk, skb);
1673 }
1674 } else if (unlikely(sk_add_backlog(sk, skb,
1675 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1676 bh_unlock_sock(sk);
1677 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1678 goto discard_and_relse;
1679 }
1680 bh_unlock_sock(sk);
1681
1682 sock_put(sk);
1683
1684 return ret;
1685
1686 no_tcp_socket:
1687 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1688 goto discard_it;
1689
1690 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1691 csum_error:
1692 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1693 bad_packet:
1694 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1695 } else {
1696 tcp_v4_send_reset(NULL, skb);
1697 }
1698
1699 discard_it:
1700 /* Discard frame. */
1701 kfree_skb(skb);
1702 return 0;
1703
1704 discard_and_relse:
1705 sock_put(sk);
1706 goto discard_it;
1707
1708 do_time_wait:
1709 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1710 inet_twsk_put(inet_twsk(sk));
1711 goto discard_it;
1712 }
1713
1714 if (skb->len < (th->doff << 2)) {
1715 inet_twsk_put(inet_twsk(sk));
1716 goto bad_packet;
1717 }
1718 if (tcp_checksum_complete(skb)) {
1719 inet_twsk_put(inet_twsk(sk));
1720 goto csum_error;
1721 }
1722 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1723 case TCP_TW_SYN: {
1724 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1725 &tcp_hashinfo,
1726 iph->saddr, th->source,
1727 iph->daddr, th->dest,
1728 inet_iif(skb));
1729 if (sk2) {
1730 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1731 inet_twsk_put(inet_twsk(sk));
1732 sk = sk2;
1733 goto process;
1734 }
1735 /* Fall through to ACK */
1736 }
1737 case TCP_TW_ACK:
1738 tcp_v4_timewait_ack(sk, skb);
1739 break;
1740 case TCP_TW_RST:
1741 goto no_tcp_socket;
1742 case TCP_TW_SUCCESS:;
1743 }
1744 goto discard_it;
1745 }
1746
1747 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1748 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1749 .twsk_unique = tcp_twsk_unique,
1750 .twsk_destructor= tcp_twsk_destructor,
1751 };
1752
1753 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1754 {
1755 struct dst_entry *dst = skb_dst(skb);
1756
1757 dst_hold(dst);
1758 sk->sk_rx_dst = dst;
1759 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1760 }
1761 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1762
1763 const struct inet_connection_sock_af_ops ipv4_specific = {
1764 .queue_xmit = ip_queue_xmit,
1765 .send_check = tcp_v4_send_check,
1766 .rebuild_header = inet_sk_rebuild_header,
1767 .sk_rx_dst_set = inet_sk_rx_dst_set,
1768 .conn_request = tcp_v4_conn_request,
1769 .syn_recv_sock = tcp_v4_syn_recv_sock,
1770 .net_header_len = sizeof(struct iphdr),
1771 .setsockopt = ip_setsockopt,
1772 .getsockopt = ip_getsockopt,
1773 .addr2sockaddr = inet_csk_addr2sockaddr,
1774 .sockaddr_len = sizeof(struct sockaddr_in),
1775 .bind_conflict = inet_csk_bind_conflict,
1776 #ifdef CONFIG_COMPAT
1777 .compat_setsockopt = compat_ip_setsockopt,
1778 .compat_getsockopt = compat_ip_getsockopt,
1779 #endif
1780 };
1781 EXPORT_SYMBOL(ipv4_specific);
1782
1783 #ifdef CONFIG_TCP_MD5SIG
1784 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1785 .md5_lookup = tcp_v4_md5_lookup,
1786 .calc_md5_hash = tcp_v4_md5_hash_skb,
1787 .md5_parse = tcp_v4_parse_md5_keys,
1788 };
1789 #endif
1790
1791 /* NOTE: A lot of things set to zero explicitly by call to
1792 * sk_alloc() so need not be done here.
1793 */
1794 static int tcp_v4_init_sock(struct sock *sk)
1795 {
1796 struct inet_connection_sock *icsk = inet_csk(sk);
1797
1798 tcp_init_sock(sk);
1799
1800 icsk->icsk_af_ops = &ipv4_specific;
1801
1802 #ifdef CONFIG_TCP_MD5SIG
1803 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1804 #endif
1805
1806 return 0;
1807 }
1808
1809 void tcp_v4_destroy_sock(struct sock *sk)
1810 {
1811 struct tcp_sock *tp = tcp_sk(sk);
1812
1813 tcp_clear_xmit_timers(sk);
1814
1815 tcp_cleanup_congestion_control(sk);
1816
1817 /* Cleanup up the write buffer. */
1818 tcp_write_queue_purge(sk);
1819
1820 /* Cleans up our, hopefully empty, out_of_order_queue. */
1821 __skb_queue_purge(&tp->out_of_order_queue);
1822
1823 #ifdef CONFIG_TCP_MD5SIG
1824 /* Clean up the MD5 key list, if any */
1825 if (tp->md5sig_info) {
1826 tcp_clear_md5_list(sk);
1827 kfree_rcu(tp->md5sig_info, rcu);
1828 tp->md5sig_info = NULL;
1829 }
1830 #endif
1831
1832 #ifdef CONFIG_NET_DMA
1833 /* Cleans up our sk_async_wait_queue */
1834 __skb_queue_purge(&sk->sk_async_wait_queue);
1835 #endif
1836
1837 /* Clean prequeue, it must be empty really */
1838 __skb_queue_purge(&tp->ucopy.prequeue);
1839
1840 /* Clean up a referenced TCP bind bucket. */
1841 if (inet_csk(sk)->icsk_bind_hash)
1842 inet_put_port(sk);
1843
1844 BUG_ON(tp->fastopen_rsk != NULL);
1845
1846 /* If socket is aborted during connect operation */
1847 tcp_free_fastopen_req(tp);
1848
1849 sk_sockets_allocated_dec(sk);
1850 sock_release_memcg(sk);
1851 }
1852 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1853
1854 #ifdef CONFIG_PROC_FS
1855 /* Proc filesystem TCP sock list dumping. */
1856
1857 /*
1858 * Get next listener socket follow cur. If cur is NULL, get first socket
1859 * starting from bucket given in st->bucket; when st->bucket is zero the
1860 * very first socket in the hash table is returned.
1861 */
1862 static void *listening_get_next(struct seq_file *seq, void *cur)
1863 {
1864 struct inet_connection_sock *icsk;
1865 struct hlist_nulls_node *node;
1866 struct sock *sk = cur;
1867 struct inet_listen_hashbucket *ilb;
1868 struct tcp_iter_state *st = seq->private;
1869 struct net *net = seq_file_net(seq);
1870
1871 if (!sk) {
1872 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1873 spin_lock_bh(&ilb->lock);
1874 sk = sk_nulls_head(&ilb->head);
1875 st->offset = 0;
1876 goto get_sk;
1877 }
1878 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1879 ++st->num;
1880 ++st->offset;
1881
1882 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1883 struct request_sock *req = cur;
1884
1885 icsk = inet_csk(st->syn_wait_sk);
1886 req = req->dl_next;
1887 while (1) {
1888 while (req) {
1889 if (req->rsk_ops->family == st->family) {
1890 cur = req;
1891 goto out;
1892 }
1893 req = req->dl_next;
1894 }
1895 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1896 break;
1897 get_req:
1898 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1899 }
1900 sk = sk_nulls_next(st->syn_wait_sk);
1901 st->state = TCP_SEQ_STATE_LISTENING;
1902 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1903 } else {
1904 icsk = inet_csk(sk);
1905 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1906 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1907 goto start_req;
1908 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1909 sk = sk_nulls_next(sk);
1910 }
1911 get_sk:
1912 sk_nulls_for_each_from(sk, node) {
1913 if (!net_eq(sock_net(sk), net))
1914 continue;
1915 if (sk->sk_family == st->family) {
1916 cur = sk;
1917 goto out;
1918 }
1919 icsk = inet_csk(sk);
1920 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1921 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1922 start_req:
1923 st->uid = sock_i_uid(sk);
1924 st->syn_wait_sk = sk;
1925 st->state = TCP_SEQ_STATE_OPENREQ;
1926 st->sbucket = 0;
1927 goto get_req;
1928 }
1929 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1930 }
1931 spin_unlock_bh(&ilb->lock);
1932 st->offset = 0;
1933 if (++st->bucket < INET_LHTABLE_SIZE) {
1934 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1935 spin_lock_bh(&ilb->lock);
1936 sk = sk_nulls_head(&ilb->head);
1937 goto get_sk;
1938 }
1939 cur = NULL;
1940 out:
1941 return cur;
1942 }
1943
1944 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1945 {
1946 struct tcp_iter_state *st = seq->private;
1947 void *rc;
1948
1949 st->bucket = 0;
1950 st->offset = 0;
1951 rc = listening_get_next(seq, NULL);
1952
1953 while (rc && *pos) {
1954 rc = listening_get_next(seq, rc);
1955 --*pos;
1956 }
1957 return rc;
1958 }
1959
1960 static inline bool empty_bucket(const struct tcp_iter_state *st)
1961 {
1962 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1963 }
1964
1965 /*
1966 * Get first established socket starting from bucket given in st->bucket.
1967 * If st->bucket is zero, the very first socket in the hash is returned.
1968 */
1969 static void *established_get_first(struct seq_file *seq)
1970 {
1971 struct tcp_iter_state *st = seq->private;
1972 struct net *net = seq_file_net(seq);
1973 void *rc = NULL;
1974
1975 st->offset = 0;
1976 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1977 struct sock *sk;
1978 struct hlist_nulls_node *node;
1979 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1980
1981 /* Lockless fast path for the common case of empty buckets */
1982 if (empty_bucket(st))
1983 continue;
1984
1985 spin_lock_bh(lock);
1986 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1987 if (sk->sk_family != st->family ||
1988 !net_eq(sock_net(sk), net)) {
1989 continue;
1990 }
1991 rc = sk;
1992 goto out;
1993 }
1994 spin_unlock_bh(lock);
1995 }
1996 out:
1997 return rc;
1998 }
1999
2000 static void *established_get_next(struct seq_file *seq, void *cur)
2001 {
2002 struct sock *sk = cur;
2003 struct hlist_nulls_node *node;
2004 struct tcp_iter_state *st = seq->private;
2005 struct net *net = seq_file_net(seq);
2006
2007 ++st->num;
2008 ++st->offset;
2009
2010 sk = sk_nulls_next(sk);
2011
2012 sk_nulls_for_each_from(sk, node) {
2013 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2014 return sk;
2015 }
2016
2017 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2018 ++st->bucket;
2019 return established_get_first(seq);
2020 }
2021
2022 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2023 {
2024 struct tcp_iter_state *st = seq->private;
2025 void *rc;
2026
2027 st->bucket = 0;
2028 rc = established_get_first(seq);
2029
2030 while (rc && pos) {
2031 rc = established_get_next(seq, rc);
2032 --pos;
2033 }
2034 return rc;
2035 }
2036
2037 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2038 {
2039 void *rc;
2040 struct tcp_iter_state *st = seq->private;
2041
2042 st->state = TCP_SEQ_STATE_LISTENING;
2043 rc = listening_get_idx(seq, &pos);
2044
2045 if (!rc) {
2046 st->state = TCP_SEQ_STATE_ESTABLISHED;
2047 rc = established_get_idx(seq, pos);
2048 }
2049
2050 return rc;
2051 }
2052
2053 static void *tcp_seek_last_pos(struct seq_file *seq)
2054 {
2055 struct tcp_iter_state *st = seq->private;
2056 int offset = st->offset;
2057 int orig_num = st->num;
2058 void *rc = NULL;
2059
2060 switch (st->state) {
2061 case TCP_SEQ_STATE_OPENREQ:
2062 case TCP_SEQ_STATE_LISTENING:
2063 if (st->bucket >= INET_LHTABLE_SIZE)
2064 break;
2065 st->state = TCP_SEQ_STATE_LISTENING;
2066 rc = listening_get_next(seq, NULL);
2067 while (offset-- && rc)
2068 rc = listening_get_next(seq, rc);
2069 if (rc)
2070 break;
2071 st->bucket = 0;
2072 st->state = TCP_SEQ_STATE_ESTABLISHED;
2073 /* Fallthrough */
2074 case TCP_SEQ_STATE_ESTABLISHED:
2075 if (st->bucket > tcp_hashinfo.ehash_mask)
2076 break;
2077 rc = established_get_first(seq);
2078 while (offset-- && rc)
2079 rc = established_get_next(seq, rc);
2080 }
2081
2082 st->num = orig_num;
2083
2084 return rc;
2085 }
2086
2087 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2088 {
2089 struct tcp_iter_state *st = seq->private;
2090 void *rc;
2091
2092 if (*pos && *pos == st->last_pos) {
2093 rc = tcp_seek_last_pos(seq);
2094 if (rc)
2095 goto out;
2096 }
2097
2098 st->state = TCP_SEQ_STATE_LISTENING;
2099 st->num = 0;
2100 st->bucket = 0;
2101 st->offset = 0;
2102 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2103
2104 out:
2105 st->last_pos = *pos;
2106 return rc;
2107 }
2108
2109 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2110 {
2111 struct tcp_iter_state *st = seq->private;
2112 void *rc = NULL;
2113
2114 if (v == SEQ_START_TOKEN) {
2115 rc = tcp_get_idx(seq, 0);
2116 goto out;
2117 }
2118
2119 switch (st->state) {
2120 case TCP_SEQ_STATE_OPENREQ:
2121 case TCP_SEQ_STATE_LISTENING:
2122 rc = listening_get_next(seq, v);
2123 if (!rc) {
2124 st->state = TCP_SEQ_STATE_ESTABLISHED;
2125 st->bucket = 0;
2126 st->offset = 0;
2127 rc = established_get_first(seq);
2128 }
2129 break;
2130 case TCP_SEQ_STATE_ESTABLISHED:
2131 rc = established_get_next(seq, v);
2132 break;
2133 }
2134 out:
2135 ++*pos;
2136 st->last_pos = *pos;
2137 return rc;
2138 }
2139
2140 static void tcp_seq_stop(struct seq_file *seq, void *v)
2141 {
2142 struct tcp_iter_state *st = seq->private;
2143
2144 switch (st->state) {
2145 case TCP_SEQ_STATE_OPENREQ:
2146 if (v) {
2147 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2148 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2149 }
2150 case TCP_SEQ_STATE_LISTENING:
2151 if (v != SEQ_START_TOKEN)
2152 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2153 break;
2154 case TCP_SEQ_STATE_ESTABLISHED:
2155 if (v)
2156 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2157 break;
2158 }
2159 }
2160
2161 int tcp_seq_open(struct inode *inode, struct file *file)
2162 {
2163 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2164 struct tcp_iter_state *s;
2165 int err;
2166
2167 err = seq_open_net(inode, file, &afinfo->seq_ops,
2168 sizeof(struct tcp_iter_state));
2169 if (err < 0)
2170 return err;
2171
2172 s = ((struct seq_file *)file->private_data)->private;
2173 s->family = afinfo->family;
2174 s->last_pos = 0;
2175 return 0;
2176 }
2177 EXPORT_SYMBOL(tcp_seq_open);
2178
2179 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2180 {
2181 int rc = 0;
2182 struct proc_dir_entry *p;
2183
2184 afinfo->seq_ops.start = tcp_seq_start;
2185 afinfo->seq_ops.next = tcp_seq_next;
2186 afinfo->seq_ops.stop = tcp_seq_stop;
2187
2188 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2189 afinfo->seq_fops, afinfo);
2190 if (!p)
2191 rc = -ENOMEM;
2192 return rc;
2193 }
2194 EXPORT_SYMBOL(tcp_proc_register);
2195
2196 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2197 {
2198 remove_proc_entry(afinfo->name, net->proc_net);
2199 }
2200 EXPORT_SYMBOL(tcp_proc_unregister);
2201
2202 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2203 struct seq_file *f, int i, kuid_t uid)
2204 {
2205 const struct inet_request_sock *ireq = inet_rsk(req);
2206 long delta = req->expires - jiffies;
2207
2208 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2209 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2210 i,
2211 ireq->ir_loc_addr,
2212 ntohs(inet_sk(sk)->inet_sport),
2213 ireq->ir_rmt_addr,
2214 ntohs(ireq->ir_rmt_port),
2215 TCP_SYN_RECV,
2216 0, 0, /* could print option size, but that is af dependent. */
2217 1, /* timers active (only the expire timer) */
2218 jiffies_delta_to_clock_t(delta),
2219 req->num_timeout,
2220 from_kuid_munged(seq_user_ns(f), uid),
2221 0, /* non standard timer */
2222 0, /* open_requests have no inode */
2223 atomic_read(&sk->sk_refcnt),
2224 req);
2225 }
2226
2227 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2228 {
2229 int timer_active;
2230 unsigned long timer_expires;
2231 const struct tcp_sock *tp = tcp_sk(sk);
2232 const struct inet_connection_sock *icsk = inet_csk(sk);
2233 const struct inet_sock *inet = inet_sk(sk);
2234 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2235 __be32 dest = inet->inet_daddr;
2236 __be32 src = inet->inet_rcv_saddr;
2237 __u16 destp = ntohs(inet->inet_dport);
2238 __u16 srcp = ntohs(inet->inet_sport);
2239 int rx_queue;
2240
2241 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2242 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2243 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2244 timer_active = 1;
2245 timer_expires = icsk->icsk_timeout;
2246 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2247 timer_active = 4;
2248 timer_expires = icsk->icsk_timeout;
2249 } else if (timer_pending(&sk->sk_timer)) {
2250 timer_active = 2;
2251 timer_expires = sk->sk_timer.expires;
2252 } else {
2253 timer_active = 0;
2254 timer_expires = jiffies;
2255 }
2256
2257 if (sk->sk_state == TCP_LISTEN)
2258 rx_queue = sk->sk_ack_backlog;
2259 else
2260 /*
2261 * because we dont lock socket, we might find a transient negative value
2262 */
2263 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2264
2265 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2266 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2267 i, src, srcp, dest, destp, sk->sk_state,
2268 tp->write_seq - tp->snd_una,
2269 rx_queue,
2270 timer_active,
2271 jiffies_delta_to_clock_t(timer_expires - jiffies),
2272 icsk->icsk_retransmits,
2273 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2274 icsk->icsk_probes_out,
2275 sock_i_ino(sk),
2276 atomic_read(&sk->sk_refcnt), sk,
2277 jiffies_to_clock_t(icsk->icsk_rto),
2278 jiffies_to_clock_t(icsk->icsk_ack.ato),
2279 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2280 tp->snd_cwnd,
2281 sk->sk_state == TCP_LISTEN ?
2282 (fastopenq ? fastopenq->max_qlen : 0) :
2283 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2284 }
2285
2286 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2287 struct seq_file *f, int i)
2288 {
2289 __be32 dest, src;
2290 __u16 destp, srcp;
2291 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2292
2293 dest = tw->tw_daddr;
2294 src = tw->tw_rcv_saddr;
2295 destp = ntohs(tw->tw_dport);
2296 srcp = ntohs(tw->tw_sport);
2297
2298 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2299 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2300 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2301 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2302 atomic_read(&tw->tw_refcnt), tw);
2303 }
2304
2305 #define TMPSZ 150
2306
2307 static int tcp4_seq_show(struct seq_file *seq, void *v)
2308 {
2309 struct tcp_iter_state *st;
2310 struct sock *sk = v;
2311
2312 seq_setwidth(seq, TMPSZ - 1);
2313 if (v == SEQ_START_TOKEN) {
2314 seq_puts(seq, " sl local_address rem_address st tx_queue "
2315 "rx_queue tr tm->when retrnsmt uid timeout "
2316 "inode");
2317 goto out;
2318 }
2319 st = seq->private;
2320
2321 switch (st->state) {
2322 case TCP_SEQ_STATE_LISTENING:
2323 case TCP_SEQ_STATE_ESTABLISHED:
2324 if (sk->sk_state == TCP_TIME_WAIT)
2325 get_timewait4_sock(v, seq, st->num);
2326 else
2327 get_tcp4_sock(v, seq, st->num);
2328 break;
2329 case TCP_SEQ_STATE_OPENREQ:
2330 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2331 break;
2332 }
2333 out:
2334 seq_pad(seq, '\n');
2335 return 0;
2336 }
2337
2338 static const struct file_operations tcp_afinfo_seq_fops = {
2339 .owner = THIS_MODULE,
2340 .open = tcp_seq_open,
2341 .read = seq_read,
2342 .llseek = seq_lseek,
2343 .release = seq_release_net
2344 };
2345
2346 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2347 .name = "tcp",
2348 .family = AF_INET,
2349 .seq_fops = &tcp_afinfo_seq_fops,
2350 .seq_ops = {
2351 .show = tcp4_seq_show,
2352 },
2353 };
2354
2355 static int __net_init tcp4_proc_init_net(struct net *net)
2356 {
2357 return tcp_proc_register(net, &tcp4_seq_afinfo);
2358 }
2359
2360 static void __net_exit tcp4_proc_exit_net(struct net *net)
2361 {
2362 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2363 }
2364
2365 static struct pernet_operations tcp4_net_ops = {
2366 .init = tcp4_proc_init_net,
2367 .exit = tcp4_proc_exit_net,
2368 };
2369
2370 int __init tcp4_proc_init(void)
2371 {
2372 return register_pernet_subsys(&tcp4_net_ops);
2373 }
2374
2375 void tcp4_proc_exit(void)
2376 {
2377 unregister_pernet_subsys(&tcp4_net_ops);
2378 }
2379 #endif /* CONFIG_PROC_FS */
2380
2381 struct proto tcp_prot = {
2382 .name = "TCP",
2383 .owner = THIS_MODULE,
2384 .close = tcp_close,
2385 .connect = tcp_v4_connect,
2386 .disconnect = tcp_disconnect,
2387 .accept = inet_csk_accept,
2388 .ioctl = tcp_ioctl,
2389 .init = tcp_v4_init_sock,
2390 .destroy = tcp_v4_destroy_sock,
2391 .shutdown = tcp_shutdown,
2392 .setsockopt = tcp_setsockopt,
2393 .getsockopt = tcp_getsockopt,
2394 .recvmsg = tcp_recvmsg,
2395 .sendmsg = tcp_sendmsg,
2396 .sendpage = tcp_sendpage,
2397 .backlog_rcv = tcp_v4_do_rcv,
2398 .release_cb = tcp_release_cb,
2399 .mtu_reduced = tcp_v4_mtu_reduced,
2400 .hash = inet_hash,
2401 .unhash = inet_unhash,
2402 .get_port = inet_csk_get_port,
2403 .enter_memory_pressure = tcp_enter_memory_pressure,
2404 .stream_memory_free = tcp_stream_memory_free,
2405 .sockets_allocated = &tcp_sockets_allocated,
2406 .orphan_count = &tcp_orphan_count,
2407 .memory_allocated = &tcp_memory_allocated,
2408 .memory_pressure = &tcp_memory_pressure,
2409 .sysctl_mem = sysctl_tcp_mem,
2410 .sysctl_wmem = sysctl_tcp_wmem,
2411 .sysctl_rmem = sysctl_tcp_rmem,
2412 .max_header = MAX_TCP_HEADER,
2413 .obj_size = sizeof(struct tcp_sock),
2414 .slab_flags = SLAB_DESTROY_BY_RCU,
2415 .twsk_prot = &tcp_timewait_sock_ops,
2416 .rsk_prot = &tcp_request_sock_ops,
2417 .h.hashinfo = &tcp_hashinfo,
2418 .no_autobind = true,
2419 #ifdef CONFIG_COMPAT
2420 .compat_setsockopt = compat_tcp_setsockopt,
2421 .compat_getsockopt = compat_tcp_getsockopt,
2422 #endif
2423 #ifdef CONFIG_MEMCG_KMEM
2424 .init_cgroup = tcp_init_cgroup,
2425 .destroy_cgroup = tcp_destroy_cgroup,
2426 .proto_cgroup = tcp_proto_cgroup,
2427 #endif
2428 };
2429 EXPORT_SYMBOL(tcp_prot);
2430
2431 static int __net_init tcp_sk_init(struct net *net)
2432 {
2433 net->ipv4.sysctl_tcp_ecn = 2;
2434 return 0;
2435 }
2436
2437 static void __net_exit tcp_sk_exit(struct net *net)
2438 {
2439 }
2440
2441 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2442 {
2443 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2444 }
2445
2446 static struct pernet_operations __net_initdata tcp_sk_ops = {
2447 .init = tcp_sk_init,
2448 .exit = tcp_sk_exit,
2449 .exit_batch = tcp_sk_exit_batch,
2450 };
2451
2452 void __init tcp_v4_init(void)
2453 {
2454 inet_hashinfo_init(&tcp_hashinfo);
2455 if (register_pernet_subsys(&tcp_sk_ops))
2456 panic("Failed to create the TCP control socket.\n");
2457 }
This page took 0.079033 seconds and 4 git commands to generate.