tcp: simplify fast open cookie processing
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 #include <net/busy_poll.h>
79
80 #include <linux/inet.h>
81 #include <linux/ipv6.h>
82 #include <linux/stddef.h>
83 #include <linux/proc_fs.h>
84 #include <linux/seq_file.h>
85
86 #include <linux/crypto.h>
87 #include <linux/scatterlist.h>
88
89 int sysctl_tcp_tw_reuse __read_mostly;
90 int sysctl_tcp_low_latency __read_mostly;
91 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94 #ifdef CONFIG_TCP_MD5SIG
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98
99 struct inet_hashinfo tcp_hashinfo;
100 EXPORT_SYMBOL(tcp_hashinfo);
101
102 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 {
104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 ip_hdr(skb)->saddr,
106 tcp_hdr(skb)->dest,
107 tcp_hdr(skb)->source);
108 }
109
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 struct tcp_sock *tp = tcp_sk(sk);
114
115 /* With PAWS, it is safe from the viewpoint
116 of data integrity. Even without PAWS it is safe provided sequence
117 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119 Actually, the idea is close to VJ's one, only timestamp cache is
120 held not per host, but per port pair and TW bucket is used as state
121 holder.
122
123 If TW bucket has been already destroyed we fall back to VJ's scheme
124 and use initial timestamp retrieved from peer table.
125 */
126 if (tcptw->tw_ts_recent_stamp &&
127 (twp == NULL || (sysctl_tcp_tw_reuse &&
128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 if (tp->write_seq == 0)
131 tp->write_seq = 1;
132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 sock_hold(sktw);
135 return 1;
136 }
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142 /* This will initiate an outgoing connection. */
143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 {
145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 struct inet_sock *inet = inet_sk(sk);
147 struct tcp_sock *tp = tcp_sk(sk);
148 __be16 orig_sport, orig_dport;
149 __be32 daddr, nexthop;
150 struct flowi4 *fl4;
151 struct rtable *rt;
152 int err;
153 struct ip_options_rcu *inet_opt;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 inet_opt = rcu_dereference_protected(inet->inet_opt,
163 sock_owned_by_user(sk));
164 if (inet_opt && inet_opt->opt.srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet_opt->opt.faddr;
168 }
169
170 orig_sport = inet->inet_sport;
171 orig_dport = usin->sin_port;
172 fl4 = &inet->cork.fl.u.ip4;
173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 IPPROTO_TCP,
176 orig_sport, orig_dport, sk);
177 if (IS_ERR(rt)) {
178 err = PTR_ERR(rt);
179 if (err == -ENETUNREACH)
180 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 return err;
182 }
183
184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 ip_rt_put(rt);
186 return -ENETUNREACH;
187 }
188
189 if (!inet_opt || !inet_opt->opt.srr)
190 daddr = fl4->daddr;
191
192 if (!inet->inet_saddr)
193 inet->inet_saddr = fl4->saddr;
194 inet->inet_rcv_saddr = inet->inet_saddr;
195
196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 /* Reset inherited state */
198 tp->rx_opt.ts_recent = 0;
199 tp->rx_opt.ts_recent_stamp = 0;
200 if (likely(!tp->repair))
201 tp->write_seq = 0;
202 }
203
204 if (tcp_death_row.sysctl_tw_recycle &&
205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208 inet->inet_dport = usin->sin_port;
209 inet->inet_daddr = daddr;
210
211 inet_csk(sk)->icsk_ext_hdr_len = 0;
212 if (inet_opt)
213 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214
215 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216
217 /* Socket identity is still unknown (sport may be zero).
218 * However we set state to SYN-SENT and not releasing socket
219 * lock select source port, enter ourselves into the hash tables and
220 * complete initialization after this.
221 */
222 tcp_set_state(sk, TCP_SYN_SENT);
223 err = inet_hash_connect(&tcp_death_row, sk);
224 if (err)
225 goto failure;
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254 failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272 static void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302 }
303
304 static void do_redirect(struct sk_buff *skb, struct sock *sk)
305 {
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310 }
311
312 /*
313 * This routine is called by the ICMP module when it gets some
314 * sort of error condition. If err < 0 then the socket should
315 * be closed and the error returned to the user. If err > 0
316 * it's just the icmp type << 8 | icmp code. After adjustment
317 * header points to the first 8 bytes of the tcp header. We need
318 * to find the appropriate port.
319 *
320 * The locking strategy used here is very "optimistic". When
321 * someone else accesses the socket the ICMP is just dropped
322 * and for some paths there is no check at all.
323 * A more general error queue to queue errors for later handling
324 * is probably better.
325 *
326 */
327
328 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
329 {
330 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
331 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
332 struct inet_connection_sock *icsk;
333 struct tcp_sock *tp;
334 struct inet_sock *inet;
335 const int type = icmp_hdr(icmp_skb)->type;
336 const int code = icmp_hdr(icmp_skb)->code;
337 struct sock *sk;
338 struct sk_buff *skb;
339 struct request_sock *req;
340 __u32 seq;
341 __u32 remaining;
342 int err;
343 struct net *net = dev_net(icmp_skb->dev);
344
345 if (icmp_skb->len < (iph->ihl << 2) + 8) {
346 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
347 return;
348 }
349
350 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
351 iph->saddr, th->source, inet_iif(icmp_skb));
352 if (!sk) {
353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
354 return;
355 }
356 if (sk->sk_state == TCP_TIME_WAIT) {
357 inet_twsk_put(inet_twsk(sk));
358 return;
359 }
360
361 bh_lock_sock(sk);
362 /* If too many ICMPs get dropped on busy
363 * servers this needs to be solved differently.
364 * We do take care of PMTU discovery (RFC1191) special case :
365 * we can receive locally generated ICMP messages while socket is held.
366 */
367 if (sock_owned_by_user(sk)) {
368 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 }
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
373
374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376 goto out;
377 }
378
379 icsk = inet_csk(sk);
380 tp = tcp_sk(sk);
381 req = tp->fastopen_rsk;
382 seq = ntohl(th->seq);
383 if (sk->sk_state != TCP_LISTEN &&
384 !between(seq, tp->snd_una, tp->snd_nxt) &&
385 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
386 /* For a Fast Open socket, allow seq to be snt_isn. */
387 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
388 goto out;
389 }
390
391 switch (type) {
392 case ICMP_REDIRECT:
393 do_redirect(icmp_skb, sk);
394 goto out;
395 case ICMP_SOURCE_QUENCH:
396 /* Just silently ignore these. */
397 goto out;
398 case ICMP_PARAMETERPROB:
399 err = EPROTO;
400 break;
401 case ICMP_DEST_UNREACH:
402 if (code > NR_ICMP_UNREACH)
403 goto out;
404
405 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
406 /* We are not interested in TCP_LISTEN and open_requests
407 * (SYN-ACKs send out by Linux are always <576bytes so
408 * they should go through unfragmented).
409 */
410 if (sk->sk_state == TCP_LISTEN)
411 goto out;
412
413 tp->mtu_info = info;
414 if (!sock_owned_by_user(sk)) {
415 tcp_v4_mtu_reduced(sk);
416 } else {
417 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
418 sock_hold(sk);
419 }
420 goto out;
421 }
422
423 err = icmp_err_convert[code].errno;
424 /* check if icmp_skb allows revert of backoff
425 * (see draft-zimmermann-tcp-lcd) */
426 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
427 break;
428 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
429 !icsk->icsk_backoff)
430 break;
431
432 /* XXX (TFO) - revisit the following logic for TFO */
433
434 if (sock_owned_by_user(sk))
435 break;
436
437 icsk->icsk_backoff--;
438 inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
439 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
440 tcp_bound_rto(sk);
441
442 skb = tcp_write_queue_head(sk);
443 BUG_ON(!skb);
444
445 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
446 tcp_time_stamp - TCP_SKB_CB(skb)->when);
447
448 if (remaining) {
449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
450 remaining, TCP_RTO_MAX);
451 } else {
452 /* RTO revert clocked out retransmission.
453 * Will retransmit now */
454 tcp_retransmit_timer(sk);
455 }
456
457 break;
458 case ICMP_TIME_EXCEEDED:
459 err = EHOSTUNREACH;
460 break;
461 default:
462 goto out;
463 }
464
465 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
466 * than following the TCP_SYN_RECV case and closing the socket,
467 * we ignore the ICMP error and keep trying like a fully established
468 * socket. Is this the right thing to do?
469 */
470 if (req && req->sk == NULL)
471 goto out;
472
473 switch (sk->sk_state) {
474 struct request_sock *req, **prev;
475 case TCP_LISTEN:
476 if (sock_owned_by_user(sk))
477 goto out;
478
479 req = inet_csk_search_req(sk, &prev, th->dest,
480 iph->daddr, iph->saddr);
481 if (!req)
482 goto out;
483
484 /* ICMPs are not backlogged, hence we cannot get
485 an established socket here.
486 */
487 WARN_ON(req->sk);
488
489 if (seq != tcp_rsk(req)->snt_isn) {
490 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
491 goto out;
492 }
493
494 /*
495 * Still in SYN_RECV, just remove it silently.
496 * There is no good way to pass the error to the newly
497 * created socket, and POSIX does not want network
498 * errors returned from accept().
499 */
500 inet_csk_reqsk_queue_drop(sk, req, prev);
501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
502 goto out;
503
504 case TCP_SYN_SENT:
505 case TCP_SYN_RECV: /* Cannot happen.
506 It can f.e. if SYNs crossed,
507 or Fast Open.
508 */
509 if (!sock_owned_by_user(sk)) {
510 sk->sk_err = err;
511
512 sk->sk_error_report(sk);
513
514 tcp_done(sk);
515 } else {
516 sk->sk_err_soft = err;
517 }
518 goto out;
519 }
520
521 /* If we've already connected we will keep trying
522 * until we time out, or the user gives up.
523 *
524 * rfc1122 4.2.3.9 allows to consider as hard errors
525 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
526 * but it is obsoleted by pmtu discovery).
527 *
528 * Note, that in modern internet, where routing is unreliable
529 * and in each dark corner broken firewalls sit, sending random
530 * errors ordered by their masters even this two messages finally lose
531 * their original sense (even Linux sends invalid PORT_UNREACHs)
532 *
533 * Now we are in compliance with RFCs.
534 * --ANK (980905)
535 */
536
537 inet = inet_sk(sk);
538 if (!sock_owned_by_user(sk) && inet->recverr) {
539 sk->sk_err = err;
540 sk->sk_error_report(sk);
541 } else { /* Only an error on timeout */
542 sk->sk_err_soft = err;
543 }
544
545 out:
546 bh_unlock_sock(sk);
547 sock_put(sk);
548 }
549
550 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
551 {
552 struct tcphdr *th = tcp_hdr(skb);
553
554 if (skb->ip_summed == CHECKSUM_PARTIAL) {
555 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
556 skb->csum_start = skb_transport_header(skb) - skb->head;
557 skb->csum_offset = offsetof(struct tcphdr, check);
558 } else {
559 th->check = tcp_v4_check(skb->len, saddr, daddr,
560 csum_partial(th,
561 th->doff << 2,
562 skb->csum));
563 }
564 }
565
566 /* This routine computes an IPv4 TCP checksum. */
567 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
568 {
569 const struct inet_sock *inet = inet_sk(sk);
570
571 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
572 }
573 EXPORT_SYMBOL(tcp_v4_send_check);
574
575 /*
576 * This routine will send an RST to the other tcp.
577 *
578 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
579 * for reset.
580 * Answer: if a packet caused RST, it is not for a socket
581 * existing in our system, if it is matched to a socket,
582 * it is just duplicate segment or bug in other side's TCP.
583 * So that we build reply only basing on parameters
584 * arrived with segment.
585 * Exception: precedence violation. We do not implement it in any case.
586 */
587
588 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
589 {
590 const struct tcphdr *th = tcp_hdr(skb);
591 struct {
592 struct tcphdr th;
593 #ifdef CONFIG_TCP_MD5SIG
594 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
595 #endif
596 } rep;
597 struct ip_reply_arg arg;
598 #ifdef CONFIG_TCP_MD5SIG
599 struct tcp_md5sig_key *key;
600 const __u8 *hash_location = NULL;
601 unsigned char newhash[16];
602 int genhash;
603 struct sock *sk1 = NULL;
604 #endif
605 struct net *net;
606
607 /* Never send a reset in response to a reset. */
608 if (th->rst)
609 return;
610
611 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
612 return;
613
614 /* Swap the send and the receive. */
615 memset(&rep, 0, sizeof(rep));
616 rep.th.dest = th->source;
617 rep.th.source = th->dest;
618 rep.th.doff = sizeof(struct tcphdr) / 4;
619 rep.th.rst = 1;
620
621 if (th->ack) {
622 rep.th.seq = th->ack_seq;
623 } else {
624 rep.th.ack = 1;
625 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
626 skb->len - (th->doff << 2));
627 }
628
629 memset(&arg, 0, sizeof(arg));
630 arg.iov[0].iov_base = (unsigned char *)&rep;
631 arg.iov[0].iov_len = sizeof(rep.th);
632
633 #ifdef CONFIG_TCP_MD5SIG
634 hash_location = tcp_parse_md5sig_option(th);
635 if (!sk && hash_location) {
636 /*
637 * active side is lost. Try to find listening socket through
638 * source port, and then find md5 key through listening socket.
639 * we are not loose security here:
640 * Incoming packet is checked with md5 hash with finding key,
641 * no RST generated if md5 hash doesn't match.
642 */
643 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
644 &tcp_hashinfo, ip_hdr(skb)->saddr,
645 th->source, ip_hdr(skb)->daddr,
646 ntohs(th->source), inet_iif(skb));
647 /* don't send rst if it can't find key */
648 if (!sk1)
649 return;
650 rcu_read_lock();
651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
652 &ip_hdr(skb)->saddr, AF_INET);
653 if (!key)
654 goto release_sk1;
655
656 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
657 if (genhash || memcmp(hash_location, newhash, 16) != 0)
658 goto release_sk1;
659 } else {
660 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr,
662 AF_INET) : NULL;
663 }
664
665 if (key) {
666 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
667 (TCPOPT_NOP << 16) |
668 (TCPOPT_MD5SIG << 8) |
669 TCPOLEN_MD5SIG);
670 /* Update length and the length the header thinks exists */
671 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
672 rep.th.doff = arg.iov[0].iov_len / 4;
673
674 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
675 key, ip_hdr(skb)->saddr,
676 ip_hdr(skb)->daddr, &rep.th);
677 }
678 #endif
679 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
680 ip_hdr(skb)->saddr, /* XXX */
681 arg.iov[0].iov_len, IPPROTO_TCP, 0);
682 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
683 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
684 /* When socket is gone, all binding information is lost.
685 * routing might fail in this case. No choice here, if we choose to force
686 * input interface, we will misroute in case of asymmetric route.
687 */
688 if (sk)
689 arg.bound_dev_if = sk->sk_bound_dev_if;
690
691 net = dev_net(skb_dst(skb)->dev);
692 arg.tos = ip_hdr(skb)->tos;
693 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
694 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
695
696 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
697 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
698
699 #ifdef CONFIG_TCP_MD5SIG
700 release_sk1:
701 if (sk1) {
702 rcu_read_unlock();
703 sock_put(sk1);
704 }
705 #endif
706 }
707
708 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
709 outside socket context is ugly, certainly. What can I do?
710 */
711
712 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
713 u32 win, u32 tsval, u32 tsecr, int oif,
714 struct tcp_md5sig_key *key,
715 int reply_flags, u8 tos)
716 {
717 const struct tcphdr *th = tcp_hdr(skb);
718 struct {
719 struct tcphdr th;
720 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
721 #ifdef CONFIG_TCP_MD5SIG
722 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
723 #endif
724 ];
725 } rep;
726 struct ip_reply_arg arg;
727 struct net *net = dev_net(skb_dst(skb)->dev);
728
729 memset(&rep.th, 0, sizeof(struct tcphdr));
730 memset(&arg, 0, sizeof(arg));
731
732 arg.iov[0].iov_base = (unsigned char *)&rep;
733 arg.iov[0].iov_len = sizeof(rep.th);
734 if (tsecr) {
735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
736 (TCPOPT_TIMESTAMP << 8) |
737 TCPOLEN_TIMESTAMP);
738 rep.opt[1] = htonl(tsval);
739 rep.opt[2] = htonl(tsecr);
740 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
741 }
742
743 /* Swap the send and the receive. */
744 rep.th.dest = th->source;
745 rep.th.source = th->dest;
746 rep.th.doff = arg.iov[0].iov_len / 4;
747 rep.th.seq = htonl(seq);
748 rep.th.ack_seq = htonl(ack);
749 rep.th.ack = 1;
750 rep.th.window = htons(win);
751
752 #ifdef CONFIG_TCP_MD5SIG
753 if (key) {
754 int offset = (tsecr) ? 3 : 0;
755
756 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
757 (TCPOPT_NOP << 16) |
758 (TCPOPT_MD5SIG << 8) |
759 TCPOLEN_MD5SIG);
760 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
761 rep.th.doff = arg.iov[0].iov_len/4;
762
763 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
764 key, ip_hdr(skb)->saddr,
765 ip_hdr(skb)->daddr, &rep.th);
766 }
767 #endif
768 arg.flags = reply_flags;
769 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
770 ip_hdr(skb)->saddr, /* XXX */
771 arg.iov[0].iov_len, IPPROTO_TCP, 0);
772 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
773 if (oif)
774 arg.bound_dev_if = oif;
775 arg.tos = tos;
776 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
777 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
778
779 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
780 }
781
782 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
783 {
784 struct inet_timewait_sock *tw = inet_twsk(sk);
785 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
786
787 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
788 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
789 tcp_time_stamp + tcptw->tw_ts_offset,
790 tcptw->tw_ts_recent,
791 tw->tw_bound_dev_if,
792 tcp_twsk_md5_key(tcptw),
793 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
794 tw->tw_tos
795 );
796
797 inet_twsk_put(tw);
798 }
799
800 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
801 struct request_sock *req)
802 {
803 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
804 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
805 */
806 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
807 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
808 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
809 tcp_time_stamp,
810 req->ts_recent,
811 0,
812 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
813 AF_INET),
814 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
815 ip_hdr(skb)->tos);
816 }
817
818 /*
819 * Send a SYN-ACK after having received a SYN.
820 * This still operates on a request_sock only, not on a big
821 * socket.
822 */
823 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
824 struct request_sock *req,
825 u16 queue_mapping)
826 {
827 const struct inet_request_sock *ireq = inet_rsk(req);
828 struct flowi4 fl4;
829 int err = -1;
830 struct sk_buff *skb;
831
832 /* First, grab a route. */
833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834 return -1;
835
836 skb = tcp_make_synack(sk, dst, req, NULL);
837
838 if (skb) {
839 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
840
841 skb_set_queue_mapping(skb, queue_mapping);
842 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
843 ireq->ir_rmt_addr,
844 ireq->opt);
845 err = net_xmit_eval(err);
846 if (!tcp_rsk(req)->snt_synack && !err)
847 tcp_rsk(req)->snt_synack = tcp_time_stamp;
848 }
849
850 return err;
851 }
852
853 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
854 {
855 int res = tcp_v4_send_synack(sk, NULL, req, 0);
856
857 if (!res) {
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
860 }
861 return res;
862 }
863
864 /*
865 * IPv4 request_sock destructor.
866 */
867 static void tcp_v4_reqsk_destructor(struct request_sock *req)
868 {
869 kfree(inet_rsk(req)->opt);
870 }
871
872 /*
873 * Return true if a syncookie should be sent
874 */
875 bool tcp_syn_flood_action(struct sock *sk,
876 const struct sk_buff *skb,
877 const char *proto)
878 {
879 const char *msg = "Dropping request";
880 bool want_cookie = false;
881 struct listen_sock *lopt;
882
883 #ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889 #endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901
902 /*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
906 {
907 const struct ip_options *opt = &(IPCB(skb)->opt);
908 struct ip_options_rcu *dopt = NULL;
909
910 if (opt && opt->optlen) {
911 int opt_size = sizeof(*dopt) + opt->optlen;
912
913 dopt = kmalloc(opt_size, GFP_ATOMIC);
914 if (dopt) {
915 if (ip_options_echo(&dopt->opt, skb)) {
916 kfree(dopt);
917 dopt = NULL;
918 }
919 }
920 }
921 return dopt;
922 }
923
924 #ifdef CONFIG_TCP_MD5SIG
925 /*
926 * RFC2385 MD5 checksumming requires a mapping of
927 * IP address->MD5 Key.
928 * We need to maintain these in the sk structure.
929 */
930
931 /* Find the Key structure for an address. */
932 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933 const union tcp_md5_addr *addr,
934 int family)
935 {
936 struct tcp_sock *tp = tcp_sk(sk);
937 struct tcp_md5sig_key *key;
938 unsigned int size = sizeof(struct in_addr);
939 struct tcp_md5sig_info *md5sig;
940
941 /* caller either holds rcu_read_lock() or socket lock */
942 md5sig = rcu_dereference_check(tp->md5sig_info,
943 sock_owned_by_user(sk) ||
944 lockdep_is_held(&sk->sk_lock.slock));
945 if (!md5sig)
946 return NULL;
947 #if IS_ENABLED(CONFIG_IPV6)
948 if (family == AF_INET6)
949 size = sizeof(struct in6_addr);
950 #endif
951 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
952 if (key->family != family)
953 continue;
954 if (!memcmp(&key->addr, addr, size))
955 return key;
956 }
957 return NULL;
958 }
959 EXPORT_SYMBOL(tcp_md5_do_lookup);
960
961 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962 struct sock *addr_sk)
963 {
964 union tcp_md5_addr *addr;
965
966 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967 return tcp_md5_do_lookup(sk, addr, AF_INET);
968 }
969 EXPORT_SYMBOL(tcp_v4_md5_lookup);
970
971 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972 struct request_sock *req)
973 {
974 union tcp_md5_addr *addr;
975
976 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
977 return tcp_md5_do_lookup(sk, addr, AF_INET);
978 }
979
980 /* This can be called on a newly created socket, from other files */
981 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983 {
984 /* Add Key to the list */
985 struct tcp_md5sig_key *key;
986 struct tcp_sock *tp = tcp_sk(sk);
987 struct tcp_md5sig_info *md5sig;
988
989 key = tcp_md5_do_lookup(sk, addr, family);
990 if (key) {
991 /* Pre-existing entry - just update that one. */
992 memcpy(key->key, newkey, newkeylen);
993 key->keylen = newkeylen;
994 return 0;
995 }
996
997 md5sig = rcu_dereference_protected(tp->md5sig_info,
998 sock_owned_by_user(sk));
999 if (!md5sig) {
1000 md5sig = kmalloc(sizeof(*md5sig), gfp);
1001 if (!md5sig)
1002 return -ENOMEM;
1003
1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005 INIT_HLIST_HEAD(&md5sig->head);
1006 rcu_assign_pointer(tp->md5sig_info, md5sig);
1007 }
1008
1009 key = sock_kmalloc(sk, sizeof(*key), gfp);
1010 if (!key)
1011 return -ENOMEM;
1012 if (!tcp_alloc_md5sig_pool()) {
1013 sock_kfree_s(sk, key, sizeof(*key));
1014 return -ENOMEM;
1015 }
1016
1017 memcpy(key->key, newkey, newkeylen);
1018 key->keylen = newkeylen;
1019 key->family = family;
1020 memcpy(&key->addr, addr,
1021 (family == AF_INET6) ? sizeof(struct in6_addr) :
1022 sizeof(struct in_addr));
1023 hlist_add_head_rcu(&key->node, &md5sig->head);
1024 return 0;
1025 }
1026 EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029 {
1030 struct tcp_md5sig_key *key;
1031
1032 key = tcp_md5_do_lookup(sk, addr, family);
1033 if (!key)
1034 return -ENOENT;
1035 hlist_del_rcu(&key->node);
1036 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037 kfree_rcu(key, rcu);
1038 return 0;
1039 }
1040 EXPORT_SYMBOL(tcp_md5_do_del);
1041
1042 static void tcp_clear_md5_list(struct sock *sk)
1043 {
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 struct tcp_md5sig_key *key;
1046 struct hlist_node *n;
1047 struct tcp_md5sig_info *md5sig;
1048
1049 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050
1051 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1052 hlist_del_rcu(&key->node);
1053 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054 kfree_rcu(key, rcu);
1055 }
1056 }
1057
1058 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059 int optlen)
1060 {
1061 struct tcp_md5sig cmd;
1062 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1063
1064 if (optlen < sizeof(cmd))
1065 return -EINVAL;
1066
1067 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068 return -EFAULT;
1069
1070 if (sin->sin_family != AF_INET)
1071 return -EINVAL;
1072
1073 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075 AF_INET);
1076
1077 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078 return -EINVAL;
1079
1080 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082 GFP_KERNEL);
1083 }
1084
1085 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086 __be32 daddr, __be32 saddr, int nbytes)
1087 {
1088 struct tcp4_pseudohdr *bp;
1089 struct scatterlist sg;
1090
1091 bp = &hp->md5_blk.ip4;
1092
1093 /*
1094 * 1. the TCP pseudo-header (in the order: source IP address,
1095 * destination IP address, zero-padded protocol number, and
1096 * segment length)
1097 */
1098 bp->saddr = saddr;
1099 bp->daddr = daddr;
1100 bp->pad = 0;
1101 bp->protocol = IPPROTO_TCP;
1102 bp->len = cpu_to_be16(nbytes);
1103
1104 sg_init_one(&sg, bp, sizeof(*bp));
1105 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1106 }
1107
1108 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110 {
1111 struct tcp_md5sig_pool *hp;
1112 struct hash_desc *desc;
1113
1114 hp = tcp_get_md5sig_pool();
1115 if (!hp)
1116 goto clear_hash_noput;
1117 desc = &hp->md5_desc;
1118
1119 if (crypto_hash_init(desc))
1120 goto clear_hash;
1121 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122 goto clear_hash;
1123 if (tcp_md5_hash_header(hp, th))
1124 goto clear_hash;
1125 if (tcp_md5_hash_key(hp, key))
1126 goto clear_hash;
1127 if (crypto_hash_final(desc, md5_hash))
1128 goto clear_hash;
1129
1130 tcp_put_md5sig_pool();
1131 return 0;
1132
1133 clear_hash:
1134 tcp_put_md5sig_pool();
1135 clear_hash_noput:
1136 memset(md5_hash, 0, 16);
1137 return 1;
1138 }
1139
1140 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141 const struct sock *sk, const struct request_sock *req,
1142 const struct sk_buff *skb)
1143 {
1144 struct tcp_md5sig_pool *hp;
1145 struct hash_desc *desc;
1146 const struct tcphdr *th = tcp_hdr(skb);
1147 __be32 saddr, daddr;
1148
1149 if (sk) {
1150 saddr = inet_sk(sk)->inet_saddr;
1151 daddr = inet_sk(sk)->inet_daddr;
1152 } else if (req) {
1153 saddr = inet_rsk(req)->ir_loc_addr;
1154 daddr = inet_rsk(req)->ir_rmt_addr;
1155 } else {
1156 const struct iphdr *iph = ip_hdr(skb);
1157 saddr = iph->saddr;
1158 daddr = iph->daddr;
1159 }
1160
1161 hp = tcp_get_md5sig_pool();
1162 if (!hp)
1163 goto clear_hash_noput;
1164 desc = &hp->md5_desc;
1165
1166 if (crypto_hash_init(desc))
1167 goto clear_hash;
1168
1169 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170 goto clear_hash;
1171 if (tcp_md5_hash_header(hp, th))
1172 goto clear_hash;
1173 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174 goto clear_hash;
1175 if (tcp_md5_hash_key(hp, key))
1176 goto clear_hash;
1177 if (crypto_hash_final(desc, md5_hash))
1178 goto clear_hash;
1179
1180 tcp_put_md5sig_pool();
1181 return 0;
1182
1183 clear_hash:
1184 tcp_put_md5sig_pool();
1185 clear_hash_noput:
1186 memset(md5_hash, 0, 16);
1187 return 1;
1188 }
1189 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190
1191 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192 {
1193 /*
1194 * This gets called for each TCP segment that arrives
1195 * so we want to be efficient.
1196 * We have 3 drop cases:
1197 * o No MD5 hash and one expected.
1198 * o MD5 hash and we're not expecting one.
1199 * o MD5 hash and its wrong.
1200 */
1201 const __u8 *hash_location = NULL;
1202 struct tcp_md5sig_key *hash_expected;
1203 const struct iphdr *iph = ip_hdr(skb);
1204 const struct tcphdr *th = tcp_hdr(skb);
1205 int genhash;
1206 unsigned char newhash[16];
1207
1208 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209 AF_INET);
1210 hash_location = tcp_parse_md5sig_option(th);
1211
1212 /* We've parsed the options - do we have a hash? */
1213 if (!hash_expected && !hash_location)
1214 return false;
1215
1216 if (hash_expected && !hash_location) {
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218 return true;
1219 }
1220
1221 if (!hash_expected && hash_location) {
1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223 return true;
1224 }
1225
1226 /* Okay, so this is hash_expected and hash_location -
1227 * so we need to calculate the checksum.
1228 */
1229 genhash = tcp_v4_md5_hash_skb(newhash,
1230 hash_expected,
1231 NULL, NULL, skb);
1232
1233 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235 &iph->saddr, ntohs(th->source),
1236 &iph->daddr, ntohs(th->dest),
1237 genhash ? " tcp_v4_calc_md5_hash failed"
1238 : "");
1239 return true;
1240 }
1241 return false;
1242 }
1243
1244 #endif
1245
1246 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247 .family = PF_INET,
1248 .obj_size = sizeof(struct tcp_request_sock),
1249 .rtx_syn_ack = tcp_v4_rtx_synack,
1250 .send_ack = tcp_v4_reqsk_send_ack,
1251 .destructor = tcp_v4_reqsk_destructor,
1252 .send_reset = tcp_v4_send_reset,
1253 .syn_ack_timeout = tcp_syn_ack_timeout,
1254 };
1255
1256 #ifdef CONFIG_TCP_MD5SIG
1257 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1259 .calc_md5_hash = tcp_v4_md5_hash_skb,
1260 };
1261 #endif
1262
1263 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1264 {
1265 struct tcp_options_received tmp_opt;
1266 struct request_sock *req;
1267 struct inet_request_sock *ireq;
1268 struct tcp_sock *tp = tcp_sk(sk);
1269 struct dst_entry *dst = NULL;
1270 __be32 saddr = ip_hdr(skb)->saddr;
1271 __be32 daddr = ip_hdr(skb)->daddr;
1272 __u32 isn = TCP_SKB_CB(skb)->when;
1273 bool want_cookie = false;
1274 struct flowi4 fl4;
1275 struct tcp_fastopen_cookie foc = { .len = -1 };
1276 struct sk_buff *skb_synack;
1277 int do_fastopen;
1278
1279 /* Never answer to SYNs send to broadcast or multicast */
1280 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1281 goto drop;
1282
1283 /* TW buckets are converted to open requests without
1284 * limitations, they conserve resources and peer is
1285 * evidently real one.
1286 */
1287 if ((sysctl_tcp_syncookies == 2 ||
1288 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
1289 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1290 if (!want_cookie)
1291 goto drop;
1292 }
1293
1294 /* Accept backlog is full. If we have already queued enough
1295 * of warm entries in syn queue, drop request. It is better than
1296 * clogging syn queue with openreqs with exponentially increasing
1297 * timeout.
1298 */
1299 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1301 goto drop;
1302 }
1303
1304 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1305 if (!req)
1306 goto drop;
1307
1308 #ifdef CONFIG_TCP_MD5SIG
1309 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1310 #endif
1311
1312 tcp_clear_options(&tmp_opt);
1313 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1314 tmp_opt.user_mss = tp->rx_opt.user_mss;
1315 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1316
1317 if (want_cookie && !tmp_opt.saw_tstamp)
1318 tcp_clear_options(&tmp_opt);
1319
1320 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1321 tcp_openreq_init(req, &tmp_opt, skb);
1322
1323 ireq = inet_rsk(req);
1324 ireq->ir_loc_addr = daddr;
1325 ireq->ir_rmt_addr = saddr;
1326 ireq->no_srccheck = inet_sk(sk)->transparent;
1327 ireq->opt = tcp_v4_save_options(skb);
1328
1329 if (security_inet_conn_request(sk, skb, req))
1330 goto drop_and_free;
1331
1332 if (!want_cookie || tmp_opt.tstamp_ok)
1333 TCP_ECN_create_request(req, skb, sock_net(sk));
1334
1335 if (want_cookie) {
1336 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1337 req->cookie_ts = tmp_opt.tstamp_ok;
1338 } else if (!isn) {
1339 /* VJ's idea. We save last timestamp seen
1340 * from the destination in peer table, when entering
1341 * state TIME-WAIT, and check against it before
1342 * accepting new connection request.
1343 *
1344 * If "isn" is not zero, this request hit alive
1345 * timewait bucket, so that all the necessary checks
1346 * are made in the function processing timewait state.
1347 */
1348 if (tmp_opt.saw_tstamp &&
1349 tcp_death_row.sysctl_tw_recycle &&
1350 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1351 fl4.daddr == saddr) {
1352 if (!tcp_peer_is_proven(req, dst, true)) {
1353 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1354 goto drop_and_release;
1355 }
1356 }
1357 /* Kill the following clause, if you dislike this way. */
1358 else if (!sysctl_tcp_syncookies &&
1359 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1360 (sysctl_max_syn_backlog >> 2)) &&
1361 !tcp_peer_is_proven(req, dst, false)) {
1362 /* Without syncookies last quarter of
1363 * backlog is filled with destinations,
1364 * proven to be alive.
1365 * It means that we continue to communicate
1366 * to destinations, already remembered
1367 * to the moment of synflood.
1368 */
1369 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1370 &saddr, ntohs(tcp_hdr(skb)->source));
1371 goto drop_and_release;
1372 }
1373
1374 isn = tcp_v4_init_sequence(skb);
1375 }
1376 tcp_rsk(req)->snt_isn = isn;
1377
1378 if (dst == NULL) {
1379 dst = inet_csk_route_req(sk, &fl4, req);
1380 if (dst == NULL)
1381 goto drop_and_free;
1382 }
1383 do_fastopen = !want_cookie &&
1384 tcp_fastopen_check(sk, skb, req, &foc);
1385
1386 /* We don't call tcp_v4_send_synack() directly because we need
1387 * to make sure a child socket can be created successfully before
1388 * sending back synack!
1389 *
1390 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1391 * (or better yet, call tcp_send_synack() in the child context
1392 * directly, but will have to fix bunch of other code first)
1393 * after syn_recv_sock() except one will need to first fix the
1394 * latter to remove its dependency on the current implementation
1395 * of tcp_v4_send_synack()->tcp_select_initial_window().
1396 */
1397 skb_synack = tcp_make_synack(sk, dst, req, &foc);
1398
1399 if (skb_synack) {
1400 __tcp_v4_send_check(skb_synack, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1401 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1402 } else
1403 goto drop_and_free;
1404
1405 if (likely(!do_fastopen)) {
1406 int err;
1407 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1408 ireq->ir_rmt_addr, ireq->opt);
1409 err = net_xmit_eval(err);
1410 if (err || want_cookie)
1411 goto drop_and_free;
1412
1413 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1414 tcp_rsk(req)->listener = NULL;
1415 /* Add the request_sock to the SYN table */
1416 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1417 } else if (tcp_fastopen_create_child(sk, skb, skb_synack, req))
1418 goto drop_and_release;
1419
1420 return 0;
1421
1422 drop_and_release:
1423 dst_release(dst);
1424 drop_and_free:
1425 reqsk_free(req);
1426 drop:
1427 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(tcp_v4_conn_request);
1431
1432
1433 /*
1434 * The three way handshake has completed - we got a valid synack -
1435 * now create the new socket.
1436 */
1437 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1438 struct request_sock *req,
1439 struct dst_entry *dst)
1440 {
1441 struct inet_request_sock *ireq;
1442 struct inet_sock *newinet;
1443 struct tcp_sock *newtp;
1444 struct sock *newsk;
1445 #ifdef CONFIG_TCP_MD5SIG
1446 struct tcp_md5sig_key *key;
1447 #endif
1448 struct ip_options_rcu *inet_opt;
1449
1450 if (sk_acceptq_is_full(sk))
1451 goto exit_overflow;
1452
1453 newsk = tcp_create_openreq_child(sk, req, skb);
1454 if (!newsk)
1455 goto exit_nonewsk;
1456
1457 newsk->sk_gso_type = SKB_GSO_TCPV4;
1458 inet_sk_rx_dst_set(newsk, skb);
1459
1460 newtp = tcp_sk(newsk);
1461 newinet = inet_sk(newsk);
1462 ireq = inet_rsk(req);
1463 newinet->inet_daddr = ireq->ir_rmt_addr;
1464 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1465 newinet->inet_saddr = ireq->ir_loc_addr;
1466 inet_opt = ireq->opt;
1467 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1468 ireq->opt = NULL;
1469 newinet->mc_index = inet_iif(skb);
1470 newinet->mc_ttl = ip_hdr(skb)->ttl;
1471 newinet->rcv_tos = ip_hdr(skb)->tos;
1472 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1473 if (inet_opt)
1474 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1475 newinet->inet_id = newtp->write_seq ^ jiffies;
1476
1477 if (!dst) {
1478 dst = inet_csk_route_child_sock(sk, newsk, req);
1479 if (!dst)
1480 goto put_and_exit;
1481 } else {
1482 /* syncookie case : see end of cookie_v4_check() */
1483 }
1484 sk_setup_caps(newsk, dst);
1485
1486 tcp_sync_mss(newsk, dst_mtu(dst));
1487 newtp->advmss = dst_metric_advmss(dst);
1488 if (tcp_sk(sk)->rx_opt.user_mss &&
1489 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1490 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1491
1492 tcp_initialize_rcv_mss(newsk);
1493
1494 #ifdef CONFIG_TCP_MD5SIG
1495 /* Copy over the MD5 key from the original socket */
1496 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1497 AF_INET);
1498 if (key != NULL) {
1499 /*
1500 * We're using one, so create a matching key
1501 * on the newsk structure. If we fail to get
1502 * memory, then we end up not copying the key
1503 * across. Shucks.
1504 */
1505 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1506 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1507 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1508 }
1509 #endif
1510
1511 if (__inet_inherit_port(sk, newsk) < 0)
1512 goto put_and_exit;
1513 __inet_hash_nolisten(newsk, NULL);
1514
1515 return newsk;
1516
1517 exit_overflow:
1518 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1519 exit_nonewsk:
1520 dst_release(dst);
1521 exit:
1522 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1523 return NULL;
1524 put_and_exit:
1525 inet_csk_prepare_forced_close(newsk);
1526 tcp_done(newsk);
1527 goto exit;
1528 }
1529 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1530
1531 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1532 {
1533 struct tcphdr *th = tcp_hdr(skb);
1534 const struct iphdr *iph = ip_hdr(skb);
1535 struct sock *nsk;
1536 struct request_sock **prev;
1537 /* Find possible connection requests. */
1538 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1539 iph->saddr, iph->daddr);
1540 if (req)
1541 return tcp_check_req(sk, skb, req, prev, false);
1542
1543 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1544 th->source, iph->daddr, th->dest, inet_iif(skb));
1545
1546 if (nsk) {
1547 if (nsk->sk_state != TCP_TIME_WAIT) {
1548 bh_lock_sock(nsk);
1549 return nsk;
1550 }
1551 inet_twsk_put(inet_twsk(nsk));
1552 return NULL;
1553 }
1554
1555 #ifdef CONFIG_SYN_COOKIES
1556 if (!th->syn)
1557 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1558 #endif
1559 return sk;
1560 }
1561
1562 /* The socket must have it's spinlock held when we get
1563 * here.
1564 *
1565 * We have a potential double-lock case here, so even when
1566 * doing backlog processing we use the BH locking scheme.
1567 * This is because we cannot sleep with the original spinlock
1568 * held.
1569 */
1570 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1571 {
1572 struct sock *rsk;
1573 #ifdef CONFIG_TCP_MD5SIG
1574 /*
1575 * We really want to reject the packet as early as possible
1576 * if:
1577 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1578 * o There is an MD5 option and we're not expecting one
1579 */
1580 if (tcp_v4_inbound_md5_hash(sk, skb))
1581 goto discard;
1582 #endif
1583
1584 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1585 struct dst_entry *dst = sk->sk_rx_dst;
1586
1587 sock_rps_save_rxhash(sk, skb);
1588 if (dst) {
1589 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1590 dst->ops->check(dst, 0) == NULL) {
1591 dst_release(dst);
1592 sk->sk_rx_dst = NULL;
1593 }
1594 }
1595 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1596 return 0;
1597 }
1598
1599 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1600 goto csum_err;
1601
1602 if (sk->sk_state == TCP_LISTEN) {
1603 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1604 if (!nsk)
1605 goto discard;
1606
1607 if (nsk != sk) {
1608 sock_rps_save_rxhash(nsk, skb);
1609 if (tcp_child_process(sk, nsk, skb)) {
1610 rsk = nsk;
1611 goto reset;
1612 }
1613 return 0;
1614 }
1615 } else
1616 sock_rps_save_rxhash(sk, skb);
1617
1618 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1619 rsk = sk;
1620 goto reset;
1621 }
1622 return 0;
1623
1624 reset:
1625 tcp_v4_send_reset(rsk, skb);
1626 discard:
1627 kfree_skb(skb);
1628 /* Be careful here. If this function gets more complicated and
1629 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630 * might be destroyed here. This current version compiles correctly,
1631 * but you have been warned.
1632 */
1633 return 0;
1634
1635 csum_err:
1636 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1637 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1638 goto discard;
1639 }
1640 EXPORT_SYMBOL(tcp_v4_do_rcv);
1641
1642 void tcp_v4_early_demux(struct sk_buff *skb)
1643 {
1644 const struct iphdr *iph;
1645 const struct tcphdr *th;
1646 struct sock *sk;
1647
1648 if (skb->pkt_type != PACKET_HOST)
1649 return;
1650
1651 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1652 return;
1653
1654 iph = ip_hdr(skb);
1655 th = tcp_hdr(skb);
1656
1657 if (th->doff < sizeof(struct tcphdr) / 4)
1658 return;
1659
1660 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1661 iph->saddr, th->source,
1662 iph->daddr, ntohs(th->dest),
1663 skb->skb_iif);
1664 if (sk) {
1665 skb->sk = sk;
1666 skb->destructor = sock_edemux;
1667 if (sk->sk_state != TCP_TIME_WAIT) {
1668 struct dst_entry *dst = sk->sk_rx_dst;
1669
1670 if (dst)
1671 dst = dst_check(dst, 0);
1672 if (dst &&
1673 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1674 skb_dst_set_noref(skb, dst);
1675 }
1676 }
1677 }
1678
1679 /* Packet is added to VJ-style prequeue for processing in process
1680 * context, if a reader task is waiting. Apparently, this exciting
1681 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1682 * failed somewhere. Latency? Burstiness? Well, at least now we will
1683 * see, why it failed. 8)8) --ANK
1684 *
1685 */
1686 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1687 {
1688 struct tcp_sock *tp = tcp_sk(sk);
1689
1690 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1691 return false;
1692
1693 if (skb->len <= tcp_hdrlen(skb) &&
1694 skb_queue_len(&tp->ucopy.prequeue) == 0)
1695 return false;
1696
1697 skb_dst_force(skb);
1698 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1699 tp->ucopy.memory += skb->truesize;
1700 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1701 struct sk_buff *skb1;
1702
1703 BUG_ON(sock_owned_by_user(sk));
1704
1705 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1706 sk_backlog_rcv(sk, skb1);
1707 NET_INC_STATS_BH(sock_net(sk),
1708 LINUX_MIB_TCPPREQUEUEDROPPED);
1709 }
1710
1711 tp->ucopy.memory = 0;
1712 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1713 wake_up_interruptible_sync_poll(sk_sleep(sk),
1714 POLLIN | POLLRDNORM | POLLRDBAND);
1715 if (!inet_csk_ack_scheduled(sk))
1716 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1717 (3 * tcp_rto_min(sk)) / 4,
1718 TCP_RTO_MAX);
1719 }
1720 return true;
1721 }
1722 EXPORT_SYMBOL(tcp_prequeue);
1723
1724 /*
1725 * From tcp_input.c
1726 */
1727
1728 int tcp_v4_rcv(struct sk_buff *skb)
1729 {
1730 const struct iphdr *iph;
1731 const struct tcphdr *th;
1732 struct sock *sk;
1733 int ret;
1734 struct net *net = dev_net(skb->dev);
1735
1736 if (skb->pkt_type != PACKET_HOST)
1737 goto discard_it;
1738
1739 /* Count it even if it's bad */
1740 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1741
1742 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1743 goto discard_it;
1744
1745 th = tcp_hdr(skb);
1746
1747 if (th->doff < sizeof(struct tcphdr) / 4)
1748 goto bad_packet;
1749 if (!pskb_may_pull(skb, th->doff * 4))
1750 goto discard_it;
1751
1752 /* An explanation is required here, I think.
1753 * Packet length and doff are validated by header prediction,
1754 * provided case of th->doff==0 is eliminated.
1755 * So, we defer the checks. */
1756
1757 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1758 goto csum_error;
1759
1760 th = tcp_hdr(skb);
1761 iph = ip_hdr(skb);
1762 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1763 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1764 skb->len - th->doff * 4);
1765 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1766 TCP_SKB_CB(skb)->when = 0;
1767 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1768 TCP_SKB_CB(skb)->sacked = 0;
1769
1770 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1771 if (!sk)
1772 goto no_tcp_socket;
1773
1774 process:
1775 if (sk->sk_state == TCP_TIME_WAIT)
1776 goto do_time_wait;
1777
1778 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1779 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1780 goto discard_and_relse;
1781 }
1782
1783 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1784 goto discard_and_relse;
1785 nf_reset(skb);
1786
1787 if (sk_filter(sk, skb))
1788 goto discard_and_relse;
1789
1790 sk_mark_napi_id(sk, skb);
1791 skb->dev = NULL;
1792
1793 bh_lock_sock_nested(sk);
1794 ret = 0;
1795 if (!sock_owned_by_user(sk)) {
1796 #ifdef CONFIG_NET_DMA
1797 struct tcp_sock *tp = tcp_sk(sk);
1798 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1799 tp->ucopy.dma_chan = net_dma_find_channel();
1800 if (tp->ucopy.dma_chan)
1801 ret = tcp_v4_do_rcv(sk, skb);
1802 else
1803 #endif
1804 {
1805 if (!tcp_prequeue(sk, skb))
1806 ret = tcp_v4_do_rcv(sk, skb);
1807 }
1808 } else if (unlikely(sk_add_backlog(sk, skb,
1809 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1810 bh_unlock_sock(sk);
1811 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1812 goto discard_and_relse;
1813 }
1814 bh_unlock_sock(sk);
1815
1816 sock_put(sk);
1817
1818 return ret;
1819
1820 no_tcp_socket:
1821 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1822 goto discard_it;
1823
1824 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1825 csum_error:
1826 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1827 bad_packet:
1828 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1829 } else {
1830 tcp_v4_send_reset(NULL, skb);
1831 }
1832
1833 discard_it:
1834 /* Discard frame. */
1835 kfree_skb(skb);
1836 return 0;
1837
1838 discard_and_relse:
1839 sock_put(sk);
1840 goto discard_it;
1841
1842 do_time_wait:
1843 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1844 inet_twsk_put(inet_twsk(sk));
1845 goto discard_it;
1846 }
1847
1848 if (skb->len < (th->doff << 2)) {
1849 inet_twsk_put(inet_twsk(sk));
1850 goto bad_packet;
1851 }
1852 if (tcp_checksum_complete(skb)) {
1853 inet_twsk_put(inet_twsk(sk));
1854 goto csum_error;
1855 }
1856 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1857 case TCP_TW_SYN: {
1858 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1859 &tcp_hashinfo,
1860 iph->saddr, th->source,
1861 iph->daddr, th->dest,
1862 inet_iif(skb));
1863 if (sk2) {
1864 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1865 inet_twsk_put(inet_twsk(sk));
1866 sk = sk2;
1867 goto process;
1868 }
1869 /* Fall through to ACK */
1870 }
1871 case TCP_TW_ACK:
1872 tcp_v4_timewait_ack(sk, skb);
1873 break;
1874 case TCP_TW_RST:
1875 goto no_tcp_socket;
1876 case TCP_TW_SUCCESS:;
1877 }
1878 goto discard_it;
1879 }
1880
1881 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1882 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1883 .twsk_unique = tcp_twsk_unique,
1884 .twsk_destructor= tcp_twsk_destructor,
1885 };
1886
1887 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1888 {
1889 struct dst_entry *dst = skb_dst(skb);
1890
1891 dst_hold(dst);
1892 sk->sk_rx_dst = dst;
1893 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1894 }
1895 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1896
1897 const struct inet_connection_sock_af_ops ipv4_specific = {
1898 .queue_xmit = ip_queue_xmit,
1899 .send_check = tcp_v4_send_check,
1900 .rebuild_header = inet_sk_rebuild_header,
1901 .sk_rx_dst_set = inet_sk_rx_dst_set,
1902 .conn_request = tcp_v4_conn_request,
1903 .syn_recv_sock = tcp_v4_syn_recv_sock,
1904 .net_header_len = sizeof(struct iphdr),
1905 .setsockopt = ip_setsockopt,
1906 .getsockopt = ip_getsockopt,
1907 .addr2sockaddr = inet_csk_addr2sockaddr,
1908 .sockaddr_len = sizeof(struct sockaddr_in),
1909 .bind_conflict = inet_csk_bind_conflict,
1910 #ifdef CONFIG_COMPAT
1911 .compat_setsockopt = compat_ip_setsockopt,
1912 .compat_getsockopt = compat_ip_getsockopt,
1913 #endif
1914 };
1915 EXPORT_SYMBOL(ipv4_specific);
1916
1917 #ifdef CONFIG_TCP_MD5SIG
1918 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1919 .md5_lookup = tcp_v4_md5_lookup,
1920 .calc_md5_hash = tcp_v4_md5_hash_skb,
1921 .md5_parse = tcp_v4_parse_md5_keys,
1922 };
1923 #endif
1924
1925 /* NOTE: A lot of things set to zero explicitly by call to
1926 * sk_alloc() so need not be done here.
1927 */
1928 static int tcp_v4_init_sock(struct sock *sk)
1929 {
1930 struct inet_connection_sock *icsk = inet_csk(sk);
1931
1932 tcp_init_sock(sk);
1933
1934 icsk->icsk_af_ops = &ipv4_specific;
1935
1936 #ifdef CONFIG_TCP_MD5SIG
1937 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1938 #endif
1939
1940 return 0;
1941 }
1942
1943 void tcp_v4_destroy_sock(struct sock *sk)
1944 {
1945 struct tcp_sock *tp = tcp_sk(sk);
1946
1947 tcp_clear_xmit_timers(sk);
1948
1949 tcp_cleanup_congestion_control(sk);
1950
1951 /* Cleanup up the write buffer. */
1952 tcp_write_queue_purge(sk);
1953
1954 /* Cleans up our, hopefully empty, out_of_order_queue. */
1955 __skb_queue_purge(&tp->out_of_order_queue);
1956
1957 #ifdef CONFIG_TCP_MD5SIG
1958 /* Clean up the MD5 key list, if any */
1959 if (tp->md5sig_info) {
1960 tcp_clear_md5_list(sk);
1961 kfree_rcu(tp->md5sig_info, rcu);
1962 tp->md5sig_info = NULL;
1963 }
1964 #endif
1965
1966 #ifdef CONFIG_NET_DMA
1967 /* Cleans up our sk_async_wait_queue */
1968 __skb_queue_purge(&sk->sk_async_wait_queue);
1969 #endif
1970
1971 /* Clean prequeue, it must be empty really */
1972 __skb_queue_purge(&tp->ucopy.prequeue);
1973
1974 /* Clean up a referenced TCP bind bucket. */
1975 if (inet_csk(sk)->icsk_bind_hash)
1976 inet_put_port(sk);
1977
1978 BUG_ON(tp->fastopen_rsk != NULL);
1979
1980 /* If socket is aborted during connect operation */
1981 tcp_free_fastopen_req(tp);
1982
1983 sk_sockets_allocated_dec(sk);
1984 sock_release_memcg(sk);
1985 }
1986 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1987
1988 #ifdef CONFIG_PROC_FS
1989 /* Proc filesystem TCP sock list dumping. */
1990
1991 /*
1992 * Get next listener socket follow cur. If cur is NULL, get first socket
1993 * starting from bucket given in st->bucket; when st->bucket is zero the
1994 * very first socket in the hash table is returned.
1995 */
1996 static void *listening_get_next(struct seq_file *seq, void *cur)
1997 {
1998 struct inet_connection_sock *icsk;
1999 struct hlist_nulls_node *node;
2000 struct sock *sk = cur;
2001 struct inet_listen_hashbucket *ilb;
2002 struct tcp_iter_state *st = seq->private;
2003 struct net *net = seq_file_net(seq);
2004
2005 if (!sk) {
2006 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2007 spin_lock_bh(&ilb->lock);
2008 sk = sk_nulls_head(&ilb->head);
2009 st->offset = 0;
2010 goto get_sk;
2011 }
2012 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2013 ++st->num;
2014 ++st->offset;
2015
2016 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2017 struct request_sock *req = cur;
2018
2019 icsk = inet_csk(st->syn_wait_sk);
2020 req = req->dl_next;
2021 while (1) {
2022 while (req) {
2023 if (req->rsk_ops->family == st->family) {
2024 cur = req;
2025 goto out;
2026 }
2027 req = req->dl_next;
2028 }
2029 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2030 break;
2031 get_req:
2032 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2033 }
2034 sk = sk_nulls_next(st->syn_wait_sk);
2035 st->state = TCP_SEQ_STATE_LISTENING;
2036 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2037 } else {
2038 icsk = inet_csk(sk);
2039 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2041 goto start_req;
2042 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2043 sk = sk_nulls_next(sk);
2044 }
2045 get_sk:
2046 sk_nulls_for_each_from(sk, node) {
2047 if (!net_eq(sock_net(sk), net))
2048 continue;
2049 if (sk->sk_family == st->family) {
2050 cur = sk;
2051 goto out;
2052 }
2053 icsk = inet_csk(sk);
2054 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2055 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2056 start_req:
2057 st->uid = sock_i_uid(sk);
2058 st->syn_wait_sk = sk;
2059 st->state = TCP_SEQ_STATE_OPENREQ;
2060 st->sbucket = 0;
2061 goto get_req;
2062 }
2063 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2064 }
2065 spin_unlock_bh(&ilb->lock);
2066 st->offset = 0;
2067 if (++st->bucket < INET_LHTABLE_SIZE) {
2068 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2069 spin_lock_bh(&ilb->lock);
2070 sk = sk_nulls_head(&ilb->head);
2071 goto get_sk;
2072 }
2073 cur = NULL;
2074 out:
2075 return cur;
2076 }
2077
2078 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2079 {
2080 struct tcp_iter_state *st = seq->private;
2081 void *rc;
2082
2083 st->bucket = 0;
2084 st->offset = 0;
2085 rc = listening_get_next(seq, NULL);
2086
2087 while (rc && *pos) {
2088 rc = listening_get_next(seq, rc);
2089 --*pos;
2090 }
2091 return rc;
2092 }
2093
2094 static inline bool empty_bucket(const struct tcp_iter_state *st)
2095 {
2096 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2097 }
2098
2099 /*
2100 * Get first established socket starting from bucket given in st->bucket.
2101 * If st->bucket is zero, the very first socket in the hash is returned.
2102 */
2103 static void *established_get_first(struct seq_file *seq)
2104 {
2105 struct tcp_iter_state *st = seq->private;
2106 struct net *net = seq_file_net(seq);
2107 void *rc = NULL;
2108
2109 st->offset = 0;
2110 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2111 struct sock *sk;
2112 struct hlist_nulls_node *node;
2113 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2114
2115 /* Lockless fast path for the common case of empty buckets */
2116 if (empty_bucket(st))
2117 continue;
2118
2119 spin_lock_bh(lock);
2120 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2121 if (sk->sk_family != st->family ||
2122 !net_eq(sock_net(sk), net)) {
2123 continue;
2124 }
2125 rc = sk;
2126 goto out;
2127 }
2128 spin_unlock_bh(lock);
2129 }
2130 out:
2131 return rc;
2132 }
2133
2134 static void *established_get_next(struct seq_file *seq, void *cur)
2135 {
2136 struct sock *sk = cur;
2137 struct hlist_nulls_node *node;
2138 struct tcp_iter_state *st = seq->private;
2139 struct net *net = seq_file_net(seq);
2140
2141 ++st->num;
2142 ++st->offset;
2143
2144 sk = sk_nulls_next(sk);
2145
2146 sk_nulls_for_each_from(sk, node) {
2147 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2148 return sk;
2149 }
2150
2151 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2152 ++st->bucket;
2153 return established_get_first(seq);
2154 }
2155
2156 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2157 {
2158 struct tcp_iter_state *st = seq->private;
2159 void *rc;
2160
2161 st->bucket = 0;
2162 rc = established_get_first(seq);
2163
2164 while (rc && pos) {
2165 rc = established_get_next(seq, rc);
2166 --pos;
2167 }
2168 return rc;
2169 }
2170
2171 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2172 {
2173 void *rc;
2174 struct tcp_iter_state *st = seq->private;
2175
2176 st->state = TCP_SEQ_STATE_LISTENING;
2177 rc = listening_get_idx(seq, &pos);
2178
2179 if (!rc) {
2180 st->state = TCP_SEQ_STATE_ESTABLISHED;
2181 rc = established_get_idx(seq, pos);
2182 }
2183
2184 return rc;
2185 }
2186
2187 static void *tcp_seek_last_pos(struct seq_file *seq)
2188 {
2189 struct tcp_iter_state *st = seq->private;
2190 int offset = st->offset;
2191 int orig_num = st->num;
2192 void *rc = NULL;
2193
2194 switch (st->state) {
2195 case TCP_SEQ_STATE_OPENREQ:
2196 case TCP_SEQ_STATE_LISTENING:
2197 if (st->bucket >= INET_LHTABLE_SIZE)
2198 break;
2199 st->state = TCP_SEQ_STATE_LISTENING;
2200 rc = listening_get_next(seq, NULL);
2201 while (offset-- && rc)
2202 rc = listening_get_next(seq, rc);
2203 if (rc)
2204 break;
2205 st->bucket = 0;
2206 st->state = TCP_SEQ_STATE_ESTABLISHED;
2207 /* Fallthrough */
2208 case TCP_SEQ_STATE_ESTABLISHED:
2209 if (st->bucket > tcp_hashinfo.ehash_mask)
2210 break;
2211 rc = established_get_first(seq);
2212 while (offset-- && rc)
2213 rc = established_get_next(seq, rc);
2214 }
2215
2216 st->num = orig_num;
2217
2218 return rc;
2219 }
2220
2221 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2222 {
2223 struct tcp_iter_state *st = seq->private;
2224 void *rc;
2225
2226 if (*pos && *pos == st->last_pos) {
2227 rc = tcp_seek_last_pos(seq);
2228 if (rc)
2229 goto out;
2230 }
2231
2232 st->state = TCP_SEQ_STATE_LISTENING;
2233 st->num = 0;
2234 st->bucket = 0;
2235 st->offset = 0;
2236 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2237
2238 out:
2239 st->last_pos = *pos;
2240 return rc;
2241 }
2242
2243 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2244 {
2245 struct tcp_iter_state *st = seq->private;
2246 void *rc = NULL;
2247
2248 if (v == SEQ_START_TOKEN) {
2249 rc = tcp_get_idx(seq, 0);
2250 goto out;
2251 }
2252
2253 switch (st->state) {
2254 case TCP_SEQ_STATE_OPENREQ:
2255 case TCP_SEQ_STATE_LISTENING:
2256 rc = listening_get_next(seq, v);
2257 if (!rc) {
2258 st->state = TCP_SEQ_STATE_ESTABLISHED;
2259 st->bucket = 0;
2260 st->offset = 0;
2261 rc = established_get_first(seq);
2262 }
2263 break;
2264 case TCP_SEQ_STATE_ESTABLISHED:
2265 rc = established_get_next(seq, v);
2266 break;
2267 }
2268 out:
2269 ++*pos;
2270 st->last_pos = *pos;
2271 return rc;
2272 }
2273
2274 static void tcp_seq_stop(struct seq_file *seq, void *v)
2275 {
2276 struct tcp_iter_state *st = seq->private;
2277
2278 switch (st->state) {
2279 case TCP_SEQ_STATE_OPENREQ:
2280 if (v) {
2281 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2282 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2283 }
2284 case TCP_SEQ_STATE_LISTENING:
2285 if (v != SEQ_START_TOKEN)
2286 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2287 break;
2288 case TCP_SEQ_STATE_ESTABLISHED:
2289 if (v)
2290 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2291 break;
2292 }
2293 }
2294
2295 int tcp_seq_open(struct inode *inode, struct file *file)
2296 {
2297 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2298 struct tcp_iter_state *s;
2299 int err;
2300
2301 err = seq_open_net(inode, file, &afinfo->seq_ops,
2302 sizeof(struct tcp_iter_state));
2303 if (err < 0)
2304 return err;
2305
2306 s = ((struct seq_file *)file->private_data)->private;
2307 s->family = afinfo->family;
2308 s->last_pos = 0;
2309 return 0;
2310 }
2311 EXPORT_SYMBOL(tcp_seq_open);
2312
2313 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2314 {
2315 int rc = 0;
2316 struct proc_dir_entry *p;
2317
2318 afinfo->seq_ops.start = tcp_seq_start;
2319 afinfo->seq_ops.next = tcp_seq_next;
2320 afinfo->seq_ops.stop = tcp_seq_stop;
2321
2322 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2323 afinfo->seq_fops, afinfo);
2324 if (!p)
2325 rc = -ENOMEM;
2326 return rc;
2327 }
2328 EXPORT_SYMBOL(tcp_proc_register);
2329
2330 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2331 {
2332 remove_proc_entry(afinfo->name, net->proc_net);
2333 }
2334 EXPORT_SYMBOL(tcp_proc_unregister);
2335
2336 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2337 struct seq_file *f, int i, kuid_t uid)
2338 {
2339 const struct inet_request_sock *ireq = inet_rsk(req);
2340 long delta = req->expires - jiffies;
2341
2342 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2343 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2344 i,
2345 ireq->ir_loc_addr,
2346 ntohs(inet_sk(sk)->inet_sport),
2347 ireq->ir_rmt_addr,
2348 ntohs(ireq->ir_rmt_port),
2349 TCP_SYN_RECV,
2350 0, 0, /* could print option size, but that is af dependent. */
2351 1, /* timers active (only the expire timer) */
2352 jiffies_delta_to_clock_t(delta),
2353 req->num_timeout,
2354 from_kuid_munged(seq_user_ns(f), uid),
2355 0, /* non standard timer */
2356 0, /* open_requests have no inode */
2357 atomic_read(&sk->sk_refcnt),
2358 req);
2359 }
2360
2361 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2362 {
2363 int timer_active;
2364 unsigned long timer_expires;
2365 const struct tcp_sock *tp = tcp_sk(sk);
2366 const struct inet_connection_sock *icsk = inet_csk(sk);
2367 const struct inet_sock *inet = inet_sk(sk);
2368 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2369 __be32 dest = inet->inet_daddr;
2370 __be32 src = inet->inet_rcv_saddr;
2371 __u16 destp = ntohs(inet->inet_dport);
2372 __u16 srcp = ntohs(inet->inet_sport);
2373 int rx_queue;
2374
2375 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2376 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2377 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2378 timer_active = 1;
2379 timer_expires = icsk->icsk_timeout;
2380 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2381 timer_active = 4;
2382 timer_expires = icsk->icsk_timeout;
2383 } else if (timer_pending(&sk->sk_timer)) {
2384 timer_active = 2;
2385 timer_expires = sk->sk_timer.expires;
2386 } else {
2387 timer_active = 0;
2388 timer_expires = jiffies;
2389 }
2390
2391 if (sk->sk_state == TCP_LISTEN)
2392 rx_queue = sk->sk_ack_backlog;
2393 else
2394 /*
2395 * because we dont lock socket, we might find a transient negative value
2396 */
2397 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2398
2399 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2400 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2401 i, src, srcp, dest, destp, sk->sk_state,
2402 tp->write_seq - tp->snd_una,
2403 rx_queue,
2404 timer_active,
2405 jiffies_delta_to_clock_t(timer_expires - jiffies),
2406 icsk->icsk_retransmits,
2407 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2408 icsk->icsk_probes_out,
2409 sock_i_ino(sk),
2410 atomic_read(&sk->sk_refcnt), sk,
2411 jiffies_to_clock_t(icsk->icsk_rto),
2412 jiffies_to_clock_t(icsk->icsk_ack.ato),
2413 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2414 tp->snd_cwnd,
2415 sk->sk_state == TCP_LISTEN ?
2416 (fastopenq ? fastopenq->max_qlen : 0) :
2417 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2418 }
2419
2420 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2421 struct seq_file *f, int i)
2422 {
2423 __be32 dest, src;
2424 __u16 destp, srcp;
2425 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2426
2427 dest = tw->tw_daddr;
2428 src = tw->tw_rcv_saddr;
2429 destp = ntohs(tw->tw_dport);
2430 srcp = ntohs(tw->tw_sport);
2431
2432 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2433 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2434 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2435 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2436 atomic_read(&tw->tw_refcnt), tw);
2437 }
2438
2439 #define TMPSZ 150
2440
2441 static int tcp4_seq_show(struct seq_file *seq, void *v)
2442 {
2443 struct tcp_iter_state *st;
2444 struct sock *sk = v;
2445
2446 seq_setwidth(seq, TMPSZ - 1);
2447 if (v == SEQ_START_TOKEN) {
2448 seq_puts(seq, " sl local_address rem_address st tx_queue "
2449 "rx_queue tr tm->when retrnsmt uid timeout "
2450 "inode");
2451 goto out;
2452 }
2453 st = seq->private;
2454
2455 switch (st->state) {
2456 case TCP_SEQ_STATE_LISTENING:
2457 case TCP_SEQ_STATE_ESTABLISHED:
2458 if (sk->sk_state == TCP_TIME_WAIT)
2459 get_timewait4_sock(v, seq, st->num);
2460 else
2461 get_tcp4_sock(v, seq, st->num);
2462 break;
2463 case TCP_SEQ_STATE_OPENREQ:
2464 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2465 break;
2466 }
2467 out:
2468 seq_pad(seq, '\n');
2469 return 0;
2470 }
2471
2472 static const struct file_operations tcp_afinfo_seq_fops = {
2473 .owner = THIS_MODULE,
2474 .open = tcp_seq_open,
2475 .read = seq_read,
2476 .llseek = seq_lseek,
2477 .release = seq_release_net
2478 };
2479
2480 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2481 .name = "tcp",
2482 .family = AF_INET,
2483 .seq_fops = &tcp_afinfo_seq_fops,
2484 .seq_ops = {
2485 .show = tcp4_seq_show,
2486 },
2487 };
2488
2489 static int __net_init tcp4_proc_init_net(struct net *net)
2490 {
2491 return tcp_proc_register(net, &tcp4_seq_afinfo);
2492 }
2493
2494 static void __net_exit tcp4_proc_exit_net(struct net *net)
2495 {
2496 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2497 }
2498
2499 static struct pernet_operations tcp4_net_ops = {
2500 .init = tcp4_proc_init_net,
2501 .exit = tcp4_proc_exit_net,
2502 };
2503
2504 int __init tcp4_proc_init(void)
2505 {
2506 return register_pernet_subsys(&tcp4_net_ops);
2507 }
2508
2509 void tcp4_proc_exit(void)
2510 {
2511 unregister_pernet_subsys(&tcp4_net_ops);
2512 }
2513 #endif /* CONFIG_PROC_FS */
2514
2515 struct proto tcp_prot = {
2516 .name = "TCP",
2517 .owner = THIS_MODULE,
2518 .close = tcp_close,
2519 .connect = tcp_v4_connect,
2520 .disconnect = tcp_disconnect,
2521 .accept = inet_csk_accept,
2522 .ioctl = tcp_ioctl,
2523 .init = tcp_v4_init_sock,
2524 .destroy = tcp_v4_destroy_sock,
2525 .shutdown = tcp_shutdown,
2526 .setsockopt = tcp_setsockopt,
2527 .getsockopt = tcp_getsockopt,
2528 .recvmsg = tcp_recvmsg,
2529 .sendmsg = tcp_sendmsg,
2530 .sendpage = tcp_sendpage,
2531 .backlog_rcv = tcp_v4_do_rcv,
2532 .release_cb = tcp_release_cb,
2533 .mtu_reduced = tcp_v4_mtu_reduced,
2534 .hash = inet_hash,
2535 .unhash = inet_unhash,
2536 .get_port = inet_csk_get_port,
2537 .enter_memory_pressure = tcp_enter_memory_pressure,
2538 .stream_memory_free = tcp_stream_memory_free,
2539 .sockets_allocated = &tcp_sockets_allocated,
2540 .orphan_count = &tcp_orphan_count,
2541 .memory_allocated = &tcp_memory_allocated,
2542 .memory_pressure = &tcp_memory_pressure,
2543 .sysctl_mem = sysctl_tcp_mem,
2544 .sysctl_wmem = sysctl_tcp_wmem,
2545 .sysctl_rmem = sysctl_tcp_rmem,
2546 .max_header = MAX_TCP_HEADER,
2547 .obj_size = sizeof(struct tcp_sock),
2548 .slab_flags = SLAB_DESTROY_BY_RCU,
2549 .twsk_prot = &tcp_timewait_sock_ops,
2550 .rsk_prot = &tcp_request_sock_ops,
2551 .h.hashinfo = &tcp_hashinfo,
2552 .no_autobind = true,
2553 #ifdef CONFIG_COMPAT
2554 .compat_setsockopt = compat_tcp_setsockopt,
2555 .compat_getsockopt = compat_tcp_getsockopt,
2556 #endif
2557 #ifdef CONFIG_MEMCG_KMEM
2558 .init_cgroup = tcp_init_cgroup,
2559 .destroy_cgroup = tcp_destroy_cgroup,
2560 .proto_cgroup = tcp_proto_cgroup,
2561 #endif
2562 };
2563 EXPORT_SYMBOL(tcp_prot);
2564
2565 static int __net_init tcp_sk_init(struct net *net)
2566 {
2567 net->ipv4.sysctl_tcp_ecn = 2;
2568 return 0;
2569 }
2570
2571 static void __net_exit tcp_sk_exit(struct net *net)
2572 {
2573 }
2574
2575 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2576 {
2577 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2578 }
2579
2580 static struct pernet_operations __net_initdata tcp_sk_ops = {
2581 .init = tcp_sk_init,
2582 .exit = tcp_sk_exit,
2583 .exit_batch = tcp_sk_exit_batch,
2584 };
2585
2586 void __init tcp_v4_init(void)
2587 {
2588 inet_hashinfo_init(&tcp_hashinfo);
2589 if (register_pernet_subsys(&tcp_sk_ops))
2590 panic("Failed to create the TCP control socket.\n");
2591 }
This page took 0.145267 seconds and 5 git commands to generate.