ipv6: release reference of ip6_null_entry's dst entry in __ip6_del_rt
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
213 tcp_fetch_timewait_stamp(sk, &rt->dst);
214
215 inet->inet_dport = usin->sin_port;
216 inet->inet_daddr = daddr;
217
218 inet_csk(sk)->icsk_ext_hdr_len = 0;
219 if (inet_opt)
220 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
221
222 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
223
224 /* Socket identity is still unknown (sport may be zero).
225 * However we set state to SYN-SENT and not releasing socket
226 * lock select source port, enter ourselves into the hash tables and
227 * complete initialization after this.
228 */
229 tcp_set_state(sk, TCP_SYN_SENT);
230 err = inet_hash_connect(&tcp_death_row, sk);
231 if (err)
232 goto failure;
233
234 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
235 inet->inet_sport, inet->inet_dport, sk);
236 if (IS_ERR(rt)) {
237 err = PTR_ERR(rt);
238 rt = NULL;
239 goto failure;
240 }
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->dst);
244
245 if (!tp->write_seq && likely(!tp->repair))
246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 inet->inet_daddr,
248 inet->inet_sport,
249 usin->sin_port);
250
251 inet->inet_id = tp->write_seq ^ jiffies;
252
253 if (likely(!tp->repair))
254 err = tcp_connect(sk);
255 else
256 err = tcp_repair_connect(sk);
257
258 rt = NULL;
259 if (err)
260 goto failure;
261
262 return 0;
263
264 failure:
265 /*
266 * This unhashes the socket and releases the local port,
267 * if necessary.
268 */
269 tcp_set_state(sk, TCP_CLOSE);
270 ip_rt_put(rt);
271 sk->sk_route_caps = 0;
272 inet->inet_dport = 0;
273 return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
279 * It can be called through tcp_release_cb() if socket was owned by user
280 * at the time tcp_v4_err() was called to handle ICMP message.
281 */
282 static void tcp_v4_mtu_reduced(struct sock *sk)
283 {
284 struct dst_entry *dst;
285 struct inet_sock *inet = inet_sk(sk);
286 u32 mtu = tcp_sk(sk)->mtu_info;
287
288 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
289 * send out by Linux are always <576bytes so they should go through
290 * unfragmented).
291 */
292 if (sk->sk_state == TCP_LISTEN)
293 return;
294
295 dst = inet_csk_update_pmtu(sk, mtu);
296 if (!dst)
297 return;
298
299 /* Something is about to be wrong... Remember soft error
300 * for the case, if this connection will not able to recover.
301 */
302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303 sk->sk_err_soft = EMSGSIZE;
304
305 mtu = dst_mtu(dst);
306
307 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309 tcp_sync_mss(sk, mtu);
310
311 /* Resend the TCP packet because it's
312 * clear that the old packet has been
313 * dropped. This is the new "fast" path mtu
314 * discovery.
315 */
316 tcp_simple_retransmit(sk);
317 } /* else let the usual retransmit timer handle it */
318 }
319
320 static void do_redirect(struct sk_buff *skb, struct sock *sk)
321 {
322 struct dst_entry *dst = __sk_dst_check(sk, 0);
323
324 if (dst)
325 dst->ops->redirect(dst, sk, skb);
326 }
327
328 /*
329 * This routine is called by the ICMP module when it gets some
330 * sort of error condition. If err < 0 then the socket should
331 * be closed and the error returned to the user. If err > 0
332 * it's just the icmp type << 8 | icmp code. After adjustment
333 * header points to the first 8 bytes of the tcp header. We need
334 * to find the appropriate port.
335 *
336 * The locking strategy used here is very "optimistic". When
337 * someone else accesses the socket the ICMP is just dropped
338 * and for some paths there is no check at all.
339 * A more general error queue to queue errors for later handling
340 * is probably better.
341 *
342 */
343
344 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
345 {
346 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
347 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
348 struct inet_connection_sock *icsk;
349 struct tcp_sock *tp;
350 struct inet_sock *inet;
351 const int type = icmp_hdr(icmp_skb)->type;
352 const int code = icmp_hdr(icmp_skb)->code;
353 struct sock *sk;
354 struct sk_buff *skb;
355 struct request_sock *req;
356 __u32 seq;
357 __u32 remaining;
358 int err;
359 struct net *net = dev_net(icmp_skb->dev);
360
361 if (icmp_skb->len < (iph->ihl << 2) + 8) {
362 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
363 return;
364 }
365
366 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
367 iph->saddr, th->source, inet_iif(icmp_skb));
368 if (!sk) {
369 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
370 return;
371 }
372 if (sk->sk_state == TCP_TIME_WAIT) {
373 inet_twsk_put(inet_twsk(sk));
374 return;
375 }
376
377 bh_lock_sock(sk);
378 /* If too many ICMPs get dropped on busy
379 * servers this needs to be solved differently.
380 * We do take care of PMTU discovery (RFC1191) special case :
381 * we can receive locally generated ICMP messages while socket is held.
382 */
383 if (sock_owned_by_user(sk) &&
384 type != ICMP_DEST_UNREACH &&
385 code != ICMP_FRAG_NEEDED)
386 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
387
388 if (sk->sk_state == TCP_CLOSE)
389 goto out;
390
391 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
392 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
393 goto out;
394 }
395
396 icsk = inet_csk(sk);
397 tp = tcp_sk(sk);
398 req = tp->fastopen_rsk;
399 seq = ntohl(th->seq);
400 if (sk->sk_state != TCP_LISTEN &&
401 !between(seq, tp->snd_una, tp->snd_nxt) &&
402 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
403 /* For a Fast Open socket, allow seq to be snt_isn. */
404 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
405 goto out;
406 }
407
408 switch (type) {
409 case ICMP_REDIRECT:
410 do_redirect(icmp_skb, sk);
411 goto out;
412 case ICMP_SOURCE_QUENCH:
413 /* Just silently ignore these. */
414 goto out;
415 case ICMP_PARAMETERPROB:
416 err = EPROTO;
417 break;
418 case ICMP_DEST_UNREACH:
419 if (code > NR_ICMP_UNREACH)
420 goto out;
421
422 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
423 tp->mtu_info = info;
424 if (!sock_owned_by_user(sk)) {
425 tcp_v4_mtu_reduced(sk);
426 } else {
427 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
428 sock_hold(sk);
429 }
430 goto out;
431 }
432
433 err = icmp_err_convert[code].errno;
434 /* check if icmp_skb allows revert of backoff
435 * (see draft-zimmermann-tcp-lcd) */
436 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
437 break;
438 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
439 !icsk->icsk_backoff)
440 break;
441
442 /* XXX (TFO) - revisit the following logic for TFO */
443
444 if (sock_owned_by_user(sk))
445 break;
446
447 icsk->icsk_backoff--;
448 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
449 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
450 tcp_bound_rto(sk);
451
452 skb = tcp_write_queue_head(sk);
453 BUG_ON(!skb);
454
455 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
456 tcp_time_stamp - TCP_SKB_CB(skb)->when);
457
458 if (remaining) {
459 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
460 remaining, TCP_RTO_MAX);
461 } else {
462 /* RTO revert clocked out retransmission.
463 * Will retransmit now */
464 tcp_retransmit_timer(sk);
465 }
466
467 break;
468 case ICMP_TIME_EXCEEDED:
469 err = EHOSTUNREACH;
470 break;
471 default:
472 goto out;
473 }
474
475 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
476 * than following the TCP_SYN_RECV case and closing the socket,
477 * we ignore the ICMP error and keep trying like a fully established
478 * socket. Is this the right thing to do?
479 */
480 if (req && req->sk == NULL)
481 goto out;
482
483 switch (sk->sk_state) {
484 struct request_sock *req, **prev;
485 case TCP_LISTEN:
486 if (sock_owned_by_user(sk))
487 goto out;
488
489 req = inet_csk_search_req(sk, &prev, th->dest,
490 iph->daddr, iph->saddr);
491 if (!req)
492 goto out;
493
494 /* ICMPs are not backlogged, hence we cannot get
495 an established socket here.
496 */
497 WARN_ON(req->sk);
498
499 if (seq != tcp_rsk(req)->snt_isn) {
500 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
501 goto out;
502 }
503
504 /*
505 * Still in SYN_RECV, just remove it silently.
506 * There is no good way to pass the error to the newly
507 * created socket, and POSIX does not want network
508 * errors returned from accept().
509 */
510 inet_csk_reqsk_queue_drop(sk, req, prev);
511 goto out;
512
513 case TCP_SYN_SENT:
514 case TCP_SYN_RECV: /* Cannot happen.
515 It can f.e. if SYNs crossed,
516 or Fast Open.
517 */
518 if (!sock_owned_by_user(sk)) {
519 sk->sk_err = err;
520
521 sk->sk_error_report(sk);
522
523 tcp_done(sk);
524 } else {
525 sk->sk_err_soft = err;
526 }
527 goto out;
528 }
529
530 /* If we've already connected we will keep trying
531 * until we time out, or the user gives up.
532 *
533 * rfc1122 4.2.3.9 allows to consider as hard errors
534 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
535 * but it is obsoleted by pmtu discovery).
536 *
537 * Note, that in modern internet, where routing is unreliable
538 * and in each dark corner broken firewalls sit, sending random
539 * errors ordered by their masters even this two messages finally lose
540 * their original sense (even Linux sends invalid PORT_UNREACHs)
541 *
542 * Now we are in compliance with RFCs.
543 * --ANK (980905)
544 */
545
546 inet = inet_sk(sk);
547 if (!sock_owned_by_user(sk) && inet->recverr) {
548 sk->sk_err = err;
549 sk->sk_error_report(sk);
550 } else { /* Only an error on timeout */
551 sk->sk_err_soft = err;
552 }
553
554 out:
555 bh_unlock_sock(sk);
556 sock_put(sk);
557 }
558
559 static void __tcp_v4_send_check(struct sk_buff *skb,
560 __be32 saddr, __be32 daddr)
561 {
562 struct tcphdr *th = tcp_hdr(skb);
563
564 if (skb->ip_summed == CHECKSUM_PARTIAL) {
565 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
566 skb->csum_start = skb_transport_header(skb) - skb->head;
567 skb->csum_offset = offsetof(struct tcphdr, check);
568 } else {
569 th->check = tcp_v4_check(skb->len, saddr, daddr,
570 csum_partial(th,
571 th->doff << 2,
572 skb->csum));
573 }
574 }
575
576 /* This routine computes an IPv4 TCP checksum. */
577 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
578 {
579 const struct inet_sock *inet = inet_sk(sk);
580
581 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
582 }
583 EXPORT_SYMBOL(tcp_v4_send_check);
584
585 int tcp_v4_gso_send_check(struct sk_buff *skb)
586 {
587 const struct iphdr *iph;
588 struct tcphdr *th;
589
590 if (!pskb_may_pull(skb, sizeof(*th)))
591 return -EINVAL;
592
593 iph = ip_hdr(skb);
594 th = tcp_hdr(skb);
595
596 th->check = 0;
597 skb->ip_summed = CHECKSUM_PARTIAL;
598 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
599 return 0;
600 }
601
602 /*
603 * This routine will send an RST to the other tcp.
604 *
605 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
606 * for reset.
607 * Answer: if a packet caused RST, it is not for a socket
608 * existing in our system, if it is matched to a socket,
609 * it is just duplicate segment or bug in other side's TCP.
610 * So that we build reply only basing on parameters
611 * arrived with segment.
612 * Exception: precedence violation. We do not implement it in any case.
613 */
614
615 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
616 {
617 const struct tcphdr *th = tcp_hdr(skb);
618 struct {
619 struct tcphdr th;
620 #ifdef CONFIG_TCP_MD5SIG
621 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
622 #endif
623 } rep;
624 struct ip_reply_arg arg;
625 #ifdef CONFIG_TCP_MD5SIG
626 struct tcp_md5sig_key *key;
627 const __u8 *hash_location = NULL;
628 unsigned char newhash[16];
629 int genhash;
630 struct sock *sk1 = NULL;
631 #endif
632 struct net *net;
633
634 /* Never send a reset in response to a reset. */
635 if (th->rst)
636 return;
637
638 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
639 return;
640
641 /* Swap the send and the receive. */
642 memset(&rep, 0, sizeof(rep));
643 rep.th.dest = th->source;
644 rep.th.source = th->dest;
645 rep.th.doff = sizeof(struct tcphdr) / 4;
646 rep.th.rst = 1;
647
648 if (th->ack) {
649 rep.th.seq = th->ack_seq;
650 } else {
651 rep.th.ack = 1;
652 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
653 skb->len - (th->doff << 2));
654 }
655
656 memset(&arg, 0, sizeof(arg));
657 arg.iov[0].iov_base = (unsigned char *)&rep;
658 arg.iov[0].iov_len = sizeof(rep.th);
659
660 #ifdef CONFIG_TCP_MD5SIG
661 hash_location = tcp_parse_md5sig_option(th);
662 if (!sk && hash_location) {
663 /*
664 * active side is lost. Try to find listening socket through
665 * source port, and then find md5 key through listening socket.
666 * we are not loose security here:
667 * Incoming packet is checked with md5 hash with finding key,
668 * no RST generated if md5 hash doesn't match.
669 */
670 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
671 &tcp_hashinfo, ip_hdr(skb)->daddr,
672 ntohs(th->source), inet_iif(skb));
673 /* don't send rst if it can't find key */
674 if (!sk1)
675 return;
676 rcu_read_lock();
677 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
678 &ip_hdr(skb)->saddr, AF_INET);
679 if (!key)
680 goto release_sk1;
681
682 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
683 if (genhash || memcmp(hash_location, newhash, 16) != 0)
684 goto release_sk1;
685 } else {
686 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
687 &ip_hdr(skb)->saddr,
688 AF_INET) : NULL;
689 }
690
691 if (key) {
692 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
693 (TCPOPT_NOP << 16) |
694 (TCPOPT_MD5SIG << 8) |
695 TCPOLEN_MD5SIG);
696 /* Update length and the length the header thinks exists */
697 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
698 rep.th.doff = arg.iov[0].iov_len / 4;
699
700 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
701 key, ip_hdr(skb)->saddr,
702 ip_hdr(skb)->daddr, &rep.th);
703 }
704 #endif
705 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
706 ip_hdr(skb)->saddr, /* XXX */
707 arg.iov[0].iov_len, IPPROTO_TCP, 0);
708 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
709 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
710 /* When socket is gone, all binding information is lost.
711 * routing might fail in this case. using iif for oif to
712 * make sure we can deliver it
713 */
714 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
715
716 net = dev_net(skb_dst(skb)->dev);
717 arg.tos = ip_hdr(skb)->tos;
718 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
719 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
720
721 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
722 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
723
724 #ifdef CONFIG_TCP_MD5SIG
725 release_sk1:
726 if (sk1) {
727 rcu_read_unlock();
728 sock_put(sk1);
729 }
730 #endif
731 }
732
733 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
734 outside socket context is ugly, certainly. What can I do?
735 */
736
737 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
738 u32 win, u32 ts, int oif,
739 struct tcp_md5sig_key *key,
740 int reply_flags, u8 tos)
741 {
742 const struct tcphdr *th = tcp_hdr(skb);
743 struct {
744 struct tcphdr th;
745 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
746 #ifdef CONFIG_TCP_MD5SIG
747 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
748 #endif
749 ];
750 } rep;
751 struct ip_reply_arg arg;
752 struct net *net = dev_net(skb_dst(skb)->dev);
753
754 memset(&rep.th, 0, sizeof(struct tcphdr));
755 memset(&arg, 0, sizeof(arg));
756
757 arg.iov[0].iov_base = (unsigned char *)&rep;
758 arg.iov[0].iov_len = sizeof(rep.th);
759 if (ts) {
760 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
761 (TCPOPT_TIMESTAMP << 8) |
762 TCPOLEN_TIMESTAMP);
763 rep.opt[1] = htonl(tcp_time_stamp);
764 rep.opt[2] = htonl(ts);
765 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
766 }
767
768 /* Swap the send and the receive. */
769 rep.th.dest = th->source;
770 rep.th.source = th->dest;
771 rep.th.doff = arg.iov[0].iov_len / 4;
772 rep.th.seq = htonl(seq);
773 rep.th.ack_seq = htonl(ack);
774 rep.th.ack = 1;
775 rep.th.window = htons(win);
776
777 #ifdef CONFIG_TCP_MD5SIG
778 if (key) {
779 int offset = (ts) ? 3 : 0;
780
781 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
782 (TCPOPT_NOP << 16) |
783 (TCPOPT_MD5SIG << 8) |
784 TCPOLEN_MD5SIG);
785 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
786 rep.th.doff = arg.iov[0].iov_len/4;
787
788 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
789 key, ip_hdr(skb)->saddr,
790 ip_hdr(skb)->daddr, &rep.th);
791 }
792 #endif
793 arg.flags = reply_flags;
794 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
795 ip_hdr(skb)->saddr, /* XXX */
796 arg.iov[0].iov_len, IPPROTO_TCP, 0);
797 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
798 if (oif)
799 arg.bound_dev_if = oif;
800 arg.tos = tos;
801 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
802 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
803
804 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
805 }
806
807 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
808 {
809 struct inet_timewait_sock *tw = inet_twsk(sk);
810 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
811
812 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
813 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
814 tcptw->tw_ts_recent,
815 tw->tw_bound_dev_if,
816 tcp_twsk_md5_key(tcptw),
817 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
818 tw->tw_tos
819 );
820
821 inet_twsk_put(tw);
822 }
823
824 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
825 struct request_sock *req)
826 {
827 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
828 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
829 */
830 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
831 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
832 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
833 req->ts_recent,
834 0,
835 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
836 AF_INET),
837 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
838 ip_hdr(skb)->tos);
839 }
840
841 /*
842 * Send a SYN-ACK after having received a SYN.
843 * This still operates on a request_sock only, not on a big
844 * socket.
845 */
846 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
847 struct request_sock *req,
848 struct request_values *rvp,
849 u16 queue_mapping,
850 bool nocache)
851 {
852 const struct inet_request_sock *ireq = inet_rsk(req);
853 struct flowi4 fl4;
854 int err = -1;
855 struct sk_buff * skb;
856
857 /* First, grab a route. */
858 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
859 return -1;
860
861 skb = tcp_make_synack(sk, dst, req, rvp, NULL);
862
863 if (skb) {
864 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
865
866 skb_set_queue_mapping(skb, queue_mapping);
867 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
868 ireq->rmt_addr,
869 ireq->opt);
870 err = net_xmit_eval(err);
871 if (!tcp_rsk(req)->snt_synack && !err)
872 tcp_rsk(req)->snt_synack = tcp_time_stamp;
873 }
874
875 return err;
876 }
877
878 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
879 struct request_values *rvp)
880 {
881 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
882 return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
883 }
884
885 /*
886 * IPv4 request_sock destructor.
887 */
888 static void tcp_v4_reqsk_destructor(struct request_sock *req)
889 {
890 kfree(inet_rsk(req)->opt);
891 }
892
893 /*
894 * Return true if a syncookie should be sent
895 */
896 bool tcp_syn_flood_action(struct sock *sk,
897 const struct sk_buff *skb,
898 const char *proto)
899 {
900 const char *msg = "Dropping request";
901 bool want_cookie = false;
902 struct listen_sock *lopt;
903
904
905
906 #ifdef CONFIG_SYN_COOKIES
907 if (sysctl_tcp_syncookies) {
908 msg = "Sending cookies";
909 want_cookie = true;
910 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
911 } else
912 #endif
913 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
914
915 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
916 if (!lopt->synflood_warned) {
917 lopt->synflood_warned = 1;
918 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
919 proto, ntohs(tcp_hdr(skb)->dest), msg);
920 }
921 return want_cookie;
922 }
923 EXPORT_SYMBOL(tcp_syn_flood_action);
924
925 /*
926 * Save and compile IPv4 options into the request_sock if needed.
927 */
928 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
929 {
930 const struct ip_options *opt = &(IPCB(skb)->opt);
931 struct ip_options_rcu *dopt = NULL;
932
933 if (opt && opt->optlen) {
934 int opt_size = sizeof(*dopt) + opt->optlen;
935
936 dopt = kmalloc(opt_size, GFP_ATOMIC);
937 if (dopt) {
938 if (ip_options_echo(&dopt->opt, skb)) {
939 kfree(dopt);
940 dopt = NULL;
941 }
942 }
943 }
944 return dopt;
945 }
946
947 #ifdef CONFIG_TCP_MD5SIG
948 /*
949 * RFC2385 MD5 checksumming requires a mapping of
950 * IP address->MD5 Key.
951 * We need to maintain these in the sk structure.
952 */
953
954 /* Find the Key structure for an address. */
955 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
956 const union tcp_md5_addr *addr,
957 int family)
958 {
959 struct tcp_sock *tp = tcp_sk(sk);
960 struct tcp_md5sig_key *key;
961 struct hlist_node *pos;
962 unsigned int size = sizeof(struct in_addr);
963 struct tcp_md5sig_info *md5sig;
964
965 /* caller either holds rcu_read_lock() or socket lock */
966 md5sig = rcu_dereference_check(tp->md5sig_info,
967 sock_owned_by_user(sk) ||
968 lockdep_is_held(&sk->sk_lock.slock));
969 if (!md5sig)
970 return NULL;
971 #if IS_ENABLED(CONFIG_IPV6)
972 if (family == AF_INET6)
973 size = sizeof(struct in6_addr);
974 #endif
975 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
976 if (key->family != family)
977 continue;
978 if (!memcmp(&key->addr, addr, size))
979 return key;
980 }
981 return NULL;
982 }
983 EXPORT_SYMBOL(tcp_md5_do_lookup);
984
985 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
986 struct sock *addr_sk)
987 {
988 union tcp_md5_addr *addr;
989
990 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
991 return tcp_md5_do_lookup(sk, addr, AF_INET);
992 }
993 EXPORT_SYMBOL(tcp_v4_md5_lookup);
994
995 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
996 struct request_sock *req)
997 {
998 union tcp_md5_addr *addr;
999
1000 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
1001 return tcp_md5_do_lookup(sk, addr, AF_INET);
1002 }
1003
1004 /* This can be called on a newly created socket, from other files */
1005 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1006 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1007 {
1008 /* Add Key to the list */
1009 struct tcp_md5sig_key *key;
1010 struct tcp_sock *tp = tcp_sk(sk);
1011 struct tcp_md5sig_info *md5sig;
1012
1013 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1014 if (key) {
1015 /* Pre-existing entry - just update that one. */
1016 memcpy(key->key, newkey, newkeylen);
1017 key->keylen = newkeylen;
1018 return 0;
1019 }
1020
1021 md5sig = rcu_dereference_protected(tp->md5sig_info,
1022 sock_owned_by_user(sk));
1023 if (!md5sig) {
1024 md5sig = kmalloc(sizeof(*md5sig), gfp);
1025 if (!md5sig)
1026 return -ENOMEM;
1027
1028 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1029 INIT_HLIST_HEAD(&md5sig->head);
1030 rcu_assign_pointer(tp->md5sig_info, md5sig);
1031 }
1032
1033 key = sock_kmalloc(sk, sizeof(*key), gfp);
1034 if (!key)
1035 return -ENOMEM;
1036 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1037 sock_kfree_s(sk, key, sizeof(*key));
1038 return -ENOMEM;
1039 }
1040
1041 memcpy(key->key, newkey, newkeylen);
1042 key->keylen = newkeylen;
1043 key->family = family;
1044 memcpy(&key->addr, addr,
1045 (family == AF_INET6) ? sizeof(struct in6_addr) :
1046 sizeof(struct in_addr));
1047 hlist_add_head_rcu(&key->node, &md5sig->head);
1048 return 0;
1049 }
1050 EXPORT_SYMBOL(tcp_md5_do_add);
1051
1052 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1053 {
1054 struct tcp_sock *tp = tcp_sk(sk);
1055 struct tcp_md5sig_key *key;
1056 struct tcp_md5sig_info *md5sig;
1057
1058 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1059 if (!key)
1060 return -ENOENT;
1061 hlist_del_rcu(&key->node);
1062 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1063 kfree_rcu(key, rcu);
1064 md5sig = rcu_dereference_protected(tp->md5sig_info,
1065 sock_owned_by_user(sk));
1066 if (hlist_empty(&md5sig->head))
1067 tcp_free_md5sig_pool();
1068 return 0;
1069 }
1070 EXPORT_SYMBOL(tcp_md5_do_del);
1071
1072 void tcp_clear_md5_list(struct sock *sk)
1073 {
1074 struct tcp_sock *tp = tcp_sk(sk);
1075 struct tcp_md5sig_key *key;
1076 struct hlist_node *pos, *n;
1077 struct tcp_md5sig_info *md5sig;
1078
1079 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1080
1081 if (!hlist_empty(&md5sig->head))
1082 tcp_free_md5sig_pool();
1083 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1084 hlist_del_rcu(&key->node);
1085 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1086 kfree_rcu(key, rcu);
1087 }
1088 }
1089
1090 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1091 int optlen)
1092 {
1093 struct tcp_md5sig cmd;
1094 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1095
1096 if (optlen < sizeof(cmd))
1097 return -EINVAL;
1098
1099 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1100 return -EFAULT;
1101
1102 if (sin->sin_family != AF_INET)
1103 return -EINVAL;
1104
1105 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1106 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1107 AF_INET);
1108
1109 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1110 return -EINVAL;
1111
1112 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1113 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1114 GFP_KERNEL);
1115 }
1116
1117 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1118 __be32 daddr, __be32 saddr, int nbytes)
1119 {
1120 struct tcp4_pseudohdr *bp;
1121 struct scatterlist sg;
1122
1123 bp = &hp->md5_blk.ip4;
1124
1125 /*
1126 * 1. the TCP pseudo-header (in the order: source IP address,
1127 * destination IP address, zero-padded protocol number, and
1128 * segment length)
1129 */
1130 bp->saddr = saddr;
1131 bp->daddr = daddr;
1132 bp->pad = 0;
1133 bp->protocol = IPPROTO_TCP;
1134 bp->len = cpu_to_be16(nbytes);
1135
1136 sg_init_one(&sg, bp, sizeof(*bp));
1137 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1138 }
1139
1140 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1141 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1142 {
1143 struct tcp_md5sig_pool *hp;
1144 struct hash_desc *desc;
1145
1146 hp = tcp_get_md5sig_pool();
1147 if (!hp)
1148 goto clear_hash_noput;
1149 desc = &hp->md5_desc;
1150
1151 if (crypto_hash_init(desc))
1152 goto clear_hash;
1153 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1154 goto clear_hash;
1155 if (tcp_md5_hash_header(hp, th))
1156 goto clear_hash;
1157 if (tcp_md5_hash_key(hp, key))
1158 goto clear_hash;
1159 if (crypto_hash_final(desc, md5_hash))
1160 goto clear_hash;
1161
1162 tcp_put_md5sig_pool();
1163 return 0;
1164
1165 clear_hash:
1166 tcp_put_md5sig_pool();
1167 clear_hash_noput:
1168 memset(md5_hash, 0, 16);
1169 return 1;
1170 }
1171
1172 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1173 const struct sock *sk, const struct request_sock *req,
1174 const struct sk_buff *skb)
1175 {
1176 struct tcp_md5sig_pool *hp;
1177 struct hash_desc *desc;
1178 const struct tcphdr *th = tcp_hdr(skb);
1179 __be32 saddr, daddr;
1180
1181 if (sk) {
1182 saddr = inet_sk(sk)->inet_saddr;
1183 daddr = inet_sk(sk)->inet_daddr;
1184 } else if (req) {
1185 saddr = inet_rsk(req)->loc_addr;
1186 daddr = inet_rsk(req)->rmt_addr;
1187 } else {
1188 const struct iphdr *iph = ip_hdr(skb);
1189 saddr = iph->saddr;
1190 daddr = iph->daddr;
1191 }
1192
1193 hp = tcp_get_md5sig_pool();
1194 if (!hp)
1195 goto clear_hash_noput;
1196 desc = &hp->md5_desc;
1197
1198 if (crypto_hash_init(desc))
1199 goto clear_hash;
1200
1201 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1202 goto clear_hash;
1203 if (tcp_md5_hash_header(hp, th))
1204 goto clear_hash;
1205 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1206 goto clear_hash;
1207 if (tcp_md5_hash_key(hp, key))
1208 goto clear_hash;
1209 if (crypto_hash_final(desc, md5_hash))
1210 goto clear_hash;
1211
1212 tcp_put_md5sig_pool();
1213 return 0;
1214
1215 clear_hash:
1216 tcp_put_md5sig_pool();
1217 clear_hash_noput:
1218 memset(md5_hash, 0, 16);
1219 return 1;
1220 }
1221 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1222
1223 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1224 {
1225 /*
1226 * This gets called for each TCP segment that arrives
1227 * so we want to be efficient.
1228 * We have 3 drop cases:
1229 * o No MD5 hash and one expected.
1230 * o MD5 hash and we're not expecting one.
1231 * o MD5 hash and its wrong.
1232 */
1233 const __u8 *hash_location = NULL;
1234 struct tcp_md5sig_key *hash_expected;
1235 const struct iphdr *iph = ip_hdr(skb);
1236 const struct tcphdr *th = tcp_hdr(skb);
1237 int genhash;
1238 unsigned char newhash[16];
1239
1240 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1241 AF_INET);
1242 hash_location = tcp_parse_md5sig_option(th);
1243
1244 /* We've parsed the options - do we have a hash? */
1245 if (!hash_expected && !hash_location)
1246 return false;
1247
1248 if (hash_expected && !hash_location) {
1249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1250 return true;
1251 }
1252
1253 if (!hash_expected && hash_location) {
1254 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1255 return true;
1256 }
1257
1258 /* Okay, so this is hash_expected and hash_location -
1259 * so we need to calculate the checksum.
1260 */
1261 genhash = tcp_v4_md5_hash_skb(newhash,
1262 hash_expected,
1263 NULL, NULL, skb);
1264
1265 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1266 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1267 &iph->saddr, ntohs(th->source),
1268 &iph->daddr, ntohs(th->dest),
1269 genhash ? " tcp_v4_calc_md5_hash failed"
1270 : "");
1271 return true;
1272 }
1273 return false;
1274 }
1275
1276 #endif
1277
1278 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1279 .family = PF_INET,
1280 .obj_size = sizeof(struct tcp_request_sock),
1281 .rtx_syn_ack = tcp_v4_rtx_synack,
1282 .send_ack = tcp_v4_reqsk_send_ack,
1283 .destructor = tcp_v4_reqsk_destructor,
1284 .send_reset = tcp_v4_send_reset,
1285 .syn_ack_timeout = tcp_syn_ack_timeout,
1286 };
1287
1288 #ifdef CONFIG_TCP_MD5SIG
1289 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1290 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1291 .calc_md5_hash = tcp_v4_md5_hash_skb,
1292 };
1293 #endif
1294
1295 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1296 struct request_sock *req,
1297 struct tcp_fastopen_cookie *foc,
1298 struct tcp_fastopen_cookie *valid_foc)
1299 {
1300 bool skip_cookie = false;
1301 struct fastopen_queue *fastopenq;
1302
1303 if (likely(!fastopen_cookie_present(foc))) {
1304 /* See include/net/tcp.h for the meaning of these knobs */
1305 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1306 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1307 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1308 skip_cookie = true; /* no cookie to validate */
1309 else
1310 return false;
1311 }
1312 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1313 /* A FO option is present; bump the counter. */
1314 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1315
1316 /* Make sure the listener has enabled fastopen, and we don't
1317 * exceed the max # of pending TFO requests allowed before trying
1318 * to validating the cookie in order to avoid burning CPU cycles
1319 * unnecessarily.
1320 *
1321 * XXX (TFO) - The implication of checking the max_qlen before
1322 * processing a cookie request is that clients can't differentiate
1323 * between qlen overflow causing Fast Open to be disabled
1324 * temporarily vs a server not supporting Fast Open at all.
1325 */
1326 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1327 fastopenq == NULL || fastopenq->max_qlen == 0)
1328 return false;
1329
1330 if (fastopenq->qlen >= fastopenq->max_qlen) {
1331 struct request_sock *req1;
1332 spin_lock(&fastopenq->lock);
1333 req1 = fastopenq->rskq_rst_head;
1334 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1335 spin_unlock(&fastopenq->lock);
1336 NET_INC_STATS_BH(sock_net(sk),
1337 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1338 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1339 foc->len = -1;
1340 return false;
1341 }
1342 fastopenq->rskq_rst_head = req1->dl_next;
1343 fastopenq->qlen--;
1344 spin_unlock(&fastopenq->lock);
1345 reqsk_free(req1);
1346 }
1347 if (skip_cookie) {
1348 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1349 return true;
1350 }
1351 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1352 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1353 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1354 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1355 memcmp(&foc->val[0], &valid_foc->val[0],
1356 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1357 return false;
1358 valid_foc->len = -1;
1359 }
1360 /* Acknowledge the data received from the peer. */
1361 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1362 return true;
1363 } else if (foc->len == 0) { /* Client requesting a cookie */
1364 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365 NET_INC_STATS_BH(sock_net(sk),
1366 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1367 } else {
1368 /* Client sent a cookie with wrong size. Treat it
1369 * the same as invalid and return a valid one.
1370 */
1371 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1372 }
1373 return false;
1374 }
1375
1376 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1377 struct sk_buff *skb,
1378 struct sk_buff *skb_synack,
1379 struct request_sock *req,
1380 struct request_values *rvp)
1381 {
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1384 const struct inet_request_sock *ireq = inet_rsk(req);
1385 struct sock *child;
1386 int err;
1387
1388 req->retrans = 0;
1389 req->sk = NULL;
1390
1391 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1392 if (child == NULL) {
1393 NET_INC_STATS_BH(sock_net(sk),
1394 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1395 kfree_skb(skb_synack);
1396 return -1;
1397 }
1398 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1399 ireq->rmt_addr, ireq->opt);
1400 err = net_xmit_eval(err);
1401 if (!err)
1402 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1403 /* XXX (TFO) - is it ok to ignore error and continue? */
1404
1405 spin_lock(&queue->fastopenq->lock);
1406 queue->fastopenq->qlen++;
1407 spin_unlock(&queue->fastopenq->lock);
1408
1409 /* Initialize the child socket. Have to fix some values to take
1410 * into account the child is a Fast Open socket and is created
1411 * only out of the bits carried in the SYN packet.
1412 */
1413 tp = tcp_sk(child);
1414
1415 tp->fastopen_rsk = req;
1416 /* Do a hold on the listner sk so that if the listener is being
1417 * closed, the child that has been accepted can live on and still
1418 * access listen_lock.
1419 */
1420 sock_hold(sk);
1421 tcp_rsk(req)->listener = sk;
1422
1423 /* RFC1323: The window in SYN & SYN/ACK segments is never
1424 * scaled. So correct it appropriately.
1425 */
1426 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1427
1428 /* Activate the retrans timer so that SYNACK can be retransmitted.
1429 * The request socket is not added to the SYN table of the parent
1430 * because it's been added to the accept queue directly.
1431 */
1432 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1433 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1434
1435 /* Add the child socket directly into the accept queue */
1436 inet_csk_reqsk_queue_add(sk, req, child);
1437
1438 /* Now finish processing the fastopen child socket. */
1439 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1440 tcp_init_congestion_control(child);
1441 tcp_mtup_init(child);
1442 tcp_init_buffer_space(child);
1443 tcp_init_metrics(child);
1444
1445 /* Queue the data carried in the SYN packet. We need to first
1446 * bump skb's refcnt because the caller will attempt to free it.
1447 *
1448 * XXX (TFO) - we honor a zero-payload TFO request for now.
1449 * (Any reason not to?)
1450 */
1451 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1452 /* Don't queue the skb if there is no payload in SYN.
1453 * XXX (TFO) - How about SYN+FIN?
1454 */
1455 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1456 } else {
1457 skb = skb_get(skb);
1458 skb_dst_drop(skb);
1459 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1460 skb_set_owner_r(skb, child);
1461 __skb_queue_tail(&child->sk_receive_queue, skb);
1462 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1463 }
1464 sk->sk_data_ready(sk, 0);
1465 bh_unlock_sock(child);
1466 sock_put(child);
1467 WARN_ON(req->sk == NULL);
1468 return 0;
1469 }
1470
1471 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1472 {
1473 struct tcp_extend_values tmp_ext;
1474 struct tcp_options_received tmp_opt;
1475 const u8 *hash_location;
1476 struct request_sock *req;
1477 struct inet_request_sock *ireq;
1478 struct tcp_sock *tp = tcp_sk(sk);
1479 struct dst_entry *dst = NULL;
1480 __be32 saddr = ip_hdr(skb)->saddr;
1481 __be32 daddr = ip_hdr(skb)->daddr;
1482 __u32 isn = TCP_SKB_CB(skb)->when;
1483 bool want_cookie = false;
1484 struct flowi4 fl4;
1485 struct tcp_fastopen_cookie foc = { .len = -1 };
1486 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1487 struct sk_buff *skb_synack;
1488 int do_fastopen;
1489
1490 /* Never answer to SYNs send to broadcast or multicast */
1491 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1492 goto drop;
1493
1494 /* TW buckets are converted to open requests without
1495 * limitations, they conserve resources and peer is
1496 * evidently real one.
1497 */
1498 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1499 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1500 if (!want_cookie)
1501 goto drop;
1502 }
1503
1504 /* Accept backlog is full. If we have already queued enough
1505 * of warm entries in syn queue, drop request. It is better than
1506 * clogging syn queue with openreqs with exponentially increasing
1507 * timeout.
1508 */
1509 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1510 goto drop;
1511
1512 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1513 if (!req)
1514 goto drop;
1515
1516 #ifdef CONFIG_TCP_MD5SIG
1517 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1518 #endif
1519
1520 tcp_clear_options(&tmp_opt);
1521 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1522 tmp_opt.user_mss = tp->rx_opt.user_mss;
1523 tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1524 want_cookie ? NULL : &foc);
1525
1526 if (tmp_opt.cookie_plus > 0 &&
1527 tmp_opt.saw_tstamp &&
1528 !tp->rx_opt.cookie_out_never &&
1529 (sysctl_tcp_cookie_size > 0 ||
1530 (tp->cookie_values != NULL &&
1531 tp->cookie_values->cookie_desired > 0))) {
1532 u8 *c;
1533 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1534 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1535
1536 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1537 goto drop_and_release;
1538
1539 /* Secret recipe starts with IP addresses */
1540 *mess++ ^= (__force u32)daddr;
1541 *mess++ ^= (__force u32)saddr;
1542
1543 /* plus variable length Initiator Cookie */
1544 c = (u8 *)mess;
1545 while (l-- > 0)
1546 *c++ ^= *hash_location++;
1547
1548 want_cookie = false; /* not our kind of cookie */
1549 tmp_ext.cookie_out_never = 0; /* false */
1550 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1551 } else if (!tp->rx_opt.cookie_in_always) {
1552 /* redundant indications, but ensure initialization. */
1553 tmp_ext.cookie_out_never = 1; /* true */
1554 tmp_ext.cookie_plus = 0;
1555 } else {
1556 goto drop_and_release;
1557 }
1558 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1559
1560 if (want_cookie && !tmp_opt.saw_tstamp)
1561 tcp_clear_options(&tmp_opt);
1562
1563 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1564 tcp_openreq_init(req, &tmp_opt, skb);
1565
1566 ireq = inet_rsk(req);
1567 ireq->loc_addr = daddr;
1568 ireq->rmt_addr = saddr;
1569 ireq->no_srccheck = inet_sk(sk)->transparent;
1570 ireq->opt = tcp_v4_save_options(skb);
1571
1572 if (security_inet_conn_request(sk, skb, req))
1573 goto drop_and_free;
1574
1575 if (!want_cookie || tmp_opt.tstamp_ok)
1576 TCP_ECN_create_request(req, skb);
1577
1578 if (want_cookie) {
1579 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1580 req->cookie_ts = tmp_opt.tstamp_ok;
1581 } else if (!isn) {
1582 /* VJ's idea. We save last timestamp seen
1583 * from the destination in peer table, when entering
1584 * state TIME-WAIT, and check against it before
1585 * accepting new connection request.
1586 *
1587 * If "isn" is not zero, this request hit alive
1588 * timewait bucket, so that all the necessary checks
1589 * are made in the function processing timewait state.
1590 */
1591 if (tmp_opt.saw_tstamp &&
1592 tcp_death_row.sysctl_tw_recycle &&
1593 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1594 fl4.daddr == saddr) {
1595 if (!tcp_peer_is_proven(req, dst, true)) {
1596 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1597 goto drop_and_release;
1598 }
1599 }
1600 /* Kill the following clause, if you dislike this way. */
1601 else if (!sysctl_tcp_syncookies &&
1602 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1603 (sysctl_max_syn_backlog >> 2)) &&
1604 !tcp_peer_is_proven(req, dst, false)) {
1605 /* Without syncookies last quarter of
1606 * backlog is filled with destinations,
1607 * proven to be alive.
1608 * It means that we continue to communicate
1609 * to destinations, already remembered
1610 * to the moment of synflood.
1611 */
1612 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1613 &saddr, ntohs(tcp_hdr(skb)->source));
1614 goto drop_and_release;
1615 }
1616
1617 isn = tcp_v4_init_sequence(skb);
1618 }
1619 tcp_rsk(req)->snt_isn = isn;
1620
1621 if (dst == NULL) {
1622 dst = inet_csk_route_req(sk, &fl4, req);
1623 if (dst == NULL)
1624 goto drop_and_free;
1625 }
1626 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1627
1628 /* We don't call tcp_v4_send_synack() directly because we need
1629 * to make sure a child socket can be created successfully before
1630 * sending back synack!
1631 *
1632 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1633 * (or better yet, call tcp_send_synack() in the child context
1634 * directly, but will have to fix bunch of other code first)
1635 * after syn_recv_sock() except one will need to first fix the
1636 * latter to remove its dependency on the current implementation
1637 * of tcp_v4_send_synack()->tcp_select_initial_window().
1638 */
1639 skb_synack = tcp_make_synack(sk, dst, req,
1640 (struct request_values *)&tmp_ext,
1641 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1642
1643 if (skb_synack) {
1644 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1645 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1646 } else
1647 goto drop_and_free;
1648
1649 if (likely(!do_fastopen)) {
1650 int err;
1651 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1652 ireq->rmt_addr, ireq->opt);
1653 err = net_xmit_eval(err);
1654 if (err || want_cookie)
1655 goto drop_and_free;
1656
1657 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1658 tcp_rsk(req)->listener = NULL;
1659 /* Add the request_sock to the SYN table */
1660 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1661 if (fastopen_cookie_present(&foc) && foc.len != 0)
1662 NET_INC_STATS_BH(sock_net(sk),
1663 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1664 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1665 (struct request_values *)&tmp_ext))
1666 goto drop_and_free;
1667
1668 return 0;
1669
1670 drop_and_release:
1671 dst_release(dst);
1672 drop_and_free:
1673 reqsk_free(req);
1674 drop:
1675 return 0;
1676 }
1677 EXPORT_SYMBOL(tcp_v4_conn_request);
1678
1679
1680 /*
1681 * The three way handshake has completed - we got a valid synack -
1682 * now create the new socket.
1683 */
1684 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1685 struct request_sock *req,
1686 struct dst_entry *dst)
1687 {
1688 struct inet_request_sock *ireq;
1689 struct inet_sock *newinet;
1690 struct tcp_sock *newtp;
1691 struct sock *newsk;
1692 #ifdef CONFIG_TCP_MD5SIG
1693 struct tcp_md5sig_key *key;
1694 #endif
1695 struct ip_options_rcu *inet_opt;
1696
1697 if (sk_acceptq_is_full(sk))
1698 goto exit_overflow;
1699
1700 newsk = tcp_create_openreq_child(sk, req, skb);
1701 if (!newsk)
1702 goto exit_nonewsk;
1703
1704 newsk->sk_gso_type = SKB_GSO_TCPV4;
1705 inet_sk_rx_dst_set(newsk, skb);
1706
1707 newtp = tcp_sk(newsk);
1708 newinet = inet_sk(newsk);
1709 ireq = inet_rsk(req);
1710 newinet->inet_daddr = ireq->rmt_addr;
1711 newinet->inet_rcv_saddr = ireq->loc_addr;
1712 newinet->inet_saddr = ireq->loc_addr;
1713 inet_opt = ireq->opt;
1714 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1715 ireq->opt = NULL;
1716 newinet->mc_index = inet_iif(skb);
1717 newinet->mc_ttl = ip_hdr(skb)->ttl;
1718 newinet->rcv_tos = ip_hdr(skb)->tos;
1719 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1720 if (inet_opt)
1721 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1722 newinet->inet_id = newtp->write_seq ^ jiffies;
1723
1724 if (!dst) {
1725 dst = inet_csk_route_child_sock(sk, newsk, req);
1726 if (!dst)
1727 goto put_and_exit;
1728 } else {
1729 /* syncookie case : see end of cookie_v4_check() */
1730 }
1731 sk_setup_caps(newsk, dst);
1732
1733 tcp_mtup_init(newsk);
1734 tcp_sync_mss(newsk, dst_mtu(dst));
1735 newtp->advmss = dst_metric_advmss(dst);
1736 if (tcp_sk(sk)->rx_opt.user_mss &&
1737 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1738 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1739
1740 tcp_initialize_rcv_mss(newsk);
1741 tcp_synack_rtt_meas(newsk, req);
1742 newtp->total_retrans = req->retrans;
1743
1744 #ifdef CONFIG_TCP_MD5SIG
1745 /* Copy over the MD5 key from the original socket */
1746 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1747 AF_INET);
1748 if (key != NULL) {
1749 /*
1750 * We're using one, so create a matching key
1751 * on the newsk structure. If we fail to get
1752 * memory, then we end up not copying the key
1753 * across. Shucks.
1754 */
1755 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1756 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1757 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1758 }
1759 #endif
1760
1761 if (__inet_inherit_port(sk, newsk) < 0)
1762 goto put_and_exit;
1763 __inet_hash_nolisten(newsk, NULL);
1764
1765 return newsk;
1766
1767 exit_overflow:
1768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1769 exit_nonewsk:
1770 dst_release(dst);
1771 exit:
1772 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1773 return NULL;
1774 put_and_exit:
1775 tcp_clear_xmit_timers(newsk);
1776 tcp_cleanup_congestion_control(newsk);
1777 bh_unlock_sock(newsk);
1778 sock_put(newsk);
1779 goto exit;
1780 }
1781 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1782
1783 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1784 {
1785 struct tcphdr *th = tcp_hdr(skb);
1786 const struct iphdr *iph = ip_hdr(skb);
1787 struct sock *nsk;
1788 struct request_sock **prev;
1789 /* Find possible connection requests. */
1790 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1791 iph->saddr, iph->daddr);
1792 if (req)
1793 return tcp_check_req(sk, skb, req, prev, false);
1794
1795 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1796 th->source, iph->daddr, th->dest, inet_iif(skb));
1797
1798 if (nsk) {
1799 if (nsk->sk_state != TCP_TIME_WAIT) {
1800 bh_lock_sock(nsk);
1801 return nsk;
1802 }
1803 inet_twsk_put(inet_twsk(nsk));
1804 return NULL;
1805 }
1806
1807 #ifdef CONFIG_SYN_COOKIES
1808 if (!th->syn)
1809 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1810 #endif
1811 return sk;
1812 }
1813
1814 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1815 {
1816 const struct iphdr *iph = ip_hdr(skb);
1817
1818 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1819 if (!tcp_v4_check(skb->len, iph->saddr,
1820 iph->daddr, skb->csum)) {
1821 skb->ip_summed = CHECKSUM_UNNECESSARY;
1822 return 0;
1823 }
1824 }
1825
1826 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1827 skb->len, IPPROTO_TCP, 0);
1828
1829 if (skb->len <= 76) {
1830 return __skb_checksum_complete(skb);
1831 }
1832 return 0;
1833 }
1834
1835
1836 /* The socket must have it's spinlock held when we get
1837 * here.
1838 *
1839 * We have a potential double-lock case here, so even when
1840 * doing backlog processing we use the BH locking scheme.
1841 * This is because we cannot sleep with the original spinlock
1842 * held.
1843 */
1844 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1845 {
1846 struct sock *rsk;
1847 #ifdef CONFIG_TCP_MD5SIG
1848 /*
1849 * We really want to reject the packet as early as possible
1850 * if:
1851 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1852 * o There is an MD5 option and we're not expecting one
1853 */
1854 if (tcp_v4_inbound_md5_hash(sk, skb))
1855 goto discard;
1856 #endif
1857
1858 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1859 struct dst_entry *dst = sk->sk_rx_dst;
1860
1861 sock_rps_save_rxhash(sk, skb);
1862 if (dst) {
1863 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1864 dst->ops->check(dst, 0) == NULL) {
1865 dst_release(dst);
1866 sk->sk_rx_dst = NULL;
1867 }
1868 }
1869 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1870 rsk = sk;
1871 goto reset;
1872 }
1873 return 0;
1874 }
1875
1876 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1877 goto csum_err;
1878
1879 if (sk->sk_state == TCP_LISTEN) {
1880 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1881 if (!nsk)
1882 goto discard;
1883
1884 if (nsk != sk) {
1885 sock_rps_save_rxhash(nsk, skb);
1886 if (tcp_child_process(sk, nsk, skb)) {
1887 rsk = nsk;
1888 goto reset;
1889 }
1890 return 0;
1891 }
1892 } else
1893 sock_rps_save_rxhash(sk, skb);
1894
1895 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1896 rsk = sk;
1897 goto reset;
1898 }
1899 return 0;
1900
1901 reset:
1902 tcp_v4_send_reset(rsk, skb);
1903 discard:
1904 kfree_skb(skb);
1905 /* Be careful here. If this function gets more complicated and
1906 * gcc suffers from register pressure on the x86, sk (in %ebx)
1907 * might be destroyed here. This current version compiles correctly,
1908 * but you have been warned.
1909 */
1910 return 0;
1911
1912 csum_err:
1913 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1914 goto discard;
1915 }
1916 EXPORT_SYMBOL(tcp_v4_do_rcv);
1917
1918 void tcp_v4_early_demux(struct sk_buff *skb)
1919 {
1920 struct net *net = dev_net(skb->dev);
1921 const struct iphdr *iph;
1922 const struct tcphdr *th;
1923 struct sock *sk;
1924
1925 if (skb->pkt_type != PACKET_HOST)
1926 return;
1927
1928 if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr)))
1929 return;
1930
1931 iph = ip_hdr(skb);
1932 th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb));
1933
1934 if (th->doff < sizeof(struct tcphdr) / 4)
1935 return;
1936
1937 sk = __inet_lookup_established(net, &tcp_hashinfo,
1938 iph->saddr, th->source,
1939 iph->daddr, ntohs(th->dest),
1940 skb->skb_iif);
1941 if (sk) {
1942 skb->sk = sk;
1943 skb->destructor = sock_edemux;
1944 if (sk->sk_state != TCP_TIME_WAIT) {
1945 struct dst_entry *dst = sk->sk_rx_dst;
1946
1947 if (dst)
1948 dst = dst_check(dst, 0);
1949 if (dst &&
1950 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1951 skb_dst_set_noref(skb, dst);
1952 }
1953 }
1954 }
1955
1956 /*
1957 * From tcp_input.c
1958 */
1959
1960 int tcp_v4_rcv(struct sk_buff *skb)
1961 {
1962 const struct iphdr *iph;
1963 const struct tcphdr *th;
1964 struct sock *sk;
1965 int ret;
1966 struct net *net = dev_net(skb->dev);
1967
1968 if (skb->pkt_type != PACKET_HOST)
1969 goto discard_it;
1970
1971 /* Count it even if it's bad */
1972 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1973
1974 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1975 goto discard_it;
1976
1977 th = tcp_hdr(skb);
1978
1979 if (th->doff < sizeof(struct tcphdr) / 4)
1980 goto bad_packet;
1981 if (!pskb_may_pull(skb, th->doff * 4))
1982 goto discard_it;
1983
1984 /* An explanation is required here, I think.
1985 * Packet length and doff are validated by header prediction,
1986 * provided case of th->doff==0 is eliminated.
1987 * So, we defer the checks. */
1988 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1989 goto bad_packet;
1990
1991 th = tcp_hdr(skb);
1992 iph = ip_hdr(skb);
1993 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1994 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1995 skb->len - th->doff * 4);
1996 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1997 TCP_SKB_CB(skb)->when = 0;
1998 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1999 TCP_SKB_CB(skb)->sacked = 0;
2000
2001 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2002 if (!sk)
2003 goto no_tcp_socket;
2004
2005 process:
2006 if (sk->sk_state == TCP_TIME_WAIT)
2007 goto do_time_wait;
2008
2009 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2010 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2011 goto discard_and_relse;
2012 }
2013
2014 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2015 goto discard_and_relse;
2016 nf_reset(skb);
2017
2018 if (sk_filter(sk, skb))
2019 goto discard_and_relse;
2020
2021 skb->dev = NULL;
2022
2023 bh_lock_sock_nested(sk);
2024 ret = 0;
2025 if (!sock_owned_by_user(sk)) {
2026 #ifdef CONFIG_NET_DMA
2027 struct tcp_sock *tp = tcp_sk(sk);
2028 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2029 tp->ucopy.dma_chan = net_dma_find_channel();
2030 if (tp->ucopy.dma_chan)
2031 ret = tcp_v4_do_rcv(sk, skb);
2032 else
2033 #endif
2034 {
2035 if (!tcp_prequeue(sk, skb))
2036 ret = tcp_v4_do_rcv(sk, skb);
2037 }
2038 } else if (unlikely(sk_add_backlog(sk, skb,
2039 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2040 bh_unlock_sock(sk);
2041 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2042 goto discard_and_relse;
2043 }
2044 bh_unlock_sock(sk);
2045
2046 sock_put(sk);
2047
2048 return ret;
2049
2050 no_tcp_socket:
2051 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2052 goto discard_it;
2053
2054 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2055 bad_packet:
2056 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2057 } else {
2058 tcp_v4_send_reset(NULL, skb);
2059 }
2060
2061 discard_it:
2062 /* Discard frame. */
2063 kfree_skb(skb);
2064 return 0;
2065
2066 discard_and_relse:
2067 sock_put(sk);
2068 goto discard_it;
2069
2070 do_time_wait:
2071 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2072 inet_twsk_put(inet_twsk(sk));
2073 goto discard_it;
2074 }
2075
2076 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2077 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2078 inet_twsk_put(inet_twsk(sk));
2079 goto discard_it;
2080 }
2081 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2082 case TCP_TW_SYN: {
2083 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2084 &tcp_hashinfo,
2085 iph->daddr, th->dest,
2086 inet_iif(skb));
2087 if (sk2) {
2088 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2089 inet_twsk_put(inet_twsk(sk));
2090 sk = sk2;
2091 goto process;
2092 }
2093 /* Fall through to ACK */
2094 }
2095 case TCP_TW_ACK:
2096 tcp_v4_timewait_ack(sk, skb);
2097 break;
2098 case TCP_TW_RST:
2099 goto no_tcp_socket;
2100 case TCP_TW_SUCCESS:;
2101 }
2102 goto discard_it;
2103 }
2104
2105 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2106 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2107 .twsk_unique = tcp_twsk_unique,
2108 .twsk_destructor= tcp_twsk_destructor,
2109 };
2110
2111 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2112 {
2113 struct dst_entry *dst = skb_dst(skb);
2114
2115 dst_hold(dst);
2116 sk->sk_rx_dst = dst;
2117 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2118 }
2119 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2120
2121 const struct inet_connection_sock_af_ops ipv4_specific = {
2122 .queue_xmit = ip_queue_xmit,
2123 .send_check = tcp_v4_send_check,
2124 .rebuild_header = inet_sk_rebuild_header,
2125 .sk_rx_dst_set = inet_sk_rx_dst_set,
2126 .conn_request = tcp_v4_conn_request,
2127 .syn_recv_sock = tcp_v4_syn_recv_sock,
2128 .net_header_len = sizeof(struct iphdr),
2129 .setsockopt = ip_setsockopt,
2130 .getsockopt = ip_getsockopt,
2131 .addr2sockaddr = inet_csk_addr2sockaddr,
2132 .sockaddr_len = sizeof(struct sockaddr_in),
2133 .bind_conflict = inet_csk_bind_conflict,
2134 #ifdef CONFIG_COMPAT
2135 .compat_setsockopt = compat_ip_setsockopt,
2136 .compat_getsockopt = compat_ip_getsockopt,
2137 #endif
2138 };
2139 EXPORT_SYMBOL(ipv4_specific);
2140
2141 #ifdef CONFIG_TCP_MD5SIG
2142 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2143 .md5_lookup = tcp_v4_md5_lookup,
2144 .calc_md5_hash = tcp_v4_md5_hash_skb,
2145 .md5_parse = tcp_v4_parse_md5_keys,
2146 };
2147 #endif
2148
2149 /* NOTE: A lot of things set to zero explicitly by call to
2150 * sk_alloc() so need not be done here.
2151 */
2152 static int tcp_v4_init_sock(struct sock *sk)
2153 {
2154 struct inet_connection_sock *icsk = inet_csk(sk);
2155
2156 tcp_init_sock(sk);
2157
2158 icsk->icsk_af_ops = &ipv4_specific;
2159
2160 #ifdef CONFIG_TCP_MD5SIG
2161 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2162 #endif
2163
2164 return 0;
2165 }
2166
2167 void tcp_v4_destroy_sock(struct sock *sk)
2168 {
2169 struct tcp_sock *tp = tcp_sk(sk);
2170
2171 tcp_clear_xmit_timers(sk);
2172
2173 tcp_cleanup_congestion_control(sk);
2174
2175 /* Cleanup up the write buffer. */
2176 tcp_write_queue_purge(sk);
2177
2178 /* Cleans up our, hopefully empty, out_of_order_queue. */
2179 __skb_queue_purge(&tp->out_of_order_queue);
2180
2181 #ifdef CONFIG_TCP_MD5SIG
2182 /* Clean up the MD5 key list, if any */
2183 if (tp->md5sig_info) {
2184 tcp_clear_md5_list(sk);
2185 kfree_rcu(tp->md5sig_info, rcu);
2186 tp->md5sig_info = NULL;
2187 }
2188 #endif
2189
2190 #ifdef CONFIG_NET_DMA
2191 /* Cleans up our sk_async_wait_queue */
2192 __skb_queue_purge(&sk->sk_async_wait_queue);
2193 #endif
2194
2195 /* Clean prequeue, it must be empty really */
2196 __skb_queue_purge(&tp->ucopy.prequeue);
2197
2198 /* Clean up a referenced TCP bind bucket. */
2199 if (inet_csk(sk)->icsk_bind_hash)
2200 inet_put_port(sk);
2201
2202 /* TCP Cookie Transactions */
2203 if (tp->cookie_values != NULL) {
2204 kref_put(&tp->cookie_values->kref,
2205 tcp_cookie_values_release);
2206 tp->cookie_values = NULL;
2207 }
2208 BUG_ON(tp->fastopen_rsk != NULL);
2209
2210 /* If socket is aborted during connect operation */
2211 tcp_free_fastopen_req(tp);
2212
2213 sk_sockets_allocated_dec(sk);
2214 sock_release_memcg(sk);
2215 }
2216 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2217
2218 #ifdef CONFIG_PROC_FS
2219 /* Proc filesystem TCP sock list dumping. */
2220
2221 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2222 {
2223 return hlist_nulls_empty(head) ? NULL :
2224 list_entry(head->first, struct inet_timewait_sock, tw_node);
2225 }
2226
2227 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2228 {
2229 return !is_a_nulls(tw->tw_node.next) ?
2230 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2231 }
2232
2233 /*
2234 * Get next listener socket follow cur. If cur is NULL, get first socket
2235 * starting from bucket given in st->bucket; when st->bucket is zero the
2236 * very first socket in the hash table is returned.
2237 */
2238 static void *listening_get_next(struct seq_file *seq, void *cur)
2239 {
2240 struct inet_connection_sock *icsk;
2241 struct hlist_nulls_node *node;
2242 struct sock *sk = cur;
2243 struct inet_listen_hashbucket *ilb;
2244 struct tcp_iter_state *st = seq->private;
2245 struct net *net = seq_file_net(seq);
2246
2247 if (!sk) {
2248 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2249 spin_lock_bh(&ilb->lock);
2250 sk = sk_nulls_head(&ilb->head);
2251 st->offset = 0;
2252 goto get_sk;
2253 }
2254 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2255 ++st->num;
2256 ++st->offset;
2257
2258 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2259 struct request_sock *req = cur;
2260
2261 icsk = inet_csk(st->syn_wait_sk);
2262 req = req->dl_next;
2263 while (1) {
2264 while (req) {
2265 if (req->rsk_ops->family == st->family) {
2266 cur = req;
2267 goto out;
2268 }
2269 req = req->dl_next;
2270 }
2271 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2272 break;
2273 get_req:
2274 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2275 }
2276 sk = sk_nulls_next(st->syn_wait_sk);
2277 st->state = TCP_SEQ_STATE_LISTENING;
2278 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2279 } else {
2280 icsk = inet_csk(sk);
2281 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2282 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2283 goto start_req;
2284 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2285 sk = sk_nulls_next(sk);
2286 }
2287 get_sk:
2288 sk_nulls_for_each_from(sk, node) {
2289 if (!net_eq(sock_net(sk), net))
2290 continue;
2291 if (sk->sk_family == st->family) {
2292 cur = sk;
2293 goto out;
2294 }
2295 icsk = inet_csk(sk);
2296 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2297 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2298 start_req:
2299 st->uid = sock_i_uid(sk);
2300 st->syn_wait_sk = sk;
2301 st->state = TCP_SEQ_STATE_OPENREQ;
2302 st->sbucket = 0;
2303 goto get_req;
2304 }
2305 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2306 }
2307 spin_unlock_bh(&ilb->lock);
2308 st->offset = 0;
2309 if (++st->bucket < INET_LHTABLE_SIZE) {
2310 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2311 spin_lock_bh(&ilb->lock);
2312 sk = sk_nulls_head(&ilb->head);
2313 goto get_sk;
2314 }
2315 cur = NULL;
2316 out:
2317 return cur;
2318 }
2319
2320 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2321 {
2322 struct tcp_iter_state *st = seq->private;
2323 void *rc;
2324
2325 st->bucket = 0;
2326 st->offset = 0;
2327 rc = listening_get_next(seq, NULL);
2328
2329 while (rc && *pos) {
2330 rc = listening_get_next(seq, rc);
2331 --*pos;
2332 }
2333 return rc;
2334 }
2335
2336 static inline bool empty_bucket(struct tcp_iter_state *st)
2337 {
2338 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2339 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2340 }
2341
2342 /*
2343 * Get first established socket starting from bucket given in st->bucket.
2344 * If st->bucket is zero, the very first socket in the hash is returned.
2345 */
2346 static void *established_get_first(struct seq_file *seq)
2347 {
2348 struct tcp_iter_state *st = seq->private;
2349 struct net *net = seq_file_net(seq);
2350 void *rc = NULL;
2351
2352 st->offset = 0;
2353 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2354 struct sock *sk;
2355 struct hlist_nulls_node *node;
2356 struct inet_timewait_sock *tw;
2357 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2358
2359 /* Lockless fast path for the common case of empty buckets */
2360 if (empty_bucket(st))
2361 continue;
2362
2363 spin_lock_bh(lock);
2364 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2365 if (sk->sk_family != st->family ||
2366 !net_eq(sock_net(sk), net)) {
2367 continue;
2368 }
2369 rc = sk;
2370 goto out;
2371 }
2372 st->state = TCP_SEQ_STATE_TIME_WAIT;
2373 inet_twsk_for_each(tw, node,
2374 &tcp_hashinfo.ehash[st->bucket].twchain) {
2375 if (tw->tw_family != st->family ||
2376 !net_eq(twsk_net(tw), net)) {
2377 continue;
2378 }
2379 rc = tw;
2380 goto out;
2381 }
2382 spin_unlock_bh(lock);
2383 st->state = TCP_SEQ_STATE_ESTABLISHED;
2384 }
2385 out:
2386 return rc;
2387 }
2388
2389 static void *established_get_next(struct seq_file *seq, void *cur)
2390 {
2391 struct sock *sk = cur;
2392 struct inet_timewait_sock *tw;
2393 struct hlist_nulls_node *node;
2394 struct tcp_iter_state *st = seq->private;
2395 struct net *net = seq_file_net(seq);
2396
2397 ++st->num;
2398 ++st->offset;
2399
2400 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2401 tw = cur;
2402 tw = tw_next(tw);
2403 get_tw:
2404 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2405 tw = tw_next(tw);
2406 }
2407 if (tw) {
2408 cur = tw;
2409 goto out;
2410 }
2411 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2412 st->state = TCP_SEQ_STATE_ESTABLISHED;
2413
2414 /* Look for next non empty bucket */
2415 st->offset = 0;
2416 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2417 empty_bucket(st))
2418 ;
2419 if (st->bucket > tcp_hashinfo.ehash_mask)
2420 return NULL;
2421
2422 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2423 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2424 } else
2425 sk = sk_nulls_next(sk);
2426
2427 sk_nulls_for_each_from(sk, node) {
2428 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2429 goto found;
2430 }
2431
2432 st->state = TCP_SEQ_STATE_TIME_WAIT;
2433 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2434 goto get_tw;
2435 found:
2436 cur = sk;
2437 out:
2438 return cur;
2439 }
2440
2441 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2442 {
2443 struct tcp_iter_state *st = seq->private;
2444 void *rc;
2445
2446 st->bucket = 0;
2447 rc = established_get_first(seq);
2448
2449 while (rc && pos) {
2450 rc = established_get_next(seq, rc);
2451 --pos;
2452 }
2453 return rc;
2454 }
2455
2456 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2457 {
2458 void *rc;
2459 struct tcp_iter_state *st = seq->private;
2460
2461 st->state = TCP_SEQ_STATE_LISTENING;
2462 rc = listening_get_idx(seq, &pos);
2463
2464 if (!rc) {
2465 st->state = TCP_SEQ_STATE_ESTABLISHED;
2466 rc = established_get_idx(seq, pos);
2467 }
2468
2469 return rc;
2470 }
2471
2472 static void *tcp_seek_last_pos(struct seq_file *seq)
2473 {
2474 struct tcp_iter_state *st = seq->private;
2475 int offset = st->offset;
2476 int orig_num = st->num;
2477 void *rc = NULL;
2478
2479 switch (st->state) {
2480 case TCP_SEQ_STATE_OPENREQ:
2481 case TCP_SEQ_STATE_LISTENING:
2482 if (st->bucket >= INET_LHTABLE_SIZE)
2483 break;
2484 st->state = TCP_SEQ_STATE_LISTENING;
2485 rc = listening_get_next(seq, NULL);
2486 while (offset-- && rc)
2487 rc = listening_get_next(seq, rc);
2488 if (rc)
2489 break;
2490 st->bucket = 0;
2491 /* Fallthrough */
2492 case TCP_SEQ_STATE_ESTABLISHED:
2493 case TCP_SEQ_STATE_TIME_WAIT:
2494 st->state = TCP_SEQ_STATE_ESTABLISHED;
2495 if (st->bucket > tcp_hashinfo.ehash_mask)
2496 break;
2497 rc = established_get_first(seq);
2498 while (offset-- && rc)
2499 rc = established_get_next(seq, rc);
2500 }
2501
2502 st->num = orig_num;
2503
2504 return rc;
2505 }
2506
2507 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2508 {
2509 struct tcp_iter_state *st = seq->private;
2510 void *rc;
2511
2512 if (*pos && *pos == st->last_pos) {
2513 rc = tcp_seek_last_pos(seq);
2514 if (rc)
2515 goto out;
2516 }
2517
2518 st->state = TCP_SEQ_STATE_LISTENING;
2519 st->num = 0;
2520 st->bucket = 0;
2521 st->offset = 0;
2522 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2523
2524 out:
2525 st->last_pos = *pos;
2526 return rc;
2527 }
2528
2529 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2530 {
2531 struct tcp_iter_state *st = seq->private;
2532 void *rc = NULL;
2533
2534 if (v == SEQ_START_TOKEN) {
2535 rc = tcp_get_idx(seq, 0);
2536 goto out;
2537 }
2538
2539 switch (st->state) {
2540 case TCP_SEQ_STATE_OPENREQ:
2541 case TCP_SEQ_STATE_LISTENING:
2542 rc = listening_get_next(seq, v);
2543 if (!rc) {
2544 st->state = TCP_SEQ_STATE_ESTABLISHED;
2545 st->bucket = 0;
2546 st->offset = 0;
2547 rc = established_get_first(seq);
2548 }
2549 break;
2550 case TCP_SEQ_STATE_ESTABLISHED:
2551 case TCP_SEQ_STATE_TIME_WAIT:
2552 rc = established_get_next(seq, v);
2553 break;
2554 }
2555 out:
2556 ++*pos;
2557 st->last_pos = *pos;
2558 return rc;
2559 }
2560
2561 static void tcp_seq_stop(struct seq_file *seq, void *v)
2562 {
2563 struct tcp_iter_state *st = seq->private;
2564
2565 switch (st->state) {
2566 case TCP_SEQ_STATE_OPENREQ:
2567 if (v) {
2568 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2569 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2570 }
2571 case TCP_SEQ_STATE_LISTENING:
2572 if (v != SEQ_START_TOKEN)
2573 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2574 break;
2575 case TCP_SEQ_STATE_TIME_WAIT:
2576 case TCP_SEQ_STATE_ESTABLISHED:
2577 if (v)
2578 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2579 break;
2580 }
2581 }
2582
2583 int tcp_seq_open(struct inode *inode, struct file *file)
2584 {
2585 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2586 struct tcp_iter_state *s;
2587 int err;
2588
2589 err = seq_open_net(inode, file, &afinfo->seq_ops,
2590 sizeof(struct tcp_iter_state));
2591 if (err < 0)
2592 return err;
2593
2594 s = ((struct seq_file *)file->private_data)->private;
2595 s->family = afinfo->family;
2596 s->last_pos = 0;
2597 return 0;
2598 }
2599 EXPORT_SYMBOL(tcp_seq_open);
2600
2601 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2602 {
2603 int rc = 0;
2604 struct proc_dir_entry *p;
2605
2606 afinfo->seq_ops.start = tcp_seq_start;
2607 afinfo->seq_ops.next = tcp_seq_next;
2608 afinfo->seq_ops.stop = tcp_seq_stop;
2609
2610 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2611 afinfo->seq_fops, afinfo);
2612 if (!p)
2613 rc = -ENOMEM;
2614 return rc;
2615 }
2616 EXPORT_SYMBOL(tcp_proc_register);
2617
2618 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2619 {
2620 proc_net_remove(net, afinfo->name);
2621 }
2622 EXPORT_SYMBOL(tcp_proc_unregister);
2623
2624 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2625 struct seq_file *f, int i, kuid_t uid, int *len)
2626 {
2627 const struct inet_request_sock *ireq = inet_rsk(req);
2628 long delta = req->expires - jiffies;
2629
2630 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2631 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2632 i,
2633 ireq->loc_addr,
2634 ntohs(inet_sk(sk)->inet_sport),
2635 ireq->rmt_addr,
2636 ntohs(ireq->rmt_port),
2637 TCP_SYN_RECV,
2638 0, 0, /* could print option size, but that is af dependent. */
2639 1, /* timers active (only the expire timer) */
2640 jiffies_delta_to_clock_t(delta),
2641 req->retrans,
2642 from_kuid_munged(seq_user_ns(f), uid),
2643 0, /* non standard timer */
2644 0, /* open_requests have no inode */
2645 atomic_read(&sk->sk_refcnt),
2646 req,
2647 len);
2648 }
2649
2650 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2651 {
2652 int timer_active;
2653 unsigned long timer_expires;
2654 const struct tcp_sock *tp = tcp_sk(sk);
2655 const struct inet_connection_sock *icsk = inet_csk(sk);
2656 const struct inet_sock *inet = inet_sk(sk);
2657 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2658 __be32 dest = inet->inet_daddr;
2659 __be32 src = inet->inet_rcv_saddr;
2660 __u16 destp = ntohs(inet->inet_dport);
2661 __u16 srcp = ntohs(inet->inet_sport);
2662 int rx_queue;
2663
2664 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2665 timer_active = 1;
2666 timer_expires = icsk->icsk_timeout;
2667 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2668 timer_active = 4;
2669 timer_expires = icsk->icsk_timeout;
2670 } else if (timer_pending(&sk->sk_timer)) {
2671 timer_active = 2;
2672 timer_expires = sk->sk_timer.expires;
2673 } else {
2674 timer_active = 0;
2675 timer_expires = jiffies;
2676 }
2677
2678 if (sk->sk_state == TCP_LISTEN)
2679 rx_queue = sk->sk_ack_backlog;
2680 else
2681 /*
2682 * because we dont lock socket, we might find a transient negative value
2683 */
2684 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2685
2686 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2687 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2688 i, src, srcp, dest, destp, sk->sk_state,
2689 tp->write_seq - tp->snd_una,
2690 rx_queue,
2691 timer_active,
2692 jiffies_delta_to_clock_t(timer_expires - jiffies),
2693 icsk->icsk_retransmits,
2694 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2695 icsk->icsk_probes_out,
2696 sock_i_ino(sk),
2697 atomic_read(&sk->sk_refcnt), sk,
2698 jiffies_to_clock_t(icsk->icsk_rto),
2699 jiffies_to_clock_t(icsk->icsk_ack.ato),
2700 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2701 tp->snd_cwnd,
2702 sk->sk_state == TCP_LISTEN ?
2703 (fastopenq ? fastopenq->max_qlen : 0) :
2704 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2705 len);
2706 }
2707
2708 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2709 struct seq_file *f, int i, int *len)
2710 {
2711 __be32 dest, src;
2712 __u16 destp, srcp;
2713 long delta = tw->tw_ttd - jiffies;
2714
2715 dest = tw->tw_daddr;
2716 src = tw->tw_rcv_saddr;
2717 destp = ntohs(tw->tw_dport);
2718 srcp = ntohs(tw->tw_sport);
2719
2720 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2721 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2722 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2723 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2724 atomic_read(&tw->tw_refcnt), tw, len);
2725 }
2726
2727 #define TMPSZ 150
2728
2729 static int tcp4_seq_show(struct seq_file *seq, void *v)
2730 {
2731 struct tcp_iter_state *st;
2732 int len;
2733
2734 if (v == SEQ_START_TOKEN) {
2735 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2736 " sl local_address rem_address st tx_queue "
2737 "rx_queue tr tm->when retrnsmt uid timeout "
2738 "inode");
2739 goto out;
2740 }
2741 st = seq->private;
2742
2743 switch (st->state) {
2744 case TCP_SEQ_STATE_LISTENING:
2745 case TCP_SEQ_STATE_ESTABLISHED:
2746 get_tcp4_sock(v, seq, st->num, &len);
2747 break;
2748 case TCP_SEQ_STATE_OPENREQ:
2749 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2750 break;
2751 case TCP_SEQ_STATE_TIME_WAIT:
2752 get_timewait4_sock(v, seq, st->num, &len);
2753 break;
2754 }
2755 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2756 out:
2757 return 0;
2758 }
2759
2760 static const struct file_operations tcp_afinfo_seq_fops = {
2761 .owner = THIS_MODULE,
2762 .open = tcp_seq_open,
2763 .read = seq_read,
2764 .llseek = seq_lseek,
2765 .release = seq_release_net
2766 };
2767
2768 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2769 .name = "tcp",
2770 .family = AF_INET,
2771 .seq_fops = &tcp_afinfo_seq_fops,
2772 .seq_ops = {
2773 .show = tcp4_seq_show,
2774 },
2775 };
2776
2777 static int __net_init tcp4_proc_init_net(struct net *net)
2778 {
2779 return tcp_proc_register(net, &tcp4_seq_afinfo);
2780 }
2781
2782 static void __net_exit tcp4_proc_exit_net(struct net *net)
2783 {
2784 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2785 }
2786
2787 static struct pernet_operations tcp4_net_ops = {
2788 .init = tcp4_proc_init_net,
2789 .exit = tcp4_proc_exit_net,
2790 };
2791
2792 int __init tcp4_proc_init(void)
2793 {
2794 return register_pernet_subsys(&tcp4_net_ops);
2795 }
2796
2797 void tcp4_proc_exit(void)
2798 {
2799 unregister_pernet_subsys(&tcp4_net_ops);
2800 }
2801 #endif /* CONFIG_PROC_FS */
2802
2803 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2804 {
2805 const struct iphdr *iph = skb_gro_network_header(skb);
2806 __wsum wsum;
2807 __sum16 sum;
2808
2809 switch (skb->ip_summed) {
2810 case CHECKSUM_COMPLETE:
2811 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2812 skb->csum)) {
2813 skb->ip_summed = CHECKSUM_UNNECESSARY;
2814 break;
2815 }
2816 flush:
2817 NAPI_GRO_CB(skb)->flush = 1;
2818 return NULL;
2819
2820 case CHECKSUM_NONE:
2821 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2822 skb_gro_len(skb), IPPROTO_TCP, 0);
2823 sum = csum_fold(skb_checksum(skb,
2824 skb_gro_offset(skb),
2825 skb_gro_len(skb),
2826 wsum));
2827 if (sum)
2828 goto flush;
2829
2830 skb->ip_summed = CHECKSUM_UNNECESSARY;
2831 break;
2832 }
2833
2834 return tcp_gro_receive(head, skb);
2835 }
2836
2837 int tcp4_gro_complete(struct sk_buff *skb)
2838 {
2839 const struct iphdr *iph = ip_hdr(skb);
2840 struct tcphdr *th = tcp_hdr(skb);
2841
2842 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2843 iph->saddr, iph->daddr, 0);
2844 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2845
2846 return tcp_gro_complete(skb);
2847 }
2848
2849 struct proto tcp_prot = {
2850 .name = "TCP",
2851 .owner = THIS_MODULE,
2852 .close = tcp_close,
2853 .connect = tcp_v4_connect,
2854 .disconnect = tcp_disconnect,
2855 .accept = inet_csk_accept,
2856 .ioctl = tcp_ioctl,
2857 .init = tcp_v4_init_sock,
2858 .destroy = tcp_v4_destroy_sock,
2859 .shutdown = tcp_shutdown,
2860 .setsockopt = tcp_setsockopt,
2861 .getsockopt = tcp_getsockopt,
2862 .recvmsg = tcp_recvmsg,
2863 .sendmsg = tcp_sendmsg,
2864 .sendpage = tcp_sendpage,
2865 .backlog_rcv = tcp_v4_do_rcv,
2866 .release_cb = tcp_release_cb,
2867 .mtu_reduced = tcp_v4_mtu_reduced,
2868 .hash = inet_hash,
2869 .unhash = inet_unhash,
2870 .get_port = inet_csk_get_port,
2871 .enter_memory_pressure = tcp_enter_memory_pressure,
2872 .sockets_allocated = &tcp_sockets_allocated,
2873 .orphan_count = &tcp_orphan_count,
2874 .memory_allocated = &tcp_memory_allocated,
2875 .memory_pressure = &tcp_memory_pressure,
2876 .sysctl_wmem = sysctl_tcp_wmem,
2877 .sysctl_rmem = sysctl_tcp_rmem,
2878 .max_header = MAX_TCP_HEADER,
2879 .obj_size = sizeof(struct tcp_sock),
2880 .slab_flags = SLAB_DESTROY_BY_RCU,
2881 .twsk_prot = &tcp_timewait_sock_ops,
2882 .rsk_prot = &tcp_request_sock_ops,
2883 .h.hashinfo = &tcp_hashinfo,
2884 .no_autobind = true,
2885 #ifdef CONFIG_COMPAT
2886 .compat_setsockopt = compat_tcp_setsockopt,
2887 .compat_getsockopt = compat_tcp_getsockopt,
2888 #endif
2889 #ifdef CONFIG_MEMCG_KMEM
2890 .init_cgroup = tcp_init_cgroup,
2891 .destroy_cgroup = tcp_destroy_cgroup,
2892 .proto_cgroup = tcp_proto_cgroup,
2893 #endif
2894 };
2895 EXPORT_SYMBOL(tcp_prot);
2896
2897 static int __net_init tcp_sk_init(struct net *net)
2898 {
2899 return 0;
2900 }
2901
2902 static void __net_exit tcp_sk_exit(struct net *net)
2903 {
2904 }
2905
2906 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2907 {
2908 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2909 }
2910
2911 static struct pernet_operations __net_initdata tcp_sk_ops = {
2912 .init = tcp_sk_init,
2913 .exit = tcp_sk_exit,
2914 .exit_batch = tcp_sk_exit_batch,
2915 };
2916
2917 void __init tcp_v4_init(void)
2918 {
2919 inet_hashinfo_init(&tcp_hashinfo);
2920 if (register_pernet_subsys(&tcp_sk_ops))
2921 panic("Failed to create the TCP control socket.\n");
2922 }
This page took 0.091671 seconds and 5 git commands to generate.