tcp: do not assume TCP code is non preemptible
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83
84 #include <crypto/hash.h>
85 #include <linux/scatterlist.h>
86
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91 #ifdef CONFIG_TCP_MD5SIG
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, const struct tcphdr *th);
94 #endif
95
96 struct inet_hashinfo tcp_hashinfo;
97 EXPORT_SYMBOL(tcp_hashinfo);
98
99 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
100 {
101 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
102 ip_hdr(skb)->saddr,
103 tcp_hdr(skb)->dest,
104 tcp_hdr(skb)->source);
105 }
106
107 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108 {
109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
110 struct tcp_sock *tp = tcp_sk(sk);
111
112 /* With PAWS, it is safe from the viewpoint
113 of data integrity. Even without PAWS it is safe provided sequence
114 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
115
116 Actually, the idea is close to VJ's one, only timestamp cache is
117 held not per host, but per port pair and TW bucket is used as state
118 holder.
119
120 If TW bucket has been already destroyed we fall back to VJ's scheme
121 and use initial timestamp retrieved from peer table.
122 */
123 if (tcptw->tw_ts_recent_stamp &&
124 (!twp || (sysctl_tcp_tw_reuse &&
125 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
126 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
127 if (tp->write_seq == 0)
128 tp->write_seq = 1;
129 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
130 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
131 sock_hold(sktw);
132 return 1;
133 }
134
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
138
139 /* This will initiate an outgoing connection. */
140 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
141 {
142 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
143 struct inet_sock *inet = inet_sk(sk);
144 struct tcp_sock *tp = tcp_sk(sk);
145 __be16 orig_sport, orig_dport;
146 __be32 daddr, nexthop;
147 struct flowi4 *fl4;
148 struct rtable *rt;
149 int err;
150 struct ip_options_rcu *inet_opt;
151
152 if (addr_len < sizeof(struct sockaddr_in))
153 return -EINVAL;
154
155 if (usin->sin_family != AF_INET)
156 return -EAFNOSUPPORT;
157
158 nexthop = daddr = usin->sin_addr.s_addr;
159 inet_opt = rcu_dereference_protected(inet->inet_opt,
160 lockdep_sock_is_held(sk));
161 if (inet_opt && inet_opt->opt.srr) {
162 if (!daddr)
163 return -EINVAL;
164 nexthop = inet_opt->opt.faddr;
165 }
166
167 orig_sport = inet->inet_sport;
168 orig_dport = usin->sin_port;
169 fl4 = &inet->cork.fl.u.ip4;
170 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 orig_sport, orig_dport, sk);
174 if (IS_ERR(rt)) {
175 err = PTR_ERR(rt);
176 if (err == -ENETUNREACH)
177 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178 return err;
179 }
180
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182 ip_rt_put(rt);
183 return -ENETUNREACH;
184 }
185
186 if (!inet_opt || !inet_opt->opt.srr)
187 daddr = fl4->daddr;
188
189 if (!inet->inet_saddr)
190 inet->inet_saddr = fl4->saddr;
191 sk_rcv_saddr_set(sk, inet->inet_saddr);
192
193 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
197 if (likely(!tp->repair))
198 tp->write_seq = 0;
199 }
200
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
203 tcp_fetch_timewait_stamp(sk, &rt->dst);
204
205 inet->inet_dport = usin->sin_port;
206 sk_daddr_set(sk, daddr);
207
208 inet_csk(sk)->icsk_ext_hdr_len = 0;
209 if (inet_opt)
210 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
211
212 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
213
214 /* Socket identity is still unknown (sport may be zero).
215 * However we set state to SYN-SENT and not releasing socket
216 * lock select source port, enter ourselves into the hash tables and
217 * complete initialization after this.
218 */
219 tcp_set_state(sk, TCP_SYN_SENT);
220 err = inet_hash_connect(&tcp_death_row, sk);
221 if (err)
222 goto failure;
223
224 sk_set_txhash(sk);
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 ip_sk_accept_pmtu(sk) &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
293
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
298 */
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
301 }
302 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
303
304 static void do_redirect(struct sk_buff *skb, struct sock *sk)
305 {
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310 }
311
312
313 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
314 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
315 {
316 struct request_sock *req = inet_reqsk(sk);
317 struct net *net = sock_net(sk);
318
319 /* ICMPs are not backlogged, hence we cannot get
320 * an established socket here.
321 */
322 if (seq != tcp_rsk(req)->snt_isn) {
323 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
324 } else if (abort) {
325 /*
326 * Still in SYN_RECV, just remove it silently.
327 * There is no good way to pass the error to the newly
328 * created socket, and POSIX does not want network
329 * errors returned from accept().
330 */
331 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
332 tcp_listendrop(req->rsk_listener);
333 }
334 reqsk_put(req);
335 }
336 EXPORT_SYMBOL(tcp_req_err);
337
338 /*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355 {
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 struct request_sock *fastopen;
366 __u32 seq, snd_una;
367 __u32 remaining;
368 int err;
369 struct net *net = dev_net(icmp_skb->dev);
370
371 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
372 th->dest, iph->saddr, ntohs(th->source),
373 inet_iif(icmp_skb));
374 if (!sk) {
375 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
376 return;
377 }
378 if (sk->sk_state == TCP_TIME_WAIT) {
379 inet_twsk_put(inet_twsk(sk));
380 return;
381 }
382 seq = ntohl(th->seq);
383 if (sk->sk_state == TCP_NEW_SYN_RECV)
384 return tcp_req_err(sk, seq,
385 type == ICMP_PARAMETERPROB ||
386 type == ICMP_TIME_EXCEEDED ||
387 (type == ICMP_DEST_UNREACH &&
388 (code == ICMP_NET_UNREACH ||
389 code == ICMP_HOST_UNREACH)));
390
391 bh_lock_sock(sk);
392 /* If too many ICMPs get dropped on busy
393 * servers this needs to be solved differently.
394 * We do take care of PMTU discovery (RFC1191) special case :
395 * we can receive locally generated ICMP messages while socket is held.
396 */
397 if (sock_owned_by_user(sk)) {
398 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
399 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
400 }
401 if (sk->sk_state == TCP_CLOSE)
402 goto out;
403
404 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
405 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
406 goto out;
407 }
408
409 icsk = inet_csk(sk);
410 tp = tcp_sk(sk);
411 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
412 fastopen = tp->fastopen_rsk;
413 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
414 if (sk->sk_state != TCP_LISTEN &&
415 !between(seq, snd_una, tp->snd_nxt)) {
416 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
417 goto out;
418 }
419
420 switch (type) {
421 case ICMP_REDIRECT:
422 do_redirect(icmp_skb, sk);
423 goto out;
424 case ICMP_SOURCE_QUENCH:
425 /* Just silently ignore these. */
426 goto out;
427 case ICMP_PARAMETERPROB:
428 err = EPROTO;
429 break;
430 case ICMP_DEST_UNREACH:
431 if (code > NR_ICMP_UNREACH)
432 goto out;
433
434 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
435 /* We are not interested in TCP_LISTEN and open_requests
436 * (SYN-ACKs send out by Linux are always <576bytes so
437 * they should go through unfragmented).
438 */
439 if (sk->sk_state == TCP_LISTEN)
440 goto out;
441
442 tp->mtu_info = info;
443 if (!sock_owned_by_user(sk)) {
444 tcp_v4_mtu_reduced(sk);
445 } else {
446 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
447 sock_hold(sk);
448 }
449 goto out;
450 }
451
452 err = icmp_err_convert[code].errno;
453 /* check if icmp_skb allows revert of backoff
454 * (see draft-zimmermann-tcp-lcd) */
455 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
456 break;
457 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
458 !icsk->icsk_backoff || fastopen)
459 break;
460
461 if (sock_owned_by_user(sk))
462 break;
463
464 icsk->icsk_backoff--;
465 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
466 TCP_TIMEOUT_INIT;
467 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
468
469 skb = tcp_write_queue_head(sk);
470 BUG_ON(!skb);
471
472 remaining = icsk->icsk_rto -
473 min(icsk->icsk_rto,
474 tcp_time_stamp - tcp_skb_timestamp(skb));
475
476 if (remaining) {
477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
478 remaining, TCP_RTO_MAX);
479 } else {
480 /* RTO revert clocked out retransmission.
481 * Will retransmit now */
482 tcp_retransmit_timer(sk);
483 }
484
485 break;
486 case ICMP_TIME_EXCEEDED:
487 err = EHOSTUNREACH;
488 break;
489 default:
490 goto out;
491 }
492
493 switch (sk->sk_state) {
494 case TCP_SYN_SENT:
495 case TCP_SYN_RECV:
496 /* Only in fast or simultaneous open. If a fast open socket is
497 * is already accepted it is treated as a connected one below.
498 */
499 if (fastopen && !fastopen->sk)
500 break;
501
502 if (!sock_owned_by_user(sk)) {
503 sk->sk_err = err;
504
505 sk->sk_error_report(sk);
506
507 tcp_done(sk);
508 } else {
509 sk->sk_err_soft = err;
510 }
511 goto out;
512 }
513
514 /* If we've already connected we will keep trying
515 * until we time out, or the user gives up.
516 *
517 * rfc1122 4.2.3.9 allows to consider as hard errors
518 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
519 * but it is obsoleted by pmtu discovery).
520 *
521 * Note, that in modern internet, where routing is unreliable
522 * and in each dark corner broken firewalls sit, sending random
523 * errors ordered by their masters even this two messages finally lose
524 * their original sense (even Linux sends invalid PORT_UNREACHs)
525 *
526 * Now we are in compliance with RFCs.
527 * --ANK (980905)
528 */
529
530 inet = inet_sk(sk);
531 if (!sock_owned_by_user(sk) && inet->recverr) {
532 sk->sk_err = err;
533 sk->sk_error_report(sk);
534 } else { /* Only an error on timeout */
535 sk->sk_err_soft = err;
536 }
537
538 out:
539 bh_unlock_sock(sk);
540 sock_put(sk);
541 }
542
543 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
544 {
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 /*
569 * This routine will send an RST to the other tcp.
570 *
571 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
572 * for reset.
573 * Answer: if a packet caused RST, it is not for a socket
574 * existing in our system, if it is matched to a socket,
575 * it is just duplicate segment or bug in other side's TCP.
576 * So that we build reply only basing on parameters
577 * arrived with segment.
578 * Exception: precedence violation. We do not implement it in any case.
579 */
580
581 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
582 {
583 const struct tcphdr *th = tcp_hdr(skb);
584 struct {
585 struct tcphdr th;
586 #ifdef CONFIG_TCP_MD5SIG
587 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
588 #endif
589 } rep;
590 struct ip_reply_arg arg;
591 #ifdef CONFIG_TCP_MD5SIG
592 struct tcp_md5sig_key *key = NULL;
593 const __u8 *hash_location = NULL;
594 unsigned char newhash[16];
595 int genhash;
596 struct sock *sk1 = NULL;
597 #endif
598 struct net *net;
599
600 /* Never send a reset in response to a reset. */
601 if (th->rst)
602 return;
603
604 /* If sk not NULL, it means we did a successful lookup and incoming
605 * route had to be correct. prequeue might have dropped our dst.
606 */
607 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
608 return;
609
610 /* Swap the send and the receive. */
611 memset(&rep, 0, sizeof(rep));
612 rep.th.dest = th->source;
613 rep.th.source = th->dest;
614 rep.th.doff = sizeof(struct tcphdr) / 4;
615 rep.th.rst = 1;
616
617 if (th->ack) {
618 rep.th.seq = th->ack_seq;
619 } else {
620 rep.th.ack = 1;
621 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
622 skb->len - (th->doff << 2));
623 }
624
625 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
628
629 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
630 #ifdef CONFIG_TCP_MD5SIG
631 rcu_read_lock();
632 hash_location = tcp_parse_md5sig_option(th);
633 if (sk && sk_fullsock(sk)) {
634 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
635 &ip_hdr(skb)->saddr, AF_INET);
636 } else if (hash_location) {
637 /*
638 * active side is lost. Try to find listening socket through
639 * source port, and then find md5 key through listening socket.
640 * we are not loose security here:
641 * Incoming packet is checked with md5 hash with finding key,
642 * no RST generated if md5 hash doesn't match.
643 */
644 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
645 ip_hdr(skb)->saddr,
646 th->source, ip_hdr(skb)->daddr,
647 ntohs(th->source), inet_iif(skb));
648 /* don't send rst if it can't find key */
649 if (!sk1)
650 goto out;
651
652 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
653 &ip_hdr(skb)->saddr, AF_INET);
654 if (!key)
655 goto out;
656
657
658 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
659 if (genhash || memcmp(hash_location, newhash, 16) != 0)
660 goto out;
661
662 }
663
664 if (key) {
665 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
666 (TCPOPT_NOP << 16) |
667 (TCPOPT_MD5SIG << 8) |
668 TCPOLEN_MD5SIG);
669 /* Update length and the length the header thinks exists */
670 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
671 rep.th.doff = arg.iov[0].iov_len / 4;
672
673 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
674 key, ip_hdr(skb)->saddr,
675 ip_hdr(skb)->daddr, &rep.th);
676 }
677 #endif
678 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
679 ip_hdr(skb)->saddr, /* XXX */
680 arg.iov[0].iov_len, IPPROTO_TCP, 0);
681 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
682 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
683
684 /* When socket is gone, all binding information is lost.
685 * routing might fail in this case. No choice here, if we choose to force
686 * input interface, we will misroute in case of asymmetric route.
687 */
688 if (sk)
689 arg.bound_dev_if = sk->sk_bound_dev_if;
690
691 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
692 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
693
694 arg.tos = ip_hdr(skb)->tos;
695 preempt_disable();
696 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
697 skb, &TCP_SKB_CB(skb)->header.h4.opt,
698 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
699 &arg, arg.iov[0].iov_len);
700
701 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
702 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
703 preempt_enable();
704
705 #ifdef CONFIG_TCP_MD5SIG
706 out:
707 rcu_read_unlock();
708 #endif
709 }
710
711 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
712 outside socket context is ugly, certainly. What can I do?
713 */
714
715 static void tcp_v4_send_ack(struct net *net,
716 struct sk_buff *skb, u32 seq, u32 ack,
717 u32 win, u32 tsval, u32 tsecr, int oif,
718 struct tcp_md5sig_key *key,
719 int reply_flags, u8 tos)
720 {
721 const struct tcphdr *th = tcp_hdr(skb);
722 struct {
723 struct tcphdr th;
724 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
725 #ifdef CONFIG_TCP_MD5SIG
726 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
727 #endif
728 ];
729 } rep;
730 struct ip_reply_arg arg;
731
732 memset(&rep.th, 0, sizeof(struct tcphdr));
733 memset(&arg, 0, sizeof(arg));
734
735 arg.iov[0].iov_base = (unsigned char *)&rep;
736 arg.iov[0].iov_len = sizeof(rep.th);
737 if (tsecr) {
738 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
739 (TCPOPT_TIMESTAMP << 8) |
740 TCPOLEN_TIMESTAMP);
741 rep.opt[1] = htonl(tsval);
742 rep.opt[2] = htonl(tsecr);
743 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
744 }
745
746 /* Swap the send and the receive. */
747 rep.th.dest = th->source;
748 rep.th.source = th->dest;
749 rep.th.doff = arg.iov[0].iov_len / 4;
750 rep.th.seq = htonl(seq);
751 rep.th.ack_seq = htonl(ack);
752 rep.th.ack = 1;
753 rep.th.window = htons(win);
754
755 #ifdef CONFIG_TCP_MD5SIG
756 if (key) {
757 int offset = (tsecr) ? 3 : 0;
758
759 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
760 (TCPOPT_NOP << 16) |
761 (TCPOPT_MD5SIG << 8) |
762 TCPOLEN_MD5SIG);
763 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
764 rep.th.doff = arg.iov[0].iov_len/4;
765
766 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
767 key, ip_hdr(skb)->saddr,
768 ip_hdr(skb)->daddr, &rep.th);
769 }
770 #endif
771 arg.flags = reply_flags;
772 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
773 ip_hdr(skb)->saddr, /* XXX */
774 arg.iov[0].iov_len, IPPROTO_TCP, 0);
775 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
776 if (oif)
777 arg.bound_dev_if = oif;
778 arg.tos = tos;
779 preempt_disable();
780 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
781 skb, &TCP_SKB_CB(skb)->header.h4.opt,
782 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
783 &arg, arg.iov[0].iov_len);
784
785 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
786 preempt_enable();
787 }
788
789 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
790 {
791 struct inet_timewait_sock *tw = inet_twsk(sk);
792 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
793
794 tcp_v4_send_ack(sock_net(sk), skb,
795 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcp_time_stamp + tcptw->tw_ts_offset,
798 tcptw->tw_ts_recent,
799 tw->tw_bound_dev_if,
800 tcp_twsk_md5_key(tcptw),
801 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
802 tw->tw_tos
803 );
804
805 inet_twsk_put(tw);
806 }
807
808 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
809 struct request_sock *req)
810 {
811 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
812 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
813 */
814 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
815 tcp_sk(sk)->snd_nxt;
816
817 tcp_v4_send_ack(sock_net(sk), skb, seq,
818 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
819 tcp_time_stamp,
820 req->ts_recent,
821 0,
822 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
823 AF_INET),
824 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
825 ip_hdr(skb)->tos);
826 }
827
828 /*
829 * Send a SYN-ACK after having received a SYN.
830 * This still operates on a request_sock only, not on a big
831 * socket.
832 */
833 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
834 struct flowi *fl,
835 struct request_sock *req,
836 struct tcp_fastopen_cookie *foc,
837 enum tcp_synack_type synack_type)
838 {
839 const struct inet_request_sock *ireq = inet_rsk(req);
840 struct flowi4 fl4;
841 int err = -1;
842 struct sk_buff *skb;
843
844 /* First, grab a route. */
845 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
846 return -1;
847
848 skb = tcp_make_synack(sk, dst, req, foc, synack_type);
849
850 if (skb) {
851 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
852
853 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
854 ireq->ir_rmt_addr,
855 ireq->opt);
856 err = net_xmit_eval(err);
857 }
858
859 return err;
860 }
861
862 /*
863 * IPv4 request_sock destructor.
864 */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867 kfree(inet_rsk(req)->opt);
868 }
869
870 #ifdef CONFIG_TCP_MD5SIG
871 /*
872 * RFC2385 MD5 checksumming requires a mapping of
873 * IP address->MD5 Key.
874 * We need to maintain these in the sk structure.
875 */
876
877 /* Find the Key structure for an address. */
878 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
879 const union tcp_md5_addr *addr,
880 int family)
881 {
882 const struct tcp_sock *tp = tcp_sk(sk);
883 struct tcp_md5sig_key *key;
884 unsigned int size = sizeof(struct in_addr);
885 const struct tcp_md5sig_info *md5sig;
886
887 /* caller either holds rcu_read_lock() or socket lock */
888 md5sig = rcu_dereference_check(tp->md5sig_info,
889 lockdep_sock_is_held(sk));
890 if (!md5sig)
891 return NULL;
892 #if IS_ENABLED(CONFIG_IPV6)
893 if (family == AF_INET6)
894 size = sizeof(struct in6_addr);
895 #endif
896 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
897 if (key->family != family)
898 continue;
899 if (!memcmp(&key->addr, addr, size))
900 return key;
901 }
902 return NULL;
903 }
904 EXPORT_SYMBOL(tcp_md5_do_lookup);
905
906 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
907 const struct sock *addr_sk)
908 {
909 const union tcp_md5_addr *addr;
910
911 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
912 return tcp_md5_do_lookup(sk, addr, AF_INET);
913 }
914 EXPORT_SYMBOL(tcp_v4_md5_lookup);
915
916 /* This can be called on a newly created socket, from other files */
917 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
918 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
919 {
920 /* Add Key to the list */
921 struct tcp_md5sig_key *key;
922 struct tcp_sock *tp = tcp_sk(sk);
923 struct tcp_md5sig_info *md5sig;
924
925 key = tcp_md5_do_lookup(sk, addr, family);
926 if (key) {
927 /* Pre-existing entry - just update that one. */
928 memcpy(key->key, newkey, newkeylen);
929 key->keylen = newkeylen;
930 return 0;
931 }
932
933 md5sig = rcu_dereference_protected(tp->md5sig_info,
934 lockdep_sock_is_held(sk));
935 if (!md5sig) {
936 md5sig = kmalloc(sizeof(*md5sig), gfp);
937 if (!md5sig)
938 return -ENOMEM;
939
940 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
941 INIT_HLIST_HEAD(&md5sig->head);
942 rcu_assign_pointer(tp->md5sig_info, md5sig);
943 }
944
945 key = sock_kmalloc(sk, sizeof(*key), gfp);
946 if (!key)
947 return -ENOMEM;
948 if (!tcp_alloc_md5sig_pool()) {
949 sock_kfree_s(sk, key, sizeof(*key));
950 return -ENOMEM;
951 }
952
953 memcpy(key->key, newkey, newkeylen);
954 key->keylen = newkeylen;
955 key->family = family;
956 memcpy(&key->addr, addr,
957 (family == AF_INET6) ? sizeof(struct in6_addr) :
958 sizeof(struct in_addr));
959 hlist_add_head_rcu(&key->node, &md5sig->head);
960 return 0;
961 }
962 EXPORT_SYMBOL(tcp_md5_do_add);
963
964 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
965 {
966 struct tcp_md5sig_key *key;
967
968 key = tcp_md5_do_lookup(sk, addr, family);
969 if (!key)
970 return -ENOENT;
971 hlist_del_rcu(&key->node);
972 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
973 kfree_rcu(key, rcu);
974 return 0;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_del);
977
978 static void tcp_clear_md5_list(struct sock *sk)
979 {
980 struct tcp_sock *tp = tcp_sk(sk);
981 struct tcp_md5sig_key *key;
982 struct hlist_node *n;
983 struct tcp_md5sig_info *md5sig;
984
985 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
986
987 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
988 hlist_del_rcu(&key->node);
989 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
990 kfree_rcu(key, rcu);
991 }
992 }
993
994 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
995 int optlen)
996 {
997 struct tcp_md5sig cmd;
998 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
999
1000 if (optlen < sizeof(cmd))
1001 return -EINVAL;
1002
1003 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1004 return -EFAULT;
1005
1006 if (sin->sin_family != AF_INET)
1007 return -EINVAL;
1008
1009 if (!cmd.tcpm_keylen)
1010 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1011 AF_INET);
1012
1013 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1014 return -EINVAL;
1015
1016 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1017 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1018 GFP_KERNEL);
1019 }
1020
1021 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1022 __be32 daddr, __be32 saddr, int nbytes)
1023 {
1024 struct tcp4_pseudohdr *bp;
1025 struct scatterlist sg;
1026
1027 bp = &hp->md5_blk.ip4;
1028
1029 /*
1030 * 1. the TCP pseudo-header (in the order: source IP address,
1031 * destination IP address, zero-padded protocol number, and
1032 * segment length)
1033 */
1034 bp->saddr = saddr;
1035 bp->daddr = daddr;
1036 bp->pad = 0;
1037 bp->protocol = IPPROTO_TCP;
1038 bp->len = cpu_to_be16(nbytes);
1039
1040 sg_init_one(&sg, bp, sizeof(*bp));
1041 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp));
1042 return crypto_ahash_update(hp->md5_req);
1043 }
1044
1045 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1046 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1047 {
1048 struct tcp_md5sig_pool *hp;
1049 struct ahash_request *req;
1050
1051 hp = tcp_get_md5sig_pool();
1052 if (!hp)
1053 goto clear_hash_noput;
1054 req = hp->md5_req;
1055
1056 if (crypto_ahash_init(req))
1057 goto clear_hash;
1058 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1059 goto clear_hash;
1060 if (tcp_md5_hash_header(hp, th))
1061 goto clear_hash;
1062 if (tcp_md5_hash_key(hp, key))
1063 goto clear_hash;
1064 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1065 if (crypto_ahash_final(req))
1066 goto clear_hash;
1067
1068 tcp_put_md5sig_pool();
1069 return 0;
1070
1071 clear_hash:
1072 tcp_put_md5sig_pool();
1073 clear_hash_noput:
1074 memset(md5_hash, 0, 16);
1075 return 1;
1076 }
1077
1078 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1079 const struct sock *sk,
1080 const struct sk_buff *skb)
1081 {
1082 struct tcp_md5sig_pool *hp;
1083 struct ahash_request *req;
1084 const struct tcphdr *th = tcp_hdr(skb);
1085 __be32 saddr, daddr;
1086
1087 if (sk) { /* valid for establish/request sockets */
1088 saddr = sk->sk_rcv_saddr;
1089 daddr = sk->sk_daddr;
1090 } else {
1091 const struct iphdr *iph = ip_hdr(skb);
1092 saddr = iph->saddr;
1093 daddr = iph->daddr;
1094 }
1095
1096 hp = tcp_get_md5sig_pool();
1097 if (!hp)
1098 goto clear_hash_noput;
1099 req = hp->md5_req;
1100
1101 if (crypto_ahash_init(req))
1102 goto clear_hash;
1103
1104 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1105 goto clear_hash;
1106 if (tcp_md5_hash_header(hp, th))
1107 goto clear_hash;
1108 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1109 goto clear_hash;
1110 if (tcp_md5_hash_key(hp, key))
1111 goto clear_hash;
1112 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1113 if (crypto_ahash_final(req))
1114 goto clear_hash;
1115
1116 tcp_put_md5sig_pool();
1117 return 0;
1118
1119 clear_hash:
1120 tcp_put_md5sig_pool();
1121 clear_hash_noput:
1122 memset(md5_hash, 0, 16);
1123 return 1;
1124 }
1125 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1126
1127 #endif
1128
1129 /* Called with rcu_read_lock() */
1130 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1131 const struct sk_buff *skb)
1132 {
1133 #ifdef CONFIG_TCP_MD5SIG
1134 /*
1135 * This gets called for each TCP segment that arrives
1136 * so we want to be efficient.
1137 * We have 3 drop cases:
1138 * o No MD5 hash and one expected.
1139 * o MD5 hash and we're not expecting one.
1140 * o MD5 hash and its wrong.
1141 */
1142 const __u8 *hash_location = NULL;
1143 struct tcp_md5sig_key *hash_expected;
1144 const struct iphdr *iph = ip_hdr(skb);
1145 const struct tcphdr *th = tcp_hdr(skb);
1146 int genhash;
1147 unsigned char newhash[16];
1148
1149 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1150 AF_INET);
1151 hash_location = tcp_parse_md5sig_option(th);
1152
1153 /* We've parsed the options - do we have a hash? */
1154 if (!hash_expected && !hash_location)
1155 return false;
1156
1157 if (hash_expected && !hash_location) {
1158 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1159 return true;
1160 }
1161
1162 if (!hash_expected && hash_location) {
1163 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1164 return true;
1165 }
1166
1167 /* Okay, so this is hash_expected and hash_location -
1168 * so we need to calculate the checksum.
1169 */
1170 genhash = tcp_v4_md5_hash_skb(newhash,
1171 hash_expected,
1172 NULL, skb);
1173
1174 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1175 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1176 &iph->saddr, ntohs(th->source),
1177 &iph->daddr, ntohs(th->dest),
1178 genhash ? " tcp_v4_calc_md5_hash failed"
1179 : "");
1180 return true;
1181 }
1182 return false;
1183 #endif
1184 return false;
1185 }
1186
1187 static void tcp_v4_init_req(struct request_sock *req,
1188 const struct sock *sk_listener,
1189 struct sk_buff *skb)
1190 {
1191 struct inet_request_sock *ireq = inet_rsk(req);
1192
1193 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1194 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1195 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1196 ireq->opt = tcp_v4_save_options(skb);
1197 }
1198
1199 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1200 struct flowi *fl,
1201 const struct request_sock *req,
1202 bool *strict)
1203 {
1204 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1205
1206 if (strict) {
1207 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1208 *strict = true;
1209 else
1210 *strict = false;
1211 }
1212
1213 return dst;
1214 }
1215
1216 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1217 .family = PF_INET,
1218 .obj_size = sizeof(struct tcp_request_sock),
1219 .rtx_syn_ack = tcp_rtx_synack,
1220 .send_ack = tcp_v4_reqsk_send_ack,
1221 .destructor = tcp_v4_reqsk_destructor,
1222 .send_reset = tcp_v4_send_reset,
1223 .syn_ack_timeout = tcp_syn_ack_timeout,
1224 };
1225
1226 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1227 .mss_clamp = TCP_MSS_DEFAULT,
1228 #ifdef CONFIG_TCP_MD5SIG
1229 .req_md5_lookup = tcp_v4_md5_lookup,
1230 .calc_md5_hash = tcp_v4_md5_hash_skb,
1231 #endif
1232 .init_req = tcp_v4_init_req,
1233 #ifdef CONFIG_SYN_COOKIES
1234 .cookie_init_seq = cookie_v4_init_sequence,
1235 #endif
1236 .route_req = tcp_v4_route_req,
1237 .init_seq = tcp_v4_init_sequence,
1238 .send_synack = tcp_v4_send_synack,
1239 };
1240
1241 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1242 {
1243 /* Never answer to SYNs send to broadcast or multicast */
1244 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1245 goto drop;
1246
1247 return tcp_conn_request(&tcp_request_sock_ops,
1248 &tcp_request_sock_ipv4_ops, sk, skb);
1249
1250 drop:
1251 tcp_listendrop(sk);
1252 return 0;
1253 }
1254 EXPORT_SYMBOL(tcp_v4_conn_request);
1255
1256
1257 /*
1258 * The three way handshake has completed - we got a valid synack -
1259 * now create the new socket.
1260 */
1261 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1262 struct request_sock *req,
1263 struct dst_entry *dst,
1264 struct request_sock *req_unhash,
1265 bool *own_req)
1266 {
1267 struct inet_request_sock *ireq;
1268 struct inet_sock *newinet;
1269 struct tcp_sock *newtp;
1270 struct sock *newsk;
1271 #ifdef CONFIG_TCP_MD5SIG
1272 struct tcp_md5sig_key *key;
1273 #endif
1274 struct ip_options_rcu *inet_opt;
1275
1276 if (sk_acceptq_is_full(sk))
1277 goto exit_overflow;
1278
1279 newsk = tcp_create_openreq_child(sk, req, skb);
1280 if (!newsk)
1281 goto exit_nonewsk;
1282
1283 newsk->sk_gso_type = SKB_GSO_TCPV4;
1284 inet_sk_rx_dst_set(newsk, skb);
1285
1286 newtp = tcp_sk(newsk);
1287 newinet = inet_sk(newsk);
1288 ireq = inet_rsk(req);
1289 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1290 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1291 newsk->sk_bound_dev_if = ireq->ir_iif;
1292 newinet->inet_saddr = ireq->ir_loc_addr;
1293 inet_opt = ireq->opt;
1294 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1295 ireq->opt = NULL;
1296 newinet->mc_index = inet_iif(skb);
1297 newinet->mc_ttl = ip_hdr(skb)->ttl;
1298 newinet->rcv_tos = ip_hdr(skb)->tos;
1299 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1300 if (inet_opt)
1301 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1302 newinet->inet_id = newtp->write_seq ^ jiffies;
1303
1304 if (!dst) {
1305 dst = inet_csk_route_child_sock(sk, newsk, req);
1306 if (!dst)
1307 goto put_and_exit;
1308 } else {
1309 /* syncookie case : see end of cookie_v4_check() */
1310 }
1311 sk_setup_caps(newsk, dst);
1312
1313 tcp_ca_openreq_child(newsk, dst);
1314
1315 tcp_sync_mss(newsk, dst_mtu(dst));
1316 newtp->advmss = dst_metric_advmss(dst);
1317 if (tcp_sk(sk)->rx_opt.user_mss &&
1318 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1319 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1320
1321 tcp_initialize_rcv_mss(newsk);
1322
1323 #ifdef CONFIG_TCP_MD5SIG
1324 /* Copy over the MD5 key from the original socket */
1325 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1326 AF_INET);
1327 if (key) {
1328 /*
1329 * We're using one, so create a matching key
1330 * on the newsk structure. If we fail to get
1331 * memory, then we end up not copying the key
1332 * across. Shucks.
1333 */
1334 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1335 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1336 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1337 }
1338 #endif
1339
1340 if (__inet_inherit_port(sk, newsk) < 0)
1341 goto put_and_exit;
1342 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1343 if (*own_req)
1344 tcp_move_syn(newtp, req);
1345
1346 return newsk;
1347
1348 exit_overflow:
1349 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1350 exit_nonewsk:
1351 dst_release(dst);
1352 exit:
1353 tcp_listendrop(sk);
1354 return NULL;
1355 put_and_exit:
1356 inet_csk_prepare_forced_close(newsk);
1357 tcp_done(newsk);
1358 goto exit;
1359 }
1360 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1361
1362 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1363 {
1364 #ifdef CONFIG_SYN_COOKIES
1365 const struct tcphdr *th = tcp_hdr(skb);
1366
1367 if (!th->syn)
1368 sk = cookie_v4_check(sk, skb);
1369 #endif
1370 return sk;
1371 }
1372
1373 /* The socket must have it's spinlock held when we get
1374 * here, unless it is a TCP_LISTEN socket.
1375 *
1376 * We have a potential double-lock case here, so even when
1377 * doing backlog processing we use the BH locking scheme.
1378 * This is because we cannot sleep with the original spinlock
1379 * held.
1380 */
1381 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1382 {
1383 struct sock *rsk;
1384
1385 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1386 struct dst_entry *dst = sk->sk_rx_dst;
1387
1388 sock_rps_save_rxhash(sk, skb);
1389 sk_mark_napi_id(sk, skb);
1390 if (dst) {
1391 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1392 !dst->ops->check(dst, 0)) {
1393 dst_release(dst);
1394 sk->sk_rx_dst = NULL;
1395 }
1396 }
1397 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1398 return 0;
1399 }
1400
1401 if (tcp_checksum_complete(skb))
1402 goto csum_err;
1403
1404 if (sk->sk_state == TCP_LISTEN) {
1405 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1406
1407 if (!nsk)
1408 goto discard;
1409 if (nsk != sk) {
1410 sock_rps_save_rxhash(nsk, skb);
1411 sk_mark_napi_id(nsk, skb);
1412 if (tcp_child_process(sk, nsk, skb)) {
1413 rsk = nsk;
1414 goto reset;
1415 }
1416 return 0;
1417 }
1418 } else
1419 sock_rps_save_rxhash(sk, skb);
1420
1421 if (tcp_rcv_state_process(sk, skb)) {
1422 rsk = sk;
1423 goto reset;
1424 }
1425 return 0;
1426
1427 reset:
1428 tcp_v4_send_reset(rsk, skb);
1429 discard:
1430 kfree_skb(skb);
1431 /* Be careful here. If this function gets more complicated and
1432 * gcc suffers from register pressure on the x86, sk (in %ebx)
1433 * might be destroyed here. This current version compiles correctly,
1434 * but you have been warned.
1435 */
1436 return 0;
1437
1438 csum_err:
1439 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1440 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1441 goto discard;
1442 }
1443 EXPORT_SYMBOL(tcp_v4_do_rcv);
1444
1445 void tcp_v4_early_demux(struct sk_buff *skb)
1446 {
1447 const struct iphdr *iph;
1448 const struct tcphdr *th;
1449 struct sock *sk;
1450
1451 if (skb->pkt_type != PACKET_HOST)
1452 return;
1453
1454 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1455 return;
1456
1457 iph = ip_hdr(skb);
1458 th = tcp_hdr(skb);
1459
1460 if (th->doff < sizeof(struct tcphdr) / 4)
1461 return;
1462
1463 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1464 iph->saddr, th->source,
1465 iph->daddr, ntohs(th->dest),
1466 skb->skb_iif);
1467 if (sk) {
1468 skb->sk = sk;
1469 skb->destructor = sock_edemux;
1470 if (sk_fullsock(sk)) {
1471 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1472
1473 if (dst)
1474 dst = dst_check(dst, 0);
1475 if (dst &&
1476 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1477 skb_dst_set_noref(skb, dst);
1478 }
1479 }
1480 }
1481
1482 /* Packet is added to VJ-style prequeue for processing in process
1483 * context, if a reader task is waiting. Apparently, this exciting
1484 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1485 * failed somewhere. Latency? Burstiness? Well, at least now we will
1486 * see, why it failed. 8)8) --ANK
1487 *
1488 */
1489 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1490 {
1491 struct tcp_sock *tp = tcp_sk(sk);
1492
1493 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1494 return false;
1495
1496 if (skb->len <= tcp_hdrlen(skb) &&
1497 skb_queue_len(&tp->ucopy.prequeue) == 0)
1498 return false;
1499
1500 /* Before escaping RCU protected region, we need to take care of skb
1501 * dst. Prequeue is only enabled for established sockets.
1502 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1503 * Instead of doing full sk_rx_dst validity here, let's perform
1504 * an optimistic check.
1505 */
1506 if (likely(sk->sk_rx_dst))
1507 skb_dst_drop(skb);
1508 else
1509 skb_dst_force_safe(skb);
1510
1511 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1512 tp->ucopy.memory += skb->truesize;
1513 if (skb_queue_len(&tp->ucopy.prequeue) >= 32 ||
1514 tp->ucopy.memory + atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
1515 struct sk_buff *skb1;
1516
1517 BUG_ON(sock_owned_by_user(sk));
1518 __NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUEDROPPED,
1519 skb_queue_len(&tp->ucopy.prequeue));
1520
1521 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1522 sk_backlog_rcv(sk, skb1);
1523
1524 tp->ucopy.memory = 0;
1525 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1526 wake_up_interruptible_sync_poll(sk_sleep(sk),
1527 POLLIN | POLLRDNORM | POLLRDBAND);
1528 if (!inet_csk_ack_scheduled(sk))
1529 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1530 (3 * tcp_rto_min(sk)) / 4,
1531 TCP_RTO_MAX);
1532 }
1533 return true;
1534 }
1535 EXPORT_SYMBOL(tcp_prequeue);
1536
1537 /*
1538 * From tcp_input.c
1539 */
1540
1541 int tcp_v4_rcv(struct sk_buff *skb)
1542 {
1543 struct net *net = dev_net(skb->dev);
1544 const struct iphdr *iph;
1545 const struct tcphdr *th;
1546 bool refcounted;
1547 struct sock *sk;
1548 int ret;
1549
1550 if (skb->pkt_type != PACKET_HOST)
1551 goto discard_it;
1552
1553 /* Count it even if it's bad */
1554 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1555
1556 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1557 goto discard_it;
1558
1559 th = tcp_hdr(skb);
1560
1561 if (th->doff < sizeof(struct tcphdr) / 4)
1562 goto bad_packet;
1563 if (!pskb_may_pull(skb, th->doff * 4))
1564 goto discard_it;
1565
1566 /* An explanation is required here, I think.
1567 * Packet length and doff are validated by header prediction,
1568 * provided case of th->doff==0 is eliminated.
1569 * So, we defer the checks. */
1570
1571 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1572 goto csum_error;
1573
1574 th = tcp_hdr(skb);
1575 iph = ip_hdr(skb);
1576 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1577 * barrier() makes sure compiler wont play fool^Waliasing games.
1578 */
1579 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1580 sizeof(struct inet_skb_parm));
1581 barrier();
1582
1583 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1584 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1585 skb->len - th->doff * 4);
1586 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1587 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1588 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1589 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1590 TCP_SKB_CB(skb)->sacked = 0;
1591
1592 lookup:
1593 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1594 th->dest, &refcounted);
1595 if (!sk)
1596 goto no_tcp_socket;
1597
1598 process:
1599 if (sk->sk_state == TCP_TIME_WAIT)
1600 goto do_time_wait;
1601
1602 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1603 struct request_sock *req = inet_reqsk(sk);
1604 struct sock *nsk;
1605
1606 sk = req->rsk_listener;
1607 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1608 reqsk_put(req);
1609 goto discard_it;
1610 }
1611 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1612 inet_csk_reqsk_queue_drop_and_put(sk, req);
1613 goto lookup;
1614 }
1615 /* We own a reference on the listener, increase it again
1616 * as we might lose it too soon.
1617 */
1618 sock_hold(sk);
1619 refcounted = true;
1620 nsk = tcp_check_req(sk, skb, req, false);
1621 if (!nsk) {
1622 reqsk_put(req);
1623 goto discard_and_relse;
1624 }
1625 if (nsk == sk) {
1626 reqsk_put(req);
1627 } else if (tcp_child_process(sk, nsk, skb)) {
1628 tcp_v4_send_reset(nsk, skb);
1629 goto discard_and_relse;
1630 } else {
1631 sock_put(sk);
1632 return 0;
1633 }
1634 }
1635 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1636 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1637 goto discard_and_relse;
1638 }
1639
1640 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1641 goto discard_and_relse;
1642
1643 if (tcp_v4_inbound_md5_hash(sk, skb))
1644 goto discard_and_relse;
1645
1646 nf_reset(skb);
1647
1648 if (sk_filter(sk, skb))
1649 goto discard_and_relse;
1650
1651 skb->dev = NULL;
1652
1653 if (sk->sk_state == TCP_LISTEN) {
1654 ret = tcp_v4_do_rcv(sk, skb);
1655 goto put_and_return;
1656 }
1657
1658 sk_incoming_cpu_update(sk);
1659
1660 bh_lock_sock_nested(sk);
1661 tcp_segs_in(tcp_sk(sk), skb);
1662 ret = 0;
1663 if (!sock_owned_by_user(sk)) {
1664 if (!tcp_prequeue(sk, skb))
1665 ret = tcp_v4_do_rcv(sk, skb);
1666 } else if (unlikely(sk_add_backlog(sk, skb,
1667 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1668 bh_unlock_sock(sk);
1669 __NET_INC_STATS(net, LINUX_MIB_TCPBACKLOGDROP);
1670 goto discard_and_relse;
1671 }
1672 bh_unlock_sock(sk);
1673
1674 put_and_return:
1675 if (refcounted)
1676 sock_put(sk);
1677
1678 return ret;
1679
1680 no_tcp_socket:
1681 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1682 goto discard_it;
1683
1684 if (tcp_checksum_complete(skb)) {
1685 csum_error:
1686 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1687 bad_packet:
1688 __TCP_INC_STATS(net, TCP_MIB_INERRS);
1689 } else {
1690 tcp_v4_send_reset(NULL, skb);
1691 }
1692
1693 discard_it:
1694 /* Discard frame. */
1695 kfree_skb(skb);
1696 return 0;
1697
1698 discard_and_relse:
1699 sk_drops_add(sk, skb);
1700 if (refcounted)
1701 sock_put(sk);
1702 goto discard_it;
1703
1704 do_time_wait:
1705 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1706 inet_twsk_put(inet_twsk(sk));
1707 goto discard_it;
1708 }
1709
1710 if (tcp_checksum_complete(skb)) {
1711 inet_twsk_put(inet_twsk(sk));
1712 goto csum_error;
1713 }
1714 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1715 case TCP_TW_SYN: {
1716 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1717 &tcp_hashinfo, skb,
1718 __tcp_hdrlen(th),
1719 iph->saddr, th->source,
1720 iph->daddr, th->dest,
1721 inet_iif(skb));
1722 if (sk2) {
1723 inet_twsk_deschedule_put(inet_twsk(sk));
1724 sk = sk2;
1725 refcounted = false;
1726 goto process;
1727 }
1728 /* Fall through to ACK */
1729 }
1730 case TCP_TW_ACK:
1731 tcp_v4_timewait_ack(sk, skb);
1732 break;
1733 case TCP_TW_RST:
1734 tcp_v4_send_reset(sk, skb);
1735 inet_twsk_deschedule_put(inet_twsk(sk));
1736 goto discard_it;
1737 case TCP_TW_SUCCESS:;
1738 }
1739 goto discard_it;
1740 }
1741
1742 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1743 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1744 .twsk_unique = tcp_twsk_unique,
1745 .twsk_destructor= tcp_twsk_destructor,
1746 };
1747
1748 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1749 {
1750 struct dst_entry *dst = skb_dst(skb);
1751
1752 if (dst && dst_hold_safe(dst)) {
1753 sk->sk_rx_dst = dst;
1754 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1755 }
1756 }
1757 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1758
1759 const struct inet_connection_sock_af_ops ipv4_specific = {
1760 .queue_xmit = ip_queue_xmit,
1761 .send_check = tcp_v4_send_check,
1762 .rebuild_header = inet_sk_rebuild_header,
1763 .sk_rx_dst_set = inet_sk_rx_dst_set,
1764 .conn_request = tcp_v4_conn_request,
1765 .syn_recv_sock = tcp_v4_syn_recv_sock,
1766 .net_header_len = sizeof(struct iphdr),
1767 .setsockopt = ip_setsockopt,
1768 .getsockopt = ip_getsockopt,
1769 .addr2sockaddr = inet_csk_addr2sockaddr,
1770 .sockaddr_len = sizeof(struct sockaddr_in),
1771 .bind_conflict = inet_csk_bind_conflict,
1772 #ifdef CONFIG_COMPAT
1773 .compat_setsockopt = compat_ip_setsockopt,
1774 .compat_getsockopt = compat_ip_getsockopt,
1775 #endif
1776 .mtu_reduced = tcp_v4_mtu_reduced,
1777 };
1778 EXPORT_SYMBOL(ipv4_specific);
1779
1780 #ifdef CONFIG_TCP_MD5SIG
1781 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1782 .md5_lookup = tcp_v4_md5_lookup,
1783 .calc_md5_hash = tcp_v4_md5_hash_skb,
1784 .md5_parse = tcp_v4_parse_md5_keys,
1785 };
1786 #endif
1787
1788 /* NOTE: A lot of things set to zero explicitly by call to
1789 * sk_alloc() so need not be done here.
1790 */
1791 static int tcp_v4_init_sock(struct sock *sk)
1792 {
1793 struct inet_connection_sock *icsk = inet_csk(sk);
1794
1795 tcp_init_sock(sk);
1796
1797 icsk->icsk_af_ops = &ipv4_specific;
1798
1799 #ifdef CONFIG_TCP_MD5SIG
1800 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1801 #endif
1802
1803 return 0;
1804 }
1805
1806 void tcp_v4_destroy_sock(struct sock *sk)
1807 {
1808 struct tcp_sock *tp = tcp_sk(sk);
1809
1810 tcp_clear_xmit_timers(sk);
1811
1812 tcp_cleanup_congestion_control(sk);
1813
1814 /* Cleanup up the write buffer. */
1815 tcp_write_queue_purge(sk);
1816
1817 /* Cleans up our, hopefully empty, out_of_order_queue. */
1818 __skb_queue_purge(&tp->out_of_order_queue);
1819
1820 #ifdef CONFIG_TCP_MD5SIG
1821 /* Clean up the MD5 key list, if any */
1822 if (tp->md5sig_info) {
1823 tcp_clear_md5_list(sk);
1824 kfree_rcu(tp->md5sig_info, rcu);
1825 tp->md5sig_info = NULL;
1826 }
1827 #endif
1828
1829 /* Clean prequeue, it must be empty really */
1830 __skb_queue_purge(&tp->ucopy.prequeue);
1831
1832 /* Clean up a referenced TCP bind bucket. */
1833 if (inet_csk(sk)->icsk_bind_hash)
1834 inet_put_port(sk);
1835
1836 BUG_ON(tp->fastopen_rsk);
1837
1838 /* If socket is aborted during connect operation */
1839 tcp_free_fastopen_req(tp);
1840 tcp_saved_syn_free(tp);
1841
1842 sk_sockets_allocated_dec(sk);
1843
1844 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1845 sock_release_memcg(sk);
1846 }
1847 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1848
1849 #ifdef CONFIG_PROC_FS
1850 /* Proc filesystem TCP sock list dumping. */
1851
1852 /*
1853 * Get next listener socket follow cur. If cur is NULL, get first socket
1854 * starting from bucket given in st->bucket; when st->bucket is zero the
1855 * very first socket in the hash table is returned.
1856 */
1857 static void *listening_get_next(struct seq_file *seq, void *cur)
1858 {
1859 struct tcp_iter_state *st = seq->private;
1860 struct net *net = seq_file_net(seq);
1861 struct inet_listen_hashbucket *ilb;
1862 struct inet_connection_sock *icsk;
1863 struct sock *sk = cur;
1864
1865 if (!sk) {
1866 get_head:
1867 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1868 spin_lock_bh(&ilb->lock);
1869 sk = sk_head(&ilb->head);
1870 st->offset = 0;
1871 goto get_sk;
1872 }
1873 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1874 ++st->num;
1875 ++st->offset;
1876
1877 sk = sk_next(sk);
1878 get_sk:
1879 sk_for_each_from(sk) {
1880 if (!net_eq(sock_net(sk), net))
1881 continue;
1882 if (sk->sk_family == st->family)
1883 return sk;
1884 icsk = inet_csk(sk);
1885 }
1886 spin_unlock_bh(&ilb->lock);
1887 st->offset = 0;
1888 if (++st->bucket < INET_LHTABLE_SIZE)
1889 goto get_head;
1890 return NULL;
1891 }
1892
1893 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1894 {
1895 struct tcp_iter_state *st = seq->private;
1896 void *rc;
1897
1898 st->bucket = 0;
1899 st->offset = 0;
1900 rc = listening_get_next(seq, NULL);
1901
1902 while (rc && *pos) {
1903 rc = listening_get_next(seq, rc);
1904 --*pos;
1905 }
1906 return rc;
1907 }
1908
1909 static inline bool empty_bucket(const struct tcp_iter_state *st)
1910 {
1911 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1912 }
1913
1914 /*
1915 * Get first established socket starting from bucket given in st->bucket.
1916 * If st->bucket is zero, the very first socket in the hash is returned.
1917 */
1918 static void *established_get_first(struct seq_file *seq)
1919 {
1920 struct tcp_iter_state *st = seq->private;
1921 struct net *net = seq_file_net(seq);
1922 void *rc = NULL;
1923
1924 st->offset = 0;
1925 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1926 struct sock *sk;
1927 struct hlist_nulls_node *node;
1928 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1929
1930 /* Lockless fast path for the common case of empty buckets */
1931 if (empty_bucket(st))
1932 continue;
1933
1934 spin_lock_bh(lock);
1935 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1936 if (sk->sk_family != st->family ||
1937 !net_eq(sock_net(sk), net)) {
1938 continue;
1939 }
1940 rc = sk;
1941 goto out;
1942 }
1943 spin_unlock_bh(lock);
1944 }
1945 out:
1946 return rc;
1947 }
1948
1949 static void *established_get_next(struct seq_file *seq, void *cur)
1950 {
1951 struct sock *sk = cur;
1952 struct hlist_nulls_node *node;
1953 struct tcp_iter_state *st = seq->private;
1954 struct net *net = seq_file_net(seq);
1955
1956 ++st->num;
1957 ++st->offset;
1958
1959 sk = sk_nulls_next(sk);
1960
1961 sk_nulls_for_each_from(sk, node) {
1962 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1963 return sk;
1964 }
1965
1966 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1967 ++st->bucket;
1968 return established_get_first(seq);
1969 }
1970
1971 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1972 {
1973 struct tcp_iter_state *st = seq->private;
1974 void *rc;
1975
1976 st->bucket = 0;
1977 rc = established_get_first(seq);
1978
1979 while (rc && pos) {
1980 rc = established_get_next(seq, rc);
1981 --pos;
1982 }
1983 return rc;
1984 }
1985
1986 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1987 {
1988 void *rc;
1989 struct tcp_iter_state *st = seq->private;
1990
1991 st->state = TCP_SEQ_STATE_LISTENING;
1992 rc = listening_get_idx(seq, &pos);
1993
1994 if (!rc) {
1995 st->state = TCP_SEQ_STATE_ESTABLISHED;
1996 rc = established_get_idx(seq, pos);
1997 }
1998
1999 return rc;
2000 }
2001
2002 static void *tcp_seek_last_pos(struct seq_file *seq)
2003 {
2004 struct tcp_iter_state *st = seq->private;
2005 int offset = st->offset;
2006 int orig_num = st->num;
2007 void *rc = NULL;
2008
2009 switch (st->state) {
2010 case TCP_SEQ_STATE_LISTENING:
2011 if (st->bucket >= INET_LHTABLE_SIZE)
2012 break;
2013 st->state = TCP_SEQ_STATE_LISTENING;
2014 rc = listening_get_next(seq, NULL);
2015 while (offset-- && rc)
2016 rc = listening_get_next(seq, rc);
2017 if (rc)
2018 break;
2019 st->bucket = 0;
2020 st->state = TCP_SEQ_STATE_ESTABLISHED;
2021 /* Fallthrough */
2022 case TCP_SEQ_STATE_ESTABLISHED:
2023 if (st->bucket > tcp_hashinfo.ehash_mask)
2024 break;
2025 rc = established_get_first(seq);
2026 while (offset-- && rc)
2027 rc = established_get_next(seq, rc);
2028 }
2029
2030 st->num = orig_num;
2031
2032 return rc;
2033 }
2034
2035 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2036 {
2037 struct tcp_iter_state *st = seq->private;
2038 void *rc;
2039
2040 if (*pos && *pos == st->last_pos) {
2041 rc = tcp_seek_last_pos(seq);
2042 if (rc)
2043 goto out;
2044 }
2045
2046 st->state = TCP_SEQ_STATE_LISTENING;
2047 st->num = 0;
2048 st->bucket = 0;
2049 st->offset = 0;
2050 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2051
2052 out:
2053 st->last_pos = *pos;
2054 return rc;
2055 }
2056
2057 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2058 {
2059 struct tcp_iter_state *st = seq->private;
2060 void *rc = NULL;
2061
2062 if (v == SEQ_START_TOKEN) {
2063 rc = tcp_get_idx(seq, 0);
2064 goto out;
2065 }
2066
2067 switch (st->state) {
2068 case TCP_SEQ_STATE_LISTENING:
2069 rc = listening_get_next(seq, v);
2070 if (!rc) {
2071 st->state = TCP_SEQ_STATE_ESTABLISHED;
2072 st->bucket = 0;
2073 st->offset = 0;
2074 rc = established_get_first(seq);
2075 }
2076 break;
2077 case TCP_SEQ_STATE_ESTABLISHED:
2078 rc = established_get_next(seq, v);
2079 break;
2080 }
2081 out:
2082 ++*pos;
2083 st->last_pos = *pos;
2084 return rc;
2085 }
2086
2087 static void tcp_seq_stop(struct seq_file *seq, void *v)
2088 {
2089 struct tcp_iter_state *st = seq->private;
2090
2091 switch (st->state) {
2092 case TCP_SEQ_STATE_LISTENING:
2093 if (v != SEQ_START_TOKEN)
2094 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2095 break;
2096 case TCP_SEQ_STATE_ESTABLISHED:
2097 if (v)
2098 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2099 break;
2100 }
2101 }
2102
2103 int tcp_seq_open(struct inode *inode, struct file *file)
2104 {
2105 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2106 struct tcp_iter_state *s;
2107 int err;
2108
2109 err = seq_open_net(inode, file, &afinfo->seq_ops,
2110 sizeof(struct tcp_iter_state));
2111 if (err < 0)
2112 return err;
2113
2114 s = ((struct seq_file *)file->private_data)->private;
2115 s->family = afinfo->family;
2116 s->last_pos = 0;
2117 return 0;
2118 }
2119 EXPORT_SYMBOL(tcp_seq_open);
2120
2121 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2122 {
2123 int rc = 0;
2124 struct proc_dir_entry *p;
2125
2126 afinfo->seq_ops.start = tcp_seq_start;
2127 afinfo->seq_ops.next = tcp_seq_next;
2128 afinfo->seq_ops.stop = tcp_seq_stop;
2129
2130 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2131 afinfo->seq_fops, afinfo);
2132 if (!p)
2133 rc = -ENOMEM;
2134 return rc;
2135 }
2136 EXPORT_SYMBOL(tcp_proc_register);
2137
2138 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2139 {
2140 remove_proc_entry(afinfo->name, net->proc_net);
2141 }
2142 EXPORT_SYMBOL(tcp_proc_unregister);
2143
2144 static void get_openreq4(const struct request_sock *req,
2145 struct seq_file *f, int i)
2146 {
2147 const struct inet_request_sock *ireq = inet_rsk(req);
2148 long delta = req->rsk_timer.expires - jiffies;
2149
2150 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2151 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2152 i,
2153 ireq->ir_loc_addr,
2154 ireq->ir_num,
2155 ireq->ir_rmt_addr,
2156 ntohs(ireq->ir_rmt_port),
2157 TCP_SYN_RECV,
2158 0, 0, /* could print option size, but that is af dependent. */
2159 1, /* timers active (only the expire timer) */
2160 jiffies_delta_to_clock_t(delta),
2161 req->num_timeout,
2162 from_kuid_munged(seq_user_ns(f),
2163 sock_i_uid(req->rsk_listener)),
2164 0, /* non standard timer */
2165 0, /* open_requests have no inode */
2166 0,
2167 req);
2168 }
2169
2170 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2171 {
2172 int timer_active;
2173 unsigned long timer_expires;
2174 const struct tcp_sock *tp = tcp_sk(sk);
2175 const struct inet_connection_sock *icsk = inet_csk(sk);
2176 const struct inet_sock *inet = inet_sk(sk);
2177 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2178 __be32 dest = inet->inet_daddr;
2179 __be32 src = inet->inet_rcv_saddr;
2180 __u16 destp = ntohs(inet->inet_dport);
2181 __u16 srcp = ntohs(inet->inet_sport);
2182 int rx_queue;
2183 int state;
2184
2185 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2186 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2187 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2188 timer_active = 1;
2189 timer_expires = icsk->icsk_timeout;
2190 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2191 timer_active = 4;
2192 timer_expires = icsk->icsk_timeout;
2193 } else if (timer_pending(&sk->sk_timer)) {
2194 timer_active = 2;
2195 timer_expires = sk->sk_timer.expires;
2196 } else {
2197 timer_active = 0;
2198 timer_expires = jiffies;
2199 }
2200
2201 state = sk_state_load(sk);
2202 if (state == TCP_LISTEN)
2203 rx_queue = sk->sk_ack_backlog;
2204 else
2205 /* Because we don't lock the socket,
2206 * we might find a transient negative value.
2207 */
2208 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2209
2210 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2211 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2212 i, src, srcp, dest, destp, state,
2213 tp->write_seq - tp->snd_una,
2214 rx_queue,
2215 timer_active,
2216 jiffies_delta_to_clock_t(timer_expires - jiffies),
2217 icsk->icsk_retransmits,
2218 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2219 icsk->icsk_probes_out,
2220 sock_i_ino(sk),
2221 atomic_read(&sk->sk_refcnt), sk,
2222 jiffies_to_clock_t(icsk->icsk_rto),
2223 jiffies_to_clock_t(icsk->icsk_ack.ato),
2224 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2225 tp->snd_cwnd,
2226 state == TCP_LISTEN ?
2227 fastopenq->max_qlen :
2228 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2229 }
2230
2231 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2232 struct seq_file *f, int i)
2233 {
2234 long delta = tw->tw_timer.expires - jiffies;
2235 __be32 dest, src;
2236 __u16 destp, srcp;
2237
2238 dest = tw->tw_daddr;
2239 src = tw->tw_rcv_saddr;
2240 destp = ntohs(tw->tw_dport);
2241 srcp = ntohs(tw->tw_sport);
2242
2243 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2244 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2245 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2246 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2247 atomic_read(&tw->tw_refcnt), tw);
2248 }
2249
2250 #define TMPSZ 150
2251
2252 static int tcp4_seq_show(struct seq_file *seq, void *v)
2253 {
2254 struct tcp_iter_state *st;
2255 struct sock *sk = v;
2256
2257 seq_setwidth(seq, TMPSZ - 1);
2258 if (v == SEQ_START_TOKEN) {
2259 seq_puts(seq, " sl local_address rem_address st tx_queue "
2260 "rx_queue tr tm->when retrnsmt uid timeout "
2261 "inode");
2262 goto out;
2263 }
2264 st = seq->private;
2265
2266 if (sk->sk_state == TCP_TIME_WAIT)
2267 get_timewait4_sock(v, seq, st->num);
2268 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2269 get_openreq4(v, seq, st->num);
2270 else
2271 get_tcp4_sock(v, seq, st->num);
2272 out:
2273 seq_pad(seq, '\n');
2274 return 0;
2275 }
2276
2277 static const struct file_operations tcp_afinfo_seq_fops = {
2278 .owner = THIS_MODULE,
2279 .open = tcp_seq_open,
2280 .read = seq_read,
2281 .llseek = seq_lseek,
2282 .release = seq_release_net
2283 };
2284
2285 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2286 .name = "tcp",
2287 .family = AF_INET,
2288 .seq_fops = &tcp_afinfo_seq_fops,
2289 .seq_ops = {
2290 .show = tcp4_seq_show,
2291 },
2292 };
2293
2294 static int __net_init tcp4_proc_init_net(struct net *net)
2295 {
2296 return tcp_proc_register(net, &tcp4_seq_afinfo);
2297 }
2298
2299 static void __net_exit tcp4_proc_exit_net(struct net *net)
2300 {
2301 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2302 }
2303
2304 static struct pernet_operations tcp4_net_ops = {
2305 .init = tcp4_proc_init_net,
2306 .exit = tcp4_proc_exit_net,
2307 };
2308
2309 int __init tcp4_proc_init(void)
2310 {
2311 return register_pernet_subsys(&tcp4_net_ops);
2312 }
2313
2314 void tcp4_proc_exit(void)
2315 {
2316 unregister_pernet_subsys(&tcp4_net_ops);
2317 }
2318 #endif /* CONFIG_PROC_FS */
2319
2320 struct proto tcp_prot = {
2321 .name = "TCP",
2322 .owner = THIS_MODULE,
2323 .close = tcp_close,
2324 .connect = tcp_v4_connect,
2325 .disconnect = tcp_disconnect,
2326 .accept = inet_csk_accept,
2327 .ioctl = tcp_ioctl,
2328 .init = tcp_v4_init_sock,
2329 .destroy = tcp_v4_destroy_sock,
2330 .shutdown = tcp_shutdown,
2331 .setsockopt = tcp_setsockopt,
2332 .getsockopt = tcp_getsockopt,
2333 .recvmsg = tcp_recvmsg,
2334 .sendmsg = tcp_sendmsg,
2335 .sendpage = tcp_sendpage,
2336 .backlog_rcv = tcp_v4_do_rcv,
2337 .release_cb = tcp_release_cb,
2338 .hash = inet_hash,
2339 .unhash = inet_unhash,
2340 .get_port = inet_csk_get_port,
2341 .enter_memory_pressure = tcp_enter_memory_pressure,
2342 .stream_memory_free = tcp_stream_memory_free,
2343 .sockets_allocated = &tcp_sockets_allocated,
2344 .orphan_count = &tcp_orphan_count,
2345 .memory_allocated = &tcp_memory_allocated,
2346 .memory_pressure = &tcp_memory_pressure,
2347 .sysctl_mem = sysctl_tcp_mem,
2348 .sysctl_wmem = sysctl_tcp_wmem,
2349 .sysctl_rmem = sysctl_tcp_rmem,
2350 .max_header = MAX_TCP_HEADER,
2351 .obj_size = sizeof(struct tcp_sock),
2352 .slab_flags = SLAB_DESTROY_BY_RCU,
2353 .twsk_prot = &tcp_timewait_sock_ops,
2354 .rsk_prot = &tcp_request_sock_ops,
2355 .h.hashinfo = &tcp_hashinfo,
2356 .no_autobind = true,
2357 #ifdef CONFIG_COMPAT
2358 .compat_setsockopt = compat_tcp_setsockopt,
2359 .compat_getsockopt = compat_tcp_getsockopt,
2360 #endif
2361 .diag_destroy = tcp_abort,
2362 };
2363 EXPORT_SYMBOL(tcp_prot);
2364
2365 static void __net_exit tcp_sk_exit(struct net *net)
2366 {
2367 int cpu;
2368
2369 for_each_possible_cpu(cpu)
2370 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2371 free_percpu(net->ipv4.tcp_sk);
2372 }
2373
2374 static int __net_init tcp_sk_init(struct net *net)
2375 {
2376 int res, cpu;
2377
2378 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2379 if (!net->ipv4.tcp_sk)
2380 return -ENOMEM;
2381
2382 for_each_possible_cpu(cpu) {
2383 struct sock *sk;
2384
2385 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2386 IPPROTO_TCP, net);
2387 if (res)
2388 goto fail;
2389 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2390 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2391 }
2392
2393 net->ipv4.sysctl_tcp_ecn = 2;
2394 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2395
2396 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2397 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2398 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2399
2400 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2401 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2402 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2403
2404 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2405 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2406 net->ipv4.sysctl_tcp_syncookies = 1;
2407 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2408 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2409 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2410 net->ipv4.sysctl_tcp_orphan_retries = 0;
2411 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2412 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2413
2414 return 0;
2415 fail:
2416 tcp_sk_exit(net);
2417
2418 return res;
2419 }
2420
2421 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2422 {
2423 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2424 }
2425
2426 static struct pernet_operations __net_initdata tcp_sk_ops = {
2427 .init = tcp_sk_init,
2428 .exit = tcp_sk_exit,
2429 .exit_batch = tcp_sk_exit_batch,
2430 };
2431
2432 void __init tcp_v4_init(void)
2433 {
2434 inet_hashinfo_init(&tcp_hashinfo);
2435 if (register_pernet_subsys(&tcp_sk_ops))
2436 panic("Failed to create the TCP control socket.\n");
2437 }
This page took 0.167503 seconds and 5 git commands to generate.