tcp: md5: remove request sock argument of calc_md5_hash()
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77 #include <net/busy_poll.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
96
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
99
100 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
101 {
102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103 ip_hdr(skb)->saddr,
104 tcp_hdr(skb)->dest,
105 tcp_hdr(skb)->source);
106 }
107
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
109 {
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112
113 /* With PAWS, it is safe from the viewpoint
114 of data integrity. Even without PAWS it is safe provided sequence
115 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
116
117 Actually, the idea is close to VJ's one, only timestamp cache is
118 held not per host, but per port pair and TW bucket is used as state
119 holder.
120
121 If TW bucket has been already destroyed we fall back to VJ's scheme
122 and use initial timestamp retrieved from peer table.
123 */
124 if (tcptw->tw_ts_recent_stamp &&
125 (twp == NULL || (sysctl_tcp_tw_reuse &&
126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 if (tp->write_seq == 0)
129 tp->write_seq = 1;
130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132 sock_hold(sktw);
133 return 1;
134 }
135
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
139
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
142 {
143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 struct inet_sock *inet = inet_sk(sk);
145 struct tcp_sock *tp = tcp_sk(sk);
146 __be16 orig_sport, orig_dport;
147 __be32 daddr, nexthop;
148 struct flowi4 *fl4;
149 struct rtable *rt;
150 int err;
151 struct ip_options_rcu *inet_opt;
152
153 if (addr_len < sizeof(struct sockaddr_in))
154 return -EINVAL;
155
156 if (usin->sin_family != AF_INET)
157 return -EAFNOSUPPORT;
158
159 nexthop = daddr = usin->sin_addr.s_addr;
160 inet_opt = rcu_dereference_protected(inet->inet_opt,
161 sock_owned_by_user(sk));
162 if (inet_opt && inet_opt->opt.srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet_opt->opt.faddr;
166 }
167
168 orig_sport = inet->inet_sport;
169 orig_dport = usin->sin_port;
170 fl4 = &inet->cork.fl.u.ip4;
171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173 IPPROTO_TCP,
174 orig_sport, orig_dport, sk);
175 if (IS_ERR(rt)) {
176 err = PTR_ERR(rt);
177 if (err == -ENETUNREACH)
178 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 return err;
180 }
181
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 ip_rt_put(rt);
184 return -ENETUNREACH;
185 }
186
187 if (!inet_opt || !inet_opt->opt.srr)
188 daddr = fl4->daddr;
189
190 if (!inet->inet_saddr)
191 inet->inet_saddr = fl4->saddr;
192 sk_rcv_saddr_set(sk, inet->inet_saddr);
193
194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
198 if (likely(!tp->repair))
199 tp->write_seq = 0;
200 }
201
202 if (tcp_death_row.sysctl_tw_recycle &&
203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
204 tcp_fetch_timewait_stamp(sk, &rt->dst);
205
206 inet->inet_dport = usin->sin_port;
207 sk_daddr_set(sk, daddr);
208
209 inet_csk(sk)->icsk_ext_hdr_len = 0;
210 if (inet_opt)
211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212
213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214
215 /* Socket identity is still unknown (sport may be zero).
216 * However we set state to SYN-SENT and not releasing socket
217 * lock select source port, enter ourselves into the hash tables and
218 * complete initialization after this.
219 */
220 tcp_set_state(sk, TCP_SYN_SENT);
221 err = inet_hash_connect(&tcp_death_row, sk);
222 if (err)
223 goto failure;
224
225 inet_set_txhash(sk);
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254 failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272 void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302 }
303 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
304
305 static void do_redirect(struct sk_buff *skb, struct sock *sk)
306 {
307 struct dst_entry *dst = __sk_dst_check(sk, 0);
308
309 if (dst)
310 dst->ops->redirect(dst, sk, skb);
311 }
312
313
314 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
315 void tcp_req_err(struct sock *sk, u32 seq)
316 {
317 struct request_sock *req = inet_reqsk(sk);
318 struct net *net = sock_net(sk);
319
320 /* ICMPs are not backlogged, hence we cannot get
321 * an established socket here.
322 */
323 WARN_ON(req->sk);
324
325 if (seq != tcp_rsk(req)->snt_isn) {
326 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
327 reqsk_put(req);
328 } else {
329 /*
330 * Still in SYN_RECV, just remove it silently.
331 * There is no good way to pass the error to the newly
332 * created socket, and POSIX does not want network
333 * errors returned from accept().
334 */
335 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
336 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
337 }
338 }
339 EXPORT_SYMBOL(tcp_req_err);
340
341 /*
342 * This routine is called by the ICMP module when it gets some
343 * sort of error condition. If err < 0 then the socket should
344 * be closed and the error returned to the user. If err > 0
345 * it's just the icmp type << 8 | icmp code. After adjustment
346 * header points to the first 8 bytes of the tcp header. We need
347 * to find the appropriate port.
348 *
349 * The locking strategy used here is very "optimistic". When
350 * someone else accesses the socket the ICMP is just dropped
351 * and for some paths there is no check at all.
352 * A more general error queue to queue errors for later handling
353 * is probably better.
354 *
355 */
356
357 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
358 {
359 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
360 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
361 struct inet_connection_sock *icsk;
362 struct tcp_sock *tp;
363 struct inet_sock *inet;
364 const int type = icmp_hdr(icmp_skb)->type;
365 const int code = icmp_hdr(icmp_skb)->code;
366 struct sock *sk;
367 struct sk_buff *skb;
368 struct request_sock *fastopen;
369 __u32 seq, snd_una;
370 __u32 remaining;
371 int err;
372 struct net *net = dev_net(icmp_skb->dev);
373
374 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
375 th->dest, iph->saddr, ntohs(th->source),
376 inet_iif(icmp_skb));
377 if (!sk) {
378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 return;
380 }
381 if (sk->sk_state == TCP_TIME_WAIT) {
382 inet_twsk_put(inet_twsk(sk));
383 return;
384 }
385 seq = ntohl(th->seq);
386 if (sk->sk_state == TCP_NEW_SYN_RECV)
387 return tcp_req_err(sk, seq);
388
389 bh_lock_sock(sk);
390 /* If too many ICMPs get dropped on busy
391 * servers this needs to be solved differently.
392 * We do take care of PMTU discovery (RFC1191) special case :
393 * we can receive locally generated ICMP messages while socket is held.
394 */
395 if (sock_owned_by_user(sk)) {
396 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
397 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
398 }
399 if (sk->sk_state == TCP_CLOSE)
400 goto out;
401
402 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
403 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
404 goto out;
405 }
406
407 icsk = inet_csk(sk);
408 tp = tcp_sk(sk);
409 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
410 fastopen = tp->fastopen_rsk;
411 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
412 if (sk->sk_state != TCP_LISTEN &&
413 !between(seq, snd_una, tp->snd_nxt)) {
414 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
415 goto out;
416 }
417
418 switch (type) {
419 case ICMP_REDIRECT:
420 do_redirect(icmp_skb, sk);
421 goto out;
422 case ICMP_SOURCE_QUENCH:
423 /* Just silently ignore these. */
424 goto out;
425 case ICMP_PARAMETERPROB:
426 err = EPROTO;
427 break;
428 case ICMP_DEST_UNREACH:
429 if (code > NR_ICMP_UNREACH)
430 goto out;
431
432 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
433 /* We are not interested in TCP_LISTEN and open_requests
434 * (SYN-ACKs send out by Linux are always <576bytes so
435 * they should go through unfragmented).
436 */
437 if (sk->sk_state == TCP_LISTEN)
438 goto out;
439
440 tp->mtu_info = info;
441 if (!sock_owned_by_user(sk)) {
442 tcp_v4_mtu_reduced(sk);
443 } else {
444 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
445 sock_hold(sk);
446 }
447 goto out;
448 }
449
450 err = icmp_err_convert[code].errno;
451 /* check if icmp_skb allows revert of backoff
452 * (see draft-zimmermann-tcp-lcd) */
453 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
454 break;
455 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
456 !icsk->icsk_backoff || fastopen)
457 break;
458
459 if (sock_owned_by_user(sk))
460 break;
461
462 icsk->icsk_backoff--;
463 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
464 TCP_TIMEOUT_INIT;
465 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
466
467 skb = tcp_write_queue_head(sk);
468 BUG_ON(!skb);
469
470 remaining = icsk->icsk_rto -
471 min(icsk->icsk_rto,
472 tcp_time_stamp - tcp_skb_timestamp(skb));
473
474 if (remaining) {
475 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
476 remaining, TCP_RTO_MAX);
477 } else {
478 /* RTO revert clocked out retransmission.
479 * Will retransmit now */
480 tcp_retransmit_timer(sk);
481 }
482
483 break;
484 case ICMP_TIME_EXCEEDED:
485 err = EHOSTUNREACH;
486 break;
487 default:
488 goto out;
489 }
490
491 switch (sk->sk_state) {
492 case TCP_SYN_SENT:
493 case TCP_SYN_RECV:
494 /* Only in fast or simultaneous open. If a fast open socket is
495 * is already accepted it is treated as a connected one below.
496 */
497 if (fastopen && fastopen->sk == NULL)
498 break;
499
500 if (!sock_owned_by_user(sk)) {
501 sk->sk_err = err;
502
503 sk->sk_error_report(sk);
504
505 tcp_done(sk);
506 } else {
507 sk->sk_err_soft = err;
508 }
509 goto out;
510 }
511
512 /* If we've already connected we will keep trying
513 * until we time out, or the user gives up.
514 *
515 * rfc1122 4.2.3.9 allows to consider as hard errors
516 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
517 * but it is obsoleted by pmtu discovery).
518 *
519 * Note, that in modern internet, where routing is unreliable
520 * and in each dark corner broken firewalls sit, sending random
521 * errors ordered by their masters even this two messages finally lose
522 * their original sense (even Linux sends invalid PORT_UNREACHs)
523 *
524 * Now we are in compliance with RFCs.
525 * --ANK (980905)
526 */
527
528 inet = inet_sk(sk);
529 if (!sock_owned_by_user(sk) && inet->recverr) {
530 sk->sk_err = err;
531 sk->sk_error_report(sk);
532 } else { /* Only an error on timeout */
533 sk->sk_err_soft = err;
534 }
535
536 out:
537 bh_unlock_sock(sk);
538 sock_put(sk);
539 }
540
541 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
542 {
543 struct tcphdr *th = tcp_hdr(skb);
544
545 if (skb->ip_summed == CHECKSUM_PARTIAL) {
546 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
547 skb->csum_start = skb_transport_header(skb) - skb->head;
548 skb->csum_offset = offsetof(struct tcphdr, check);
549 } else {
550 th->check = tcp_v4_check(skb->len, saddr, daddr,
551 csum_partial(th,
552 th->doff << 2,
553 skb->csum));
554 }
555 }
556
557 /* This routine computes an IPv4 TCP checksum. */
558 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
559 {
560 const struct inet_sock *inet = inet_sk(sk);
561
562 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
563 }
564 EXPORT_SYMBOL(tcp_v4_send_check);
565
566 /*
567 * This routine will send an RST to the other tcp.
568 *
569 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
570 * for reset.
571 * Answer: if a packet caused RST, it is not for a socket
572 * existing in our system, if it is matched to a socket,
573 * it is just duplicate segment or bug in other side's TCP.
574 * So that we build reply only basing on parameters
575 * arrived with segment.
576 * Exception: precedence violation. We do not implement it in any case.
577 */
578
579 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
580 {
581 const struct tcphdr *th = tcp_hdr(skb);
582 struct {
583 struct tcphdr th;
584 #ifdef CONFIG_TCP_MD5SIG
585 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
586 #endif
587 } rep;
588 struct ip_reply_arg arg;
589 #ifdef CONFIG_TCP_MD5SIG
590 struct tcp_md5sig_key *key;
591 const __u8 *hash_location = NULL;
592 unsigned char newhash[16];
593 int genhash;
594 struct sock *sk1 = NULL;
595 #endif
596 struct net *net;
597
598 /* Never send a reset in response to a reset. */
599 if (th->rst)
600 return;
601
602 /* If sk not NULL, it means we did a successful lookup and incoming
603 * route had to be correct. prequeue might have dropped our dst.
604 */
605 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
606 return;
607
608 /* Swap the send and the receive. */
609 memset(&rep, 0, sizeof(rep));
610 rep.th.dest = th->source;
611 rep.th.source = th->dest;
612 rep.th.doff = sizeof(struct tcphdr) / 4;
613 rep.th.rst = 1;
614
615 if (th->ack) {
616 rep.th.seq = th->ack_seq;
617 } else {
618 rep.th.ack = 1;
619 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
620 skb->len - (th->doff << 2));
621 }
622
623 memset(&arg, 0, sizeof(arg));
624 arg.iov[0].iov_base = (unsigned char *)&rep;
625 arg.iov[0].iov_len = sizeof(rep.th);
626
627 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
628 #ifdef CONFIG_TCP_MD5SIG
629 hash_location = tcp_parse_md5sig_option(th);
630 if (!sk && hash_location) {
631 /*
632 * active side is lost. Try to find listening socket through
633 * source port, and then find md5 key through listening socket.
634 * we are not loose security here:
635 * Incoming packet is checked with md5 hash with finding key,
636 * no RST generated if md5 hash doesn't match.
637 */
638 sk1 = __inet_lookup_listener(net,
639 &tcp_hashinfo, ip_hdr(skb)->saddr,
640 th->source, ip_hdr(skb)->daddr,
641 ntohs(th->source), inet_iif(skb));
642 /* don't send rst if it can't find key */
643 if (!sk1)
644 return;
645 rcu_read_lock();
646 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
647 &ip_hdr(skb)->saddr, AF_INET);
648 if (!key)
649 goto release_sk1;
650
651 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
652 if (genhash || memcmp(hash_location, newhash, 16) != 0)
653 goto release_sk1;
654 } else {
655 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
656 &ip_hdr(skb)->saddr,
657 AF_INET) : NULL;
658 }
659
660 if (key) {
661 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
662 (TCPOPT_NOP << 16) |
663 (TCPOPT_MD5SIG << 8) |
664 TCPOLEN_MD5SIG);
665 /* Update length and the length the header thinks exists */
666 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
667 rep.th.doff = arg.iov[0].iov_len / 4;
668
669 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
670 key, ip_hdr(skb)->saddr,
671 ip_hdr(skb)->daddr, &rep.th);
672 }
673 #endif
674 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
675 ip_hdr(skb)->saddr, /* XXX */
676 arg.iov[0].iov_len, IPPROTO_TCP, 0);
677 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
678 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
679 /* When socket is gone, all binding information is lost.
680 * routing might fail in this case. No choice here, if we choose to force
681 * input interface, we will misroute in case of asymmetric route.
682 */
683 if (sk)
684 arg.bound_dev_if = sk->sk_bound_dev_if;
685
686 arg.tos = ip_hdr(skb)->tos;
687 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
688 skb, &TCP_SKB_CB(skb)->header.h4.opt,
689 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
690 &arg, arg.iov[0].iov_len);
691
692 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
693 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
694
695 #ifdef CONFIG_TCP_MD5SIG
696 release_sk1:
697 if (sk1) {
698 rcu_read_unlock();
699 sock_put(sk1);
700 }
701 #endif
702 }
703
704 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
705 outside socket context is ugly, certainly. What can I do?
706 */
707
708 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
709 u32 win, u32 tsval, u32 tsecr, int oif,
710 struct tcp_md5sig_key *key,
711 int reply_flags, u8 tos)
712 {
713 const struct tcphdr *th = tcp_hdr(skb);
714 struct {
715 struct tcphdr th;
716 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
717 #ifdef CONFIG_TCP_MD5SIG
718 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
719 #endif
720 ];
721 } rep;
722 struct ip_reply_arg arg;
723 struct net *net = dev_net(skb_dst(skb)->dev);
724
725 memset(&rep.th, 0, sizeof(struct tcphdr));
726 memset(&arg, 0, sizeof(arg));
727
728 arg.iov[0].iov_base = (unsigned char *)&rep;
729 arg.iov[0].iov_len = sizeof(rep.th);
730 if (tsecr) {
731 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
732 (TCPOPT_TIMESTAMP << 8) |
733 TCPOLEN_TIMESTAMP);
734 rep.opt[1] = htonl(tsval);
735 rep.opt[2] = htonl(tsecr);
736 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
737 }
738
739 /* Swap the send and the receive. */
740 rep.th.dest = th->source;
741 rep.th.source = th->dest;
742 rep.th.doff = arg.iov[0].iov_len / 4;
743 rep.th.seq = htonl(seq);
744 rep.th.ack_seq = htonl(ack);
745 rep.th.ack = 1;
746 rep.th.window = htons(win);
747
748 #ifdef CONFIG_TCP_MD5SIG
749 if (key) {
750 int offset = (tsecr) ? 3 : 0;
751
752 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
753 (TCPOPT_NOP << 16) |
754 (TCPOPT_MD5SIG << 8) |
755 TCPOLEN_MD5SIG);
756 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
757 rep.th.doff = arg.iov[0].iov_len/4;
758
759 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
760 key, ip_hdr(skb)->saddr,
761 ip_hdr(skb)->daddr, &rep.th);
762 }
763 #endif
764 arg.flags = reply_flags;
765 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
766 ip_hdr(skb)->saddr, /* XXX */
767 arg.iov[0].iov_len, IPPROTO_TCP, 0);
768 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
769 if (oif)
770 arg.bound_dev_if = oif;
771 arg.tos = tos;
772 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
773 skb, &TCP_SKB_CB(skb)->header.h4.opt,
774 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
775 &arg, arg.iov[0].iov_len);
776
777 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
778 }
779
780 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
781 {
782 struct inet_timewait_sock *tw = inet_twsk(sk);
783 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
784
785 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
786 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
787 tcp_time_stamp + tcptw->tw_ts_offset,
788 tcptw->tw_ts_recent,
789 tw->tw_bound_dev_if,
790 tcp_twsk_md5_key(tcptw),
791 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
792 tw->tw_tos
793 );
794
795 inet_twsk_put(tw);
796 }
797
798 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
799 struct request_sock *req)
800 {
801 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
802 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
803 */
804 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
805 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
806 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
807 tcp_time_stamp,
808 req->ts_recent,
809 0,
810 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
811 AF_INET),
812 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
813 ip_hdr(skb)->tos);
814 }
815
816 /*
817 * Send a SYN-ACK after having received a SYN.
818 * This still operates on a request_sock only, not on a big
819 * socket.
820 */
821 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
822 struct flowi *fl,
823 struct request_sock *req,
824 u16 queue_mapping,
825 struct tcp_fastopen_cookie *foc)
826 {
827 const struct inet_request_sock *ireq = inet_rsk(req);
828 struct flowi4 fl4;
829 int err = -1;
830 struct sk_buff *skb;
831
832 /* First, grab a route. */
833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834 return -1;
835
836 skb = tcp_make_synack(sk, dst, req, foc);
837
838 if (skb) {
839 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
840
841 skb_set_queue_mapping(skb, queue_mapping);
842 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
843 ireq->ir_rmt_addr,
844 ireq->opt);
845 err = net_xmit_eval(err);
846 }
847
848 return err;
849 }
850
851 /*
852 * IPv4 request_sock destructor.
853 */
854 static void tcp_v4_reqsk_destructor(struct request_sock *req)
855 {
856 kfree(inet_rsk(req)->opt);
857 }
858
859 /*
860 * Return true if a syncookie should be sent
861 */
862 bool tcp_syn_flood_action(struct sock *sk,
863 const struct sk_buff *skb,
864 const char *proto)
865 {
866 const char *msg = "Dropping request";
867 bool want_cookie = false;
868 struct listen_sock *lopt;
869
870 #ifdef CONFIG_SYN_COOKIES
871 if (sysctl_tcp_syncookies) {
872 msg = "Sending cookies";
873 want_cookie = true;
874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
875 } else
876 #endif
877 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
878
879 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
880 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
881 lopt->synflood_warned = 1;
882 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
883 proto, ntohs(tcp_hdr(skb)->dest), msg);
884 }
885 return want_cookie;
886 }
887 EXPORT_SYMBOL(tcp_syn_flood_action);
888
889 #ifdef CONFIG_TCP_MD5SIG
890 /*
891 * RFC2385 MD5 checksumming requires a mapping of
892 * IP address->MD5 Key.
893 * We need to maintain these in the sk structure.
894 */
895
896 /* Find the Key structure for an address. */
897 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
898 const union tcp_md5_addr *addr,
899 int family)
900 {
901 struct tcp_sock *tp = tcp_sk(sk);
902 struct tcp_md5sig_key *key;
903 unsigned int size = sizeof(struct in_addr);
904 struct tcp_md5sig_info *md5sig;
905
906 /* caller either holds rcu_read_lock() or socket lock */
907 md5sig = rcu_dereference_check(tp->md5sig_info,
908 sock_owned_by_user(sk) ||
909 lockdep_is_held(&sk->sk_lock.slock));
910 if (!md5sig)
911 return NULL;
912 #if IS_ENABLED(CONFIG_IPV6)
913 if (family == AF_INET6)
914 size = sizeof(struct in6_addr);
915 #endif
916 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
917 if (key->family != family)
918 continue;
919 if (!memcmp(&key->addr, addr, size))
920 return key;
921 }
922 return NULL;
923 }
924 EXPORT_SYMBOL(tcp_md5_do_lookup);
925
926 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
927 struct sock *addr_sk)
928 {
929 union tcp_md5_addr *addr;
930
931 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
932 return tcp_md5_do_lookup(sk, addr, AF_INET);
933 }
934 EXPORT_SYMBOL(tcp_v4_md5_lookup);
935
936 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
937 struct request_sock *req)
938 {
939 union tcp_md5_addr *addr;
940
941 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
942 return tcp_md5_do_lookup(sk, addr, AF_INET);
943 }
944
945 /* This can be called on a newly created socket, from other files */
946 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
947 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
948 {
949 /* Add Key to the list */
950 struct tcp_md5sig_key *key;
951 struct tcp_sock *tp = tcp_sk(sk);
952 struct tcp_md5sig_info *md5sig;
953
954 key = tcp_md5_do_lookup(sk, addr, family);
955 if (key) {
956 /* Pre-existing entry - just update that one. */
957 memcpy(key->key, newkey, newkeylen);
958 key->keylen = newkeylen;
959 return 0;
960 }
961
962 md5sig = rcu_dereference_protected(tp->md5sig_info,
963 sock_owned_by_user(sk));
964 if (!md5sig) {
965 md5sig = kmalloc(sizeof(*md5sig), gfp);
966 if (!md5sig)
967 return -ENOMEM;
968
969 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
970 INIT_HLIST_HEAD(&md5sig->head);
971 rcu_assign_pointer(tp->md5sig_info, md5sig);
972 }
973
974 key = sock_kmalloc(sk, sizeof(*key), gfp);
975 if (!key)
976 return -ENOMEM;
977 if (!tcp_alloc_md5sig_pool()) {
978 sock_kfree_s(sk, key, sizeof(*key));
979 return -ENOMEM;
980 }
981
982 memcpy(key->key, newkey, newkeylen);
983 key->keylen = newkeylen;
984 key->family = family;
985 memcpy(&key->addr, addr,
986 (family == AF_INET6) ? sizeof(struct in6_addr) :
987 sizeof(struct in_addr));
988 hlist_add_head_rcu(&key->node, &md5sig->head);
989 return 0;
990 }
991 EXPORT_SYMBOL(tcp_md5_do_add);
992
993 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
994 {
995 struct tcp_md5sig_key *key;
996
997 key = tcp_md5_do_lookup(sk, addr, family);
998 if (!key)
999 return -ENOENT;
1000 hlist_del_rcu(&key->node);
1001 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1002 kfree_rcu(key, rcu);
1003 return 0;
1004 }
1005 EXPORT_SYMBOL(tcp_md5_do_del);
1006
1007 static void tcp_clear_md5_list(struct sock *sk)
1008 {
1009 struct tcp_sock *tp = tcp_sk(sk);
1010 struct tcp_md5sig_key *key;
1011 struct hlist_node *n;
1012 struct tcp_md5sig_info *md5sig;
1013
1014 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1015
1016 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1017 hlist_del_rcu(&key->node);
1018 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1019 kfree_rcu(key, rcu);
1020 }
1021 }
1022
1023 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1024 int optlen)
1025 {
1026 struct tcp_md5sig cmd;
1027 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1028
1029 if (optlen < sizeof(cmd))
1030 return -EINVAL;
1031
1032 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1033 return -EFAULT;
1034
1035 if (sin->sin_family != AF_INET)
1036 return -EINVAL;
1037
1038 if (!cmd.tcpm_keylen)
1039 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1040 AF_INET);
1041
1042 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1043 return -EINVAL;
1044
1045 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1046 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1047 GFP_KERNEL);
1048 }
1049
1050 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1051 __be32 daddr, __be32 saddr, int nbytes)
1052 {
1053 struct tcp4_pseudohdr *bp;
1054 struct scatterlist sg;
1055
1056 bp = &hp->md5_blk.ip4;
1057
1058 /*
1059 * 1. the TCP pseudo-header (in the order: source IP address,
1060 * destination IP address, zero-padded protocol number, and
1061 * segment length)
1062 */
1063 bp->saddr = saddr;
1064 bp->daddr = daddr;
1065 bp->pad = 0;
1066 bp->protocol = IPPROTO_TCP;
1067 bp->len = cpu_to_be16(nbytes);
1068
1069 sg_init_one(&sg, bp, sizeof(*bp));
1070 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1071 }
1072
1073 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1074 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1075 {
1076 struct tcp_md5sig_pool *hp;
1077 struct hash_desc *desc;
1078
1079 hp = tcp_get_md5sig_pool();
1080 if (!hp)
1081 goto clear_hash_noput;
1082 desc = &hp->md5_desc;
1083
1084 if (crypto_hash_init(desc))
1085 goto clear_hash;
1086 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1087 goto clear_hash;
1088 if (tcp_md5_hash_header(hp, th))
1089 goto clear_hash;
1090 if (tcp_md5_hash_key(hp, key))
1091 goto clear_hash;
1092 if (crypto_hash_final(desc, md5_hash))
1093 goto clear_hash;
1094
1095 tcp_put_md5sig_pool();
1096 return 0;
1097
1098 clear_hash:
1099 tcp_put_md5sig_pool();
1100 clear_hash_noput:
1101 memset(md5_hash, 0, 16);
1102 return 1;
1103 }
1104
1105 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1106 const struct sock *sk,
1107 const struct sk_buff *skb)
1108 {
1109 struct tcp_md5sig_pool *hp;
1110 struct hash_desc *desc;
1111 const struct tcphdr *th = tcp_hdr(skb);
1112 __be32 saddr, daddr;
1113
1114 if (sk) { /* valid for establish/request sockets */
1115 saddr = sk->sk_rcv_saddr;
1116 daddr = sk->sk_daddr;
1117 } else {
1118 const struct iphdr *iph = ip_hdr(skb);
1119 saddr = iph->saddr;
1120 daddr = iph->daddr;
1121 }
1122
1123 hp = tcp_get_md5sig_pool();
1124 if (!hp)
1125 goto clear_hash_noput;
1126 desc = &hp->md5_desc;
1127
1128 if (crypto_hash_init(desc))
1129 goto clear_hash;
1130
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1136 goto clear_hash;
1137 if (tcp_md5_hash_key(hp, key))
1138 goto clear_hash;
1139 if (crypto_hash_final(desc, md5_hash))
1140 goto clear_hash;
1141
1142 tcp_put_md5sig_pool();
1143 return 0;
1144
1145 clear_hash:
1146 tcp_put_md5sig_pool();
1147 clear_hash_noput:
1148 memset(md5_hash, 0, 16);
1149 return 1;
1150 }
1151 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1152
1153 /* Called with rcu_read_lock() */
1154 static bool tcp_v4_inbound_md5_hash(struct sock *sk,
1155 const struct sk_buff *skb)
1156 {
1157 /*
1158 * This gets called for each TCP segment that arrives
1159 * so we want to be efficient.
1160 * We have 3 drop cases:
1161 * o No MD5 hash and one expected.
1162 * o MD5 hash and we're not expecting one.
1163 * o MD5 hash and its wrong.
1164 */
1165 const __u8 *hash_location = NULL;
1166 struct tcp_md5sig_key *hash_expected;
1167 const struct iphdr *iph = ip_hdr(skb);
1168 const struct tcphdr *th = tcp_hdr(skb);
1169 int genhash;
1170 unsigned char newhash[16];
1171
1172 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1173 AF_INET);
1174 hash_location = tcp_parse_md5sig_option(th);
1175
1176 /* We've parsed the options - do we have a hash? */
1177 if (!hash_expected && !hash_location)
1178 return false;
1179
1180 if (hash_expected && !hash_location) {
1181 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1182 return true;
1183 }
1184
1185 if (!hash_expected && hash_location) {
1186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1187 return true;
1188 }
1189
1190 /* Okay, so this is hash_expected and hash_location -
1191 * so we need to calculate the checksum.
1192 */
1193 genhash = tcp_v4_md5_hash_skb(newhash,
1194 hash_expected,
1195 NULL, skb);
1196
1197 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1198 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1199 &iph->saddr, ntohs(th->source),
1200 &iph->daddr, ntohs(th->dest),
1201 genhash ? " tcp_v4_calc_md5_hash failed"
1202 : "");
1203 return true;
1204 }
1205 return false;
1206 }
1207 #endif
1208
1209 static void tcp_v4_init_req(struct request_sock *req, struct sock *sk_listener,
1210 struct sk_buff *skb)
1211 {
1212 struct inet_request_sock *ireq = inet_rsk(req);
1213
1214 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1215 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1216 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1217 ireq->opt = tcp_v4_save_options(skb);
1218 ireq->ireq_family = AF_INET;
1219 }
1220
1221 static struct dst_entry *tcp_v4_route_req(struct sock *sk, struct flowi *fl,
1222 const struct request_sock *req,
1223 bool *strict)
1224 {
1225 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1226
1227 if (strict) {
1228 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1229 *strict = true;
1230 else
1231 *strict = false;
1232 }
1233
1234 return dst;
1235 }
1236
1237 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1238 .family = PF_INET,
1239 .obj_size = sizeof(struct tcp_request_sock),
1240 .rtx_syn_ack = tcp_rtx_synack,
1241 .send_ack = tcp_v4_reqsk_send_ack,
1242 .destructor = tcp_v4_reqsk_destructor,
1243 .send_reset = tcp_v4_send_reset,
1244 .syn_ack_timeout = tcp_syn_ack_timeout,
1245 };
1246
1247 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1248 .mss_clamp = TCP_MSS_DEFAULT,
1249 #ifdef CONFIG_TCP_MD5SIG
1250 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1251 .calc_md5_hash = tcp_v4_md5_hash_skb,
1252 #endif
1253 .init_req = tcp_v4_init_req,
1254 #ifdef CONFIG_SYN_COOKIES
1255 .cookie_init_seq = cookie_v4_init_sequence,
1256 #endif
1257 .route_req = tcp_v4_route_req,
1258 .init_seq = tcp_v4_init_sequence,
1259 .send_synack = tcp_v4_send_synack,
1260 .queue_hash_add = inet_csk_reqsk_queue_hash_add,
1261 };
1262
1263 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1264 {
1265 /* Never answer to SYNs send to broadcast or multicast */
1266 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1267 goto drop;
1268
1269 return tcp_conn_request(&tcp_request_sock_ops,
1270 &tcp_request_sock_ipv4_ops, sk, skb);
1271
1272 drop:
1273 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1274 return 0;
1275 }
1276 EXPORT_SYMBOL(tcp_v4_conn_request);
1277
1278
1279 /*
1280 * The three way handshake has completed - we got a valid synack -
1281 * now create the new socket.
1282 */
1283 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1284 struct request_sock *req,
1285 struct dst_entry *dst)
1286 {
1287 struct inet_request_sock *ireq;
1288 struct inet_sock *newinet;
1289 struct tcp_sock *newtp;
1290 struct sock *newsk;
1291 #ifdef CONFIG_TCP_MD5SIG
1292 struct tcp_md5sig_key *key;
1293 #endif
1294 struct ip_options_rcu *inet_opt;
1295
1296 if (sk_acceptq_is_full(sk))
1297 goto exit_overflow;
1298
1299 newsk = tcp_create_openreq_child(sk, req, skb);
1300 if (!newsk)
1301 goto exit_nonewsk;
1302
1303 newsk->sk_gso_type = SKB_GSO_TCPV4;
1304 inet_sk_rx_dst_set(newsk, skb);
1305
1306 newtp = tcp_sk(newsk);
1307 newinet = inet_sk(newsk);
1308 ireq = inet_rsk(req);
1309 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1310 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1311 newinet->inet_saddr = ireq->ir_loc_addr;
1312 inet_opt = ireq->opt;
1313 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1314 ireq->opt = NULL;
1315 newinet->mc_index = inet_iif(skb);
1316 newinet->mc_ttl = ip_hdr(skb)->ttl;
1317 newinet->rcv_tos = ip_hdr(skb)->tos;
1318 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1319 inet_set_txhash(newsk);
1320 if (inet_opt)
1321 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1322 newinet->inet_id = newtp->write_seq ^ jiffies;
1323
1324 if (!dst) {
1325 dst = inet_csk_route_child_sock(sk, newsk, req);
1326 if (!dst)
1327 goto put_and_exit;
1328 } else {
1329 /* syncookie case : see end of cookie_v4_check() */
1330 }
1331 sk_setup_caps(newsk, dst);
1332
1333 tcp_ca_openreq_child(newsk, dst);
1334
1335 tcp_sync_mss(newsk, dst_mtu(dst));
1336 newtp->advmss = dst_metric_advmss(dst);
1337 if (tcp_sk(sk)->rx_opt.user_mss &&
1338 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1339 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1340
1341 tcp_initialize_rcv_mss(newsk);
1342
1343 #ifdef CONFIG_TCP_MD5SIG
1344 /* Copy over the MD5 key from the original socket */
1345 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1346 AF_INET);
1347 if (key != NULL) {
1348 /*
1349 * We're using one, so create a matching key
1350 * on the newsk structure. If we fail to get
1351 * memory, then we end up not copying the key
1352 * across. Shucks.
1353 */
1354 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1355 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1356 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1357 }
1358 #endif
1359
1360 if (__inet_inherit_port(sk, newsk) < 0)
1361 goto put_and_exit;
1362 __inet_hash_nolisten(newsk, NULL);
1363
1364 return newsk;
1365
1366 exit_overflow:
1367 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1368 exit_nonewsk:
1369 dst_release(dst);
1370 exit:
1371 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1372 return NULL;
1373 put_and_exit:
1374 inet_csk_prepare_forced_close(newsk);
1375 tcp_done(newsk);
1376 goto exit;
1377 }
1378 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1379
1380 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1381 {
1382 const struct tcphdr *th = tcp_hdr(skb);
1383 const struct iphdr *iph = ip_hdr(skb);
1384 struct request_sock *req;
1385 struct sock *nsk;
1386
1387 req = inet_csk_search_req(sk, th->source, iph->saddr, iph->daddr);
1388 if (req) {
1389 nsk = tcp_check_req(sk, skb, req, false);
1390 reqsk_put(req);
1391 return nsk;
1392 }
1393
1394 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1395 th->source, iph->daddr, th->dest, inet_iif(skb));
1396
1397 if (nsk) {
1398 if (nsk->sk_state != TCP_TIME_WAIT) {
1399 bh_lock_sock(nsk);
1400 return nsk;
1401 }
1402 inet_twsk_put(inet_twsk(nsk));
1403 return NULL;
1404 }
1405
1406 #ifdef CONFIG_SYN_COOKIES
1407 if (!th->syn)
1408 sk = cookie_v4_check(sk, skb);
1409 #endif
1410 return sk;
1411 }
1412
1413 /* The socket must have it's spinlock held when we get
1414 * here.
1415 *
1416 * We have a potential double-lock case here, so even when
1417 * doing backlog processing we use the BH locking scheme.
1418 * This is because we cannot sleep with the original spinlock
1419 * held.
1420 */
1421 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1422 {
1423 struct sock *rsk;
1424
1425 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1426 struct dst_entry *dst = sk->sk_rx_dst;
1427
1428 sock_rps_save_rxhash(sk, skb);
1429 sk_mark_napi_id(sk, skb);
1430 if (dst) {
1431 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1432 dst->ops->check(dst, 0) == NULL) {
1433 dst_release(dst);
1434 sk->sk_rx_dst = NULL;
1435 }
1436 }
1437 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1438 return 0;
1439 }
1440
1441 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1442 goto csum_err;
1443
1444 if (sk->sk_state == TCP_LISTEN) {
1445 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1446 if (!nsk)
1447 goto discard;
1448
1449 if (nsk != sk) {
1450 sock_rps_save_rxhash(nsk, skb);
1451 sk_mark_napi_id(sk, skb);
1452 if (tcp_child_process(sk, nsk, skb)) {
1453 rsk = nsk;
1454 goto reset;
1455 }
1456 return 0;
1457 }
1458 } else
1459 sock_rps_save_rxhash(sk, skb);
1460
1461 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1462 rsk = sk;
1463 goto reset;
1464 }
1465 return 0;
1466
1467 reset:
1468 tcp_v4_send_reset(rsk, skb);
1469 discard:
1470 kfree_skb(skb);
1471 /* Be careful here. If this function gets more complicated and
1472 * gcc suffers from register pressure on the x86, sk (in %ebx)
1473 * might be destroyed here. This current version compiles correctly,
1474 * but you have been warned.
1475 */
1476 return 0;
1477
1478 csum_err:
1479 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1480 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1481 goto discard;
1482 }
1483 EXPORT_SYMBOL(tcp_v4_do_rcv);
1484
1485 void tcp_v4_early_demux(struct sk_buff *skb)
1486 {
1487 const struct iphdr *iph;
1488 const struct tcphdr *th;
1489 struct sock *sk;
1490
1491 if (skb->pkt_type != PACKET_HOST)
1492 return;
1493
1494 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1495 return;
1496
1497 iph = ip_hdr(skb);
1498 th = tcp_hdr(skb);
1499
1500 if (th->doff < sizeof(struct tcphdr) / 4)
1501 return;
1502
1503 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1504 iph->saddr, th->source,
1505 iph->daddr, ntohs(th->dest),
1506 skb->skb_iif);
1507 if (sk) {
1508 skb->sk = sk;
1509 skb->destructor = sock_edemux;
1510 if (sk_fullsock(sk)) {
1511 struct dst_entry *dst = sk->sk_rx_dst;
1512
1513 if (dst)
1514 dst = dst_check(dst, 0);
1515 if (dst &&
1516 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1517 skb_dst_set_noref(skb, dst);
1518 }
1519 }
1520 }
1521
1522 /* Packet is added to VJ-style prequeue for processing in process
1523 * context, if a reader task is waiting. Apparently, this exciting
1524 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1525 * failed somewhere. Latency? Burstiness? Well, at least now we will
1526 * see, why it failed. 8)8) --ANK
1527 *
1528 */
1529 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1530 {
1531 struct tcp_sock *tp = tcp_sk(sk);
1532
1533 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1534 return false;
1535
1536 if (skb->len <= tcp_hdrlen(skb) &&
1537 skb_queue_len(&tp->ucopy.prequeue) == 0)
1538 return false;
1539
1540 /* Before escaping RCU protected region, we need to take care of skb
1541 * dst. Prequeue is only enabled for established sockets.
1542 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1543 * Instead of doing full sk_rx_dst validity here, let's perform
1544 * an optimistic check.
1545 */
1546 if (likely(sk->sk_rx_dst))
1547 skb_dst_drop(skb);
1548 else
1549 skb_dst_force(skb);
1550
1551 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1552 tp->ucopy.memory += skb->truesize;
1553 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1554 struct sk_buff *skb1;
1555
1556 BUG_ON(sock_owned_by_user(sk));
1557
1558 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1559 sk_backlog_rcv(sk, skb1);
1560 NET_INC_STATS_BH(sock_net(sk),
1561 LINUX_MIB_TCPPREQUEUEDROPPED);
1562 }
1563
1564 tp->ucopy.memory = 0;
1565 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1566 wake_up_interruptible_sync_poll(sk_sleep(sk),
1567 POLLIN | POLLRDNORM | POLLRDBAND);
1568 if (!inet_csk_ack_scheduled(sk))
1569 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1570 (3 * tcp_rto_min(sk)) / 4,
1571 TCP_RTO_MAX);
1572 }
1573 return true;
1574 }
1575 EXPORT_SYMBOL(tcp_prequeue);
1576
1577 /*
1578 * From tcp_input.c
1579 */
1580
1581 int tcp_v4_rcv(struct sk_buff *skb)
1582 {
1583 const struct iphdr *iph;
1584 const struct tcphdr *th;
1585 struct sock *sk;
1586 int ret;
1587 struct net *net = dev_net(skb->dev);
1588
1589 if (skb->pkt_type != PACKET_HOST)
1590 goto discard_it;
1591
1592 /* Count it even if it's bad */
1593 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1594
1595 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1596 goto discard_it;
1597
1598 th = tcp_hdr(skb);
1599
1600 if (th->doff < sizeof(struct tcphdr) / 4)
1601 goto bad_packet;
1602 if (!pskb_may_pull(skb, th->doff * 4))
1603 goto discard_it;
1604
1605 /* An explanation is required here, I think.
1606 * Packet length and doff are validated by header prediction,
1607 * provided case of th->doff==0 is eliminated.
1608 * So, we defer the checks. */
1609
1610 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1611 goto csum_error;
1612
1613 th = tcp_hdr(skb);
1614 iph = ip_hdr(skb);
1615 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1616 * barrier() makes sure compiler wont play fool^Waliasing games.
1617 */
1618 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1619 sizeof(struct inet_skb_parm));
1620 barrier();
1621
1622 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1623 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1624 skb->len - th->doff * 4);
1625 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1626 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1627 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1628 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1629 TCP_SKB_CB(skb)->sacked = 0;
1630
1631 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1632 if (!sk)
1633 goto no_tcp_socket;
1634
1635 process:
1636 if (sk->sk_state == TCP_TIME_WAIT)
1637 goto do_time_wait;
1638
1639 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1640 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1641 goto discard_and_relse;
1642 }
1643
1644 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1645 goto discard_and_relse;
1646
1647 #ifdef CONFIG_TCP_MD5SIG
1648 /*
1649 * We really want to reject the packet as early as possible
1650 * if:
1651 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1652 * o There is an MD5 option and we're not expecting one
1653 */
1654 if (tcp_v4_inbound_md5_hash(sk, skb))
1655 goto discard_and_relse;
1656 #endif
1657
1658 nf_reset(skb);
1659
1660 if (sk_filter(sk, skb))
1661 goto discard_and_relse;
1662
1663 sk_incoming_cpu_update(sk);
1664 skb->dev = NULL;
1665
1666 bh_lock_sock_nested(sk);
1667 ret = 0;
1668 if (!sock_owned_by_user(sk)) {
1669 if (!tcp_prequeue(sk, skb))
1670 ret = tcp_v4_do_rcv(sk, skb);
1671 } else if (unlikely(sk_add_backlog(sk, skb,
1672 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1673 bh_unlock_sock(sk);
1674 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1675 goto discard_and_relse;
1676 }
1677 bh_unlock_sock(sk);
1678
1679 sock_put(sk);
1680
1681 return ret;
1682
1683 no_tcp_socket:
1684 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1685 goto discard_it;
1686
1687 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1688 csum_error:
1689 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1690 bad_packet:
1691 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1692 } else {
1693 tcp_v4_send_reset(NULL, skb);
1694 }
1695
1696 discard_it:
1697 /* Discard frame. */
1698 kfree_skb(skb);
1699 return 0;
1700
1701 discard_and_relse:
1702 sock_put(sk);
1703 goto discard_it;
1704
1705 do_time_wait:
1706 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1707 inet_twsk_put(inet_twsk(sk));
1708 goto discard_it;
1709 }
1710
1711 if (skb->len < (th->doff << 2)) {
1712 inet_twsk_put(inet_twsk(sk));
1713 goto bad_packet;
1714 }
1715 if (tcp_checksum_complete(skb)) {
1716 inet_twsk_put(inet_twsk(sk));
1717 goto csum_error;
1718 }
1719 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1720 case TCP_TW_SYN: {
1721 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1722 &tcp_hashinfo,
1723 iph->saddr, th->source,
1724 iph->daddr, th->dest,
1725 inet_iif(skb));
1726 if (sk2) {
1727 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1728 inet_twsk_put(inet_twsk(sk));
1729 sk = sk2;
1730 goto process;
1731 }
1732 /* Fall through to ACK */
1733 }
1734 case TCP_TW_ACK:
1735 tcp_v4_timewait_ack(sk, skb);
1736 break;
1737 case TCP_TW_RST:
1738 goto no_tcp_socket;
1739 case TCP_TW_SUCCESS:;
1740 }
1741 goto discard_it;
1742 }
1743
1744 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1745 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1746 .twsk_unique = tcp_twsk_unique,
1747 .twsk_destructor= tcp_twsk_destructor,
1748 };
1749
1750 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1751 {
1752 struct dst_entry *dst = skb_dst(skb);
1753
1754 if (dst) {
1755 dst_hold(dst);
1756 sk->sk_rx_dst = dst;
1757 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1758 }
1759 }
1760 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1761
1762 const struct inet_connection_sock_af_ops ipv4_specific = {
1763 .queue_xmit = ip_queue_xmit,
1764 .send_check = tcp_v4_send_check,
1765 .rebuild_header = inet_sk_rebuild_header,
1766 .sk_rx_dst_set = inet_sk_rx_dst_set,
1767 .conn_request = tcp_v4_conn_request,
1768 .syn_recv_sock = tcp_v4_syn_recv_sock,
1769 .net_header_len = sizeof(struct iphdr),
1770 .setsockopt = ip_setsockopt,
1771 .getsockopt = ip_getsockopt,
1772 .addr2sockaddr = inet_csk_addr2sockaddr,
1773 .sockaddr_len = sizeof(struct sockaddr_in),
1774 .bind_conflict = inet_csk_bind_conflict,
1775 #ifdef CONFIG_COMPAT
1776 .compat_setsockopt = compat_ip_setsockopt,
1777 .compat_getsockopt = compat_ip_getsockopt,
1778 #endif
1779 .mtu_reduced = tcp_v4_mtu_reduced,
1780 };
1781 EXPORT_SYMBOL(ipv4_specific);
1782
1783 #ifdef CONFIG_TCP_MD5SIG
1784 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1785 .md5_lookup = tcp_v4_md5_lookup,
1786 .calc_md5_hash = tcp_v4_md5_hash_skb,
1787 .md5_parse = tcp_v4_parse_md5_keys,
1788 };
1789 #endif
1790
1791 /* NOTE: A lot of things set to zero explicitly by call to
1792 * sk_alloc() so need not be done here.
1793 */
1794 static int tcp_v4_init_sock(struct sock *sk)
1795 {
1796 struct inet_connection_sock *icsk = inet_csk(sk);
1797
1798 tcp_init_sock(sk);
1799
1800 icsk->icsk_af_ops = &ipv4_specific;
1801
1802 #ifdef CONFIG_TCP_MD5SIG
1803 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1804 #endif
1805
1806 return 0;
1807 }
1808
1809 void tcp_v4_destroy_sock(struct sock *sk)
1810 {
1811 struct tcp_sock *tp = tcp_sk(sk);
1812
1813 tcp_clear_xmit_timers(sk);
1814
1815 tcp_cleanup_congestion_control(sk);
1816
1817 /* Cleanup up the write buffer. */
1818 tcp_write_queue_purge(sk);
1819
1820 /* Cleans up our, hopefully empty, out_of_order_queue. */
1821 __skb_queue_purge(&tp->out_of_order_queue);
1822
1823 #ifdef CONFIG_TCP_MD5SIG
1824 /* Clean up the MD5 key list, if any */
1825 if (tp->md5sig_info) {
1826 tcp_clear_md5_list(sk);
1827 kfree_rcu(tp->md5sig_info, rcu);
1828 tp->md5sig_info = NULL;
1829 }
1830 #endif
1831
1832 /* Clean prequeue, it must be empty really */
1833 __skb_queue_purge(&tp->ucopy.prequeue);
1834
1835 /* Clean up a referenced TCP bind bucket. */
1836 if (inet_csk(sk)->icsk_bind_hash)
1837 inet_put_port(sk);
1838
1839 BUG_ON(tp->fastopen_rsk != NULL);
1840
1841 /* If socket is aborted during connect operation */
1842 tcp_free_fastopen_req(tp);
1843
1844 sk_sockets_allocated_dec(sk);
1845 sock_release_memcg(sk);
1846 }
1847 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1848
1849 #ifdef CONFIG_PROC_FS
1850 /* Proc filesystem TCP sock list dumping. */
1851
1852 /*
1853 * Get next listener socket follow cur. If cur is NULL, get first socket
1854 * starting from bucket given in st->bucket; when st->bucket is zero the
1855 * very first socket in the hash table is returned.
1856 */
1857 static void *listening_get_next(struct seq_file *seq, void *cur)
1858 {
1859 struct inet_connection_sock *icsk;
1860 struct hlist_nulls_node *node;
1861 struct sock *sk = cur;
1862 struct inet_listen_hashbucket *ilb;
1863 struct tcp_iter_state *st = seq->private;
1864 struct net *net = seq_file_net(seq);
1865
1866 if (!sk) {
1867 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1868 spin_lock_bh(&ilb->lock);
1869 sk = sk_nulls_head(&ilb->head);
1870 st->offset = 0;
1871 goto get_sk;
1872 }
1873 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1874 ++st->num;
1875 ++st->offset;
1876
1877 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1878 struct request_sock *req = cur;
1879
1880 icsk = inet_csk(st->syn_wait_sk);
1881 req = req->dl_next;
1882 while (1) {
1883 while (req) {
1884 if (req->rsk_ops->family == st->family) {
1885 cur = req;
1886 goto out;
1887 }
1888 req = req->dl_next;
1889 }
1890 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1891 break;
1892 get_req:
1893 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1894 }
1895 sk = sk_nulls_next(st->syn_wait_sk);
1896 st->state = TCP_SEQ_STATE_LISTENING;
1897 spin_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1898 } else {
1899 icsk = inet_csk(sk);
1900 spin_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1901 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1902 goto start_req;
1903 spin_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1904 sk = sk_nulls_next(sk);
1905 }
1906 get_sk:
1907 sk_nulls_for_each_from(sk, node) {
1908 if (!net_eq(sock_net(sk), net))
1909 continue;
1910 if (sk->sk_family == st->family) {
1911 cur = sk;
1912 goto out;
1913 }
1914 icsk = inet_csk(sk);
1915 spin_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1916 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1917 start_req:
1918 st->uid = sock_i_uid(sk);
1919 st->syn_wait_sk = sk;
1920 st->state = TCP_SEQ_STATE_OPENREQ;
1921 st->sbucket = 0;
1922 goto get_req;
1923 }
1924 spin_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1925 }
1926 spin_unlock_bh(&ilb->lock);
1927 st->offset = 0;
1928 if (++st->bucket < INET_LHTABLE_SIZE) {
1929 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1930 spin_lock_bh(&ilb->lock);
1931 sk = sk_nulls_head(&ilb->head);
1932 goto get_sk;
1933 }
1934 cur = NULL;
1935 out:
1936 return cur;
1937 }
1938
1939 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1940 {
1941 struct tcp_iter_state *st = seq->private;
1942 void *rc;
1943
1944 st->bucket = 0;
1945 st->offset = 0;
1946 rc = listening_get_next(seq, NULL);
1947
1948 while (rc && *pos) {
1949 rc = listening_get_next(seq, rc);
1950 --*pos;
1951 }
1952 return rc;
1953 }
1954
1955 static inline bool empty_bucket(const struct tcp_iter_state *st)
1956 {
1957 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1958 }
1959
1960 /*
1961 * Get first established socket starting from bucket given in st->bucket.
1962 * If st->bucket is zero, the very first socket in the hash is returned.
1963 */
1964 static void *established_get_first(struct seq_file *seq)
1965 {
1966 struct tcp_iter_state *st = seq->private;
1967 struct net *net = seq_file_net(seq);
1968 void *rc = NULL;
1969
1970 st->offset = 0;
1971 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1972 struct sock *sk;
1973 struct hlist_nulls_node *node;
1974 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1975
1976 /* Lockless fast path for the common case of empty buckets */
1977 if (empty_bucket(st))
1978 continue;
1979
1980 spin_lock_bh(lock);
1981 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1982 if (sk->sk_family != st->family ||
1983 !net_eq(sock_net(sk), net)) {
1984 continue;
1985 }
1986 rc = sk;
1987 goto out;
1988 }
1989 spin_unlock_bh(lock);
1990 }
1991 out:
1992 return rc;
1993 }
1994
1995 static void *established_get_next(struct seq_file *seq, void *cur)
1996 {
1997 struct sock *sk = cur;
1998 struct hlist_nulls_node *node;
1999 struct tcp_iter_state *st = seq->private;
2000 struct net *net = seq_file_net(seq);
2001
2002 ++st->num;
2003 ++st->offset;
2004
2005 sk = sk_nulls_next(sk);
2006
2007 sk_nulls_for_each_from(sk, node) {
2008 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2009 return sk;
2010 }
2011
2012 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2013 ++st->bucket;
2014 return established_get_first(seq);
2015 }
2016
2017 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2018 {
2019 struct tcp_iter_state *st = seq->private;
2020 void *rc;
2021
2022 st->bucket = 0;
2023 rc = established_get_first(seq);
2024
2025 while (rc && pos) {
2026 rc = established_get_next(seq, rc);
2027 --pos;
2028 }
2029 return rc;
2030 }
2031
2032 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2033 {
2034 void *rc;
2035 struct tcp_iter_state *st = seq->private;
2036
2037 st->state = TCP_SEQ_STATE_LISTENING;
2038 rc = listening_get_idx(seq, &pos);
2039
2040 if (!rc) {
2041 st->state = TCP_SEQ_STATE_ESTABLISHED;
2042 rc = established_get_idx(seq, pos);
2043 }
2044
2045 return rc;
2046 }
2047
2048 static void *tcp_seek_last_pos(struct seq_file *seq)
2049 {
2050 struct tcp_iter_state *st = seq->private;
2051 int offset = st->offset;
2052 int orig_num = st->num;
2053 void *rc = NULL;
2054
2055 switch (st->state) {
2056 case TCP_SEQ_STATE_OPENREQ:
2057 case TCP_SEQ_STATE_LISTENING:
2058 if (st->bucket >= INET_LHTABLE_SIZE)
2059 break;
2060 st->state = TCP_SEQ_STATE_LISTENING;
2061 rc = listening_get_next(seq, NULL);
2062 while (offset-- && rc)
2063 rc = listening_get_next(seq, rc);
2064 if (rc)
2065 break;
2066 st->bucket = 0;
2067 st->state = TCP_SEQ_STATE_ESTABLISHED;
2068 /* Fallthrough */
2069 case TCP_SEQ_STATE_ESTABLISHED:
2070 if (st->bucket > tcp_hashinfo.ehash_mask)
2071 break;
2072 rc = established_get_first(seq);
2073 while (offset-- && rc)
2074 rc = established_get_next(seq, rc);
2075 }
2076
2077 st->num = orig_num;
2078
2079 return rc;
2080 }
2081
2082 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2083 {
2084 struct tcp_iter_state *st = seq->private;
2085 void *rc;
2086
2087 if (*pos && *pos == st->last_pos) {
2088 rc = tcp_seek_last_pos(seq);
2089 if (rc)
2090 goto out;
2091 }
2092
2093 st->state = TCP_SEQ_STATE_LISTENING;
2094 st->num = 0;
2095 st->bucket = 0;
2096 st->offset = 0;
2097 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2098
2099 out:
2100 st->last_pos = *pos;
2101 return rc;
2102 }
2103
2104 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2105 {
2106 struct tcp_iter_state *st = seq->private;
2107 void *rc = NULL;
2108
2109 if (v == SEQ_START_TOKEN) {
2110 rc = tcp_get_idx(seq, 0);
2111 goto out;
2112 }
2113
2114 switch (st->state) {
2115 case TCP_SEQ_STATE_OPENREQ:
2116 case TCP_SEQ_STATE_LISTENING:
2117 rc = listening_get_next(seq, v);
2118 if (!rc) {
2119 st->state = TCP_SEQ_STATE_ESTABLISHED;
2120 st->bucket = 0;
2121 st->offset = 0;
2122 rc = established_get_first(seq);
2123 }
2124 break;
2125 case TCP_SEQ_STATE_ESTABLISHED:
2126 rc = established_get_next(seq, v);
2127 break;
2128 }
2129 out:
2130 ++*pos;
2131 st->last_pos = *pos;
2132 return rc;
2133 }
2134
2135 static void tcp_seq_stop(struct seq_file *seq, void *v)
2136 {
2137 struct tcp_iter_state *st = seq->private;
2138
2139 switch (st->state) {
2140 case TCP_SEQ_STATE_OPENREQ:
2141 if (v) {
2142 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2143 spin_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2144 }
2145 case TCP_SEQ_STATE_LISTENING:
2146 if (v != SEQ_START_TOKEN)
2147 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2148 break;
2149 case TCP_SEQ_STATE_ESTABLISHED:
2150 if (v)
2151 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2152 break;
2153 }
2154 }
2155
2156 int tcp_seq_open(struct inode *inode, struct file *file)
2157 {
2158 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2159 struct tcp_iter_state *s;
2160 int err;
2161
2162 err = seq_open_net(inode, file, &afinfo->seq_ops,
2163 sizeof(struct tcp_iter_state));
2164 if (err < 0)
2165 return err;
2166
2167 s = ((struct seq_file *)file->private_data)->private;
2168 s->family = afinfo->family;
2169 s->last_pos = 0;
2170 return 0;
2171 }
2172 EXPORT_SYMBOL(tcp_seq_open);
2173
2174 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2175 {
2176 int rc = 0;
2177 struct proc_dir_entry *p;
2178
2179 afinfo->seq_ops.start = tcp_seq_start;
2180 afinfo->seq_ops.next = tcp_seq_next;
2181 afinfo->seq_ops.stop = tcp_seq_stop;
2182
2183 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2184 afinfo->seq_fops, afinfo);
2185 if (!p)
2186 rc = -ENOMEM;
2187 return rc;
2188 }
2189 EXPORT_SYMBOL(tcp_proc_register);
2190
2191 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2192 {
2193 remove_proc_entry(afinfo->name, net->proc_net);
2194 }
2195 EXPORT_SYMBOL(tcp_proc_unregister);
2196
2197 static void get_openreq4(const struct request_sock *req,
2198 struct seq_file *f, int i, kuid_t uid)
2199 {
2200 const struct inet_request_sock *ireq = inet_rsk(req);
2201 long delta = req->rsk_timer.expires - jiffies;
2202
2203 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2204 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2205 i,
2206 ireq->ir_loc_addr,
2207 ireq->ir_num,
2208 ireq->ir_rmt_addr,
2209 ntohs(ireq->ir_rmt_port),
2210 TCP_SYN_RECV,
2211 0, 0, /* could print option size, but that is af dependent. */
2212 1, /* timers active (only the expire timer) */
2213 jiffies_delta_to_clock_t(delta),
2214 req->num_timeout,
2215 from_kuid_munged(seq_user_ns(f), uid),
2216 0, /* non standard timer */
2217 0, /* open_requests have no inode */
2218 0,
2219 req);
2220 }
2221
2222 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2223 {
2224 int timer_active;
2225 unsigned long timer_expires;
2226 const struct tcp_sock *tp = tcp_sk(sk);
2227 const struct inet_connection_sock *icsk = inet_csk(sk);
2228 const struct inet_sock *inet = inet_sk(sk);
2229 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2230 __be32 dest = inet->inet_daddr;
2231 __be32 src = inet->inet_rcv_saddr;
2232 __u16 destp = ntohs(inet->inet_dport);
2233 __u16 srcp = ntohs(inet->inet_sport);
2234 int rx_queue;
2235
2236 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2237 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2238 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2239 timer_active = 1;
2240 timer_expires = icsk->icsk_timeout;
2241 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2242 timer_active = 4;
2243 timer_expires = icsk->icsk_timeout;
2244 } else if (timer_pending(&sk->sk_timer)) {
2245 timer_active = 2;
2246 timer_expires = sk->sk_timer.expires;
2247 } else {
2248 timer_active = 0;
2249 timer_expires = jiffies;
2250 }
2251
2252 if (sk->sk_state == TCP_LISTEN)
2253 rx_queue = sk->sk_ack_backlog;
2254 else
2255 /*
2256 * because we dont lock socket, we might find a transient negative value
2257 */
2258 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2259
2260 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2261 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2262 i, src, srcp, dest, destp, sk->sk_state,
2263 tp->write_seq - tp->snd_una,
2264 rx_queue,
2265 timer_active,
2266 jiffies_delta_to_clock_t(timer_expires - jiffies),
2267 icsk->icsk_retransmits,
2268 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2269 icsk->icsk_probes_out,
2270 sock_i_ino(sk),
2271 atomic_read(&sk->sk_refcnt), sk,
2272 jiffies_to_clock_t(icsk->icsk_rto),
2273 jiffies_to_clock_t(icsk->icsk_ack.ato),
2274 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2275 tp->snd_cwnd,
2276 sk->sk_state == TCP_LISTEN ?
2277 (fastopenq ? fastopenq->max_qlen : 0) :
2278 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2279 }
2280
2281 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2282 struct seq_file *f, int i)
2283 {
2284 __be32 dest, src;
2285 __u16 destp, srcp;
2286 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2287
2288 dest = tw->tw_daddr;
2289 src = tw->tw_rcv_saddr;
2290 destp = ntohs(tw->tw_dport);
2291 srcp = ntohs(tw->tw_sport);
2292
2293 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2294 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2295 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2296 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2297 atomic_read(&tw->tw_refcnt), tw);
2298 }
2299
2300 #define TMPSZ 150
2301
2302 static int tcp4_seq_show(struct seq_file *seq, void *v)
2303 {
2304 struct tcp_iter_state *st;
2305 struct sock *sk = v;
2306
2307 seq_setwidth(seq, TMPSZ - 1);
2308 if (v == SEQ_START_TOKEN) {
2309 seq_puts(seq, " sl local_address rem_address st tx_queue "
2310 "rx_queue tr tm->when retrnsmt uid timeout "
2311 "inode");
2312 goto out;
2313 }
2314 st = seq->private;
2315
2316 switch (st->state) {
2317 case TCP_SEQ_STATE_LISTENING:
2318 case TCP_SEQ_STATE_ESTABLISHED:
2319 if (sk->sk_state == TCP_TIME_WAIT)
2320 get_timewait4_sock(v, seq, st->num);
2321 else
2322 get_tcp4_sock(v, seq, st->num);
2323 break;
2324 case TCP_SEQ_STATE_OPENREQ:
2325 get_openreq4(v, seq, st->num, st->uid);
2326 break;
2327 }
2328 out:
2329 seq_pad(seq, '\n');
2330 return 0;
2331 }
2332
2333 static const struct file_operations tcp_afinfo_seq_fops = {
2334 .owner = THIS_MODULE,
2335 .open = tcp_seq_open,
2336 .read = seq_read,
2337 .llseek = seq_lseek,
2338 .release = seq_release_net
2339 };
2340
2341 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2342 .name = "tcp",
2343 .family = AF_INET,
2344 .seq_fops = &tcp_afinfo_seq_fops,
2345 .seq_ops = {
2346 .show = tcp4_seq_show,
2347 },
2348 };
2349
2350 static int __net_init tcp4_proc_init_net(struct net *net)
2351 {
2352 return tcp_proc_register(net, &tcp4_seq_afinfo);
2353 }
2354
2355 static void __net_exit tcp4_proc_exit_net(struct net *net)
2356 {
2357 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2358 }
2359
2360 static struct pernet_operations tcp4_net_ops = {
2361 .init = tcp4_proc_init_net,
2362 .exit = tcp4_proc_exit_net,
2363 };
2364
2365 int __init tcp4_proc_init(void)
2366 {
2367 return register_pernet_subsys(&tcp4_net_ops);
2368 }
2369
2370 void tcp4_proc_exit(void)
2371 {
2372 unregister_pernet_subsys(&tcp4_net_ops);
2373 }
2374 #endif /* CONFIG_PROC_FS */
2375
2376 struct proto tcp_prot = {
2377 .name = "TCP",
2378 .owner = THIS_MODULE,
2379 .close = tcp_close,
2380 .connect = tcp_v4_connect,
2381 .disconnect = tcp_disconnect,
2382 .accept = inet_csk_accept,
2383 .ioctl = tcp_ioctl,
2384 .init = tcp_v4_init_sock,
2385 .destroy = tcp_v4_destroy_sock,
2386 .shutdown = tcp_shutdown,
2387 .setsockopt = tcp_setsockopt,
2388 .getsockopt = tcp_getsockopt,
2389 .recvmsg = tcp_recvmsg,
2390 .sendmsg = tcp_sendmsg,
2391 .sendpage = tcp_sendpage,
2392 .backlog_rcv = tcp_v4_do_rcv,
2393 .release_cb = tcp_release_cb,
2394 .hash = inet_hash,
2395 .unhash = inet_unhash,
2396 .get_port = inet_csk_get_port,
2397 .enter_memory_pressure = tcp_enter_memory_pressure,
2398 .stream_memory_free = tcp_stream_memory_free,
2399 .sockets_allocated = &tcp_sockets_allocated,
2400 .orphan_count = &tcp_orphan_count,
2401 .memory_allocated = &tcp_memory_allocated,
2402 .memory_pressure = &tcp_memory_pressure,
2403 .sysctl_mem = sysctl_tcp_mem,
2404 .sysctl_wmem = sysctl_tcp_wmem,
2405 .sysctl_rmem = sysctl_tcp_rmem,
2406 .max_header = MAX_TCP_HEADER,
2407 .obj_size = sizeof(struct tcp_sock),
2408 .slab_flags = SLAB_DESTROY_BY_RCU,
2409 .twsk_prot = &tcp_timewait_sock_ops,
2410 .rsk_prot = &tcp_request_sock_ops,
2411 .h.hashinfo = &tcp_hashinfo,
2412 .no_autobind = true,
2413 #ifdef CONFIG_COMPAT
2414 .compat_setsockopt = compat_tcp_setsockopt,
2415 .compat_getsockopt = compat_tcp_getsockopt,
2416 #endif
2417 #ifdef CONFIG_MEMCG_KMEM
2418 .init_cgroup = tcp_init_cgroup,
2419 .destroy_cgroup = tcp_destroy_cgroup,
2420 .proto_cgroup = tcp_proto_cgroup,
2421 #endif
2422 };
2423 EXPORT_SYMBOL(tcp_prot);
2424
2425 static void __net_exit tcp_sk_exit(struct net *net)
2426 {
2427 int cpu;
2428
2429 for_each_possible_cpu(cpu)
2430 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2431 free_percpu(net->ipv4.tcp_sk);
2432 }
2433
2434 static int __net_init tcp_sk_init(struct net *net)
2435 {
2436 int res, cpu;
2437
2438 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2439 if (!net->ipv4.tcp_sk)
2440 return -ENOMEM;
2441
2442 for_each_possible_cpu(cpu) {
2443 struct sock *sk;
2444
2445 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2446 IPPROTO_TCP, net);
2447 if (res)
2448 goto fail;
2449 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2450 }
2451 net->ipv4.sysctl_tcp_ecn = 2;
2452 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2453 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2454 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2455 return 0;
2456
2457 fail:
2458 tcp_sk_exit(net);
2459
2460 return res;
2461 }
2462
2463 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2464 {
2465 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2466 }
2467
2468 static struct pernet_operations __net_initdata tcp_sk_ops = {
2469 .init = tcp_sk_init,
2470 .exit = tcp_sk_exit,
2471 .exit_batch = tcp_sk_exit_batch,
2472 };
2473
2474 void __init tcp_v4_init(void)
2475 {
2476 inet_hashinfo_init(&tcp_hashinfo);
2477 if (register_pernet_subsys(&tcp_sk_ops))
2478 panic("Failed to create the TCP control socket.\n");
2479 }
This page took 0.084237 seconds and 5 git commands to generate.