7f9515c0379fd102e8981e354bb1cbb615d3ca01
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87
88
89 #ifdef CONFIG_TCP_MD5SIG
90 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91 __be32 addr);
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, struct tcphdr *th);
94 #else
95 static inline
96 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 {
98 return NULL;
99 }
100 #endif
101
102 struct inet_hashinfo tcp_hashinfo;
103
104 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 {
106 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
107 ip_hdr(skb)->saddr,
108 tcp_hdr(skb)->dest,
109 tcp_hdr(skb)->source);
110 }
111
112 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 {
114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 struct tcp_sock *tp = tcp_sk(sk);
116
117 /* With PAWS, it is safe from the viewpoint
118 of data integrity. Even without PAWS it is safe provided sequence
119 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120
121 Actually, the idea is close to VJ's one, only timestamp cache is
122 held not per host, but per port pair and TW bucket is used as state
123 holder.
124
125 If TW bucket has been already destroyed we fall back to VJ's scheme
126 and use initial timestamp retrieved from peer table.
127 */
128 if (tcptw->tw_ts_recent_stamp &&
129 (twp == NULL || (sysctl_tcp_tw_reuse &&
130 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
131 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
132 if (tp->write_seq == 0)
133 tp->write_seq = 1;
134 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
135 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
136 sock_hold(sktw);
137 return 1;
138 }
139
140 return 0;
141 }
142
143 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144
145 /* This will initiate an outgoing connection. */
146 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 {
148 struct inet_sock *inet = inet_sk(sk);
149 struct tcp_sock *tp = tcp_sk(sk);
150 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 struct rtable *rt;
152 __be32 daddr, nexthop;
153 int tmp;
154 int err;
155
156 if (addr_len < sizeof(struct sockaddr_in))
157 return -EINVAL;
158
159 if (usin->sin_family != AF_INET)
160 return -EAFNOSUPPORT;
161
162 nexthop = daddr = usin->sin_addr.s_addr;
163 if (inet->opt && inet->opt->srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet->opt->faddr;
167 }
168
169 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
170 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171 IPPROTO_TCP,
172 inet->inet_sport, usin->sin_port, sk, 1);
173 if (tmp < 0) {
174 if (tmp == -ENETUNREACH)
175 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
176 return tmp;
177 }
178
179 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
180 ip_rt_put(rt);
181 return -ENETUNREACH;
182 }
183
184 if (!inet->opt || !inet->opt->srr)
185 daddr = rt->rt_dst;
186
187 if (!inet->inet_saddr)
188 inet->inet_saddr = rt->rt_src;
189 inet->inet_rcv_saddr = inet->inet_saddr;
190
191 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
192 /* Reset inherited state */
193 tp->rx_opt.ts_recent = 0;
194 tp->rx_opt.ts_recent_stamp = 0;
195 tp->write_seq = 0;
196 }
197
198 if (tcp_death_row.sysctl_tw_recycle &&
199 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
200 struct inet_peer *peer = rt_get_peer(rt);
201 /*
202 * VJ's idea. We save last timestamp seen from
203 * the destination in peer table, when entering state
204 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
205 * when trying new connection.
206 */
207 if (peer != NULL &&
208 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
209 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
210 tp->rx_opt.ts_recent = peer->tcp_ts;
211 }
212 }
213
214 inet->inet_dport = usin->sin_port;
215 inet->inet_daddr = daddr;
216
217 inet_csk(sk)->icsk_ext_hdr_len = 0;
218 if (inet->opt)
219 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220
221 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222
223 /* Socket identity is still unknown (sport may be zero).
224 * However we set state to SYN-SENT and not releasing socket
225 * lock select source port, enter ourselves into the hash tables and
226 * complete initialization after this.
227 */
228 tcp_set_state(sk, TCP_SYN_SENT);
229 err = inet_hash_connect(&tcp_death_row, sk);
230 if (err)
231 goto failure;
232
233 err = ip_route_newports(&rt, IPPROTO_TCP,
234 inet->inet_sport, inet->inet_dport, sk);
235 if (err)
236 goto failure;
237
238 /* OK, now commit destination to socket. */
239 sk->sk_gso_type = SKB_GSO_TCPV4;
240 sk_setup_caps(sk, &rt->dst);
241
242 if (!tp->write_seq)
243 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
244 inet->inet_daddr,
245 inet->inet_sport,
246 usin->sin_port);
247
248 inet->inet_id = tp->write_seq ^ jiffies;
249
250 err = tcp_connect(sk);
251 rt = NULL;
252 if (err)
253 goto failure;
254
255 return 0;
256
257 failure:
258 /*
259 * This unhashes the socket and releases the local port,
260 * if necessary.
261 */
262 tcp_set_state(sk, TCP_CLOSE);
263 ip_rt_put(rt);
264 sk->sk_route_caps = 0;
265 inet->inet_dport = 0;
266 return err;
267 }
268
269 /*
270 * This routine does path mtu discovery as defined in RFC1191.
271 */
272 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
280 */
281 if (sk->sk_state == TCP_LISTEN)
282 return;
283
284 /* We don't check in the destentry if pmtu discovery is forbidden
285 * on this route. We just assume that no packet_to_big packets
286 * are send back when pmtu discovery is not active.
287 * There is a small race when the user changes this flag in the
288 * route, but I think that's acceptable.
289 */
290 if ((dst = __sk_dst_check(sk, 0)) == NULL)
291 return;
292
293 dst->ops->update_pmtu(dst, mtu);
294
295 /* Something is about to be wrong... Remember soft error
296 * for the case, if this connection will not able to recover.
297 */
298 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299 sk->sk_err_soft = EMSGSIZE;
300
301 mtu = dst_mtu(dst);
302
303 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305 tcp_sync_mss(sk, mtu);
306
307 /* Resend the TCP packet because it's
308 * clear that the old packet has been
309 * dropped. This is the new "fast" path mtu
310 * discovery.
311 */
312 tcp_simple_retransmit(sk);
313 } /* else let the usual retransmit timer handle it */
314 }
315
316 /*
317 * This routine is called by the ICMP module when it gets some
318 * sort of error condition. If err < 0 then the socket should
319 * be closed and the error returned to the user. If err > 0
320 * it's just the icmp type << 8 | icmp code. After adjustment
321 * header points to the first 8 bytes of the tcp header. We need
322 * to find the appropriate port.
323 *
324 * The locking strategy used here is very "optimistic". When
325 * someone else accesses the socket the ICMP is just dropped
326 * and for some paths there is no check at all.
327 * A more general error queue to queue errors for later handling
328 * is probably better.
329 *
330 */
331
332 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 {
334 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
335 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
336 struct inet_connection_sock *icsk;
337 struct tcp_sock *tp;
338 struct inet_sock *inet;
339 const int type = icmp_hdr(icmp_skb)->type;
340 const int code = icmp_hdr(icmp_skb)->code;
341 struct sock *sk;
342 struct sk_buff *skb;
343 __u32 seq;
344 __u32 remaining;
345 int err;
346 struct net *net = dev_net(icmp_skb->dev);
347
348 if (icmp_skb->len < (iph->ihl << 2) + 8) {
349 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350 return;
351 }
352
353 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354 iph->saddr, th->source, inet_iif(icmp_skb));
355 if (!sk) {
356 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
357 return;
358 }
359 if (sk->sk_state == TCP_TIME_WAIT) {
360 inet_twsk_put(inet_twsk(sk));
361 return;
362 }
363
364 bh_lock_sock(sk);
365 /* If too many ICMPs get dropped on busy
366 * servers this needs to be solved differently.
367 */
368 if (sock_owned_by_user(sk))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
373
374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376 goto out;
377 }
378
379 icsk = inet_csk(sk);
380 tp = tcp_sk(sk);
381 seq = ntohl(th->seq);
382 if (sk->sk_state != TCP_LISTEN &&
383 !between(seq, tp->snd_una, tp->snd_nxt)) {
384 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385 goto out;
386 }
387
388 switch (type) {
389 case ICMP_SOURCE_QUENCH:
390 /* Just silently ignore these. */
391 goto out;
392 case ICMP_PARAMETERPROB:
393 err = EPROTO;
394 break;
395 case ICMP_DEST_UNREACH:
396 if (code > NR_ICMP_UNREACH)
397 goto out;
398
399 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
400 if (!sock_owned_by_user(sk))
401 do_pmtu_discovery(sk, iph, info);
402 goto out;
403 }
404
405 err = icmp_err_convert[code].errno;
406 /* check if icmp_skb allows revert of backoff
407 * (see draft-zimmermann-tcp-lcd) */
408 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
409 break;
410 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
411 !icsk->icsk_backoff)
412 break;
413
414 icsk->icsk_backoff--;
415 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
416 icsk->icsk_backoff;
417 tcp_bound_rto(sk);
418
419 skb = tcp_write_queue_head(sk);
420 BUG_ON(!skb);
421
422 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
423 tcp_time_stamp - TCP_SKB_CB(skb)->when);
424
425 if (remaining) {
426 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
427 remaining, TCP_RTO_MAX);
428 } else if (sock_owned_by_user(sk)) {
429 /* RTO revert clocked out retransmission,
430 * but socket is locked. Will defer. */
431 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
432 HZ/20, TCP_RTO_MAX);
433 } else {
434 /* RTO revert clocked out retransmission.
435 * Will retransmit now */
436 tcp_retransmit_timer(sk);
437 }
438
439 break;
440 case ICMP_TIME_EXCEEDED:
441 err = EHOSTUNREACH;
442 break;
443 default:
444 goto out;
445 }
446
447 switch (sk->sk_state) {
448 struct request_sock *req, **prev;
449 case TCP_LISTEN:
450 if (sock_owned_by_user(sk))
451 goto out;
452
453 req = inet_csk_search_req(sk, &prev, th->dest,
454 iph->daddr, iph->saddr);
455 if (!req)
456 goto out;
457
458 /* ICMPs are not backlogged, hence we cannot get
459 an established socket here.
460 */
461 WARN_ON(req->sk);
462
463 if (seq != tcp_rsk(req)->snt_isn) {
464 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
465 goto out;
466 }
467
468 /*
469 * Still in SYN_RECV, just remove it silently.
470 * There is no good way to pass the error to the newly
471 * created socket, and POSIX does not want network
472 * errors returned from accept().
473 */
474 inet_csk_reqsk_queue_drop(sk, req, prev);
475 goto out;
476
477 case TCP_SYN_SENT:
478 case TCP_SYN_RECV: /* Cannot happen.
479 It can f.e. if SYNs crossed.
480 */
481 if (!sock_owned_by_user(sk)) {
482 sk->sk_err = err;
483
484 sk->sk_error_report(sk);
485
486 tcp_done(sk);
487 } else {
488 sk->sk_err_soft = err;
489 }
490 goto out;
491 }
492
493 /* If we've already connected we will keep trying
494 * until we time out, or the user gives up.
495 *
496 * rfc1122 4.2.3.9 allows to consider as hard errors
497 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
498 * but it is obsoleted by pmtu discovery).
499 *
500 * Note, that in modern internet, where routing is unreliable
501 * and in each dark corner broken firewalls sit, sending random
502 * errors ordered by their masters even this two messages finally lose
503 * their original sense (even Linux sends invalid PORT_UNREACHs)
504 *
505 * Now we are in compliance with RFCs.
506 * --ANK (980905)
507 */
508
509 inet = inet_sk(sk);
510 if (!sock_owned_by_user(sk) && inet->recverr) {
511 sk->sk_err = err;
512 sk->sk_error_report(sk);
513 } else { /* Only an error on timeout */
514 sk->sk_err_soft = err;
515 }
516
517 out:
518 bh_unlock_sock(sk);
519 sock_put(sk);
520 }
521
522 static void __tcp_v4_send_check(struct sk_buff *skb,
523 __be32 saddr, __be32 daddr)
524 {
525 struct tcphdr *th = tcp_hdr(skb);
526
527 if (skb->ip_summed == CHECKSUM_PARTIAL) {
528 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
529 skb->csum_start = skb_transport_header(skb) - skb->head;
530 skb->csum_offset = offsetof(struct tcphdr, check);
531 } else {
532 th->check = tcp_v4_check(skb->len, saddr, daddr,
533 csum_partial(th,
534 th->doff << 2,
535 skb->csum));
536 }
537 }
538
539 /* This routine computes an IPv4 TCP checksum. */
540 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
541 {
542 struct inet_sock *inet = inet_sk(sk);
543
544 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
545 }
546
547 int tcp_v4_gso_send_check(struct sk_buff *skb)
548 {
549 const struct iphdr *iph;
550 struct tcphdr *th;
551
552 if (!pskb_may_pull(skb, sizeof(*th)))
553 return -EINVAL;
554
555 iph = ip_hdr(skb);
556 th = tcp_hdr(skb);
557
558 th->check = 0;
559 skb->ip_summed = CHECKSUM_PARTIAL;
560 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
561 return 0;
562 }
563
564 /*
565 * This routine will send an RST to the other tcp.
566 *
567 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
568 * for reset.
569 * Answer: if a packet caused RST, it is not for a socket
570 * existing in our system, if it is matched to a socket,
571 * it is just duplicate segment or bug in other side's TCP.
572 * So that we build reply only basing on parameters
573 * arrived with segment.
574 * Exception: precedence violation. We do not implement it in any case.
575 */
576
577 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
578 {
579 struct tcphdr *th = tcp_hdr(skb);
580 struct {
581 struct tcphdr th;
582 #ifdef CONFIG_TCP_MD5SIG
583 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
584 #endif
585 } rep;
586 struct ip_reply_arg arg;
587 #ifdef CONFIG_TCP_MD5SIG
588 struct tcp_md5sig_key *key;
589 #endif
590 struct net *net;
591
592 /* Never send a reset in response to a reset. */
593 if (th->rst)
594 return;
595
596 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
597 return;
598
599 /* Swap the send and the receive. */
600 memset(&rep, 0, sizeof(rep));
601 rep.th.dest = th->source;
602 rep.th.source = th->dest;
603 rep.th.doff = sizeof(struct tcphdr) / 4;
604 rep.th.rst = 1;
605
606 if (th->ack) {
607 rep.th.seq = th->ack_seq;
608 } else {
609 rep.th.ack = 1;
610 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
611 skb->len - (th->doff << 2));
612 }
613
614 memset(&arg, 0, sizeof(arg));
615 arg.iov[0].iov_base = (unsigned char *)&rep;
616 arg.iov[0].iov_len = sizeof(rep.th);
617
618 #ifdef CONFIG_TCP_MD5SIG
619 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
620 if (key) {
621 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
622 (TCPOPT_NOP << 16) |
623 (TCPOPT_MD5SIG << 8) |
624 TCPOLEN_MD5SIG);
625 /* Update length and the length the header thinks exists */
626 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
627 rep.th.doff = arg.iov[0].iov_len / 4;
628
629 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
630 key, ip_hdr(skb)->saddr,
631 ip_hdr(skb)->daddr, &rep.th);
632 }
633 #endif
634 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
635 ip_hdr(skb)->saddr, /* XXX */
636 arg.iov[0].iov_len, IPPROTO_TCP, 0);
637 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
638 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
639
640 net = dev_net(skb_dst(skb)->dev);
641 ip_send_reply(net->ipv4.tcp_sock, skb,
642 &arg, arg.iov[0].iov_len);
643
644 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
645 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
646 }
647
648 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
649 outside socket context is ugly, certainly. What can I do?
650 */
651
652 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
653 u32 win, u32 ts, int oif,
654 struct tcp_md5sig_key *key,
655 int reply_flags)
656 {
657 struct tcphdr *th = tcp_hdr(skb);
658 struct {
659 struct tcphdr th;
660 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
661 #ifdef CONFIG_TCP_MD5SIG
662 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
663 #endif
664 ];
665 } rep;
666 struct ip_reply_arg arg;
667 struct net *net = dev_net(skb_dst(skb)->dev);
668
669 memset(&rep.th, 0, sizeof(struct tcphdr));
670 memset(&arg, 0, sizeof(arg));
671
672 arg.iov[0].iov_base = (unsigned char *)&rep;
673 arg.iov[0].iov_len = sizeof(rep.th);
674 if (ts) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
676 (TCPOPT_TIMESTAMP << 8) |
677 TCPOLEN_TIMESTAMP);
678 rep.opt[1] = htonl(tcp_time_stamp);
679 rep.opt[2] = htonl(ts);
680 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
681 }
682
683 /* Swap the send and the receive. */
684 rep.th.dest = th->source;
685 rep.th.source = th->dest;
686 rep.th.doff = arg.iov[0].iov_len / 4;
687 rep.th.seq = htonl(seq);
688 rep.th.ack_seq = htonl(ack);
689 rep.th.ack = 1;
690 rep.th.window = htons(win);
691
692 #ifdef CONFIG_TCP_MD5SIG
693 if (key) {
694 int offset = (ts) ? 3 : 0;
695
696 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
697 (TCPOPT_NOP << 16) |
698 (TCPOPT_MD5SIG << 8) |
699 TCPOLEN_MD5SIG);
700 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
701 rep.th.doff = arg.iov[0].iov_len/4;
702
703 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
704 key, ip_hdr(skb)->saddr,
705 ip_hdr(skb)->daddr, &rep.th);
706 }
707 #endif
708 arg.flags = reply_flags;
709 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
710 ip_hdr(skb)->saddr, /* XXX */
711 arg.iov[0].iov_len, IPPROTO_TCP, 0);
712 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
713 if (oif)
714 arg.bound_dev_if = oif;
715
716 ip_send_reply(net->ipv4.tcp_sock, skb,
717 &arg, arg.iov[0].iov_len);
718
719 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
720 }
721
722 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
723 {
724 struct inet_timewait_sock *tw = inet_twsk(sk);
725 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
726
727 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
728 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
729 tcptw->tw_ts_recent,
730 tw->tw_bound_dev_if,
731 tcp_twsk_md5_key(tcptw),
732 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
733 );
734
735 inet_twsk_put(tw);
736 }
737
738 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
739 struct request_sock *req)
740 {
741 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
742 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
743 req->ts_recent,
744 0,
745 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
746 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
747 }
748
749 /*
750 * Send a SYN-ACK after having received a SYN.
751 * This still operates on a request_sock only, not on a big
752 * socket.
753 */
754 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
755 struct request_sock *req,
756 struct request_values *rvp)
757 {
758 const struct inet_request_sock *ireq = inet_rsk(req);
759 int err = -1;
760 struct sk_buff * skb;
761
762 /* First, grab a route. */
763 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
764 return -1;
765
766 skb = tcp_make_synack(sk, dst, req, rvp);
767
768 if (skb) {
769 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
770
771 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
772 ireq->rmt_addr,
773 ireq->opt);
774 err = net_xmit_eval(err);
775 }
776
777 dst_release(dst);
778 return err;
779 }
780
781 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
782 struct request_values *rvp)
783 {
784 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
785 return tcp_v4_send_synack(sk, NULL, req, rvp);
786 }
787
788 /*
789 * IPv4 request_sock destructor.
790 */
791 static void tcp_v4_reqsk_destructor(struct request_sock *req)
792 {
793 kfree(inet_rsk(req)->opt);
794 }
795
796 static void syn_flood_warning(const struct sk_buff *skb)
797 {
798 const char *msg;
799
800 #ifdef CONFIG_SYN_COOKIES
801 if (sysctl_tcp_syncookies)
802 msg = "Sending cookies";
803 else
804 #endif
805 msg = "Dropping request";
806
807 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
808 ntohs(tcp_hdr(skb)->dest), msg);
809 }
810
811 /*
812 * Save and compile IPv4 options into the request_sock if needed.
813 */
814 static struct ip_options *tcp_v4_save_options(struct sock *sk,
815 struct sk_buff *skb)
816 {
817 struct ip_options *opt = &(IPCB(skb)->opt);
818 struct ip_options *dopt = NULL;
819
820 if (opt && opt->optlen) {
821 int opt_size = optlength(opt);
822 dopt = kmalloc(opt_size, GFP_ATOMIC);
823 if (dopt) {
824 if (ip_options_echo(dopt, skb)) {
825 kfree(dopt);
826 dopt = NULL;
827 }
828 }
829 }
830 return dopt;
831 }
832
833 #ifdef CONFIG_TCP_MD5SIG
834 /*
835 * RFC2385 MD5 checksumming requires a mapping of
836 * IP address->MD5 Key.
837 * We need to maintain these in the sk structure.
838 */
839
840 /* Find the Key structure for an address. */
841 static struct tcp_md5sig_key *
842 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
843 {
844 struct tcp_sock *tp = tcp_sk(sk);
845 int i;
846
847 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
848 return NULL;
849 for (i = 0; i < tp->md5sig_info->entries4; i++) {
850 if (tp->md5sig_info->keys4[i].addr == addr)
851 return &tp->md5sig_info->keys4[i].base;
852 }
853 return NULL;
854 }
855
856 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
857 struct sock *addr_sk)
858 {
859 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
860 }
861
862 EXPORT_SYMBOL(tcp_v4_md5_lookup);
863
864 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
865 struct request_sock *req)
866 {
867 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
868 }
869
870 /* This can be called on a newly created socket, from other files */
871 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
872 u8 *newkey, u8 newkeylen)
873 {
874 /* Add Key to the list */
875 struct tcp_md5sig_key *key;
876 struct tcp_sock *tp = tcp_sk(sk);
877 struct tcp4_md5sig_key *keys;
878
879 key = tcp_v4_md5_do_lookup(sk, addr);
880 if (key) {
881 /* Pre-existing entry - just update that one. */
882 kfree(key->key);
883 key->key = newkey;
884 key->keylen = newkeylen;
885 } else {
886 struct tcp_md5sig_info *md5sig;
887
888 if (!tp->md5sig_info) {
889 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
890 GFP_ATOMIC);
891 if (!tp->md5sig_info) {
892 kfree(newkey);
893 return -ENOMEM;
894 }
895 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
896 }
897 if (tcp_alloc_md5sig_pool(sk) == NULL) {
898 kfree(newkey);
899 return -ENOMEM;
900 }
901 md5sig = tp->md5sig_info;
902
903 if (md5sig->alloced4 == md5sig->entries4) {
904 keys = kmalloc((sizeof(*keys) *
905 (md5sig->entries4 + 1)), GFP_ATOMIC);
906 if (!keys) {
907 kfree(newkey);
908 tcp_free_md5sig_pool();
909 return -ENOMEM;
910 }
911
912 if (md5sig->entries4)
913 memcpy(keys, md5sig->keys4,
914 sizeof(*keys) * md5sig->entries4);
915
916 /* Free old key list, and reference new one */
917 kfree(md5sig->keys4);
918 md5sig->keys4 = keys;
919 md5sig->alloced4++;
920 }
921 md5sig->entries4++;
922 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
923 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
924 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
925 }
926 return 0;
927 }
928
929 EXPORT_SYMBOL(tcp_v4_md5_do_add);
930
931 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
932 u8 *newkey, u8 newkeylen)
933 {
934 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
935 newkey, newkeylen);
936 }
937
938 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
939 {
940 struct tcp_sock *tp = tcp_sk(sk);
941 int i;
942
943 for (i = 0; i < tp->md5sig_info->entries4; i++) {
944 if (tp->md5sig_info->keys4[i].addr == addr) {
945 /* Free the key */
946 kfree(tp->md5sig_info->keys4[i].base.key);
947 tp->md5sig_info->entries4--;
948
949 if (tp->md5sig_info->entries4 == 0) {
950 kfree(tp->md5sig_info->keys4);
951 tp->md5sig_info->keys4 = NULL;
952 tp->md5sig_info->alloced4 = 0;
953 } else if (tp->md5sig_info->entries4 != i) {
954 /* Need to do some manipulation */
955 memmove(&tp->md5sig_info->keys4[i],
956 &tp->md5sig_info->keys4[i+1],
957 (tp->md5sig_info->entries4 - i) *
958 sizeof(struct tcp4_md5sig_key));
959 }
960 tcp_free_md5sig_pool();
961 return 0;
962 }
963 }
964 return -ENOENT;
965 }
966
967 EXPORT_SYMBOL(tcp_v4_md5_do_del);
968
969 static void tcp_v4_clear_md5_list(struct sock *sk)
970 {
971 struct tcp_sock *tp = tcp_sk(sk);
972
973 /* Free each key, then the set of key keys,
974 * the crypto element, and then decrement our
975 * hold on the last resort crypto.
976 */
977 if (tp->md5sig_info->entries4) {
978 int i;
979 for (i = 0; i < tp->md5sig_info->entries4; i++)
980 kfree(tp->md5sig_info->keys4[i].base.key);
981 tp->md5sig_info->entries4 = 0;
982 tcp_free_md5sig_pool();
983 }
984 if (tp->md5sig_info->keys4) {
985 kfree(tp->md5sig_info->keys4);
986 tp->md5sig_info->keys4 = NULL;
987 tp->md5sig_info->alloced4 = 0;
988 }
989 }
990
991 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
992 int optlen)
993 {
994 struct tcp_md5sig cmd;
995 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
996 u8 *newkey;
997
998 if (optlen < sizeof(cmd))
999 return -EINVAL;
1000
1001 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1002 return -EFAULT;
1003
1004 if (sin->sin_family != AF_INET)
1005 return -EINVAL;
1006
1007 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1008 if (!tcp_sk(sk)->md5sig_info)
1009 return -ENOENT;
1010 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1011 }
1012
1013 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1014 return -EINVAL;
1015
1016 if (!tcp_sk(sk)->md5sig_info) {
1017 struct tcp_sock *tp = tcp_sk(sk);
1018 struct tcp_md5sig_info *p;
1019
1020 p = kzalloc(sizeof(*p), sk->sk_allocation);
1021 if (!p)
1022 return -EINVAL;
1023
1024 tp->md5sig_info = p;
1025 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1026 }
1027
1028 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1029 if (!newkey)
1030 return -ENOMEM;
1031 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1032 newkey, cmd.tcpm_keylen);
1033 }
1034
1035 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1036 __be32 daddr, __be32 saddr, int nbytes)
1037 {
1038 struct tcp4_pseudohdr *bp;
1039 struct scatterlist sg;
1040
1041 bp = &hp->md5_blk.ip4;
1042
1043 /*
1044 * 1. the TCP pseudo-header (in the order: source IP address,
1045 * destination IP address, zero-padded protocol number, and
1046 * segment length)
1047 */
1048 bp->saddr = saddr;
1049 bp->daddr = daddr;
1050 bp->pad = 0;
1051 bp->protocol = IPPROTO_TCP;
1052 bp->len = cpu_to_be16(nbytes);
1053
1054 sg_init_one(&sg, bp, sizeof(*bp));
1055 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1056 }
1057
1058 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1059 __be32 daddr, __be32 saddr, struct tcphdr *th)
1060 {
1061 struct tcp_md5sig_pool *hp;
1062 struct hash_desc *desc;
1063
1064 hp = tcp_get_md5sig_pool();
1065 if (!hp)
1066 goto clear_hash_noput;
1067 desc = &hp->md5_desc;
1068
1069 if (crypto_hash_init(desc))
1070 goto clear_hash;
1071 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1072 goto clear_hash;
1073 if (tcp_md5_hash_header(hp, th))
1074 goto clear_hash;
1075 if (tcp_md5_hash_key(hp, key))
1076 goto clear_hash;
1077 if (crypto_hash_final(desc, md5_hash))
1078 goto clear_hash;
1079
1080 tcp_put_md5sig_pool();
1081 return 0;
1082
1083 clear_hash:
1084 tcp_put_md5sig_pool();
1085 clear_hash_noput:
1086 memset(md5_hash, 0, 16);
1087 return 1;
1088 }
1089
1090 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1091 struct sock *sk, struct request_sock *req,
1092 struct sk_buff *skb)
1093 {
1094 struct tcp_md5sig_pool *hp;
1095 struct hash_desc *desc;
1096 struct tcphdr *th = tcp_hdr(skb);
1097 __be32 saddr, daddr;
1098
1099 if (sk) {
1100 saddr = inet_sk(sk)->inet_saddr;
1101 daddr = inet_sk(sk)->inet_daddr;
1102 } else if (req) {
1103 saddr = inet_rsk(req)->loc_addr;
1104 daddr = inet_rsk(req)->rmt_addr;
1105 } else {
1106 const struct iphdr *iph = ip_hdr(skb);
1107 saddr = iph->saddr;
1108 daddr = iph->daddr;
1109 }
1110
1111 hp = tcp_get_md5sig_pool();
1112 if (!hp)
1113 goto clear_hash_noput;
1114 desc = &hp->md5_desc;
1115
1116 if (crypto_hash_init(desc))
1117 goto clear_hash;
1118
1119 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1120 goto clear_hash;
1121 if (tcp_md5_hash_header(hp, th))
1122 goto clear_hash;
1123 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1124 goto clear_hash;
1125 if (tcp_md5_hash_key(hp, key))
1126 goto clear_hash;
1127 if (crypto_hash_final(desc, md5_hash))
1128 goto clear_hash;
1129
1130 tcp_put_md5sig_pool();
1131 return 0;
1132
1133 clear_hash:
1134 tcp_put_md5sig_pool();
1135 clear_hash_noput:
1136 memset(md5_hash, 0, 16);
1137 return 1;
1138 }
1139
1140 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1141
1142 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1143 {
1144 /*
1145 * This gets called for each TCP segment that arrives
1146 * so we want to be efficient.
1147 * We have 3 drop cases:
1148 * o No MD5 hash and one expected.
1149 * o MD5 hash and we're not expecting one.
1150 * o MD5 hash and its wrong.
1151 */
1152 __u8 *hash_location = NULL;
1153 struct tcp_md5sig_key *hash_expected;
1154 const struct iphdr *iph = ip_hdr(skb);
1155 struct tcphdr *th = tcp_hdr(skb);
1156 int genhash;
1157 unsigned char newhash[16];
1158
1159 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1160 hash_location = tcp_parse_md5sig_option(th);
1161
1162 /* We've parsed the options - do we have a hash? */
1163 if (!hash_expected && !hash_location)
1164 return 0;
1165
1166 if (hash_expected && !hash_location) {
1167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1168 return 1;
1169 }
1170
1171 if (!hash_expected && hash_location) {
1172 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1173 return 1;
1174 }
1175
1176 /* Okay, so this is hash_expected and hash_location -
1177 * so we need to calculate the checksum.
1178 */
1179 genhash = tcp_v4_md5_hash_skb(newhash,
1180 hash_expected,
1181 NULL, NULL, skb);
1182
1183 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1184 if (net_ratelimit()) {
1185 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1186 &iph->saddr, ntohs(th->source),
1187 &iph->daddr, ntohs(th->dest),
1188 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1189 }
1190 return 1;
1191 }
1192 return 0;
1193 }
1194
1195 #endif
1196
1197 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1198 .family = PF_INET,
1199 .obj_size = sizeof(struct tcp_request_sock),
1200 .rtx_syn_ack = tcp_v4_rtx_synack,
1201 .send_ack = tcp_v4_reqsk_send_ack,
1202 .destructor = tcp_v4_reqsk_destructor,
1203 .send_reset = tcp_v4_send_reset,
1204 .syn_ack_timeout = tcp_syn_ack_timeout,
1205 };
1206
1207 #ifdef CONFIG_TCP_MD5SIG
1208 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1209 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1210 .calc_md5_hash = tcp_v4_md5_hash_skb,
1211 };
1212 #endif
1213
1214 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1215 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1216 .twsk_unique = tcp_twsk_unique,
1217 .twsk_destructor= tcp_twsk_destructor,
1218 };
1219
1220 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1221 {
1222 struct tcp_extend_values tmp_ext;
1223 struct tcp_options_received tmp_opt;
1224 u8 *hash_location;
1225 struct request_sock *req;
1226 struct inet_request_sock *ireq;
1227 struct tcp_sock *tp = tcp_sk(sk);
1228 struct dst_entry *dst = NULL;
1229 __be32 saddr = ip_hdr(skb)->saddr;
1230 __be32 daddr = ip_hdr(skb)->daddr;
1231 __u32 isn = TCP_SKB_CB(skb)->when;
1232 #ifdef CONFIG_SYN_COOKIES
1233 int want_cookie = 0;
1234 #else
1235 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1236 #endif
1237
1238 /* Never answer to SYNs send to broadcast or multicast */
1239 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1240 goto drop;
1241
1242 /* TW buckets are converted to open requests without
1243 * limitations, they conserve resources and peer is
1244 * evidently real one.
1245 */
1246 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1247 if (net_ratelimit())
1248 syn_flood_warning(skb);
1249 #ifdef CONFIG_SYN_COOKIES
1250 if (sysctl_tcp_syncookies) {
1251 want_cookie = 1;
1252 } else
1253 #endif
1254 goto drop;
1255 }
1256
1257 /* Accept backlog is full. If we have already queued enough
1258 * of warm entries in syn queue, drop request. It is better than
1259 * clogging syn queue with openreqs with exponentially increasing
1260 * timeout.
1261 */
1262 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1263 goto drop;
1264
1265 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1266 if (!req)
1267 goto drop;
1268
1269 #ifdef CONFIG_TCP_MD5SIG
1270 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1271 #endif
1272
1273 tcp_clear_options(&tmp_opt);
1274 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1275 tmp_opt.user_mss = tp->rx_opt.user_mss;
1276 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1277
1278 if (tmp_opt.cookie_plus > 0 &&
1279 tmp_opt.saw_tstamp &&
1280 !tp->rx_opt.cookie_out_never &&
1281 (sysctl_tcp_cookie_size > 0 ||
1282 (tp->cookie_values != NULL &&
1283 tp->cookie_values->cookie_desired > 0))) {
1284 u8 *c;
1285 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1286 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1287
1288 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1289 goto drop_and_release;
1290
1291 /* Secret recipe starts with IP addresses */
1292 *mess++ ^= (__force u32)daddr;
1293 *mess++ ^= (__force u32)saddr;
1294
1295 /* plus variable length Initiator Cookie */
1296 c = (u8 *)mess;
1297 while (l-- > 0)
1298 *c++ ^= *hash_location++;
1299
1300 #ifdef CONFIG_SYN_COOKIES
1301 want_cookie = 0; /* not our kind of cookie */
1302 #endif
1303 tmp_ext.cookie_out_never = 0; /* false */
1304 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1305 } else if (!tp->rx_opt.cookie_in_always) {
1306 /* redundant indications, but ensure initialization. */
1307 tmp_ext.cookie_out_never = 1; /* true */
1308 tmp_ext.cookie_plus = 0;
1309 } else {
1310 goto drop_and_release;
1311 }
1312 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1313
1314 if (want_cookie && !tmp_opt.saw_tstamp)
1315 tcp_clear_options(&tmp_opt);
1316
1317 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1318 tcp_openreq_init(req, &tmp_opt, skb);
1319
1320 ireq = inet_rsk(req);
1321 ireq->loc_addr = daddr;
1322 ireq->rmt_addr = saddr;
1323 ireq->no_srccheck = inet_sk(sk)->transparent;
1324 ireq->opt = tcp_v4_save_options(sk, skb);
1325
1326 if (security_inet_conn_request(sk, skb, req))
1327 goto drop_and_free;
1328
1329 if (!want_cookie)
1330 TCP_ECN_create_request(req, tcp_hdr(skb));
1331
1332 if (want_cookie) {
1333 #ifdef CONFIG_SYN_COOKIES
1334 req->cookie_ts = tmp_opt.tstamp_ok;
1335 #endif
1336 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1337 } else if (!isn) {
1338 struct inet_peer *peer = NULL;
1339
1340 /* VJ's idea. We save last timestamp seen
1341 * from the destination in peer table, when entering
1342 * state TIME-WAIT, and check against it before
1343 * accepting new connection request.
1344 *
1345 * If "isn" is not zero, this request hit alive
1346 * timewait bucket, so that all the necessary checks
1347 * are made in the function processing timewait state.
1348 */
1349 if (tmp_opt.saw_tstamp &&
1350 tcp_death_row.sysctl_tw_recycle &&
1351 (dst = inet_csk_route_req(sk, req)) != NULL &&
1352 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1353 peer->v4daddr == saddr) {
1354 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1355 (s32)(peer->tcp_ts - req->ts_recent) >
1356 TCP_PAWS_WINDOW) {
1357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1358 goto drop_and_release;
1359 }
1360 }
1361 /* Kill the following clause, if you dislike this way. */
1362 else if (!sysctl_tcp_syncookies &&
1363 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1364 (sysctl_max_syn_backlog >> 2)) &&
1365 (!peer || !peer->tcp_ts_stamp) &&
1366 (!dst || !dst_metric(dst, RTAX_RTT))) {
1367 /* Without syncookies last quarter of
1368 * backlog is filled with destinations,
1369 * proven to be alive.
1370 * It means that we continue to communicate
1371 * to destinations, already remembered
1372 * to the moment of synflood.
1373 */
1374 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1375 &saddr, ntohs(tcp_hdr(skb)->source));
1376 goto drop_and_release;
1377 }
1378
1379 isn = tcp_v4_init_sequence(skb);
1380 }
1381 tcp_rsk(req)->snt_isn = isn;
1382
1383 if (tcp_v4_send_synack(sk, dst, req,
1384 (struct request_values *)&tmp_ext) ||
1385 want_cookie)
1386 goto drop_and_free;
1387
1388 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1389 return 0;
1390
1391 drop_and_release:
1392 dst_release(dst);
1393 drop_and_free:
1394 reqsk_free(req);
1395 drop:
1396 return 0;
1397 }
1398
1399
1400 /*
1401 * The three way handshake has completed - we got a valid synack -
1402 * now create the new socket.
1403 */
1404 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1405 struct request_sock *req,
1406 struct dst_entry *dst)
1407 {
1408 struct inet_request_sock *ireq;
1409 struct inet_sock *newinet;
1410 struct tcp_sock *newtp;
1411 struct sock *newsk;
1412 #ifdef CONFIG_TCP_MD5SIG
1413 struct tcp_md5sig_key *key;
1414 #endif
1415
1416 if (sk_acceptq_is_full(sk))
1417 goto exit_overflow;
1418
1419 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1420 goto exit;
1421
1422 newsk = tcp_create_openreq_child(sk, req, skb);
1423 if (!newsk)
1424 goto exit;
1425
1426 newsk->sk_gso_type = SKB_GSO_TCPV4;
1427 sk_setup_caps(newsk, dst);
1428
1429 newtp = tcp_sk(newsk);
1430 newinet = inet_sk(newsk);
1431 ireq = inet_rsk(req);
1432 newinet->inet_daddr = ireq->rmt_addr;
1433 newinet->inet_rcv_saddr = ireq->loc_addr;
1434 newinet->inet_saddr = ireq->loc_addr;
1435 newinet->opt = ireq->opt;
1436 ireq->opt = NULL;
1437 newinet->mc_index = inet_iif(skb);
1438 newinet->mc_ttl = ip_hdr(skb)->ttl;
1439 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1440 if (newinet->opt)
1441 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1442 newinet->inet_id = newtp->write_seq ^ jiffies;
1443
1444 tcp_mtup_init(newsk);
1445 tcp_sync_mss(newsk, dst_mtu(dst));
1446 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1447 if (tcp_sk(sk)->rx_opt.user_mss &&
1448 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1449 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1450
1451 tcp_initialize_rcv_mss(newsk);
1452
1453 #ifdef CONFIG_TCP_MD5SIG
1454 /* Copy over the MD5 key from the original socket */
1455 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1456 if (key != NULL) {
1457 /*
1458 * We're using one, so create a matching key
1459 * on the newsk structure. If we fail to get
1460 * memory, then we end up not copying the key
1461 * across. Shucks.
1462 */
1463 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1464 if (newkey != NULL)
1465 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1466 newkey, key->keylen);
1467 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1468 }
1469 #endif
1470
1471 __inet_hash_nolisten(newsk, NULL);
1472 __inet_inherit_port(sk, newsk);
1473
1474 return newsk;
1475
1476 exit_overflow:
1477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1478 exit:
1479 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1480 dst_release(dst);
1481 return NULL;
1482 }
1483
1484 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1485 {
1486 struct tcphdr *th = tcp_hdr(skb);
1487 const struct iphdr *iph = ip_hdr(skb);
1488 struct sock *nsk;
1489 struct request_sock **prev;
1490 /* Find possible connection requests. */
1491 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1492 iph->saddr, iph->daddr);
1493 if (req)
1494 return tcp_check_req(sk, skb, req, prev);
1495
1496 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1497 th->source, iph->daddr, th->dest, inet_iif(skb));
1498
1499 if (nsk) {
1500 if (nsk->sk_state != TCP_TIME_WAIT) {
1501 bh_lock_sock(nsk);
1502 return nsk;
1503 }
1504 inet_twsk_put(inet_twsk(nsk));
1505 return NULL;
1506 }
1507
1508 #ifdef CONFIG_SYN_COOKIES
1509 if (!th->syn)
1510 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1511 #endif
1512 return sk;
1513 }
1514
1515 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1516 {
1517 const struct iphdr *iph = ip_hdr(skb);
1518
1519 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1520 if (!tcp_v4_check(skb->len, iph->saddr,
1521 iph->daddr, skb->csum)) {
1522 skb->ip_summed = CHECKSUM_UNNECESSARY;
1523 return 0;
1524 }
1525 }
1526
1527 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1528 skb->len, IPPROTO_TCP, 0);
1529
1530 if (skb->len <= 76) {
1531 return __skb_checksum_complete(skb);
1532 }
1533 return 0;
1534 }
1535
1536
1537 /* The socket must have it's spinlock held when we get
1538 * here.
1539 *
1540 * We have a potential double-lock case here, so even when
1541 * doing backlog processing we use the BH locking scheme.
1542 * This is because we cannot sleep with the original spinlock
1543 * held.
1544 */
1545 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1546 {
1547 struct sock *rsk;
1548 #ifdef CONFIG_TCP_MD5SIG
1549 /*
1550 * We really want to reject the packet as early as possible
1551 * if:
1552 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1553 * o There is an MD5 option and we're not expecting one
1554 */
1555 if (tcp_v4_inbound_md5_hash(sk, skb))
1556 goto discard;
1557 #endif
1558
1559 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1560 sock_rps_save_rxhash(sk, skb->rxhash);
1561 TCP_CHECK_TIMER(sk);
1562 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1563 rsk = sk;
1564 goto reset;
1565 }
1566 TCP_CHECK_TIMER(sk);
1567 return 0;
1568 }
1569
1570 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1571 goto csum_err;
1572
1573 if (sk->sk_state == TCP_LISTEN) {
1574 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1575 if (!nsk)
1576 goto discard;
1577
1578 if (nsk != sk) {
1579 if (tcp_child_process(sk, nsk, skb)) {
1580 rsk = nsk;
1581 goto reset;
1582 }
1583 return 0;
1584 }
1585 } else
1586 sock_rps_save_rxhash(sk, skb->rxhash);
1587
1588
1589 TCP_CHECK_TIMER(sk);
1590 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1591 rsk = sk;
1592 goto reset;
1593 }
1594 TCP_CHECK_TIMER(sk);
1595 return 0;
1596
1597 reset:
1598 tcp_v4_send_reset(rsk, skb);
1599 discard:
1600 kfree_skb(skb);
1601 /* Be careful here. If this function gets more complicated and
1602 * gcc suffers from register pressure on the x86, sk (in %ebx)
1603 * might be destroyed here. This current version compiles correctly,
1604 * but you have been warned.
1605 */
1606 return 0;
1607
1608 csum_err:
1609 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1610 goto discard;
1611 }
1612
1613 /*
1614 * From tcp_input.c
1615 */
1616
1617 int tcp_v4_rcv(struct sk_buff *skb)
1618 {
1619 const struct iphdr *iph;
1620 struct tcphdr *th;
1621 struct sock *sk;
1622 int ret;
1623 struct net *net = dev_net(skb->dev);
1624
1625 if (skb->pkt_type != PACKET_HOST)
1626 goto discard_it;
1627
1628 /* Count it even if it's bad */
1629 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1630
1631 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1632 goto discard_it;
1633
1634 th = tcp_hdr(skb);
1635
1636 if (th->doff < sizeof(struct tcphdr) / 4)
1637 goto bad_packet;
1638 if (!pskb_may_pull(skb, th->doff * 4))
1639 goto discard_it;
1640
1641 /* An explanation is required here, I think.
1642 * Packet length and doff are validated by header prediction,
1643 * provided case of th->doff==0 is eliminated.
1644 * So, we defer the checks. */
1645 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1646 goto bad_packet;
1647
1648 th = tcp_hdr(skb);
1649 iph = ip_hdr(skb);
1650 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1651 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1652 skb->len - th->doff * 4);
1653 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1654 TCP_SKB_CB(skb)->when = 0;
1655 TCP_SKB_CB(skb)->flags = iph->tos;
1656 TCP_SKB_CB(skb)->sacked = 0;
1657
1658 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1659 if (!sk)
1660 goto no_tcp_socket;
1661
1662 process:
1663 if (sk->sk_state == TCP_TIME_WAIT)
1664 goto do_time_wait;
1665
1666 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1667 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1668 goto discard_and_relse;
1669 }
1670
1671 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1672 goto discard_and_relse;
1673 nf_reset(skb);
1674
1675 if (sk_filter(sk, skb))
1676 goto discard_and_relse;
1677
1678 skb->dev = NULL;
1679
1680 bh_lock_sock_nested(sk);
1681 ret = 0;
1682 if (!sock_owned_by_user(sk)) {
1683 #ifdef CONFIG_NET_DMA
1684 struct tcp_sock *tp = tcp_sk(sk);
1685 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1686 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1687 if (tp->ucopy.dma_chan)
1688 ret = tcp_v4_do_rcv(sk, skb);
1689 else
1690 #endif
1691 {
1692 if (!tcp_prequeue(sk, skb))
1693 ret = tcp_v4_do_rcv(sk, skb);
1694 }
1695 } else if (unlikely(sk_add_backlog(sk, skb))) {
1696 bh_unlock_sock(sk);
1697 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1698 goto discard_and_relse;
1699 }
1700 bh_unlock_sock(sk);
1701
1702 sock_put(sk);
1703
1704 return ret;
1705
1706 no_tcp_socket:
1707 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1708 goto discard_it;
1709
1710 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1711 bad_packet:
1712 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1713 } else {
1714 tcp_v4_send_reset(NULL, skb);
1715 }
1716
1717 discard_it:
1718 /* Discard frame. */
1719 kfree_skb(skb);
1720 return 0;
1721
1722 discard_and_relse:
1723 sock_put(sk);
1724 goto discard_it;
1725
1726 do_time_wait:
1727 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1728 inet_twsk_put(inet_twsk(sk));
1729 goto discard_it;
1730 }
1731
1732 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1733 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1734 inet_twsk_put(inet_twsk(sk));
1735 goto discard_it;
1736 }
1737 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1738 case TCP_TW_SYN: {
1739 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1740 &tcp_hashinfo,
1741 iph->daddr, th->dest,
1742 inet_iif(skb));
1743 if (sk2) {
1744 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1745 inet_twsk_put(inet_twsk(sk));
1746 sk = sk2;
1747 goto process;
1748 }
1749 /* Fall through to ACK */
1750 }
1751 case TCP_TW_ACK:
1752 tcp_v4_timewait_ack(sk, skb);
1753 break;
1754 case TCP_TW_RST:
1755 goto no_tcp_socket;
1756 case TCP_TW_SUCCESS:;
1757 }
1758 goto discard_it;
1759 }
1760
1761 /* VJ's idea. Save last timestamp seen from this destination
1762 * and hold it at least for normal timewait interval to use for duplicate
1763 * segment detection in subsequent connections, before they enter synchronized
1764 * state.
1765 */
1766
1767 int tcp_v4_remember_stamp(struct sock *sk)
1768 {
1769 struct inet_sock *inet = inet_sk(sk);
1770 struct tcp_sock *tp = tcp_sk(sk);
1771 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1772 struct inet_peer *peer = NULL;
1773 int release_it = 0;
1774
1775 if (!rt || rt->rt_dst != inet->inet_daddr) {
1776 peer = inet_getpeer(inet->inet_daddr, 1);
1777 release_it = 1;
1778 } else {
1779 if (!rt->peer)
1780 rt_bind_peer(rt, 1);
1781 peer = rt->peer;
1782 }
1783
1784 if (peer) {
1785 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1786 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1787 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1788 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1789 peer->tcp_ts = tp->rx_opt.ts_recent;
1790 }
1791 if (release_it)
1792 inet_putpeer(peer);
1793 return 1;
1794 }
1795
1796 return 0;
1797 }
1798
1799 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1800 {
1801 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1802
1803 if (peer) {
1804 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1805
1806 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1807 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1808 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1809 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1810 peer->tcp_ts = tcptw->tw_ts_recent;
1811 }
1812 inet_putpeer(peer);
1813 return 1;
1814 }
1815
1816 return 0;
1817 }
1818
1819 const struct inet_connection_sock_af_ops ipv4_specific = {
1820 .queue_xmit = ip_queue_xmit,
1821 .send_check = tcp_v4_send_check,
1822 .rebuild_header = inet_sk_rebuild_header,
1823 .conn_request = tcp_v4_conn_request,
1824 .syn_recv_sock = tcp_v4_syn_recv_sock,
1825 .remember_stamp = tcp_v4_remember_stamp,
1826 .net_header_len = sizeof(struct iphdr),
1827 .setsockopt = ip_setsockopt,
1828 .getsockopt = ip_getsockopt,
1829 .addr2sockaddr = inet_csk_addr2sockaddr,
1830 .sockaddr_len = sizeof(struct sockaddr_in),
1831 .bind_conflict = inet_csk_bind_conflict,
1832 #ifdef CONFIG_COMPAT
1833 .compat_setsockopt = compat_ip_setsockopt,
1834 .compat_getsockopt = compat_ip_getsockopt,
1835 #endif
1836 };
1837
1838 #ifdef CONFIG_TCP_MD5SIG
1839 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1840 .md5_lookup = tcp_v4_md5_lookup,
1841 .calc_md5_hash = tcp_v4_md5_hash_skb,
1842 .md5_add = tcp_v4_md5_add_func,
1843 .md5_parse = tcp_v4_parse_md5_keys,
1844 };
1845 #endif
1846
1847 /* NOTE: A lot of things set to zero explicitly by call to
1848 * sk_alloc() so need not be done here.
1849 */
1850 static int tcp_v4_init_sock(struct sock *sk)
1851 {
1852 struct inet_connection_sock *icsk = inet_csk(sk);
1853 struct tcp_sock *tp = tcp_sk(sk);
1854
1855 skb_queue_head_init(&tp->out_of_order_queue);
1856 tcp_init_xmit_timers(sk);
1857 tcp_prequeue_init(tp);
1858
1859 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1860 tp->mdev = TCP_TIMEOUT_INIT;
1861
1862 /* So many TCP implementations out there (incorrectly) count the
1863 * initial SYN frame in their delayed-ACK and congestion control
1864 * algorithms that we must have the following bandaid to talk
1865 * efficiently to them. -DaveM
1866 */
1867 tp->snd_cwnd = 2;
1868
1869 /* See draft-stevens-tcpca-spec-01 for discussion of the
1870 * initialization of these values.
1871 */
1872 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1873 tp->snd_cwnd_clamp = ~0;
1874 tp->mss_cache = TCP_MSS_DEFAULT;
1875
1876 tp->reordering = sysctl_tcp_reordering;
1877 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1878
1879 sk->sk_state = TCP_CLOSE;
1880
1881 sk->sk_write_space = sk_stream_write_space;
1882 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1883
1884 icsk->icsk_af_ops = &ipv4_specific;
1885 icsk->icsk_sync_mss = tcp_sync_mss;
1886 #ifdef CONFIG_TCP_MD5SIG
1887 tp->af_specific = &tcp_sock_ipv4_specific;
1888 #endif
1889
1890 /* TCP Cookie Transactions */
1891 if (sysctl_tcp_cookie_size > 0) {
1892 /* Default, cookies without s_data_payload. */
1893 tp->cookie_values =
1894 kzalloc(sizeof(*tp->cookie_values),
1895 sk->sk_allocation);
1896 if (tp->cookie_values != NULL)
1897 kref_init(&tp->cookie_values->kref);
1898 }
1899 /* Presumed zeroed, in order of appearance:
1900 * cookie_in_always, cookie_out_never,
1901 * s_data_constant, s_data_in, s_data_out
1902 */
1903 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1904 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1905
1906 local_bh_disable();
1907 percpu_counter_inc(&tcp_sockets_allocated);
1908 local_bh_enable();
1909
1910 return 0;
1911 }
1912
1913 void tcp_v4_destroy_sock(struct sock *sk)
1914 {
1915 struct tcp_sock *tp = tcp_sk(sk);
1916
1917 tcp_clear_xmit_timers(sk);
1918
1919 tcp_cleanup_congestion_control(sk);
1920
1921 /* Cleanup up the write buffer. */
1922 tcp_write_queue_purge(sk);
1923
1924 /* Cleans up our, hopefully empty, out_of_order_queue. */
1925 __skb_queue_purge(&tp->out_of_order_queue);
1926
1927 #ifdef CONFIG_TCP_MD5SIG
1928 /* Clean up the MD5 key list, if any */
1929 if (tp->md5sig_info) {
1930 tcp_v4_clear_md5_list(sk);
1931 kfree(tp->md5sig_info);
1932 tp->md5sig_info = NULL;
1933 }
1934 #endif
1935
1936 #ifdef CONFIG_NET_DMA
1937 /* Cleans up our sk_async_wait_queue */
1938 __skb_queue_purge(&sk->sk_async_wait_queue);
1939 #endif
1940
1941 /* Clean prequeue, it must be empty really */
1942 __skb_queue_purge(&tp->ucopy.prequeue);
1943
1944 /* Clean up a referenced TCP bind bucket. */
1945 if (inet_csk(sk)->icsk_bind_hash)
1946 inet_put_port(sk);
1947
1948 /*
1949 * If sendmsg cached page exists, toss it.
1950 */
1951 if (sk->sk_sndmsg_page) {
1952 __free_page(sk->sk_sndmsg_page);
1953 sk->sk_sndmsg_page = NULL;
1954 }
1955
1956 /* TCP Cookie Transactions */
1957 if (tp->cookie_values != NULL) {
1958 kref_put(&tp->cookie_values->kref,
1959 tcp_cookie_values_release);
1960 tp->cookie_values = NULL;
1961 }
1962
1963 percpu_counter_dec(&tcp_sockets_allocated);
1964 }
1965
1966 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1967
1968 #ifdef CONFIG_PROC_FS
1969 /* Proc filesystem TCP sock list dumping. */
1970
1971 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1972 {
1973 return hlist_nulls_empty(head) ? NULL :
1974 list_entry(head->first, struct inet_timewait_sock, tw_node);
1975 }
1976
1977 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1978 {
1979 return !is_a_nulls(tw->tw_node.next) ?
1980 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1981 }
1982
1983 /*
1984 * Get next listener socket follow cur. If cur is NULL, get first socket
1985 * starting from bucket given in st->bucket; when st->bucket is zero the
1986 * very first socket in the hash table is returned.
1987 */
1988 static void *listening_get_next(struct seq_file *seq, void *cur)
1989 {
1990 struct inet_connection_sock *icsk;
1991 struct hlist_nulls_node *node;
1992 struct sock *sk = cur;
1993 struct inet_listen_hashbucket *ilb;
1994 struct tcp_iter_state *st = seq->private;
1995 struct net *net = seq_file_net(seq);
1996
1997 if (!sk) {
1998 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1999 spin_lock_bh(&ilb->lock);
2000 sk = sk_nulls_head(&ilb->head);
2001 st->offset = 0;
2002 goto get_sk;
2003 }
2004 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005 ++st->num;
2006 ++st->offset;
2007
2008 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2009 struct request_sock *req = cur;
2010
2011 icsk = inet_csk(st->syn_wait_sk);
2012 req = req->dl_next;
2013 while (1) {
2014 while (req) {
2015 if (req->rsk_ops->family == st->family) {
2016 cur = req;
2017 goto out;
2018 }
2019 req = req->dl_next;
2020 }
2021 st->offset = 0;
2022 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2023 break;
2024 get_req:
2025 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2026 }
2027 sk = sk_next(st->syn_wait_sk);
2028 st->state = TCP_SEQ_STATE_LISTENING;
2029 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2030 } else {
2031 icsk = inet_csk(sk);
2032 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2033 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2034 goto start_req;
2035 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2036 sk = sk_next(sk);
2037 }
2038 get_sk:
2039 sk_nulls_for_each_from(sk, node) {
2040 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2041 cur = sk;
2042 goto out;
2043 }
2044 icsk = inet_csk(sk);
2045 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2046 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2047 start_req:
2048 st->uid = sock_i_uid(sk);
2049 st->syn_wait_sk = sk;
2050 st->state = TCP_SEQ_STATE_OPENREQ;
2051 st->sbucket = 0;
2052 goto get_req;
2053 }
2054 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2055 }
2056 spin_unlock_bh(&ilb->lock);
2057 st->offset = 0;
2058 if (++st->bucket < INET_LHTABLE_SIZE) {
2059 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2060 spin_lock_bh(&ilb->lock);
2061 sk = sk_nulls_head(&ilb->head);
2062 goto get_sk;
2063 }
2064 cur = NULL;
2065 out:
2066 return cur;
2067 }
2068
2069 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2070 {
2071 struct tcp_iter_state *st = seq->private;
2072 void *rc;
2073
2074 st->bucket = 0;
2075 st->offset = 0;
2076 rc = listening_get_next(seq, NULL);
2077
2078 while (rc && *pos) {
2079 rc = listening_get_next(seq, rc);
2080 --*pos;
2081 }
2082 return rc;
2083 }
2084
2085 static inline int empty_bucket(struct tcp_iter_state *st)
2086 {
2087 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2088 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2089 }
2090
2091 /*
2092 * Get first established socket starting from bucket given in st->bucket.
2093 * If st->bucket is zero, the very first socket in the hash is returned.
2094 */
2095 static void *established_get_first(struct seq_file *seq)
2096 {
2097 struct tcp_iter_state *st = seq->private;
2098 struct net *net = seq_file_net(seq);
2099 void *rc = NULL;
2100
2101 st->offset = 0;
2102 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2103 struct sock *sk;
2104 struct hlist_nulls_node *node;
2105 struct inet_timewait_sock *tw;
2106 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2107
2108 /* Lockless fast path for the common case of empty buckets */
2109 if (empty_bucket(st))
2110 continue;
2111
2112 spin_lock_bh(lock);
2113 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2114 if (sk->sk_family != st->family ||
2115 !net_eq(sock_net(sk), net)) {
2116 continue;
2117 }
2118 rc = sk;
2119 goto out;
2120 }
2121 st->state = TCP_SEQ_STATE_TIME_WAIT;
2122 inet_twsk_for_each(tw, node,
2123 &tcp_hashinfo.ehash[st->bucket].twchain) {
2124 if (tw->tw_family != st->family ||
2125 !net_eq(twsk_net(tw), net)) {
2126 continue;
2127 }
2128 rc = tw;
2129 goto out;
2130 }
2131 spin_unlock_bh(lock);
2132 st->state = TCP_SEQ_STATE_ESTABLISHED;
2133 }
2134 out:
2135 return rc;
2136 }
2137
2138 static void *established_get_next(struct seq_file *seq, void *cur)
2139 {
2140 struct sock *sk = cur;
2141 struct inet_timewait_sock *tw;
2142 struct hlist_nulls_node *node;
2143 struct tcp_iter_state *st = seq->private;
2144 struct net *net = seq_file_net(seq);
2145
2146 ++st->num;
2147 ++st->offset;
2148
2149 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2150 tw = cur;
2151 tw = tw_next(tw);
2152 get_tw:
2153 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2154 tw = tw_next(tw);
2155 }
2156 if (tw) {
2157 cur = tw;
2158 goto out;
2159 }
2160 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2161 st->state = TCP_SEQ_STATE_ESTABLISHED;
2162
2163 /* Look for next non empty bucket */
2164 st->offset = 0;
2165 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2166 empty_bucket(st))
2167 ;
2168 if (st->bucket > tcp_hashinfo.ehash_mask)
2169 return NULL;
2170
2171 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2172 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2173 } else
2174 sk = sk_nulls_next(sk);
2175
2176 sk_nulls_for_each_from(sk, node) {
2177 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2178 goto found;
2179 }
2180
2181 st->state = TCP_SEQ_STATE_TIME_WAIT;
2182 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2183 goto get_tw;
2184 found:
2185 cur = sk;
2186 out:
2187 return cur;
2188 }
2189
2190 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2191 {
2192 struct tcp_iter_state *st = seq->private;
2193 void *rc;
2194
2195 st->bucket = 0;
2196 rc = established_get_first(seq);
2197
2198 while (rc && pos) {
2199 rc = established_get_next(seq, rc);
2200 --pos;
2201 }
2202 return rc;
2203 }
2204
2205 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2206 {
2207 void *rc;
2208 struct tcp_iter_state *st = seq->private;
2209
2210 st->state = TCP_SEQ_STATE_LISTENING;
2211 rc = listening_get_idx(seq, &pos);
2212
2213 if (!rc) {
2214 st->state = TCP_SEQ_STATE_ESTABLISHED;
2215 rc = established_get_idx(seq, pos);
2216 }
2217
2218 return rc;
2219 }
2220
2221 static void *tcp_seek_last_pos(struct seq_file *seq)
2222 {
2223 struct tcp_iter_state *st = seq->private;
2224 int offset = st->offset;
2225 int orig_num = st->num;
2226 void *rc = NULL;
2227
2228 switch (st->state) {
2229 case TCP_SEQ_STATE_OPENREQ:
2230 case TCP_SEQ_STATE_LISTENING:
2231 if (st->bucket >= INET_LHTABLE_SIZE)
2232 break;
2233 st->state = TCP_SEQ_STATE_LISTENING;
2234 rc = listening_get_next(seq, NULL);
2235 while (offset-- && rc)
2236 rc = listening_get_next(seq, rc);
2237 if (rc)
2238 break;
2239 st->bucket = 0;
2240 /* Fallthrough */
2241 case TCP_SEQ_STATE_ESTABLISHED:
2242 case TCP_SEQ_STATE_TIME_WAIT:
2243 st->state = TCP_SEQ_STATE_ESTABLISHED;
2244 if (st->bucket > tcp_hashinfo.ehash_mask)
2245 break;
2246 rc = established_get_first(seq);
2247 while (offset-- && rc)
2248 rc = established_get_next(seq, rc);
2249 }
2250
2251 st->num = orig_num;
2252
2253 return rc;
2254 }
2255
2256 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2257 {
2258 struct tcp_iter_state *st = seq->private;
2259 void *rc;
2260
2261 if (*pos && *pos == st->last_pos) {
2262 rc = tcp_seek_last_pos(seq);
2263 if (rc)
2264 goto out;
2265 }
2266
2267 st->state = TCP_SEQ_STATE_LISTENING;
2268 st->num = 0;
2269 st->bucket = 0;
2270 st->offset = 0;
2271 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2272
2273 out:
2274 st->last_pos = *pos;
2275 return rc;
2276 }
2277
2278 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2279 {
2280 struct tcp_iter_state *st = seq->private;
2281 void *rc = NULL;
2282
2283 if (v == SEQ_START_TOKEN) {
2284 rc = tcp_get_idx(seq, 0);
2285 goto out;
2286 }
2287
2288 switch (st->state) {
2289 case TCP_SEQ_STATE_OPENREQ:
2290 case TCP_SEQ_STATE_LISTENING:
2291 rc = listening_get_next(seq, v);
2292 if (!rc) {
2293 st->state = TCP_SEQ_STATE_ESTABLISHED;
2294 st->bucket = 0;
2295 st->offset = 0;
2296 rc = established_get_first(seq);
2297 }
2298 break;
2299 case TCP_SEQ_STATE_ESTABLISHED:
2300 case TCP_SEQ_STATE_TIME_WAIT:
2301 rc = established_get_next(seq, v);
2302 break;
2303 }
2304 out:
2305 ++*pos;
2306 st->last_pos = *pos;
2307 return rc;
2308 }
2309
2310 static void tcp_seq_stop(struct seq_file *seq, void *v)
2311 {
2312 struct tcp_iter_state *st = seq->private;
2313
2314 switch (st->state) {
2315 case TCP_SEQ_STATE_OPENREQ:
2316 if (v) {
2317 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2318 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2319 }
2320 case TCP_SEQ_STATE_LISTENING:
2321 if (v != SEQ_START_TOKEN)
2322 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2323 break;
2324 case TCP_SEQ_STATE_TIME_WAIT:
2325 case TCP_SEQ_STATE_ESTABLISHED:
2326 if (v)
2327 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2328 break;
2329 }
2330 }
2331
2332 static int tcp_seq_open(struct inode *inode, struct file *file)
2333 {
2334 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2335 struct tcp_iter_state *s;
2336 int err;
2337
2338 err = seq_open_net(inode, file, &afinfo->seq_ops,
2339 sizeof(struct tcp_iter_state));
2340 if (err < 0)
2341 return err;
2342
2343 s = ((struct seq_file *)file->private_data)->private;
2344 s->family = afinfo->family;
2345 s->last_pos = 0;
2346 return 0;
2347 }
2348
2349 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2350 {
2351 int rc = 0;
2352 struct proc_dir_entry *p;
2353
2354 afinfo->seq_fops.open = tcp_seq_open;
2355 afinfo->seq_fops.read = seq_read;
2356 afinfo->seq_fops.llseek = seq_lseek;
2357 afinfo->seq_fops.release = seq_release_net;
2358
2359 afinfo->seq_ops.start = tcp_seq_start;
2360 afinfo->seq_ops.next = tcp_seq_next;
2361 afinfo->seq_ops.stop = tcp_seq_stop;
2362
2363 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2364 &afinfo->seq_fops, afinfo);
2365 if (!p)
2366 rc = -ENOMEM;
2367 return rc;
2368 }
2369
2370 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2371 {
2372 proc_net_remove(net, afinfo->name);
2373 }
2374
2375 static void get_openreq4(struct sock *sk, struct request_sock *req,
2376 struct seq_file *f, int i, int uid, int *len)
2377 {
2378 const struct inet_request_sock *ireq = inet_rsk(req);
2379 int ttd = req->expires - jiffies;
2380
2381 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2382 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2383 i,
2384 ireq->loc_addr,
2385 ntohs(inet_sk(sk)->inet_sport),
2386 ireq->rmt_addr,
2387 ntohs(ireq->rmt_port),
2388 TCP_SYN_RECV,
2389 0, 0, /* could print option size, but that is af dependent. */
2390 1, /* timers active (only the expire timer) */
2391 jiffies_to_clock_t(ttd),
2392 req->retrans,
2393 uid,
2394 0, /* non standard timer */
2395 0, /* open_requests have no inode */
2396 atomic_read(&sk->sk_refcnt),
2397 req,
2398 len);
2399 }
2400
2401 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2402 {
2403 int timer_active;
2404 unsigned long timer_expires;
2405 struct tcp_sock *tp = tcp_sk(sk);
2406 const struct inet_connection_sock *icsk = inet_csk(sk);
2407 struct inet_sock *inet = inet_sk(sk);
2408 __be32 dest = inet->inet_daddr;
2409 __be32 src = inet->inet_rcv_saddr;
2410 __u16 destp = ntohs(inet->inet_dport);
2411 __u16 srcp = ntohs(inet->inet_sport);
2412 int rx_queue;
2413
2414 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2415 timer_active = 1;
2416 timer_expires = icsk->icsk_timeout;
2417 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2418 timer_active = 4;
2419 timer_expires = icsk->icsk_timeout;
2420 } else if (timer_pending(&sk->sk_timer)) {
2421 timer_active = 2;
2422 timer_expires = sk->sk_timer.expires;
2423 } else {
2424 timer_active = 0;
2425 timer_expires = jiffies;
2426 }
2427
2428 if (sk->sk_state == TCP_LISTEN)
2429 rx_queue = sk->sk_ack_backlog;
2430 else
2431 /*
2432 * because we dont lock socket, we might find a transient negative value
2433 */
2434 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2435
2436 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2437 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2438 i, src, srcp, dest, destp, sk->sk_state,
2439 tp->write_seq - tp->snd_una,
2440 rx_queue,
2441 timer_active,
2442 jiffies_to_clock_t(timer_expires - jiffies),
2443 icsk->icsk_retransmits,
2444 sock_i_uid(sk),
2445 icsk->icsk_probes_out,
2446 sock_i_ino(sk),
2447 atomic_read(&sk->sk_refcnt), sk,
2448 jiffies_to_clock_t(icsk->icsk_rto),
2449 jiffies_to_clock_t(icsk->icsk_ack.ato),
2450 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2451 tp->snd_cwnd,
2452 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2453 len);
2454 }
2455
2456 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2457 struct seq_file *f, int i, int *len)
2458 {
2459 __be32 dest, src;
2460 __u16 destp, srcp;
2461 int ttd = tw->tw_ttd - jiffies;
2462
2463 if (ttd < 0)
2464 ttd = 0;
2465
2466 dest = tw->tw_daddr;
2467 src = tw->tw_rcv_saddr;
2468 destp = ntohs(tw->tw_dport);
2469 srcp = ntohs(tw->tw_sport);
2470
2471 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2472 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2473 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2474 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2475 atomic_read(&tw->tw_refcnt), tw, len);
2476 }
2477
2478 #define TMPSZ 150
2479
2480 static int tcp4_seq_show(struct seq_file *seq, void *v)
2481 {
2482 struct tcp_iter_state *st;
2483 int len;
2484
2485 if (v == SEQ_START_TOKEN) {
2486 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2487 " sl local_address rem_address st tx_queue "
2488 "rx_queue tr tm->when retrnsmt uid timeout "
2489 "inode");
2490 goto out;
2491 }
2492 st = seq->private;
2493
2494 switch (st->state) {
2495 case TCP_SEQ_STATE_LISTENING:
2496 case TCP_SEQ_STATE_ESTABLISHED:
2497 get_tcp4_sock(v, seq, st->num, &len);
2498 break;
2499 case TCP_SEQ_STATE_OPENREQ:
2500 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2501 break;
2502 case TCP_SEQ_STATE_TIME_WAIT:
2503 get_timewait4_sock(v, seq, st->num, &len);
2504 break;
2505 }
2506 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2507 out:
2508 return 0;
2509 }
2510
2511 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512 .name = "tcp",
2513 .family = AF_INET,
2514 .seq_fops = {
2515 .owner = THIS_MODULE,
2516 },
2517 .seq_ops = {
2518 .show = tcp4_seq_show,
2519 },
2520 };
2521
2522 static int __net_init tcp4_proc_init_net(struct net *net)
2523 {
2524 return tcp_proc_register(net, &tcp4_seq_afinfo);
2525 }
2526
2527 static void __net_exit tcp4_proc_exit_net(struct net *net)
2528 {
2529 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2530 }
2531
2532 static struct pernet_operations tcp4_net_ops = {
2533 .init = tcp4_proc_init_net,
2534 .exit = tcp4_proc_exit_net,
2535 };
2536
2537 int __init tcp4_proc_init(void)
2538 {
2539 return register_pernet_subsys(&tcp4_net_ops);
2540 }
2541
2542 void tcp4_proc_exit(void)
2543 {
2544 unregister_pernet_subsys(&tcp4_net_ops);
2545 }
2546 #endif /* CONFIG_PROC_FS */
2547
2548 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2549 {
2550 struct iphdr *iph = skb_gro_network_header(skb);
2551
2552 switch (skb->ip_summed) {
2553 case CHECKSUM_COMPLETE:
2554 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2555 skb->csum)) {
2556 skb->ip_summed = CHECKSUM_UNNECESSARY;
2557 break;
2558 }
2559
2560 /* fall through */
2561 case CHECKSUM_NONE:
2562 NAPI_GRO_CB(skb)->flush = 1;
2563 return NULL;
2564 }
2565
2566 return tcp_gro_receive(head, skb);
2567 }
2568 EXPORT_SYMBOL(tcp4_gro_receive);
2569
2570 int tcp4_gro_complete(struct sk_buff *skb)
2571 {
2572 struct iphdr *iph = ip_hdr(skb);
2573 struct tcphdr *th = tcp_hdr(skb);
2574
2575 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2576 iph->saddr, iph->daddr, 0);
2577 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2578
2579 return tcp_gro_complete(skb);
2580 }
2581 EXPORT_SYMBOL(tcp4_gro_complete);
2582
2583 struct proto tcp_prot = {
2584 .name = "TCP",
2585 .owner = THIS_MODULE,
2586 .close = tcp_close,
2587 .connect = tcp_v4_connect,
2588 .disconnect = tcp_disconnect,
2589 .accept = inet_csk_accept,
2590 .ioctl = tcp_ioctl,
2591 .init = tcp_v4_init_sock,
2592 .destroy = tcp_v4_destroy_sock,
2593 .shutdown = tcp_shutdown,
2594 .setsockopt = tcp_setsockopt,
2595 .getsockopt = tcp_getsockopt,
2596 .recvmsg = tcp_recvmsg,
2597 .backlog_rcv = tcp_v4_do_rcv,
2598 .hash = inet_hash,
2599 .unhash = inet_unhash,
2600 .get_port = inet_csk_get_port,
2601 .enter_memory_pressure = tcp_enter_memory_pressure,
2602 .sockets_allocated = &tcp_sockets_allocated,
2603 .orphan_count = &tcp_orphan_count,
2604 .memory_allocated = &tcp_memory_allocated,
2605 .memory_pressure = &tcp_memory_pressure,
2606 .sysctl_mem = sysctl_tcp_mem,
2607 .sysctl_wmem = sysctl_tcp_wmem,
2608 .sysctl_rmem = sysctl_tcp_rmem,
2609 .max_header = MAX_TCP_HEADER,
2610 .obj_size = sizeof(struct tcp_sock),
2611 .slab_flags = SLAB_DESTROY_BY_RCU,
2612 .twsk_prot = &tcp_timewait_sock_ops,
2613 .rsk_prot = &tcp_request_sock_ops,
2614 .h.hashinfo = &tcp_hashinfo,
2615 #ifdef CONFIG_COMPAT
2616 .compat_setsockopt = compat_tcp_setsockopt,
2617 .compat_getsockopt = compat_tcp_getsockopt,
2618 #endif
2619 };
2620
2621
2622 static int __net_init tcp_sk_init(struct net *net)
2623 {
2624 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2625 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2626 }
2627
2628 static void __net_exit tcp_sk_exit(struct net *net)
2629 {
2630 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2631 }
2632
2633 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2634 {
2635 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2636 }
2637
2638 static struct pernet_operations __net_initdata tcp_sk_ops = {
2639 .init = tcp_sk_init,
2640 .exit = tcp_sk_exit,
2641 .exit_batch = tcp_sk_exit_batch,
2642 };
2643
2644 void __init tcp_v4_init(void)
2645 {
2646 inet_hashinfo_init(&tcp_hashinfo);
2647 if (register_pernet_subsys(&tcp_sk_ops))
2648 panic("Failed to create the TCP control socket.\n");
2649 }
2650
2651 EXPORT_SYMBOL(ipv4_specific);
2652 EXPORT_SYMBOL(tcp_hashinfo);
2653 EXPORT_SYMBOL(tcp_prot);
2654 EXPORT_SYMBOL(tcp_v4_conn_request);
2655 EXPORT_SYMBOL(tcp_v4_connect);
2656 EXPORT_SYMBOL(tcp_v4_do_rcv);
2657 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2658 EXPORT_SYMBOL(tcp_v4_send_check);
2659 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2660
2661 #ifdef CONFIG_PROC_FS
2662 EXPORT_SYMBOL(tcp_proc_register);
2663 EXPORT_SYMBOL(tcp_proc_unregister);
2664 #endif
2665 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2666
This page took 0.232027 seconds and 5 git commands to generate.