Merge branch 'davem-next' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/types.h>
55 #include <linux/fcntl.h>
56 #include <linux/module.h>
57 #include <linux/random.h>
58 #include <linux/cache.h>
59 #include <linux/jhash.h>
60 #include <linux/init.h>
61 #include <linux/times.h>
62
63 #include <net/net_namespace.h>
64 #include <net/icmp.h>
65 #include <net/inet_hashtables.h>
66 #include <net/tcp.h>
67 #include <net/transp_v6.h>
68 #include <net/ipv6.h>
69 #include <net/inet_common.h>
70 #include <net/timewait_sock.h>
71 #include <net/xfrm.h>
72 #include <net/netdma.h>
73
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79
80 #include <linux/crypto.h>
81 #include <linux/scatterlist.h>
82
83 int sysctl_tcp_tw_reuse __read_mostly;
84 int sysctl_tcp_low_latency __read_mostly;
85
86 /* Check TCP sequence numbers in ICMP packets. */
87 #define ICMP_MIN_LENGTH 8
88
89 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
90
91 #ifdef CONFIG_TCP_MD5SIG
92 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
93 __be32 addr);
94 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
95 __be32 saddr, __be32 daddr,
96 struct tcphdr *th, unsigned int tcplen);
97 #else
98 static inline
99 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
100 {
101 return NULL;
102 }
103 #endif
104
105 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
106 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
107 .lhash_users = ATOMIC_INIT(0),
108 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
109 };
110
111 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
112 {
113 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
114 ip_hdr(skb)->saddr,
115 tcp_hdr(skb)->dest,
116 tcp_hdr(skb)->source);
117 }
118
119 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
120 {
121 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
122 struct tcp_sock *tp = tcp_sk(sk);
123
124 /* With PAWS, it is safe from the viewpoint
125 of data integrity. Even without PAWS it is safe provided sequence
126 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
127
128 Actually, the idea is close to VJ's one, only timestamp cache is
129 held not per host, but per port pair and TW bucket is used as state
130 holder.
131
132 If TW bucket has been already destroyed we fall back to VJ's scheme
133 and use initial timestamp retrieved from peer table.
134 */
135 if (tcptw->tw_ts_recent_stamp &&
136 (twp == NULL || (sysctl_tcp_tw_reuse &&
137 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
138 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
139 if (tp->write_seq == 0)
140 tp->write_seq = 1;
141 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
142 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
143 sock_hold(sktw);
144 return 1;
145 }
146
147 return 0;
148 }
149
150 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
151
152 /* This will initiate an outgoing connection. */
153 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
154 {
155 struct inet_sock *inet = inet_sk(sk);
156 struct tcp_sock *tp = tcp_sk(sk);
157 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
158 struct rtable *rt;
159 __be32 daddr, nexthop;
160 int tmp;
161 int err;
162
163 if (addr_len < sizeof(struct sockaddr_in))
164 return -EINVAL;
165
166 if (usin->sin_family != AF_INET)
167 return -EAFNOSUPPORT;
168
169 nexthop = daddr = usin->sin_addr.s_addr;
170 if (inet->opt && inet->opt->srr) {
171 if (!daddr)
172 return -EINVAL;
173 nexthop = inet->opt->faddr;
174 }
175
176 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
177 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
178 IPPROTO_TCP,
179 inet->sport, usin->sin_port, sk, 1);
180 if (tmp < 0) {
181 if (tmp == -ENETUNREACH)
182 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
183 return tmp;
184 }
185
186 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187 ip_rt_put(rt);
188 return -ENETUNREACH;
189 }
190
191 if (!inet->opt || !inet->opt->srr)
192 daddr = rt->rt_dst;
193
194 if (!inet->saddr)
195 inet->saddr = rt->rt_src;
196 inet->rcv_saddr = inet->saddr;
197
198 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
199 /* Reset inherited state */
200 tp->rx_opt.ts_recent = 0;
201 tp->rx_opt.ts_recent_stamp = 0;
202 tp->write_seq = 0;
203 }
204
205 if (tcp_death_row.sysctl_tw_recycle &&
206 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
207 struct inet_peer *peer = rt_get_peer(rt);
208 /*
209 * VJ's idea. We save last timestamp seen from
210 * the destination in peer table, when entering state
211 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
212 * when trying new connection.
213 */
214 if (peer != NULL &&
215 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
216 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
217 tp->rx_opt.ts_recent = peer->tcp_ts;
218 }
219 }
220
221 inet->dport = usin->sin_port;
222 inet->daddr = daddr;
223
224 inet_csk(sk)->icsk_ext_hdr_len = 0;
225 if (inet->opt)
226 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
227
228 tp->rx_opt.mss_clamp = 536;
229
230 /* Socket identity is still unknown (sport may be zero).
231 * However we set state to SYN-SENT and not releasing socket
232 * lock select source port, enter ourselves into the hash tables and
233 * complete initialization after this.
234 */
235 tcp_set_state(sk, TCP_SYN_SENT);
236 err = inet_hash_connect(&tcp_death_row, sk);
237 if (err)
238 goto failure;
239
240 err = ip_route_newports(&rt, IPPROTO_TCP,
241 inet->sport, inet->dport, sk);
242 if (err)
243 goto failure;
244
245 /* OK, now commit destination to socket. */
246 sk->sk_gso_type = SKB_GSO_TCPV4;
247 sk_setup_caps(sk, &rt->u.dst);
248
249 if (!tp->write_seq)
250 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
251 inet->daddr,
252 inet->sport,
253 usin->sin_port);
254
255 inet->id = tp->write_seq ^ jiffies;
256
257 err = tcp_connect(sk);
258 rt = NULL;
259 if (err)
260 goto failure;
261
262 return 0;
263
264 failure:
265 /*
266 * This unhashes the socket and releases the local port,
267 * if necessary.
268 */
269 tcp_set_state(sk, TCP_CLOSE);
270 ip_rt_put(rt);
271 sk->sk_route_caps = 0;
272 inet->dport = 0;
273 return err;
274 }
275
276 /*
277 * This routine does path mtu discovery as defined in RFC1191.
278 */
279 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
280 {
281 struct dst_entry *dst;
282 struct inet_sock *inet = inet_sk(sk);
283
284 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
285 * send out by Linux are always <576bytes so they should go through
286 * unfragmented).
287 */
288 if (sk->sk_state == TCP_LISTEN)
289 return;
290
291 /* We don't check in the destentry if pmtu discovery is forbidden
292 * on this route. We just assume that no packet_to_big packets
293 * are send back when pmtu discovery is not active.
294 * There is a small race when the user changes this flag in the
295 * route, but I think that's acceptable.
296 */
297 if ((dst = __sk_dst_check(sk, 0)) == NULL)
298 return;
299
300 dst->ops->update_pmtu(dst, mtu);
301
302 /* Something is about to be wrong... Remember soft error
303 * for the case, if this connection will not able to recover.
304 */
305 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
306 sk->sk_err_soft = EMSGSIZE;
307
308 mtu = dst_mtu(dst);
309
310 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
311 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
312 tcp_sync_mss(sk, mtu);
313
314 /* Resend the TCP packet because it's
315 * clear that the old packet has been
316 * dropped. This is the new "fast" path mtu
317 * discovery.
318 */
319 tcp_simple_retransmit(sk);
320 } /* else let the usual retransmit timer handle it */
321 }
322
323 /*
324 * This routine is called by the ICMP module when it gets some
325 * sort of error condition. If err < 0 then the socket should
326 * be closed and the error returned to the user. If err > 0
327 * it's just the icmp type << 8 | icmp code. After adjustment
328 * header points to the first 8 bytes of the tcp header. We need
329 * to find the appropriate port.
330 *
331 * The locking strategy used here is very "optimistic". When
332 * someone else accesses the socket the ICMP is just dropped
333 * and for some paths there is no check at all.
334 * A more general error queue to queue errors for later handling
335 * is probably better.
336 *
337 */
338
339 void tcp_v4_err(struct sk_buff *skb, u32 info)
340 {
341 struct iphdr *iph = (struct iphdr *)skb->data;
342 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
343 struct tcp_sock *tp;
344 struct inet_sock *inet;
345 const int type = icmp_hdr(skb)->type;
346 const int code = icmp_hdr(skb)->code;
347 struct sock *sk;
348 __u32 seq;
349 int err;
350
351 if (skb->len < (iph->ihl << 2) + 8) {
352 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
353 return;
354 }
355
356 sk = inet_lookup(dev_net(skb->dev), &tcp_hashinfo, iph->daddr, th->dest,
357 iph->saddr, th->source, inet_iif(skb));
358 if (!sk) {
359 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
360 return;
361 }
362 if (sk->sk_state == TCP_TIME_WAIT) {
363 inet_twsk_put(inet_twsk(sk));
364 return;
365 }
366
367 bh_lock_sock(sk);
368 /* If too many ICMPs get dropped on busy
369 * servers this needs to be solved differently.
370 */
371 if (sock_owned_by_user(sk))
372 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
373
374 if (sk->sk_state == TCP_CLOSE)
375 goto out;
376
377 tp = tcp_sk(sk);
378 seq = ntohl(th->seq);
379 if (sk->sk_state != TCP_LISTEN &&
380 !between(seq, tp->snd_una, tp->snd_nxt)) {
381 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
382 goto out;
383 }
384
385 switch (type) {
386 case ICMP_SOURCE_QUENCH:
387 /* Just silently ignore these. */
388 goto out;
389 case ICMP_PARAMETERPROB:
390 err = EPROTO;
391 break;
392 case ICMP_DEST_UNREACH:
393 if (code > NR_ICMP_UNREACH)
394 goto out;
395
396 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
397 if (!sock_owned_by_user(sk))
398 do_pmtu_discovery(sk, iph, info);
399 goto out;
400 }
401
402 err = icmp_err_convert[code].errno;
403 break;
404 case ICMP_TIME_EXCEEDED:
405 err = EHOSTUNREACH;
406 break;
407 default:
408 goto out;
409 }
410
411 switch (sk->sk_state) {
412 struct request_sock *req, **prev;
413 case TCP_LISTEN:
414 if (sock_owned_by_user(sk))
415 goto out;
416
417 req = inet_csk_search_req(sk, &prev, th->dest,
418 iph->daddr, iph->saddr);
419 if (!req)
420 goto out;
421
422 /* ICMPs are not backlogged, hence we cannot get
423 an established socket here.
424 */
425 BUG_TRAP(!req->sk);
426
427 if (seq != tcp_rsk(req)->snt_isn) {
428 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
429 goto out;
430 }
431
432 /*
433 * Still in SYN_RECV, just remove it silently.
434 * There is no good way to pass the error to the newly
435 * created socket, and POSIX does not want network
436 * errors returned from accept().
437 */
438 inet_csk_reqsk_queue_drop(sk, req, prev);
439 goto out;
440
441 case TCP_SYN_SENT:
442 case TCP_SYN_RECV: /* Cannot happen.
443 It can f.e. if SYNs crossed.
444 */
445 if (!sock_owned_by_user(sk)) {
446 sk->sk_err = err;
447
448 sk->sk_error_report(sk);
449
450 tcp_done(sk);
451 } else {
452 sk->sk_err_soft = err;
453 }
454 goto out;
455 }
456
457 /* If we've already connected we will keep trying
458 * until we time out, or the user gives up.
459 *
460 * rfc1122 4.2.3.9 allows to consider as hard errors
461 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
462 * but it is obsoleted by pmtu discovery).
463 *
464 * Note, that in modern internet, where routing is unreliable
465 * and in each dark corner broken firewalls sit, sending random
466 * errors ordered by their masters even this two messages finally lose
467 * their original sense (even Linux sends invalid PORT_UNREACHs)
468 *
469 * Now we are in compliance with RFCs.
470 * --ANK (980905)
471 */
472
473 inet = inet_sk(sk);
474 if (!sock_owned_by_user(sk) && inet->recverr) {
475 sk->sk_err = err;
476 sk->sk_error_report(sk);
477 } else { /* Only an error on timeout */
478 sk->sk_err_soft = err;
479 }
480
481 out:
482 bh_unlock_sock(sk);
483 sock_put(sk);
484 }
485
486 /* This routine computes an IPv4 TCP checksum. */
487 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
488 {
489 struct inet_sock *inet = inet_sk(sk);
490 struct tcphdr *th = tcp_hdr(skb);
491
492 if (skb->ip_summed == CHECKSUM_PARTIAL) {
493 th->check = ~tcp_v4_check(len, inet->saddr,
494 inet->daddr, 0);
495 skb->csum_start = skb_transport_header(skb) - skb->head;
496 skb->csum_offset = offsetof(struct tcphdr, check);
497 } else {
498 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
499 csum_partial((char *)th,
500 th->doff << 2,
501 skb->csum));
502 }
503 }
504
505 int tcp_v4_gso_send_check(struct sk_buff *skb)
506 {
507 const struct iphdr *iph;
508 struct tcphdr *th;
509
510 if (!pskb_may_pull(skb, sizeof(*th)))
511 return -EINVAL;
512
513 iph = ip_hdr(skb);
514 th = tcp_hdr(skb);
515
516 th->check = 0;
517 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
518 skb->csum_start = skb_transport_header(skb) - skb->head;
519 skb->csum_offset = offsetof(struct tcphdr, check);
520 skb->ip_summed = CHECKSUM_PARTIAL;
521 return 0;
522 }
523
524 /*
525 * This routine will send an RST to the other tcp.
526 *
527 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
528 * for reset.
529 * Answer: if a packet caused RST, it is not for a socket
530 * existing in our system, if it is matched to a socket,
531 * it is just duplicate segment or bug in other side's TCP.
532 * So that we build reply only basing on parameters
533 * arrived with segment.
534 * Exception: precedence violation. We do not implement it in any case.
535 */
536
537 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
538 {
539 struct tcphdr *th = tcp_hdr(skb);
540 struct {
541 struct tcphdr th;
542 #ifdef CONFIG_TCP_MD5SIG
543 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
544 #endif
545 } rep;
546 struct ip_reply_arg arg;
547 #ifdef CONFIG_TCP_MD5SIG
548 struct tcp_md5sig_key *key;
549 #endif
550
551 /* Never send a reset in response to a reset. */
552 if (th->rst)
553 return;
554
555 if (skb->rtable->rt_type != RTN_LOCAL)
556 return;
557
558 /* Swap the send and the receive. */
559 memset(&rep, 0, sizeof(rep));
560 rep.th.dest = th->source;
561 rep.th.source = th->dest;
562 rep.th.doff = sizeof(struct tcphdr) / 4;
563 rep.th.rst = 1;
564
565 if (th->ack) {
566 rep.th.seq = th->ack_seq;
567 } else {
568 rep.th.ack = 1;
569 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
570 skb->len - (th->doff << 2));
571 }
572
573 memset(&arg, 0, sizeof(arg));
574 arg.iov[0].iov_base = (unsigned char *)&rep;
575 arg.iov[0].iov_len = sizeof(rep.th);
576
577 #ifdef CONFIG_TCP_MD5SIG
578 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
579 if (key) {
580 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
581 (TCPOPT_NOP << 16) |
582 (TCPOPT_MD5SIG << 8) |
583 TCPOLEN_MD5SIG);
584 /* Update length and the length the header thinks exists */
585 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
586 rep.th.doff = arg.iov[0].iov_len / 4;
587
588 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
589 key,
590 ip_hdr(skb)->daddr,
591 ip_hdr(skb)->saddr,
592 &rep.th, arg.iov[0].iov_len);
593 }
594 #endif
595 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
596 ip_hdr(skb)->saddr, /* XXX */
597 sizeof(struct tcphdr), IPPROTO_TCP, 0);
598 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
599
600 ip_send_reply(dev_net(skb->dst->dev)->ipv4.tcp_sock, skb,
601 &arg, arg.iov[0].iov_len);
602
603 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
604 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
605 }
606
607 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
608 outside socket context is ugly, certainly. What can I do?
609 */
610
611 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
612 u32 win, u32 ts, int oif,
613 struct tcp_md5sig_key *key)
614 {
615 struct tcphdr *th = tcp_hdr(skb);
616 struct {
617 struct tcphdr th;
618 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
619 #ifdef CONFIG_TCP_MD5SIG
620 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
621 #endif
622 ];
623 } rep;
624 struct ip_reply_arg arg;
625
626 memset(&rep.th, 0, sizeof(struct tcphdr));
627 memset(&arg, 0, sizeof(arg));
628
629 arg.iov[0].iov_base = (unsigned char *)&rep;
630 arg.iov[0].iov_len = sizeof(rep.th);
631 if (ts) {
632 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
633 (TCPOPT_TIMESTAMP << 8) |
634 TCPOLEN_TIMESTAMP);
635 rep.opt[1] = htonl(tcp_time_stamp);
636 rep.opt[2] = htonl(ts);
637 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
638 }
639
640 /* Swap the send and the receive. */
641 rep.th.dest = th->source;
642 rep.th.source = th->dest;
643 rep.th.doff = arg.iov[0].iov_len / 4;
644 rep.th.seq = htonl(seq);
645 rep.th.ack_seq = htonl(ack);
646 rep.th.ack = 1;
647 rep.th.window = htons(win);
648
649 #ifdef CONFIG_TCP_MD5SIG
650 if (key) {
651 int offset = (ts) ? 3 : 0;
652
653 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
654 (TCPOPT_NOP << 16) |
655 (TCPOPT_MD5SIG << 8) |
656 TCPOLEN_MD5SIG);
657 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
658 rep.th.doff = arg.iov[0].iov_len/4;
659
660 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
661 key,
662 ip_hdr(skb)->daddr,
663 ip_hdr(skb)->saddr,
664 &rep.th, arg.iov[0].iov_len);
665 }
666 #endif
667 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
668 ip_hdr(skb)->saddr, /* XXX */
669 arg.iov[0].iov_len, IPPROTO_TCP, 0);
670 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
671 if (oif)
672 arg.bound_dev_if = oif;
673
674 ip_send_reply(dev_net(skb->dev)->ipv4.tcp_sock, skb,
675 &arg, arg.iov[0].iov_len);
676
677 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
678 }
679
680 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
681 {
682 struct inet_timewait_sock *tw = inet_twsk(sk);
683 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
684
685 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
686 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
687 tcptw->tw_ts_recent,
688 tw->tw_bound_dev_if,
689 tcp_twsk_md5_key(tcptw)
690 );
691
692 inet_twsk_put(tw);
693 }
694
695 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
696 struct request_sock *req)
697 {
698 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
699 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
700 req->ts_recent,
701 0,
702 tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr));
703 }
704
705 /*
706 * Send a SYN-ACK after having received a SYN.
707 * This still operates on a request_sock only, not on a big
708 * socket.
709 */
710 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
711 struct dst_entry *dst)
712 {
713 const struct inet_request_sock *ireq = inet_rsk(req);
714 int err = -1;
715 struct sk_buff * skb;
716
717 /* First, grab a route. */
718 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
719 return -1;
720
721 skb = tcp_make_synack(sk, dst, req);
722
723 if (skb) {
724 struct tcphdr *th = tcp_hdr(skb);
725
726 th->check = tcp_v4_check(skb->len,
727 ireq->loc_addr,
728 ireq->rmt_addr,
729 csum_partial((char *)th, skb->len,
730 skb->csum));
731
732 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
733 ireq->rmt_addr,
734 ireq->opt);
735 err = net_xmit_eval(err);
736 }
737
738 dst_release(dst);
739 return err;
740 }
741
742 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
743 {
744 return __tcp_v4_send_synack(sk, req, NULL);
745 }
746
747 /*
748 * IPv4 request_sock destructor.
749 */
750 static void tcp_v4_reqsk_destructor(struct request_sock *req)
751 {
752 kfree(inet_rsk(req)->opt);
753 }
754
755 #ifdef CONFIG_SYN_COOKIES
756 static void syn_flood_warning(struct sk_buff *skb)
757 {
758 static unsigned long warntime;
759
760 if (time_after(jiffies, (warntime + HZ * 60))) {
761 warntime = jiffies;
762 printk(KERN_INFO
763 "possible SYN flooding on port %d. Sending cookies.\n",
764 ntohs(tcp_hdr(skb)->dest));
765 }
766 }
767 #endif
768
769 /*
770 * Save and compile IPv4 options into the request_sock if needed.
771 */
772 static struct ip_options *tcp_v4_save_options(struct sock *sk,
773 struct sk_buff *skb)
774 {
775 struct ip_options *opt = &(IPCB(skb)->opt);
776 struct ip_options *dopt = NULL;
777
778 if (opt && opt->optlen) {
779 int opt_size = optlength(opt);
780 dopt = kmalloc(opt_size, GFP_ATOMIC);
781 if (dopt) {
782 if (ip_options_echo(dopt, skb)) {
783 kfree(dopt);
784 dopt = NULL;
785 }
786 }
787 }
788 return dopt;
789 }
790
791 #ifdef CONFIG_TCP_MD5SIG
792 /*
793 * RFC2385 MD5 checksumming requires a mapping of
794 * IP address->MD5 Key.
795 * We need to maintain these in the sk structure.
796 */
797
798 /* Find the Key structure for an address. */
799 static struct tcp_md5sig_key *
800 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
801 {
802 struct tcp_sock *tp = tcp_sk(sk);
803 int i;
804
805 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
806 return NULL;
807 for (i = 0; i < tp->md5sig_info->entries4; i++) {
808 if (tp->md5sig_info->keys4[i].addr == addr)
809 return &tp->md5sig_info->keys4[i].base;
810 }
811 return NULL;
812 }
813
814 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
815 struct sock *addr_sk)
816 {
817 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
818 }
819
820 EXPORT_SYMBOL(tcp_v4_md5_lookup);
821
822 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
823 struct request_sock *req)
824 {
825 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
826 }
827
828 /* This can be called on a newly created socket, from other files */
829 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
830 u8 *newkey, u8 newkeylen)
831 {
832 /* Add Key to the list */
833 struct tcp_md5sig_key *key;
834 struct tcp_sock *tp = tcp_sk(sk);
835 struct tcp4_md5sig_key *keys;
836
837 key = tcp_v4_md5_do_lookup(sk, addr);
838 if (key) {
839 /* Pre-existing entry - just update that one. */
840 kfree(key->key);
841 key->key = newkey;
842 key->keylen = newkeylen;
843 } else {
844 struct tcp_md5sig_info *md5sig;
845
846 if (!tp->md5sig_info) {
847 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
848 GFP_ATOMIC);
849 if (!tp->md5sig_info) {
850 kfree(newkey);
851 return -ENOMEM;
852 }
853 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
854 }
855 if (tcp_alloc_md5sig_pool() == NULL) {
856 kfree(newkey);
857 return -ENOMEM;
858 }
859 md5sig = tp->md5sig_info;
860
861 if (md5sig->alloced4 == md5sig->entries4) {
862 keys = kmalloc((sizeof(*keys) *
863 (md5sig->entries4 + 1)), GFP_ATOMIC);
864 if (!keys) {
865 kfree(newkey);
866 tcp_free_md5sig_pool();
867 return -ENOMEM;
868 }
869
870 if (md5sig->entries4)
871 memcpy(keys, md5sig->keys4,
872 sizeof(*keys) * md5sig->entries4);
873
874 /* Free old key list, and reference new one */
875 kfree(md5sig->keys4);
876 md5sig->keys4 = keys;
877 md5sig->alloced4++;
878 }
879 md5sig->entries4++;
880 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
881 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
882 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
883 }
884 return 0;
885 }
886
887 EXPORT_SYMBOL(tcp_v4_md5_do_add);
888
889 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
890 u8 *newkey, u8 newkeylen)
891 {
892 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
893 newkey, newkeylen);
894 }
895
896 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
897 {
898 struct tcp_sock *tp = tcp_sk(sk);
899 int i;
900
901 for (i = 0; i < tp->md5sig_info->entries4; i++) {
902 if (tp->md5sig_info->keys4[i].addr == addr) {
903 /* Free the key */
904 kfree(tp->md5sig_info->keys4[i].base.key);
905 tp->md5sig_info->entries4--;
906
907 if (tp->md5sig_info->entries4 == 0) {
908 kfree(tp->md5sig_info->keys4);
909 tp->md5sig_info->keys4 = NULL;
910 tp->md5sig_info->alloced4 = 0;
911 } else if (tp->md5sig_info->entries4 != i) {
912 /* Need to do some manipulation */
913 memmove(&tp->md5sig_info->keys4[i],
914 &tp->md5sig_info->keys4[i+1],
915 (tp->md5sig_info->entries4 - i) *
916 sizeof(struct tcp4_md5sig_key));
917 }
918 tcp_free_md5sig_pool();
919 return 0;
920 }
921 }
922 return -ENOENT;
923 }
924
925 EXPORT_SYMBOL(tcp_v4_md5_do_del);
926
927 static void tcp_v4_clear_md5_list(struct sock *sk)
928 {
929 struct tcp_sock *tp = tcp_sk(sk);
930
931 /* Free each key, then the set of key keys,
932 * the crypto element, and then decrement our
933 * hold on the last resort crypto.
934 */
935 if (tp->md5sig_info->entries4) {
936 int i;
937 for (i = 0; i < tp->md5sig_info->entries4; i++)
938 kfree(tp->md5sig_info->keys4[i].base.key);
939 tp->md5sig_info->entries4 = 0;
940 tcp_free_md5sig_pool();
941 }
942 if (tp->md5sig_info->keys4) {
943 kfree(tp->md5sig_info->keys4);
944 tp->md5sig_info->keys4 = NULL;
945 tp->md5sig_info->alloced4 = 0;
946 }
947 }
948
949 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
950 int optlen)
951 {
952 struct tcp_md5sig cmd;
953 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
954 u8 *newkey;
955
956 if (optlen < sizeof(cmd))
957 return -EINVAL;
958
959 if (copy_from_user(&cmd, optval, sizeof(cmd)))
960 return -EFAULT;
961
962 if (sin->sin_family != AF_INET)
963 return -EINVAL;
964
965 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
966 if (!tcp_sk(sk)->md5sig_info)
967 return -ENOENT;
968 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
969 }
970
971 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
972 return -EINVAL;
973
974 if (!tcp_sk(sk)->md5sig_info) {
975 struct tcp_sock *tp = tcp_sk(sk);
976 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
977
978 if (!p)
979 return -EINVAL;
980
981 tp->md5sig_info = p;
982 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
983 }
984
985 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
986 if (!newkey)
987 return -ENOMEM;
988 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
989 newkey, cmd.tcpm_keylen);
990 }
991
992 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
993 __be32 saddr, __be32 daddr,
994 struct tcphdr *th,
995 unsigned int tcplen)
996 {
997 struct tcp_md5sig_pool *hp;
998 struct tcp4_pseudohdr *bp;
999 int err;
1000
1001 /*
1002 * Okay, so RFC2385 is turned on for this connection,
1003 * so we need to generate the MD5 hash for the packet now.
1004 */
1005
1006 hp = tcp_get_md5sig_pool();
1007 if (!hp)
1008 goto clear_hash_noput;
1009
1010 bp = &hp->md5_blk.ip4;
1011
1012 /*
1013 * The TCP pseudo-header (in the order: source IP address,
1014 * destination IP address, zero-padded protocol number, and
1015 * segment length)
1016 */
1017 bp->saddr = saddr;
1018 bp->daddr = daddr;
1019 bp->pad = 0;
1020 bp->protocol = IPPROTO_TCP;
1021 bp->len = htons(tcplen);
1022
1023 err = tcp_calc_md5_hash(md5_hash, key, sizeof(*bp),
1024 th, tcplen, hp);
1025 if (err)
1026 goto clear_hash;
1027
1028 /* Free up the crypto pool */
1029 tcp_put_md5sig_pool();
1030 out:
1031 return 0;
1032 clear_hash:
1033 tcp_put_md5sig_pool();
1034 clear_hash_noput:
1035 memset(md5_hash, 0, 16);
1036 goto out;
1037 }
1038
1039 int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1040 struct sock *sk,
1041 struct dst_entry *dst,
1042 struct request_sock *req,
1043 struct tcphdr *th,
1044 unsigned int tcplen)
1045 {
1046 __be32 saddr, daddr;
1047
1048 if (sk) {
1049 saddr = inet_sk(sk)->saddr;
1050 daddr = inet_sk(sk)->daddr;
1051 } else {
1052 struct rtable *rt = (struct rtable *)dst;
1053 BUG_ON(!rt);
1054 saddr = rt->rt_src;
1055 daddr = rt->rt_dst;
1056 }
1057 return tcp_v4_do_calc_md5_hash(md5_hash, key,
1058 saddr, daddr,
1059 th, tcplen);
1060 }
1061
1062 EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1063
1064 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1065 {
1066 /*
1067 * This gets called for each TCP segment that arrives
1068 * so we want to be efficient.
1069 * We have 3 drop cases:
1070 * o No MD5 hash and one expected.
1071 * o MD5 hash and we're not expecting one.
1072 * o MD5 hash and its wrong.
1073 */
1074 __u8 *hash_location = NULL;
1075 struct tcp_md5sig_key *hash_expected;
1076 const struct iphdr *iph = ip_hdr(skb);
1077 struct tcphdr *th = tcp_hdr(skb);
1078 int genhash;
1079 unsigned char newhash[16];
1080
1081 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1082 hash_location = tcp_parse_md5sig_option(th);
1083
1084 /* We've parsed the options - do we have a hash? */
1085 if (!hash_expected && !hash_location)
1086 return 0;
1087
1088 if (hash_expected && !hash_location) {
1089 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found "
1090 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1091 NIPQUAD(iph->saddr), ntohs(th->source),
1092 NIPQUAD(iph->daddr), ntohs(th->dest));
1093 return 1;
1094 }
1095
1096 if (!hash_expected && hash_location) {
1097 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1098 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1099 NIPQUAD(iph->saddr), ntohs(th->source),
1100 NIPQUAD(iph->daddr), ntohs(th->dest));
1101 return 1;
1102 }
1103
1104 /* Okay, so this is hash_expected and hash_location -
1105 * so we need to calculate the checksum.
1106 */
1107 genhash = tcp_v4_do_calc_md5_hash(newhash,
1108 hash_expected,
1109 iph->saddr, iph->daddr,
1110 th, skb->len);
1111
1112 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1113 if (net_ratelimit()) {
1114 printk(KERN_INFO "MD5 Hash failed for "
1115 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1116 NIPQUAD(iph->saddr), ntohs(th->source),
1117 NIPQUAD(iph->daddr), ntohs(th->dest),
1118 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1119 }
1120 return 1;
1121 }
1122 return 0;
1123 }
1124
1125 #endif
1126
1127 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1128 .family = PF_INET,
1129 .obj_size = sizeof(struct tcp_request_sock),
1130 .rtx_syn_ack = tcp_v4_send_synack,
1131 .send_ack = tcp_v4_reqsk_send_ack,
1132 .destructor = tcp_v4_reqsk_destructor,
1133 .send_reset = tcp_v4_send_reset,
1134 };
1135
1136 #ifdef CONFIG_TCP_MD5SIG
1137 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1138 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1139 };
1140 #endif
1141
1142 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1143 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1144 .twsk_unique = tcp_twsk_unique,
1145 .twsk_destructor= tcp_twsk_destructor,
1146 };
1147
1148 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1149 {
1150 struct inet_request_sock *ireq;
1151 struct tcp_options_received tmp_opt;
1152 struct request_sock *req;
1153 __be32 saddr = ip_hdr(skb)->saddr;
1154 __be32 daddr = ip_hdr(skb)->daddr;
1155 __u32 isn = TCP_SKB_CB(skb)->when;
1156 struct dst_entry *dst = NULL;
1157 #ifdef CONFIG_SYN_COOKIES
1158 int want_cookie = 0;
1159 #else
1160 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1161 #endif
1162
1163 /* Never answer to SYNs send to broadcast or multicast */
1164 if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1165 goto drop;
1166
1167 /* TW buckets are converted to open requests without
1168 * limitations, they conserve resources and peer is
1169 * evidently real one.
1170 */
1171 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1172 #ifdef CONFIG_SYN_COOKIES
1173 if (sysctl_tcp_syncookies) {
1174 want_cookie = 1;
1175 } else
1176 #endif
1177 goto drop;
1178 }
1179
1180 /* Accept backlog is full. If we have already queued enough
1181 * of warm entries in syn queue, drop request. It is better than
1182 * clogging syn queue with openreqs with exponentially increasing
1183 * timeout.
1184 */
1185 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1186 goto drop;
1187
1188 req = reqsk_alloc(&tcp_request_sock_ops);
1189 if (!req)
1190 goto drop;
1191
1192 #ifdef CONFIG_TCP_MD5SIG
1193 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1194 #endif
1195
1196 tcp_clear_options(&tmp_opt);
1197 tmp_opt.mss_clamp = 536;
1198 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1199
1200 tcp_parse_options(skb, &tmp_opt, 0);
1201
1202 if (want_cookie && !tmp_opt.saw_tstamp)
1203 tcp_clear_options(&tmp_opt);
1204
1205 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1206 /* Some OSes (unknown ones, but I see them on web server, which
1207 * contains information interesting only for windows'
1208 * users) do not send their stamp in SYN. It is easy case.
1209 * We simply do not advertise TS support.
1210 */
1211 tmp_opt.saw_tstamp = 0;
1212 tmp_opt.tstamp_ok = 0;
1213 }
1214 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1215
1216 tcp_openreq_init(req, &tmp_opt, skb);
1217
1218 if (security_inet_conn_request(sk, skb, req))
1219 goto drop_and_free;
1220
1221 ireq = inet_rsk(req);
1222 ireq->loc_addr = daddr;
1223 ireq->rmt_addr = saddr;
1224 ireq->opt = tcp_v4_save_options(sk, skb);
1225 if (!want_cookie)
1226 TCP_ECN_create_request(req, tcp_hdr(skb));
1227
1228 if (want_cookie) {
1229 #ifdef CONFIG_SYN_COOKIES
1230 syn_flood_warning(skb);
1231 req->cookie_ts = tmp_opt.tstamp_ok;
1232 #endif
1233 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1234 } else if (!isn) {
1235 struct inet_peer *peer = NULL;
1236
1237 /* VJ's idea. We save last timestamp seen
1238 * from the destination in peer table, when entering
1239 * state TIME-WAIT, and check against it before
1240 * accepting new connection request.
1241 *
1242 * If "isn" is not zero, this request hit alive
1243 * timewait bucket, so that all the necessary checks
1244 * are made in the function processing timewait state.
1245 */
1246 if (tmp_opt.saw_tstamp &&
1247 tcp_death_row.sysctl_tw_recycle &&
1248 (dst = inet_csk_route_req(sk, req)) != NULL &&
1249 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1250 peer->v4daddr == saddr) {
1251 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1252 (s32)(peer->tcp_ts - req->ts_recent) >
1253 TCP_PAWS_WINDOW) {
1254 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1255 goto drop_and_release;
1256 }
1257 }
1258 /* Kill the following clause, if you dislike this way. */
1259 else if (!sysctl_tcp_syncookies &&
1260 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1261 (sysctl_max_syn_backlog >> 2)) &&
1262 (!peer || !peer->tcp_ts_stamp) &&
1263 (!dst || !dst_metric(dst, RTAX_RTT))) {
1264 /* Without syncookies last quarter of
1265 * backlog is filled with destinations,
1266 * proven to be alive.
1267 * It means that we continue to communicate
1268 * to destinations, already remembered
1269 * to the moment of synflood.
1270 */
1271 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1272 "request from " NIPQUAD_FMT "/%u\n",
1273 NIPQUAD(saddr),
1274 ntohs(tcp_hdr(skb)->source));
1275 goto drop_and_release;
1276 }
1277
1278 isn = tcp_v4_init_sequence(skb);
1279 }
1280 tcp_rsk(req)->snt_isn = isn;
1281
1282 if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1283 goto drop_and_free;
1284
1285 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1286 return 0;
1287
1288 drop_and_release:
1289 dst_release(dst);
1290 drop_and_free:
1291 reqsk_free(req);
1292 drop:
1293 return 0;
1294 }
1295
1296
1297 /*
1298 * The three way handshake has completed - we got a valid synack -
1299 * now create the new socket.
1300 */
1301 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1302 struct request_sock *req,
1303 struct dst_entry *dst)
1304 {
1305 struct inet_request_sock *ireq;
1306 struct inet_sock *newinet;
1307 struct tcp_sock *newtp;
1308 struct sock *newsk;
1309 #ifdef CONFIG_TCP_MD5SIG
1310 struct tcp_md5sig_key *key;
1311 #endif
1312
1313 if (sk_acceptq_is_full(sk))
1314 goto exit_overflow;
1315
1316 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1317 goto exit;
1318
1319 newsk = tcp_create_openreq_child(sk, req, skb);
1320 if (!newsk)
1321 goto exit;
1322
1323 newsk->sk_gso_type = SKB_GSO_TCPV4;
1324 sk_setup_caps(newsk, dst);
1325
1326 newtp = tcp_sk(newsk);
1327 newinet = inet_sk(newsk);
1328 ireq = inet_rsk(req);
1329 newinet->daddr = ireq->rmt_addr;
1330 newinet->rcv_saddr = ireq->loc_addr;
1331 newinet->saddr = ireq->loc_addr;
1332 newinet->opt = ireq->opt;
1333 ireq->opt = NULL;
1334 newinet->mc_index = inet_iif(skb);
1335 newinet->mc_ttl = ip_hdr(skb)->ttl;
1336 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1337 if (newinet->opt)
1338 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1339 newinet->id = newtp->write_seq ^ jiffies;
1340
1341 tcp_mtup_init(newsk);
1342 tcp_sync_mss(newsk, dst_mtu(dst));
1343 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1344 tcp_initialize_rcv_mss(newsk);
1345
1346 #ifdef CONFIG_TCP_MD5SIG
1347 /* Copy over the MD5 key from the original socket */
1348 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1349 /*
1350 * We're using one, so create a matching key
1351 * on the newsk structure. If we fail to get
1352 * memory, then we end up not copying the key
1353 * across. Shucks.
1354 */
1355 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1356 if (newkey != NULL)
1357 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1358 newkey, key->keylen);
1359 }
1360 #endif
1361
1362 __inet_hash_nolisten(newsk);
1363 __inet_inherit_port(sk, newsk);
1364
1365 return newsk;
1366
1367 exit_overflow:
1368 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1369 exit:
1370 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1371 dst_release(dst);
1372 return NULL;
1373 }
1374
1375 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1376 {
1377 struct tcphdr *th = tcp_hdr(skb);
1378 const struct iphdr *iph = ip_hdr(skb);
1379 struct sock *nsk;
1380 struct request_sock **prev;
1381 /* Find possible connection requests. */
1382 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1383 iph->saddr, iph->daddr);
1384 if (req)
1385 return tcp_check_req(sk, skb, req, prev);
1386
1387 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1388 th->source, iph->daddr, th->dest, inet_iif(skb));
1389
1390 if (nsk) {
1391 if (nsk->sk_state != TCP_TIME_WAIT) {
1392 bh_lock_sock(nsk);
1393 return nsk;
1394 }
1395 inet_twsk_put(inet_twsk(nsk));
1396 return NULL;
1397 }
1398
1399 #ifdef CONFIG_SYN_COOKIES
1400 if (!th->rst && !th->syn && th->ack)
1401 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1402 #endif
1403 return sk;
1404 }
1405
1406 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1407 {
1408 const struct iphdr *iph = ip_hdr(skb);
1409
1410 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1411 if (!tcp_v4_check(skb->len, iph->saddr,
1412 iph->daddr, skb->csum)) {
1413 skb->ip_summed = CHECKSUM_UNNECESSARY;
1414 return 0;
1415 }
1416 }
1417
1418 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1419 skb->len, IPPROTO_TCP, 0);
1420
1421 if (skb->len <= 76) {
1422 return __skb_checksum_complete(skb);
1423 }
1424 return 0;
1425 }
1426
1427
1428 /* The socket must have it's spinlock held when we get
1429 * here.
1430 *
1431 * We have a potential double-lock case here, so even when
1432 * doing backlog processing we use the BH locking scheme.
1433 * This is because we cannot sleep with the original spinlock
1434 * held.
1435 */
1436 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1437 {
1438 struct sock *rsk;
1439 #ifdef CONFIG_TCP_MD5SIG
1440 /*
1441 * We really want to reject the packet as early as possible
1442 * if:
1443 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1444 * o There is an MD5 option and we're not expecting one
1445 */
1446 if (tcp_v4_inbound_md5_hash(sk, skb))
1447 goto discard;
1448 #endif
1449
1450 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1451 TCP_CHECK_TIMER(sk);
1452 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1453 rsk = sk;
1454 goto reset;
1455 }
1456 TCP_CHECK_TIMER(sk);
1457 return 0;
1458 }
1459
1460 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1461 goto csum_err;
1462
1463 if (sk->sk_state == TCP_LISTEN) {
1464 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1465 if (!nsk)
1466 goto discard;
1467
1468 if (nsk != sk) {
1469 if (tcp_child_process(sk, nsk, skb)) {
1470 rsk = nsk;
1471 goto reset;
1472 }
1473 return 0;
1474 }
1475 }
1476
1477 TCP_CHECK_TIMER(sk);
1478 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1479 rsk = sk;
1480 goto reset;
1481 }
1482 TCP_CHECK_TIMER(sk);
1483 return 0;
1484
1485 reset:
1486 tcp_v4_send_reset(rsk, skb);
1487 discard:
1488 kfree_skb(skb);
1489 /* Be careful here. If this function gets more complicated and
1490 * gcc suffers from register pressure on the x86, sk (in %ebx)
1491 * might be destroyed here. This current version compiles correctly,
1492 * but you have been warned.
1493 */
1494 return 0;
1495
1496 csum_err:
1497 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1498 goto discard;
1499 }
1500
1501 /*
1502 * From tcp_input.c
1503 */
1504
1505 int tcp_v4_rcv(struct sk_buff *skb)
1506 {
1507 const struct iphdr *iph;
1508 struct tcphdr *th;
1509 struct sock *sk;
1510 int ret;
1511
1512 if (skb->pkt_type != PACKET_HOST)
1513 goto discard_it;
1514
1515 /* Count it even if it's bad */
1516 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1517
1518 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1519 goto discard_it;
1520
1521 th = tcp_hdr(skb);
1522
1523 if (th->doff < sizeof(struct tcphdr) / 4)
1524 goto bad_packet;
1525 if (!pskb_may_pull(skb, th->doff * 4))
1526 goto discard_it;
1527
1528 /* An explanation is required here, I think.
1529 * Packet length and doff are validated by header prediction,
1530 * provided case of th->doff==0 is eliminated.
1531 * So, we defer the checks. */
1532 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1533 goto bad_packet;
1534
1535 th = tcp_hdr(skb);
1536 iph = ip_hdr(skb);
1537 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1538 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1539 skb->len - th->doff * 4);
1540 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1541 TCP_SKB_CB(skb)->when = 0;
1542 TCP_SKB_CB(skb)->flags = iph->tos;
1543 TCP_SKB_CB(skb)->sacked = 0;
1544
1545 sk = __inet_lookup(dev_net(skb->dev), &tcp_hashinfo, iph->saddr,
1546 th->source, iph->daddr, th->dest, inet_iif(skb));
1547 if (!sk)
1548 goto no_tcp_socket;
1549
1550 process:
1551 if (sk->sk_state == TCP_TIME_WAIT)
1552 goto do_time_wait;
1553
1554 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1555 goto discard_and_relse;
1556 nf_reset(skb);
1557
1558 if (sk_filter(sk, skb))
1559 goto discard_and_relse;
1560
1561 skb->dev = NULL;
1562
1563 bh_lock_sock_nested(sk);
1564 ret = 0;
1565 if (!sock_owned_by_user(sk)) {
1566 #ifdef CONFIG_NET_DMA
1567 struct tcp_sock *tp = tcp_sk(sk);
1568 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1569 tp->ucopy.dma_chan = get_softnet_dma();
1570 if (tp->ucopy.dma_chan)
1571 ret = tcp_v4_do_rcv(sk, skb);
1572 else
1573 #endif
1574 {
1575 if (!tcp_prequeue(sk, skb))
1576 ret = tcp_v4_do_rcv(sk, skb);
1577 }
1578 } else
1579 sk_add_backlog(sk, skb);
1580 bh_unlock_sock(sk);
1581
1582 sock_put(sk);
1583
1584 return ret;
1585
1586 no_tcp_socket:
1587 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1588 goto discard_it;
1589
1590 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1591 bad_packet:
1592 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1593 } else {
1594 tcp_v4_send_reset(NULL, skb);
1595 }
1596
1597 discard_it:
1598 /* Discard frame. */
1599 kfree_skb(skb);
1600 return 0;
1601
1602 discard_and_relse:
1603 sock_put(sk);
1604 goto discard_it;
1605
1606 do_time_wait:
1607 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1608 inet_twsk_put(inet_twsk(sk));
1609 goto discard_it;
1610 }
1611
1612 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1613 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1614 inet_twsk_put(inet_twsk(sk));
1615 goto discard_it;
1616 }
1617 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1618 case TCP_TW_SYN: {
1619 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1620 &tcp_hashinfo,
1621 iph->daddr, th->dest,
1622 inet_iif(skb));
1623 if (sk2) {
1624 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1625 inet_twsk_put(inet_twsk(sk));
1626 sk = sk2;
1627 goto process;
1628 }
1629 /* Fall through to ACK */
1630 }
1631 case TCP_TW_ACK:
1632 tcp_v4_timewait_ack(sk, skb);
1633 break;
1634 case TCP_TW_RST:
1635 goto no_tcp_socket;
1636 case TCP_TW_SUCCESS:;
1637 }
1638 goto discard_it;
1639 }
1640
1641 /* VJ's idea. Save last timestamp seen from this destination
1642 * and hold it at least for normal timewait interval to use for duplicate
1643 * segment detection in subsequent connections, before they enter synchronized
1644 * state.
1645 */
1646
1647 int tcp_v4_remember_stamp(struct sock *sk)
1648 {
1649 struct inet_sock *inet = inet_sk(sk);
1650 struct tcp_sock *tp = tcp_sk(sk);
1651 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1652 struct inet_peer *peer = NULL;
1653 int release_it = 0;
1654
1655 if (!rt || rt->rt_dst != inet->daddr) {
1656 peer = inet_getpeer(inet->daddr, 1);
1657 release_it = 1;
1658 } else {
1659 if (!rt->peer)
1660 rt_bind_peer(rt, 1);
1661 peer = rt->peer;
1662 }
1663
1664 if (peer) {
1665 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1666 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1667 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1668 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1669 peer->tcp_ts = tp->rx_opt.ts_recent;
1670 }
1671 if (release_it)
1672 inet_putpeer(peer);
1673 return 1;
1674 }
1675
1676 return 0;
1677 }
1678
1679 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1680 {
1681 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1682
1683 if (peer) {
1684 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1685
1686 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1687 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1688 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1689 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1690 peer->tcp_ts = tcptw->tw_ts_recent;
1691 }
1692 inet_putpeer(peer);
1693 return 1;
1694 }
1695
1696 return 0;
1697 }
1698
1699 struct inet_connection_sock_af_ops ipv4_specific = {
1700 .queue_xmit = ip_queue_xmit,
1701 .send_check = tcp_v4_send_check,
1702 .rebuild_header = inet_sk_rebuild_header,
1703 .conn_request = tcp_v4_conn_request,
1704 .syn_recv_sock = tcp_v4_syn_recv_sock,
1705 .remember_stamp = tcp_v4_remember_stamp,
1706 .net_header_len = sizeof(struct iphdr),
1707 .setsockopt = ip_setsockopt,
1708 .getsockopt = ip_getsockopt,
1709 .addr2sockaddr = inet_csk_addr2sockaddr,
1710 .sockaddr_len = sizeof(struct sockaddr_in),
1711 .bind_conflict = inet_csk_bind_conflict,
1712 #ifdef CONFIG_COMPAT
1713 .compat_setsockopt = compat_ip_setsockopt,
1714 .compat_getsockopt = compat_ip_getsockopt,
1715 #endif
1716 };
1717
1718 #ifdef CONFIG_TCP_MD5SIG
1719 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1720 .md5_lookup = tcp_v4_md5_lookup,
1721 .calc_md5_hash = tcp_v4_calc_md5_hash,
1722 .md5_add = tcp_v4_md5_add_func,
1723 .md5_parse = tcp_v4_parse_md5_keys,
1724 };
1725 #endif
1726
1727 /* NOTE: A lot of things set to zero explicitly by call to
1728 * sk_alloc() so need not be done here.
1729 */
1730 static int tcp_v4_init_sock(struct sock *sk)
1731 {
1732 struct inet_connection_sock *icsk = inet_csk(sk);
1733 struct tcp_sock *tp = tcp_sk(sk);
1734
1735 skb_queue_head_init(&tp->out_of_order_queue);
1736 tcp_init_xmit_timers(sk);
1737 tcp_prequeue_init(tp);
1738
1739 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1740 tp->mdev = TCP_TIMEOUT_INIT;
1741
1742 /* So many TCP implementations out there (incorrectly) count the
1743 * initial SYN frame in their delayed-ACK and congestion control
1744 * algorithms that we must have the following bandaid to talk
1745 * efficiently to them. -DaveM
1746 */
1747 tp->snd_cwnd = 2;
1748
1749 /* See draft-stevens-tcpca-spec-01 for discussion of the
1750 * initialization of these values.
1751 */
1752 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1753 tp->snd_cwnd_clamp = ~0;
1754 tp->mss_cache = 536;
1755
1756 tp->reordering = sysctl_tcp_reordering;
1757 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1758
1759 sk->sk_state = TCP_CLOSE;
1760
1761 sk->sk_write_space = sk_stream_write_space;
1762 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1763
1764 icsk->icsk_af_ops = &ipv4_specific;
1765 icsk->icsk_sync_mss = tcp_sync_mss;
1766 #ifdef CONFIG_TCP_MD5SIG
1767 tp->af_specific = &tcp_sock_ipv4_specific;
1768 #endif
1769
1770 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1771 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1772
1773 atomic_inc(&tcp_sockets_allocated);
1774
1775 return 0;
1776 }
1777
1778 int tcp_v4_destroy_sock(struct sock *sk)
1779 {
1780 struct tcp_sock *tp = tcp_sk(sk);
1781
1782 tcp_clear_xmit_timers(sk);
1783
1784 tcp_cleanup_congestion_control(sk);
1785
1786 /* Cleanup up the write buffer. */
1787 tcp_write_queue_purge(sk);
1788
1789 /* Cleans up our, hopefully empty, out_of_order_queue. */
1790 __skb_queue_purge(&tp->out_of_order_queue);
1791
1792 #ifdef CONFIG_TCP_MD5SIG
1793 /* Clean up the MD5 key list, if any */
1794 if (tp->md5sig_info) {
1795 tcp_v4_clear_md5_list(sk);
1796 kfree(tp->md5sig_info);
1797 tp->md5sig_info = NULL;
1798 }
1799 #endif
1800
1801 #ifdef CONFIG_NET_DMA
1802 /* Cleans up our sk_async_wait_queue */
1803 __skb_queue_purge(&sk->sk_async_wait_queue);
1804 #endif
1805
1806 /* Clean prequeue, it must be empty really */
1807 __skb_queue_purge(&tp->ucopy.prequeue);
1808
1809 /* Clean up a referenced TCP bind bucket. */
1810 if (inet_csk(sk)->icsk_bind_hash)
1811 inet_put_port(sk);
1812
1813 /*
1814 * If sendmsg cached page exists, toss it.
1815 */
1816 if (sk->sk_sndmsg_page) {
1817 __free_page(sk->sk_sndmsg_page);
1818 sk->sk_sndmsg_page = NULL;
1819 }
1820
1821 if (tp->defer_tcp_accept.request) {
1822 reqsk_free(tp->defer_tcp_accept.request);
1823 sock_put(tp->defer_tcp_accept.listen_sk);
1824 sock_put(sk);
1825 tp->defer_tcp_accept.listen_sk = NULL;
1826 tp->defer_tcp_accept.request = NULL;
1827 }
1828
1829 atomic_dec(&tcp_sockets_allocated);
1830
1831 return 0;
1832 }
1833
1834 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1835
1836 #ifdef CONFIG_PROC_FS
1837 /* Proc filesystem TCP sock list dumping. */
1838
1839 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1840 {
1841 return hlist_empty(head) ? NULL :
1842 list_entry(head->first, struct inet_timewait_sock, tw_node);
1843 }
1844
1845 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1846 {
1847 return tw->tw_node.next ?
1848 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1849 }
1850
1851 static void *listening_get_next(struct seq_file *seq, void *cur)
1852 {
1853 struct inet_connection_sock *icsk;
1854 struct hlist_node *node;
1855 struct sock *sk = cur;
1856 struct tcp_iter_state* st = seq->private;
1857 struct net *net = seq_file_net(seq);
1858
1859 if (!sk) {
1860 st->bucket = 0;
1861 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1862 goto get_sk;
1863 }
1864
1865 ++st->num;
1866
1867 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1868 struct request_sock *req = cur;
1869
1870 icsk = inet_csk(st->syn_wait_sk);
1871 req = req->dl_next;
1872 while (1) {
1873 while (req) {
1874 if (req->rsk_ops->family == st->family &&
1875 net_eq(sock_net(req->sk), net)) {
1876 cur = req;
1877 goto out;
1878 }
1879 req = req->dl_next;
1880 }
1881 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1882 break;
1883 get_req:
1884 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1885 }
1886 sk = sk_next(st->syn_wait_sk);
1887 st->state = TCP_SEQ_STATE_LISTENING;
1888 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1889 } else {
1890 icsk = inet_csk(sk);
1891 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1892 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1893 goto start_req;
1894 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1895 sk = sk_next(sk);
1896 }
1897 get_sk:
1898 sk_for_each_from(sk, node) {
1899 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1900 cur = sk;
1901 goto out;
1902 }
1903 icsk = inet_csk(sk);
1904 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1905 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1906 start_req:
1907 st->uid = sock_i_uid(sk);
1908 st->syn_wait_sk = sk;
1909 st->state = TCP_SEQ_STATE_OPENREQ;
1910 st->sbucket = 0;
1911 goto get_req;
1912 }
1913 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1914 }
1915 if (++st->bucket < INET_LHTABLE_SIZE) {
1916 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1917 goto get_sk;
1918 }
1919 cur = NULL;
1920 out:
1921 return cur;
1922 }
1923
1924 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1925 {
1926 void *rc = listening_get_next(seq, NULL);
1927
1928 while (rc && *pos) {
1929 rc = listening_get_next(seq, rc);
1930 --*pos;
1931 }
1932 return rc;
1933 }
1934
1935 static void *established_get_first(struct seq_file *seq)
1936 {
1937 struct tcp_iter_state* st = seq->private;
1938 struct net *net = seq_file_net(seq);
1939 void *rc = NULL;
1940
1941 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1942 struct sock *sk;
1943 struct hlist_node *node;
1944 struct inet_timewait_sock *tw;
1945 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1946
1947 read_lock_bh(lock);
1948 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1949 if (sk->sk_family != st->family ||
1950 !net_eq(sock_net(sk), net)) {
1951 continue;
1952 }
1953 rc = sk;
1954 goto out;
1955 }
1956 st->state = TCP_SEQ_STATE_TIME_WAIT;
1957 inet_twsk_for_each(tw, node,
1958 &tcp_hashinfo.ehash[st->bucket].twchain) {
1959 if (tw->tw_family != st->family ||
1960 !net_eq(twsk_net(tw), net)) {
1961 continue;
1962 }
1963 rc = tw;
1964 goto out;
1965 }
1966 read_unlock_bh(lock);
1967 st->state = TCP_SEQ_STATE_ESTABLISHED;
1968 }
1969 out:
1970 return rc;
1971 }
1972
1973 static void *established_get_next(struct seq_file *seq, void *cur)
1974 {
1975 struct sock *sk = cur;
1976 struct inet_timewait_sock *tw;
1977 struct hlist_node *node;
1978 struct tcp_iter_state* st = seq->private;
1979 struct net *net = seq_file_net(seq);
1980
1981 ++st->num;
1982
1983 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1984 tw = cur;
1985 tw = tw_next(tw);
1986 get_tw:
1987 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
1988 tw = tw_next(tw);
1989 }
1990 if (tw) {
1991 cur = tw;
1992 goto out;
1993 }
1994 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1995 st->state = TCP_SEQ_STATE_ESTABLISHED;
1996
1997 if (++st->bucket < tcp_hashinfo.ehash_size) {
1998 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1999 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2000 } else {
2001 cur = NULL;
2002 goto out;
2003 }
2004 } else
2005 sk = sk_next(sk);
2006
2007 sk_for_each_from(sk, node) {
2008 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2009 goto found;
2010 }
2011
2012 st->state = TCP_SEQ_STATE_TIME_WAIT;
2013 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2014 goto get_tw;
2015 found:
2016 cur = sk;
2017 out:
2018 return cur;
2019 }
2020
2021 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2022 {
2023 void *rc = established_get_first(seq);
2024
2025 while (rc && pos) {
2026 rc = established_get_next(seq, rc);
2027 --pos;
2028 }
2029 return rc;
2030 }
2031
2032 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2033 {
2034 void *rc;
2035 struct tcp_iter_state* st = seq->private;
2036
2037 inet_listen_lock(&tcp_hashinfo);
2038 st->state = TCP_SEQ_STATE_LISTENING;
2039 rc = listening_get_idx(seq, &pos);
2040
2041 if (!rc) {
2042 inet_listen_unlock(&tcp_hashinfo);
2043 st->state = TCP_SEQ_STATE_ESTABLISHED;
2044 rc = established_get_idx(seq, pos);
2045 }
2046
2047 return rc;
2048 }
2049
2050 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2051 {
2052 struct tcp_iter_state* st = seq->private;
2053 st->state = TCP_SEQ_STATE_LISTENING;
2054 st->num = 0;
2055 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2056 }
2057
2058 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2059 {
2060 void *rc = NULL;
2061 struct tcp_iter_state* st;
2062
2063 if (v == SEQ_START_TOKEN) {
2064 rc = tcp_get_idx(seq, 0);
2065 goto out;
2066 }
2067 st = seq->private;
2068
2069 switch (st->state) {
2070 case TCP_SEQ_STATE_OPENREQ:
2071 case TCP_SEQ_STATE_LISTENING:
2072 rc = listening_get_next(seq, v);
2073 if (!rc) {
2074 inet_listen_unlock(&tcp_hashinfo);
2075 st->state = TCP_SEQ_STATE_ESTABLISHED;
2076 rc = established_get_first(seq);
2077 }
2078 break;
2079 case TCP_SEQ_STATE_ESTABLISHED:
2080 case TCP_SEQ_STATE_TIME_WAIT:
2081 rc = established_get_next(seq, v);
2082 break;
2083 }
2084 out:
2085 ++*pos;
2086 return rc;
2087 }
2088
2089 static void tcp_seq_stop(struct seq_file *seq, void *v)
2090 {
2091 struct tcp_iter_state* st = seq->private;
2092
2093 switch (st->state) {
2094 case TCP_SEQ_STATE_OPENREQ:
2095 if (v) {
2096 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2097 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2098 }
2099 case TCP_SEQ_STATE_LISTENING:
2100 if (v != SEQ_START_TOKEN)
2101 inet_listen_unlock(&tcp_hashinfo);
2102 break;
2103 case TCP_SEQ_STATE_TIME_WAIT:
2104 case TCP_SEQ_STATE_ESTABLISHED:
2105 if (v)
2106 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2107 break;
2108 }
2109 }
2110
2111 static int tcp_seq_open(struct inode *inode, struct file *file)
2112 {
2113 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2114 struct tcp_iter_state *s;
2115 int err;
2116
2117 err = seq_open_net(inode, file, &afinfo->seq_ops,
2118 sizeof(struct tcp_iter_state));
2119 if (err < 0)
2120 return err;
2121
2122 s = ((struct seq_file *)file->private_data)->private;
2123 s->family = afinfo->family;
2124 return 0;
2125 }
2126
2127 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2128 {
2129 int rc = 0;
2130 struct proc_dir_entry *p;
2131
2132 afinfo->seq_fops.open = tcp_seq_open;
2133 afinfo->seq_fops.read = seq_read;
2134 afinfo->seq_fops.llseek = seq_lseek;
2135 afinfo->seq_fops.release = seq_release_net;
2136
2137 afinfo->seq_ops.start = tcp_seq_start;
2138 afinfo->seq_ops.next = tcp_seq_next;
2139 afinfo->seq_ops.stop = tcp_seq_stop;
2140
2141 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2142 &afinfo->seq_fops, afinfo);
2143 if (!p)
2144 rc = -ENOMEM;
2145 return rc;
2146 }
2147
2148 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2149 {
2150 proc_net_remove(net, afinfo->name);
2151 }
2152
2153 static void get_openreq4(struct sock *sk, struct request_sock *req,
2154 struct seq_file *f, int i, int uid, int *len)
2155 {
2156 const struct inet_request_sock *ireq = inet_rsk(req);
2157 int ttd = req->expires - jiffies;
2158
2159 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2160 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2161 i,
2162 ireq->loc_addr,
2163 ntohs(inet_sk(sk)->sport),
2164 ireq->rmt_addr,
2165 ntohs(ireq->rmt_port),
2166 TCP_SYN_RECV,
2167 0, 0, /* could print option size, but that is af dependent. */
2168 1, /* timers active (only the expire timer) */
2169 jiffies_to_clock_t(ttd),
2170 req->retrans,
2171 uid,
2172 0, /* non standard timer */
2173 0, /* open_requests have no inode */
2174 atomic_read(&sk->sk_refcnt),
2175 req,
2176 len);
2177 }
2178
2179 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2180 {
2181 int timer_active;
2182 unsigned long timer_expires;
2183 struct tcp_sock *tp = tcp_sk(sk);
2184 const struct inet_connection_sock *icsk = inet_csk(sk);
2185 struct inet_sock *inet = inet_sk(sk);
2186 __be32 dest = inet->daddr;
2187 __be32 src = inet->rcv_saddr;
2188 __u16 destp = ntohs(inet->dport);
2189 __u16 srcp = ntohs(inet->sport);
2190
2191 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2192 timer_active = 1;
2193 timer_expires = icsk->icsk_timeout;
2194 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2195 timer_active = 4;
2196 timer_expires = icsk->icsk_timeout;
2197 } else if (timer_pending(&sk->sk_timer)) {
2198 timer_active = 2;
2199 timer_expires = sk->sk_timer.expires;
2200 } else {
2201 timer_active = 0;
2202 timer_expires = jiffies;
2203 }
2204
2205 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2206 "%08X %5d %8d %lu %d %p %u %u %u %u %d%n",
2207 i, src, srcp, dest, destp, sk->sk_state,
2208 tp->write_seq - tp->snd_una,
2209 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2210 (tp->rcv_nxt - tp->copied_seq),
2211 timer_active,
2212 jiffies_to_clock_t(timer_expires - jiffies),
2213 icsk->icsk_retransmits,
2214 sock_i_uid(sk),
2215 icsk->icsk_probes_out,
2216 sock_i_ino(sk),
2217 atomic_read(&sk->sk_refcnt), sk,
2218 icsk->icsk_rto,
2219 icsk->icsk_ack.ato,
2220 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2221 tp->snd_cwnd,
2222 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2223 len);
2224 }
2225
2226 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2227 struct seq_file *f, int i, int *len)
2228 {
2229 __be32 dest, src;
2230 __u16 destp, srcp;
2231 int ttd = tw->tw_ttd - jiffies;
2232
2233 if (ttd < 0)
2234 ttd = 0;
2235
2236 dest = tw->tw_daddr;
2237 src = tw->tw_rcv_saddr;
2238 destp = ntohs(tw->tw_dport);
2239 srcp = ntohs(tw->tw_sport);
2240
2241 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2242 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2243 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2244 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2245 atomic_read(&tw->tw_refcnt), tw, len);
2246 }
2247
2248 #define TMPSZ 150
2249
2250 static int tcp4_seq_show(struct seq_file *seq, void *v)
2251 {
2252 struct tcp_iter_state* st;
2253 int len;
2254
2255 if (v == SEQ_START_TOKEN) {
2256 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2257 " sl local_address rem_address st tx_queue "
2258 "rx_queue tr tm->when retrnsmt uid timeout "
2259 "inode");
2260 goto out;
2261 }
2262 st = seq->private;
2263
2264 switch (st->state) {
2265 case TCP_SEQ_STATE_LISTENING:
2266 case TCP_SEQ_STATE_ESTABLISHED:
2267 get_tcp4_sock(v, seq, st->num, &len);
2268 break;
2269 case TCP_SEQ_STATE_OPENREQ:
2270 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2271 break;
2272 case TCP_SEQ_STATE_TIME_WAIT:
2273 get_timewait4_sock(v, seq, st->num, &len);
2274 break;
2275 }
2276 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2277 out:
2278 return 0;
2279 }
2280
2281 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2282 .name = "tcp",
2283 .family = AF_INET,
2284 .seq_fops = {
2285 .owner = THIS_MODULE,
2286 },
2287 .seq_ops = {
2288 .show = tcp4_seq_show,
2289 },
2290 };
2291
2292 static int tcp4_proc_init_net(struct net *net)
2293 {
2294 return tcp_proc_register(net, &tcp4_seq_afinfo);
2295 }
2296
2297 static void tcp4_proc_exit_net(struct net *net)
2298 {
2299 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2300 }
2301
2302 static struct pernet_operations tcp4_net_ops = {
2303 .init = tcp4_proc_init_net,
2304 .exit = tcp4_proc_exit_net,
2305 };
2306
2307 int __init tcp4_proc_init(void)
2308 {
2309 return register_pernet_subsys(&tcp4_net_ops);
2310 }
2311
2312 void tcp4_proc_exit(void)
2313 {
2314 unregister_pernet_subsys(&tcp4_net_ops);
2315 }
2316 #endif /* CONFIG_PROC_FS */
2317
2318 struct proto tcp_prot = {
2319 .name = "TCP",
2320 .owner = THIS_MODULE,
2321 .close = tcp_close,
2322 .connect = tcp_v4_connect,
2323 .disconnect = tcp_disconnect,
2324 .accept = inet_csk_accept,
2325 .ioctl = tcp_ioctl,
2326 .init = tcp_v4_init_sock,
2327 .destroy = tcp_v4_destroy_sock,
2328 .shutdown = tcp_shutdown,
2329 .setsockopt = tcp_setsockopt,
2330 .getsockopt = tcp_getsockopt,
2331 .recvmsg = tcp_recvmsg,
2332 .backlog_rcv = tcp_v4_do_rcv,
2333 .hash = inet_hash,
2334 .unhash = inet_unhash,
2335 .get_port = inet_csk_get_port,
2336 .enter_memory_pressure = tcp_enter_memory_pressure,
2337 .sockets_allocated = &tcp_sockets_allocated,
2338 .orphan_count = &tcp_orphan_count,
2339 .memory_allocated = &tcp_memory_allocated,
2340 .memory_pressure = &tcp_memory_pressure,
2341 .sysctl_mem = sysctl_tcp_mem,
2342 .sysctl_wmem = sysctl_tcp_wmem,
2343 .sysctl_rmem = sysctl_tcp_rmem,
2344 .max_header = MAX_TCP_HEADER,
2345 .obj_size = sizeof(struct tcp_sock),
2346 .twsk_prot = &tcp_timewait_sock_ops,
2347 .rsk_prot = &tcp_request_sock_ops,
2348 .h.hashinfo = &tcp_hashinfo,
2349 #ifdef CONFIG_COMPAT
2350 .compat_setsockopt = compat_tcp_setsockopt,
2351 .compat_getsockopt = compat_tcp_getsockopt,
2352 #endif
2353 };
2354
2355
2356 static int __net_init tcp_sk_init(struct net *net)
2357 {
2358 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2359 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2360 }
2361
2362 static void __net_exit tcp_sk_exit(struct net *net)
2363 {
2364 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2365 }
2366
2367 static struct pernet_operations __net_initdata tcp_sk_ops = {
2368 .init = tcp_sk_init,
2369 .exit = tcp_sk_exit,
2370 };
2371
2372 void __init tcp_v4_init(void)
2373 {
2374 if (register_pernet_device(&tcp_sk_ops))
2375 panic("Failed to create the TCP control socket.\n");
2376 }
2377
2378 EXPORT_SYMBOL(ipv4_specific);
2379 EXPORT_SYMBOL(tcp_hashinfo);
2380 EXPORT_SYMBOL(tcp_prot);
2381 EXPORT_SYMBOL(tcp_v4_conn_request);
2382 EXPORT_SYMBOL(tcp_v4_connect);
2383 EXPORT_SYMBOL(tcp_v4_do_rcv);
2384 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2385 EXPORT_SYMBOL(tcp_v4_send_check);
2386 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2387
2388 #ifdef CONFIG_PROC_FS
2389 EXPORT_SYMBOL(tcp_proc_register);
2390 EXPORT_SYMBOL(tcp_proc_unregister);
2391 #endif
2392 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2393
This page took 0.112503 seconds and 5 git commands to generate.