Merge branch 'pm-tools'
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 #include <net/busy_poll.h>
79
80 #include <linux/inet.h>
81 #include <linux/ipv6.h>
82 #include <linux/stddef.h>
83 #include <linux/proc_fs.h>
84 #include <linux/seq_file.h>
85
86 #include <linux/crypto.h>
87 #include <linux/scatterlist.h>
88
89 int sysctl_tcp_tw_reuse __read_mostly;
90 int sysctl_tcp_low_latency __read_mostly;
91 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94 #ifdef CONFIG_TCP_MD5SIG
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98
99 struct inet_hashinfo tcp_hashinfo;
100 EXPORT_SYMBOL(tcp_hashinfo);
101
102 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 {
104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 ip_hdr(skb)->saddr,
106 tcp_hdr(skb)->dest,
107 tcp_hdr(skb)->source);
108 }
109
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 struct tcp_sock *tp = tcp_sk(sk);
114
115 /* With PAWS, it is safe from the viewpoint
116 of data integrity. Even without PAWS it is safe provided sequence
117 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119 Actually, the idea is close to VJ's one, only timestamp cache is
120 held not per host, but per port pair and TW bucket is used as state
121 holder.
122
123 If TW bucket has been already destroyed we fall back to VJ's scheme
124 and use initial timestamp retrieved from peer table.
125 */
126 if (tcptw->tw_ts_recent_stamp &&
127 (twp == NULL || (sysctl_tcp_tw_reuse &&
128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 if (tp->write_seq == 0)
131 tp->write_seq = 1;
132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 sock_hold(sktw);
135 return 1;
136 }
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142 /* This will initiate an outgoing connection. */
143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 {
145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 struct inet_sock *inet = inet_sk(sk);
147 struct tcp_sock *tp = tcp_sk(sk);
148 __be16 orig_sport, orig_dport;
149 __be32 daddr, nexthop;
150 struct flowi4 *fl4;
151 struct rtable *rt;
152 int err;
153 struct ip_options_rcu *inet_opt;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 inet_opt = rcu_dereference_protected(inet->inet_opt,
163 sock_owned_by_user(sk));
164 if (inet_opt && inet_opt->opt.srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet_opt->opt.faddr;
168 }
169
170 orig_sport = inet->inet_sport;
171 orig_dport = usin->sin_port;
172 fl4 = &inet->cork.fl.u.ip4;
173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 IPPROTO_TCP,
176 orig_sport, orig_dport, sk);
177 if (IS_ERR(rt)) {
178 err = PTR_ERR(rt);
179 if (err == -ENETUNREACH)
180 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 return err;
182 }
183
184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 ip_rt_put(rt);
186 return -ENETUNREACH;
187 }
188
189 if (!inet_opt || !inet_opt->opt.srr)
190 daddr = fl4->daddr;
191
192 if (!inet->inet_saddr)
193 inet->inet_saddr = fl4->saddr;
194 inet->inet_rcv_saddr = inet->inet_saddr;
195
196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 /* Reset inherited state */
198 tp->rx_opt.ts_recent = 0;
199 tp->rx_opt.ts_recent_stamp = 0;
200 if (likely(!tp->repair))
201 tp->write_seq = 0;
202 }
203
204 if (tcp_death_row.sysctl_tw_recycle &&
205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208 inet->inet_dport = usin->sin_port;
209 inet->inet_daddr = daddr;
210
211 inet_set_txhash(sk);
212
213 inet_csk(sk)->icsk_ext_hdr_len = 0;
214 if (inet_opt)
215 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
216
217 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
218
219 /* Socket identity is still unknown (sport may be zero).
220 * However we set state to SYN-SENT and not releasing socket
221 * lock select source port, enter ourselves into the hash tables and
222 * complete initialization after this.
223 */
224 tcp_set_state(sk, TCP_SYN_SENT);
225 err = inet_hash_connect(&tcp_death_row, sk);
226 if (err)
227 goto failure;
228
229 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
230 inet->inet_sport, inet->inet_dport, sk);
231 if (IS_ERR(rt)) {
232 err = PTR_ERR(rt);
233 rt = NULL;
234 goto failure;
235 }
236 /* OK, now commit destination to socket. */
237 sk->sk_gso_type = SKB_GSO_TCPV4;
238 sk_setup_caps(sk, &rt->dst);
239
240 if (!tp->write_seq && likely(!tp->repair))
241 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
242 inet->inet_daddr,
243 inet->inet_sport,
244 usin->sin_port);
245
246 inet->inet_id = tp->write_seq ^ jiffies;
247
248 err = tcp_connect(sk);
249
250 rt = NULL;
251 if (err)
252 goto failure;
253
254 return 0;
255
256 failure:
257 /*
258 * This unhashes the socket and releases the local port,
259 * if necessary.
260 */
261 tcp_set_state(sk, TCP_CLOSE);
262 ip_rt_put(rt);
263 sk->sk_route_caps = 0;
264 inet->inet_dport = 0;
265 return err;
266 }
267 EXPORT_SYMBOL(tcp_v4_connect);
268
269 /*
270 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
271 * It can be called through tcp_release_cb() if socket was owned by user
272 * at the time tcp_v4_err() was called to handle ICMP message.
273 */
274 static void tcp_v4_mtu_reduced(struct sock *sk)
275 {
276 struct dst_entry *dst;
277 struct inet_sock *inet = inet_sk(sk);
278 u32 mtu = tcp_sk(sk)->mtu_info;
279
280 dst = inet_csk_update_pmtu(sk, mtu);
281 if (!dst)
282 return;
283
284 /* Something is about to be wrong... Remember soft error
285 * for the case, if this connection will not able to recover.
286 */
287 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
288 sk->sk_err_soft = EMSGSIZE;
289
290 mtu = dst_mtu(dst);
291
292 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
293 ip_sk_accept_pmtu(sk) &&
294 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
295 tcp_sync_mss(sk, mtu);
296
297 /* Resend the TCP packet because it's
298 * clear that the old packet has been
299 * dropped. This is the new "fast" path mtu
300 * discovery.
301 */
302 tcp_simple_retransmit(sk);
303 } /* else let the usual retransmit timer handle it */
304 }
305
306 static void do_redirect(struct sk_buff *skb, struct sock *sk)
307 {
308 struct dst_entry *dst = __sk_dst_check(sk, 0);
309
310 if (dst)
311 dst->ops->redirect(dst, sk, skb);
312 }
313
314 /*
315 * This routine is called by the ICMP module when it gets some
316 * sort of error condition. If err < 0 then the socket should
317 * be closed and the error returned to the user. If err > 0
318 * it's just the icmp type << 8 | icmp code. After adjustment
319 * header points to the first 8 bytes of the tcp header. We need
320 * to find the appropriate port.
321 *
322 * The locking strategy used here is very "optimistic". When
323 * someone else accesses the socket the ICMP is just dropped
324 * and for some paths there is no check at all.
325 * A more general error queue to queue errors for later handling
326 * is probably better.
327 *
328 */
329
330 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
331 {
332 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
333 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
334 struct inet_connection_sock *icsk;
335 struct tcp_sock *tp;
336 struct inet_sock *inet;
337 const int type = icmp_hdr(icmp_skb)->type;
338 const int code = icmp_hdr(icmp_skb)->code;
339 struct sock *sk;
340 struct sk_buff *skb;
341 struct request_sock *fastopen;
342 __u32 seq, snd_una;
343 __u32 remaining;
344 int err;
345 struct net *net = dev_net(icmp_skb->dev);
346
347 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
348 iph->saddr, th->source, inet_iif(icmp_skb));
349 if (!sk) {
350 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
351 return;
352 }
353 if (sk->sk_state == TCP_TIME_WAIT) {
354 inet_twsk_put(inet_twsk(sk));
355 return;
356 }
357
358 bh_lock_sock(sk);
359 /* If too many ICMPs get dropped on busy
360 * servers this needs to be solved differently.
361 * We do take care of PMTU discovery (RFC1191) special case :
362 * we can receive locally generated ICMP messages while socket is held.
363 */
364 if (sock_owned_by_user(sk)) {
365 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
366 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
367 }
368 if (sk->sk_state == TCP_CLOSE)
369 goto out;
370
371 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
372 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
373 goto out;
374 }
375
376 icsk = inet_csk(sk);
377 tp = tcp_sk(sk);
378 seq = ntohl(th->seq);
379 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
380 fastopen = tp->fastopen_rsk;
381 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
382 if (sk->sk_state != TCP_LISTEN &&
383 !between(seq, snd_una, tp->snd_nxt)) {
384 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385 goto out;
386 }
387
388 switch (type) {
389 case ICMP_REDIRECT:
390 do_redirect(icmp_skb, sk);
391 goto out;
392 case ICMP_SOURCE_QUENCH:
393 /* Just silently ignore these. */
394 goto out;
395 case ICMP_PARAMETERPROB:
396 err = EPROTO;
397 break;
398 case ICMP_DEST_UNREACH:
399 if (code > NR_ICMP_UNREACH)
400 goto out;
401
402 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
403 /* We are not interested in TCP_LISTEN and open_requests
404 * (SYN-ACKs send out by Linux are always <576bytes so
405 * they should go through unfragmented).
406 */
407 if (sk->sk_state == TCP_LISTEN)
408 goto out;
409
410 tp->mtu_info = info;
411 if (!sock_owned_by_user(sk)) {
412 tcp_v4_mtu_reduced(sk);
413 } else {
414 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
415 sock_hold(sk);
416 }
417 goto out;
418 }
419
420 err = icmp_err_convert[code].errno;
421 /* check if icmp_skb allows revert of backoff
422 * (see draft-zimmermann-tcp-lcd) */
423 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424 break;
425 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
426 !icsk->icsk_backoff || fastopen)
427 break;
428
429 if (sock_owned_by_user(sk))
430 break;
431
432 icsk->icsk_backoff--;
433 inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
434 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435 tcp_bound_rto(sk);
436
437 skb = tcp_write_queue_head(sk);
438 BUG_ON(!skb);
439
440 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443 if (remaining) {
444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 remaining, TCP_RTO_MAX);
446 } else {
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk);
450 }
451
452 break;
453 case ICMP_TIME_EXCEEDED:
454 err = EHOSTUNREACH;
455 break;
456 default:
457 goto out;
458 }
459
460 switch (sk->sk_state) {
461 struct request_sock *req, **prev;
462 case TCP_LISTEN:
463 if (sock_owned_by_user(sk))
464 goto out;
465
466 req = inet_csk_search_req(sk, &prev, th->dest,
467 iph->daddr, iph->saddr);
468 if (!req)
469 goto out;
470
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
473 */
474 WARN_ON(req->sk);
475
476 if (seq != tcp_rsk(req)->snt_isn) {
477 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 goto out;
479 }
480
481 /*
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
486 */
487 inet_csk_reqsk_queue_drop(sk, req, prev);
488 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
489 goto out;
490
491 case TCP_SYN_SENT:
492 case TCP_SYN_RECV:
493 /* Only in fast or simultaneous open. If a fast open socket is
494 * is already accepted it is treated as a connected one below.
495 */
496 if (fastopen && fastopen->sk == NULL)
497 break;
498
499 if (!sock_owned_by_user(sk)) {
500 sk->sk_err = err;
501
502 sk->sk_error_report(sk);
503
504 tcp_done(sk);
505 } else {
506 sk->sk_err_soft = err;
507 }
508 goto out;
509 }
510
511 /* If we've already connected we will keep trying
512 * until we time out, or the user gives up.
513 *
514 * rfc1122 4.2.3.9 allows to consider as hard errors
515 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
516 * but it is obsoleted by pmtu discovery).
517 *
518 * Note, that in modern internet, where routing is unreliable
519 * and in each dark corner broken firewalls sit, sending random
520 * errors ordered by their masters even this two messages finally lose
521 * their original sense (even Linux sends invalid PORT_UNREACHs)
522 *
523 * Now we are in compliance with RFCs.
524 * --ANK (980905)
525 */
526
527 inet = inet_sk(sk);
528 if (!sock_owned_by_user(sk) && inet->recverr) {
529 sk->sk_err = err;
530 sk->sk_error_report(sk);
531 } else { /* Only an error on timeout */
532 sk->sk_err_soft = err;
533 }
534
535 out:
536 bh_unlock_sock(sk);
537 sock_put(sk);
538 }
539
540 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
541 {
542 struct tcphdr *th = tcp_hdr(skb);
543
544 if (skb->ip_summed == CHECKSUM_PARTIAL) {
545 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
546 skb->csum_start = skb_transport_header(skb) - skb->head;
547 skb->csum_offset = offsetof(struct tcphdr, check);
548 } else {
549 th->check = tcp_v4_check(skb->len, saddr, daddr,
550 csum_partial(th,
551 th->doff << 2,
552 skb->csum));
553 }
554 }
555
556 /* This routine computes an IPv4 TCP checksum. */
557 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
558 {
559 const struct inet_sock *inet = inet_sk(sk);
560
561 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
562 }
563 EXPORT_SYMBOL(tcp_v4_send_check);
564
565 /*
566 * This routine will send an RST to the other tcp.
567 *
568 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
569 * for reset.
570 * Answer: if a packet caused RST, it is not for a socket
571 * existing in our system, if it is matched to a socket,
572 * it is just duplicate segment or bug in other side's TCP.
573 * So that we build reply only basing on parameters
574 * arrived with segment.
575 * Exception: precedence violation. We do not implement it in any case.
576 */
577
578 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
579 {
580 const struct tcphdr *th = tcp_hdr(skb);
581 struct {
582 struct tcphdr th;
583 #ifdef CONFIG_TCP_MD5SIG
584 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
585 #endif
586 } rep;
587 struct ip_reply_arg arg;
588 #ifdef CONFIG_TCP_MD5SIG
589 struct tcp_md5sig_key *key;
590 const __u8 *hash_location = NULL;
591 unsigned char newhash[16];
592 int genhash;
593 struct sock *sk1 = NULL;
594 #endif
595 struct net *net;
596
597 /* Never send a reset in response to a reset. */
598 if (th->rst)
599 return;
600
601 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
602 return;
603
604 /* Swap the send and the receive. */
605 memset(&rep, 0, sizeof(rep));
606 rep.th.dest = th->source;
607 rep.th.source = th->dest;
608 rep.th.doff = sizeof(struct tcphdr) / 4;
609 rep.th.rst = 1;
610
611 if (th->ack) {
612 rep.th.seq = th->ack_seq;
613 } else {
614 rep.th.ack = 1;
615 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
616 skb->len - (th->doff << 2));
617 }
618
619 memset(&arg, 0, sizeof(arg));
620 arg.iov[0].iov_base = (unsigned char *)&rep;
621 arg.iov[0].iov_len = sizeof(rep.th);
622
623 #ifdef CONFIG_TCP_MD5SIG
624 hash_location = tcp_parse_md5sig_option(th);
625 if (!sk && hash_location) {
626 /*
627 * active side is lost. Try to find listening socket through
628 * source port, and then find md5 key through listening socket.
629 * we are not loose security here:
630 * Incoming packet is checked with md5 hash with finding key,
631 * no RST generated if md5 hash doesn't match.
632 */
633 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
634 &tcp_hashinfo, ip_hdr(skb)->saddr,
635 th->source, ip_hdr(skb)->daddr,
636 ntohs(th->source), inet_iif(skb));
637 /* don't send rst if it can't find key */
638 if (!sk1)
639 return;
640 rcu_read_lock();
641 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
642 &ip_hdr(skb)->saddr, AF_INET);
643 if (!key)
644 goto release_sk1;
645
646 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
647 if (genhash || memcmp(hash_location, newhash, 16) != 0)
648 goto release_sk1;
649 } else {
650 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
651 &ip_hdr(skb)->saddr,
652 AF_INET) : NULL;
653 }
654
655 if (key) {
656 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
657 (TCPOPT_NOP << 16) |
658 (TCPOPT_MD5SIG << 8) |
659 TCPOLEN_MD5SIG);
660 /* Update length and the length the header thinks exists */
661 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
662 rep.th.doff = arg.iov[0].iov_len / 4;
663
664 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
665 key, ip_hdr(skb)->saddr,
666 ip_hdr(skb)->daddr, &rep.th);
667 }
668 #endif
669 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
670 ip_hdr(skb)->saddr, /* XXX */
671 arg.iov[0].iov_len, IPPROTO_TCP, 0);
672 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
673 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
674 /* When socket is gone, all binding information is lost.
675 * routing might fail in this case. No choice here, if we choose to force
676 * input interface, we will misroute in case of asymmetric route.
677 */
678 if (sk)
679 arg.bound_dev_if = sk->sk_bound_dev_if;
680
681 net = dev_net(skb_dst(skb)->dev);
682 arg.tos = ip_hdr(skb)->tos;
683 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
684 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
685
686 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
687 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
688
689 #ifdef CONFIG_TCP_MD5SIG
690 release_sk1:
691 if (sk1) {
692 rcu_read_unlock();
693 sock_put(sk1);
694 }
695 #endif
696 }
697
698 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
699 outside socket context is ugly, certainly. What can I do?
700 */
701
702 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
703 u32 win, u32 tsval, u32 tsecr, int oif,
704 struct tcp_md5sig_key *key,
705 int reply_flags, u8 tos)
706 {
707 const struct tcphdr *th = tcp_hdr(skb);
708 struct {
709 struct tcphdr th;
710 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
711 #ifdef CONFIG_TCP_MD5SIG
712 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
713 #endif
714 ];
715 } rep;
716 struct ip_reply_arg arg;
717 struct net *net = dev_net(skb_dst(skb)->dev);
718
719 memset(&rep.th, 0, sizeof(struct tcphdr));
720 memset(&arg, 0, sizeof(arg));
721
722 arg.iov[0].iov_base = (unsigned char *)&rep;
723 arg.iov[0].iov_len = sizeof(rep.th);
724 if (tsecr) {
725 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
726 (TCPOPT_TIMESTAMP << 8) |
727 TCPOLEN_TIMESTAMP);
728 rep.opt[1] = htonl(tsval);
729 rep.opt[2] = htonl(tsecr);
730 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
731 }
732
733 /* Swap the send and the receive. */
734 rep.th.dest = th->source;
735 rep.th.source = th->dest;
736 rep.th.doff = arg.iov[0].iov_len / 4;
737 rep.th.seq = htonl(seq);
738 rep.th.ack_seq = htonl(ack);
739 rep.th.ack = 1;
740 rep.th.window = htons(win);
741
742 #ifdef CONFIG_TCP_MD5SIG
743 if (key) {
744 int offset = (tsecr) ? 3 : 0;
745
746 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
747 (TCPOPT_NOP << 16) |
748 (TCPOPT_MD5SIG << 8) |
749 TCPOLEN_MD5SIG);
750 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
751 rep.th.doff = arg.iov[0].iov_len/4;
752
753 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
754 key, ip_hdr(skb)->saddr,
755 ip_hdr(skb)->daddr, &rep.th);
756 }
757 #endif
758 arg.flags = reply_flags;
759 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
760 ip_hdr(skb)->saddr, /* XXX */
761 arg.iov[0].iov_len, IPPROTO_TCP, 0);
762 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
763 if (oif)
764 arg.bound_dev_if = oif;
765 arg.tos = tos;
766 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
767 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
768
769 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
770 }
771
772 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
773 {
774 struct inet_timewait_sock *tw = inet_twsk(sk);
775 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
776
777 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
778 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
779 tcp_time_stamp + tcptw->tw_ts_offset,
780 tcptw->tw_ts_recent,
781 tw->tw_bound_dev_if,
782 tcp_twsk_md5_key(tcptw),
783 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
784 tw->tw_tos
785 );
786
787 inet_twsk_put(tw);
788 }
789
790 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
791 struct request_sock *req)
792 {
793 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
794 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
795 */
796 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
797 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
798 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
799 tcp_time_stamp,
800 req->ts_recent,
801 0,
802 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
803 AF_INET),
804 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
805 ip_hdr(skb)->tos);
806 }
807
808 /*
809 * Send a SYN-ACK after having received a SYN.
810 * This still operates on a request_sock only, not on a big
811 * socket.
812 */
813 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
814 struct flowi *fl,
815 struct request_sock *req,
816 u16 queue_mapping,
817 struct tcp_fastopen_cookie *foc)
818 {
819 const struct inet_request_sock *ireq = inet_rsk(req);
820 struct flowi4 fl4;
821 int err = -1;
822 struct sk_buff *skb;
823
824 /* First, grab a route. */
825 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
826 return -1;
827
828 skb = tcp_make_synack(sk, dst, req, foc);
829
830 if (skb) {
831 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
832
833 skb_set_queue_mapping(skb, queue_mapping);
834 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
835 ireq->ir_rmt_addr,
836 ireq->opt);
837 err = net_xmit_eval(err);
838 }
839
840 return err;
841 }
842
843 /*
844 * IPv4 request_sock destructor.
845 */
846 static void tcp_v4_reqsk_destructor(struct request_sock *req)
847 {
848 kfree(inet_rsk(req)->opt);
849 }
850
851 /*
852 * Return true if a syncookie should be sent
853 */
854 bool tcp_syn_flood_action(struct sock *sk,
855 const struct sk_buff *skb,
856 const char *proto)
857 {
858 const char *msg = "Dropping request";
859 bool want_cookie = false;
860 struct listen_sock *lopt;
861
862 #ifdef CONFIG_SYN_COOKIES
863 if (sysctl_tcp_syncookies) {
864 msg = "Sending cookies";
865 want_cookie = true;
866 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
867 } else
868 #endif
869 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
870
871 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
872 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
873 lopt->synflood_warned = 1;
874 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
875 proto, ntohs(tcp_hdr(skb)->dest), msg);
876 }
877 return want_cookie;
878 }
879 EXPORT_SYMBOL(tcp_syn_flood_action);
880
881 /*
882 * Save and compile IPv4 options into the request_sock if needed.
883 */
884 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
885 {
886 const struct ip_options *opt = &(IPCB(skb)->opt);
887 struct ip_options_rcu *dopt = NULL;
888
889 if (opt && opt->optlen) {
890 int opt_size = sizeof(*dopt) + opt->optlen;
891
892 dopt = kmalloc(opt_size, GFP_ATOMIC);
893 if (dopt) {
894 if (ip_options_echo(&dopt->opt, skb)) {
895 kfree(dopt);
896 dopt = NULL;
897 }
898 }
899 }
900 return dopt;
901 }
902
903 #ifdef CONFIG_TCP_MD5SIG
904 /*
905 * RFC2385 MD5 checksumming requires a mapping of
906 * IP address->MD5 Key.
907 * We need to maintain these in the sk structure.
908 */
909
910 /* Find the Key structure for an address. */
911 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
912 const union tcp_md5_addr *addr,
913 int family)
914 {
915 struct tcp_sock *tp = tcp_sk(sk);
916 struct tcp_md5sig_key *key;
917 unsigned int size = sizeof(struct in_addr);
918 struct tcp_md5sig_info *md5sig;
919
920 /* caller either holds rcu_read_lock() or socket lock */
921 md5sig = rcu_dereference_check(tp->md5sig_info,
922 sock_owned_by_user(sk) ||
923 lockdep_is_held(&sk->sk_lock.slock));
924 if (!md5sig)
925 return NULL;
926 #if IS_ENABLED(CONFIG_IPV6)
927 if (family == AF_INET6)
928 size = sizeof(struct in6_addr);
929 #endif
930 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
931 if (key->family != family)
932 continue;
933 if (!memcmp(&key->addr, addr, size))
934 return key;
935 }
936 return NULL;
937 }
938 EXPORT_SYMBOL(tcp_md5_do_lookup);
939
940 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
941 struct sock *addr_sk)
942 {
943 union tcp_md5_addr *addr;
944
945 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
946 return tcp_md5_do_lookup(sk, addr, AF_INET);
947 }
948 EXPORT_SYMBOL(tcp_v4_md5_lookup);
949
950 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
951 struct request_sock *req)
952 {
953 union tcp_md5_addr *addr;
954
955 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
956 return tcp_md5_do_lookup(sk, addr, AF_INET);
957 }
958
959 /* This can be called on a newly created socket, from other files */
960 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
961 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
962 {
963 /* Add Key to the list */
964 struct tcp_md5sig_key *key;
965 struct tcp_sock *tp = tcp_sk(sk);
966 struct tcp_md5sig_info *md5sig;
967
968 key = tcp_md5_do_lookup(sk, addr, family);
969 if (key) {
970 /* Pre-existing entry - just update that one. */
971 memcpy(key->key, newkey, newkeylen);
972 key->keylen = newkeylen;
973 return 0;
974 }
975
976 md5sig = rcu_dereference_protected(tp->md5sig_info,
977 sock_owned_by_user(sk));
978 if (!md5sig) {
979 md5sig = kmalloc(sizeof(*md5sig), gfp);
980 if (!md5sig)
981 return -ENOMEM;
982
983 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
984 INIT_HLIST_HEAD(&md5sig->head);
985 rcu_assign_pointer(tp->md5sig_info, md5sig);
986 }
987
988 key = sock_kmalloc(sk, sizeof(*key), gfp);
989 if (!key)
990 return -ENOMEM;
991 if (!tcp_alloc_md5sig_pool()) {
992 sock_kfree_s(sk, key, sizeof(*key));
993 return -ENOMEM;
994 }
995
996 memcpy(key->key, newkey, newkeylen);
997 key->keylen = newkeylen;
998 key->family = family;
999 memcpy(&key->addr, addr,
1000 (family == AF_INET6) ? sizeof(struct in6_addr) :
1001 sizeof(struct in_addr));
1002 hlist_add_head_rcu(&key->node, &md5sig->head);
1003 return 0;
1004 }
1005 EXPORT_SYMBOL(tcp_md5_do_add);
1006
1007 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1008 {
1009 struct tcp_md5sig_key *key;
1010
1011 key = tcp_md5_do_lookup(sk, addr, family);
1012 if (!key)
1013 return -ENOENT;
1014 hlist_del_rcu(&key->node);
1015 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1016 kfree_rcu(key, rcu);
1017 return 0;
1018 }
1019 EXPORT_SYMBOL(tcp_md5_do_del);
1020
1021 static void tcp_clear_md5_list(struct sock *sk)
1022 {
1023 struct tcp_sock *tp = tcp_sk(sk);
1024 struct tcp_md5sig_key *key;
1025 struct hlist_node *n;
1026 struct tcp_md5sig_info *md5sig;
1027
1028 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1029
1030 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1031 hlist_del_rcu(&key->node);
1032 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1033 kfree_rcu(key, rcu);
1034 }
1035 }
1036
1037 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1038 int optlen)
1039 {
1040 struct tcp_md5sig cmd;
1041 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1042
1043 if (optlen < sizeof(cmd))
1044 return -EINVAL;
1045
1046 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1047 return -EFAULT;
1048
1049 if (sin->sin_family != AF_INET)
1050 return -EINVAL;
1051
1052 if (!cmd.tcpm_keylen)
1053 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1054 AF_INET);
1055
1056 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1057 return -EINVAL;
1058
1059 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1060 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1061 GFP_KERNEL);
1062 }
1063
1064 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1065 __be32 daddr, __be32 saddr, int nbytes)
1066 {
1067 struct tcp4_pseudohdr *bp;
1068 struct scatterlist sg;
1069
1070 bp = &hp->md5_blk.ip4;
1071
1072 /*
1073 * 1. the TCP pseudo-header (in the order: source IP address,
1074 * destination IP address, zero-padded protocol number, and
1075 * segment length)
1076 */
1077 bp->saddr = saddr;
1078 bp->daddr = daddr;
1079 bp->pad = 0;
1080 bp->protocol = IPPROTO_TCP;
1081 bp->len = cpu_to_be16(nbytes);
1082
1083 sg_init_one(&sg, bp, sizeof(*bp));
1084 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1085 }
1086
1087 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1088 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1089 {
1090 struct tcp_md5sig_pool *hp;
1091 struct hash_desc *desc;
1092
1093 hp = tcp_get_md5sig_pool();
1094 if (!hp)
1095 goto clear_hash_noput;
1096 desc = &hp->md5_desc;
1097
1098 if (crypto_hash_init(desc))
1099 goto clear_hash;
1100 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1101 goto clear_hash;
1102 if (tcp_md5_hash_header(hp, th))
1103 goto clear_hash;
1104 if (tcp_md5_hash_key(hp, key))
1105 goto clear_hash;
1106 if (crypto_hash_final(desc, md5_hash))
1107 goto clear_hash;
1108
1109 tcp_put_md5sig_pool();
1110 return 0;
1111
1112 clear_hash:
1113 tcp_put_md5sig_pool();
1114 clear_hash_noput:
1115 memset(md5_hash, 0, 16);
1116 return 1;
1117 }
1118
1119 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1120 const struct sock *sk, const struct request_sock *req,
1121 const struct sk_buff *skb)
1122 {
1123 struct tcp_md5sig_pool *hp;
1124 struct hash_desc *desc;
1125 const struct tcphdr *th = tcp_hdr(skb);
1126 __be32 saddr, daddr;
1127
1128 if (sk) {
1129 saddr = inet_sk(sk)->inet_saddr;
1130 daddr = inet_sk(sk)->inet_daddr;
1131 } else if (req) {
1132 saddr = inet_rsk(req)->ir_loc_addr;
1133 daddr = inet_rsk(req)->ir_rmt_addr;
1134 } else {
1135 const struct iphdr *iph = ip_hdr(skb);
1136 saddr = iph->saddr;
1137 daddr = iph->daddr;
1138 }
1139
1140 hp = tcp_get_md5sig_pool();
1141 if (!hp)
1142 goto clear_hash_noput;
1143 desc = &hp->md5_desc;
1144
1145 if (crypto_hash_init(desc))
1146 goto clear_hash;
1147
1148 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1149 goto clear_hash;
1150 if (tcp_md5_hash_header(hp, th))
1151 goto clear_hash;
1152 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1153 goto clear_hash;
1154 if (tcp_md5_hash_key(hp, key))
1155 goto clear_hash;
1156 if (crypto_hash_final(desc, md5_hash))
1157 goto clear_hash;
1158
1159 tcp_put_md5sig_pool();
1160 return 0;
1161
1162 clear_hash:
1163 tcp_put_md5sig_pool();
1164 clear_hash_noput:
1165 memset(md5_hash, 0, 16);
1166 return 1;
1167 }
1168 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1169
1170 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1171 {
1172 /*
1173 * This gets called for each TCP segment that arrives
1174 * so we want to be efficient.
1175 * We have 3 drop cases:
1176 * o No MD5 hash and one expected.
1177 * o MD5 hash and we're not expecting one.
1178 * o MD5 hash and its wrong.
1179 */
1180 const __u8 *hash_location = NULL;
1181 struct tcp_md5sig_key *hash_expected;
1182 const struct iphdr *iph = ip_hdr(skb);
1183 const struct tcphdr *th = tcp_hdr(skb);
1184 int genhash;
1185 unsigned char newhash[16];
1186
1187 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1188 AF_INET);
1189 hash_location = tcp_parse_md5sig_option(th);
1190
1191 /* We've parsed the options - do we have a hash? */
1192 if (!hash_expected && !hash_location)
1193 return false;
1194
1195 if (hash_expected && !hash_location) {
1196 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1197 return true;
1198 }
1199
1200 if (!hash_expected && hash_location) {
1201 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1202 return true;
1203 }
1204
1205 /* Okay, so this is hash_expected and hash_location -
1206 * so we need to calculate the checksum.
1207 */
1208 genhash = tcp_v4_md5_hash_skb(newhash,
1209 hash_expected,
1210 NULL, NULL, skb);
1211
1212 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1213 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1214 &iph->saddr, ntohs(th->source),
1215 &iph->daddr, ntohs(th->dest),
1216 genhash ? " tcp_v4_calc_md5_hash failed"
1217 : "");
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 #endif
1224
1225 static void tcp_v4_init_req(struct request_sock *req, struct sock *sk,
1226 struct sk_buff *skb)
1227 {
1228 struct inet_request_sock *ireq = inet_rsk(req);
1229
1230 ireq->ir_loc_addr = ip_hdr(skb)->daddr;
1231 ireq->ir_rmt_addr = ip_hdr(skb)->saddr;
1232 ireq->no_srccheck = inet_sk(sk)->transparent;
1233 ireq->opt = tcp_v4_save_options(skb);
1234 }
1235
1236 static struct dst_entry *tcp_v4_route_req(struct sock *sk, struct flowi *fl,
1237 const struct request_sock *req,
1238 bool *strict)
1239 {
1240 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1241
1242 if (strict) {
1243 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1244 *strict = true;
1245 else
1246 *strict = false;
1247 }
1248
1249 return dst;
1250 }
1251
1252 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1253 .family = PF_INET,
1254 .obj_size = sizeof(struct tcp_request_sock),
1255 .rtx_syn_ack = tcp_rtx_synack,
1256 .send_ack = tcp_v4_reqsk_send_ack,
1257 .destructor = tcp_v4_reqsk_destructor,
1258 .send_reset = tcp_v4_send_reset,
1259 .syn_ack_timeout = tcp_syn_ack_timeout,
1260 };
1261
1262 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1263 .mss_clamp = TCP_MSS_DEFAULT,
1264 #ifdef CONFIG_TCP_MD5SIG
1265 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1266 .calc_md5_hash = tcp_v4_md5_hash_skb,
1267 #endif
1268 .init_req = tcp_v4_init_req,
1269 #ifdef CONFIG_SYN_COOKIES
1270 .cookie_init_seq = cookie_v4_init_sequence,
1271 #endif
1272 .route_req = tcp_v4_route_req,
1273 .init_seq = tcp_v4_init_sequence,
1274 .send_synack = tcp_v4_send_synack,
1275 .queue_hash_add = inet_csk_reqsk_queue_hash_add,
1276 };
1277
1278 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1279 {
1280 /* Never answer to SYNs send to broadcast or multicast */
1281 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1282 goto drop;
1283
1284 return tcp_conn_request(&tcp_request_sock_ops,
1285 &tcp_request_sock_ipv4_ops, sk, skb);
1286
1287 drop:
1288 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1289 return 0;
1290 }
1291 EXPORT_SYMBOL(tcp_v4_conn_request);
1292
1293
1294 /*
1295 * The three way handshake has completed - we got a valid synack -
1296 * now create the new socket.
1297 */
1298 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1299 struct request_sock *req,
1300 struct dst_entry *dst)
1301 {
1302 struct inet_request_sock *ireq;
1303 struct inet_sock *newinet;
1304 struct tcp_sock *newtp;
1305 struct sock *newsk;
1306 #ifdef CONFIG_TCP_MD5SIG
1307 struct tcp_md5sig_key *key;
1308 #endif
1309 struct ip_options_rcu *inet_opt;
1310
1311 if (sk_acceptq_is_full(sk))
1312 goto exit_overflow;
1313
1314 newsk = tcp_create_openreq_child(sk, req, skb);
1315 if (!newsk)
1316 goto exit_nonewsk;
1317
1318 newsk->sk_gso_type = SKB_GSO_TCPV4;
1319 inet_sk_rx_dst_set(newsk, skb);
1320
1321 newtp = tcp_sk(newsk);
1322 newinet = inet_sk(newsk);
1323 ireq = inet_rsk(req);
1324 newinet->inet_daddr = ireq->ir_rmt_addr;
1325 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1326 newinet->inet_saddr = ireq->ir_loc_addr;
1327 inet_opt = ireq->opt;
1328 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1329 ireq->opt = NULL;
1330 newinet->mc_index = inet_iif(skb);
1331 newinet->mc_ttl = ip_hdr(skb)->ttl;
1332 newinet->rcv_tos = ip_hdr(skb)->tos;
1333 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1334 inet_set_txhash(newsk);
1335 if (inet_opt)
1336 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1337 newinet->inet_id = newtp->write_seq ^ jiffies;
1338
1339 if (!dst) {
1340 dst = inet_csk_route_child_sock(sk, newsk, req);
1341 if (!dst)
1342 goto put_and_exit;
1343 } else {
1344 /* syncookie case : see end of cookie_v4_check() */
1345 }
1346 sk_setup_caps(newsk, dst);
1347
1348 tcp_sync_mss(newsk, dst_mtu(dst));
1349 newtp->advmss = dst_metric_advmss(dst);
1350 if (tcp_sk(sk)->rx_opt.user_mss &&
1351 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1352 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1353
1354 tcp_initialize_rcv_mss(newsk);
1355
1356 #ifdef CONFIG_TCP_MD5SIG
1357 /* Copy over the MD5 key from the original socket */
1358 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1359 AF_INET);
1360 if (key != NULL) {
1361 /*
1362 * We're using one, so create a matching key
1363 * on the newsk structure. If we fail to get
1364 * memory, then we end up not copying the key
1365 * across. Shucks.
1366 */
1367 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1368 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1369 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1370 }
1371 #endif
1372
1373 if (__inet_inherit_port(sk, newsk) < 0)
1374 goto put_and_exit;
1375 __inet_hash_nolisten(newsk, NULL);
1376
1377 return newsk;
1378
1379 exit_overflow:
1380 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1381 exit_nonewsk:
1382 dst_release(dst);
1383 exit:
1384 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1385 return NULL;
1386 put_and_exit:
1387 inet_csk_prepare_forced_close(newsk);
1388 tcp_done(newsk);
1389 goto exit;
1390 }
1391 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1392
1393 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1394 {
1395 struct tcphdr *th = tcp_hdr(skb);
1396 const struct iphdr *iph = ip_hdr(skb);
1397 struct sock *nsk;
1398 struct request_sock **prev;
1399 /* Find possible connection requests. */
1400 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1401 iph->saddr, iph->daddr);
1402 if (req)
1403 return tcp_check_req(sk, skb, req, prev, false);
1404
1405 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1406 th->source, iph->daddr, th->dest, inet_iif(skb));
1407
1408 if (nsk) {
1409 if (nsk->sk_state != TCP_TIME_WAIT) {
1410 bh_lock_sock(nsk);
1411 return nsk;
1412 }
1413 inet_twsk_put(inet_twsk(nsk));
1414 return NULL;
1415 }
1416
1417 #ifdef CONFIG_SYN_COOKIES
1418 if (!th->syn)
1419 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1420 #endif
1421 return sk;
1422 }
1423
1424 /* The socket must have it's spinlock held when we get
1425 * here.
1426 *
1427 * We have a potential double-lock case here, so even when
1428 * doing backlog processing we use the BH locking scheme.
1429 * This is because we cannot sleep with the original spinlock
1430 * held.
1431 */
1432 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1433 {
1434 struct sock *rsk;
1435 #ifdef CONFIG_TCP_MD5SIG
1436 /*
1437 * We really want to reject the packet as early as possible
1438 * if:
1439 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1440 * o There is an MD5 option and we're not expecting one
1441 */
1442 if (tcp_v4_inbound_md5_hash(sk, skb))
1443 goto discard;
1444 #endif
1445
1446 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1447 struct dst_entry *dst = sk->sk_rx_dst;
1448
1449 sock_rps_save_rxhash(sk, skb);
1450 if (dst) {
1451 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1452 dst->ops->check(dst, 0) == NULL) {
1453 dst_release(dst);
1454 sk->sk_rx_dst = NULL;
1455 }
1456 }
1457 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1458 return 0;
1459 }
1460
1461 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1462 goto csum_err;
1463
1464 if (sk->sk_state == TCP_LISTEN) {
1465 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1466 if (!nsk)
1467 goto discard;
1468
1469 if (nsk != sk) {
1470 sock_rps_save_rxhash(nsk, skb);
1471 if (tcp_child_process(sk, nsk, skb)) {
1472 rsk = nsk;
1473 goto reset;
1474 }
1475 return 0;
1476 }
1477 } else
1478 sock_rps_save_rxhash(sk, skb);
1479
1480 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1481 rsk = sk;
1482 goto reset;
1483 }
1484 return 0;
1485
1486 reset:
1487 tcp_v4_send_reset(rsk, skb);
1488 discard:
1489 kfree_skb(skb);
1490 /* Be careful here. If this function gets more complicated and
1491 * gcc suffers from register pressure on the x86, sk (in %ebx)
1492 * might be destroyed here. This current version compiles correctly,
1493 * but you have been warned.
1494 */
1495 return 0;
1496
1497 csum_err:
1498 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1499 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1500 goto discard;
1501 }
1502 EXPORT_SYMBOL(tcp_v4_do_rcv);
1503
1504 void tcp_v4_early_demux(struct sk_buff *skb)
1505 {
1506 const struct iphdr *iph;
1507 const struct tcphdr *th;
1508 struct sock *sk;
1509
1510 if (skb->pkt_type != PACKET_HOST)
1511 return;
1512
1513 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1514 return;
1515
1516 iph = ip_hdr(skb);
1517 th = tcp_hdr(skb);
1518
1519 if (th->doff < sizeof(struct tcphdr) / 4)
1520 return;
1521
1522 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1523 iph->saddr, th->source,
1524 iph->daddr, ntohs(th->dest),
1525 skb->skb_iif);
1526 if (sk) {
1527 skb->sk = sk;
1528 skb->destructor = sock_edemux;
1529 if (sk->sk_state != TCP_TIME_WAIT) {
1530 struct dst_entry *dst = sk->sk_rx_dst;
1531
1532 if (dst)
1533 dst = dst_check(dst, 0);
1534 if (dst &&
1535 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1536 skb_dst_set_noref(skb, dst);
1537 }
1538 }
1539 }
1540
1541 /* Packet is added to VJ-style prequeue for processing in process
1542 * context, if a reader task is waiting. Apparently, this exciting
1543 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1544 * failed somewhere. Latency? Burstiness? Well, at least now we will
1545 * see, why it failed. 8)8) --ANK
1546 *
1547 */
1548 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1549 {
1550 struct tcp_sock *tp = tcp_sk(sk);
1551
1552 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1553 return false;
1554
1555 if (skb->len <= tcp_hdrlen(skb) &&
1556 skb_queue_len(&tp->ucopy.prequeue) == 0)
1557 return false;
1558
1559 skb_dst_force(skb);
1560 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1561 tp->ucopy.memory += skb->truesize;
1562 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1563 struct sk_buff *skb1;
1564
1565 BUG_ON(sock_owned_by_user(sk));
1566
1567 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1568 sk_backlog_rcv(sk, skb1);
1569 NET_INC_STATS_BH(sock_net(sk),
1570 LINUX_MIB_TCPPREQUEUEDROPPED);
1571 }
1572
1573 tp->ucopy.memory = 0;
1574 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1575 wake_up_interruptible_sync_poll(sk_sleep(sk),
1576 POLLIN | POLLRDNORM | POLLRDBAND);
1577 if (!inet_csk_ack_scheduled(sk))
1578 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1579 (3 * tcp_rto_min(sk)) / 4,
1580 TCP_RTO_MAX);
1581 }
1582 return true;
1583 }
1584 EXPORT_SYMBOL(tcp_prequeue);
1585
1586 /*
1587 * From tcp_input.c
1588 */
1589
1590 int tcp_v4_rcv(struct sk_buff *skb)
1591 {
1592 const struct iphdr *iph;
1593 const struct tcphdr *th;
1594 struct sock *sk;
1595 int ret;
1596 struct net *net = dev_net(skb->dev);
1597
1598 if (skb->pkt_type != PACKET_HOST)
1599 goto discard_it;
1600
1601 /* Count it even if it's bad */
1602 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1603
1604 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1605 goto discard_it;
1606
1607 th = tcp_hdr(skb);
1608
1609 if (th->doff < sizeof(struct tcphdr) / 4)
1610 goto bad_packet;
1611 if (!pskb_may_pull(skb, th->doff * 4))
1612 goto discard_it;
1613
1614 /* An explanation is required here, I think.
1615 * Packet length and doff are validated by header prediction,
1616 * provided case of th->doff==0 is eliminated.
1617 * So, we defer the checks. */
1618
1619 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1620 goto csum_error;
1621
1622 th = tcp_hdr(skb);
1623 iph = ip_hdr(skb);
1624 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1625 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1626 skb->len - th->doff * 4);
1627 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1628 TCP_SKB_CB(skb)->when = 0;
1629 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1630 TCP_SKB_CB(skb)->sacked = 0;
1631
1632 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1633 if (!sk)
1634 goto no_tcp_socket;
1635
1636 process:
1637 if (sk->sk_state == TCP_TIME_WAIT)
1638 goto do_time_wait;
1639
1640 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1641 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1642 goto discard_and_relse;
1643 }
1644
1645 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1646 goto discard_and_relse;
1647 nf_reset(skb);
1648
1649 if (sk_filter(sk, skb))
1650 goto discard_and_relse;
1651
1652 sk_mark_napi_id(sk, skb);
1653 skb->dev = NULL;
1654
1655 bh_lock_sock_nested(sk);
1656 ret = 0;
1657 if (!sock_owned_by_user(sk)) {
1658 #ifdef CONFIG_NET_DMA
1659 struct tcp_sock *tp = tcp_sk(sk);
1660 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1661 tp->ucopy.dma_chan = net_dma_find_channel();
1662 if (tp->ucopy.dma_chan)
1663 ret = tcp_v4_do_rcv(sk, skb);
1664 else
1665 #endif
1666 {
1667 if (!tcp_prequeue(sk, skb))
1668 ret = tcp_v4_do_rcv(sk, skb);
1669 }
1670 } else if (unlikely(sk_add_backlog(sk, skb,
1671 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1672 bh_unlock_sock(sk);
1673 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1674 goto discard_and_relse;
1675 }
1676 bh_unlock_sock(sk);
1677
1678 sock_put(sk);
1679
1680 return ret;
1681
1682 no_tcp_socket:
1683 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1684 goto discard_it;
1685
1686 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1687 csum_error:
1688 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1689 bad_packet:
1690 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1691 } else {
1692 tcp_v4_send_reset(NULL, skb);
1693 }
1694
1695 discard_it:
1696 /* Discard frame. */
1697 kfree_skb(skb);
1698 return 0;
1699
1700 discard_and_relse:
1701 sock_put(sk);
1702 goto discard_it;
1703
1704 do_time_wait:
1705 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1706 inet_twsk_put(inet_twsk(sk));
1707 goto discard_it;
1708 }
1709
1710 if (skb->len < (th->doff << 2)) {
1711 inet_twsk_put(inet_twsk(sk));
1712 goto bad_packet;
1713 }
1714 if (tcp_checksum_complete(skb)) {
1715 inet_twsk_put(inet_twsk(sk));
1716 goto csum_error;
1717 }
1718 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1719 case TCP_TW_SYN: {
1720 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1721 &tcp_hashinfo,
1722 iph->saddr, th->source,
1723 iph->daddr, th->dest,
1724 inet_iif(skb));
1725 if (sk2) {
1726 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1727 inet_twsk_put(inet_twsk(sk));
1728 sk = sk2;
1729 goto process;
1730 }
1731 /* Fall through to ACK */
1732 }
1733 case TCP_TW_ACK:
1734 tcp_v4_timewait_ack(sk, skb);
1735 break;
1736 case TCP_TW_RST:
1737 goto no_tcp_socket;
1738 case TCP_TW_SUCCESS:;
1739 }
1740 goto discard_it;
1741 }
1742
1743 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1744 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1745 .twsk_unique = tcp_twsk_unique,
1746 .twsk_destructor= tcp_twsk_destructor,
1747 };
1748
1749 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1750 {
1751 struct dst_entry *dst = skb_dst(skb);
1752
1753 dst_hold(dst);
1754 sk->sk_rx_dst = dst;
1755 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1756 }
1757 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1758
1759 const struct inet_connection_sock_af_ops ipv4_specific = {
1760 .queue_xmit = ip_queue_xmit,
1761 .send_check = tcp_v4_send_check,
1762 .rebuild_header = inet_sk_rebuild_header,
1763 .sk_rx_dst_set = inet_sk_rx_dst_set,
1764 .conn_request = tcp_v4_conn_request,
1765 .syn_recv_sock = tcp_v4_syn_recv_sock,
1766 .net_header_len = sizeof(struct iphdr),
1767 .setsockopt = ip_setsockopt,
1768 .getsockopt = ip_getsockopt,
1769 .addr2sockaddr = inet_csk_addr2sockaddr,
1770 .sockaddr_len = sizeof(struct sockaddr_in),
1771 .bind_conflict = inet_csk_bind_conflict,
1772 #ifdef CONFIG_COMPAT
1773 .compat_setsockopt = compat_ip_setsockopt,
1774 .compat_getsockopt = compat_ip_getsockopt,
1775 #endif
1776 };
1777 EXPORT_SYMBOL(ipv4_specific);
1778
1779 #ifdef CONFIG_TCP_MD5SIG
1780 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1781 .md5_lookup = tcp_v4_md5_lookup,
1782 .calc_md5_hash = tcp_v4_md5_hash_skb,
1783 .md5_parse = tcp_v4_parse_md5_keys,
1784 };
1785 #endif
1786
1787 /* NOTE: A lot of things set to zero explicitly by call to
1788 * sk_alloc() so need not be done here.
1789 */
1790 static int tcp_v4_init_sock(struct sock *sk)
1791 {
1792 struct inet_connection_sock *icsk = inet_csk(sk);
1793
1794 tcp_init_sock(sk);
1795
1796 icsk->icsk_af_ops = &ipv4_specific;
1797
1798 #ifdef CONFIG_TCP_MD5SIG
1799 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1800 #endif
1801
1802 return 0;
1803 }
1804
1805 void tcp_v4_destroy_sock(struct sock *sk)
1806 {
1807 struct tcp_sock *tp = tcp_sk(sk);
1808
1809 tcp_clear_xmit_timers(sk);
1810
1811 tcp_cleanup_congestion_control(sk);
1812
1813 /* Cleanup up the write buffer. */
1814 tcp_write_queue_purge(sk);
1815
1816 /* Cleans up our, hopefully empty, out_of_order_queue. */
1817 __skb_queue_purge(&tp->out_of_order_queue);
1818
1819 #ifdef CONFIG_TCP_MD5SIG
1820 /* Clean up the MD5 key list, if any */
1821 if (tp->md5sig_info) {
1822 tcp_clear_md5_list(sk);
1823 kfree_rcu(tp->md5sig_info, rcu);
1824 tp->md5sig_info = NULL;
1825 }
1826 #endif
1827
1828 #ifdef CONFIG_NET_DMA
1829 /* Cleans up our sk_async_wait_queue */
1830 __skb_queue_purge(&sk->sk_async_wait_queue);
1831 #endif
1832
1833 /* Clean prequeue, it must be empty really */
1834 __skb_queue_purge(&tp->ucopy.prequeue);
1835
1836 /* Clean up a referenced TCP bind bucket. */
1837 if (inet_csk(sk)->icsk_bind_hash)
1838 inet_put_port(sk);
1839
1840 BUG_ON(tp->fastopen_rsk != NULL);
1841
1842 /* If socket is aborted during connect operation */
1843 tcp_free_fastopen_req(tp);
1844
1845 sk_sockets_allocated_dec(sk);
1846 sock_release_memcg(sk);
1847 }
1848 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1849
1850 #ifdef CONFIG_PROC_FS
1851 /* Proc filesystem TCP sock list dumping. */
1852
1853 /*
1854 * Get next listener socket follow cur. If cur is NULL, get first socket
1855 * starting from bucket given in st->bucket; when st->bucket is zero the
1856 * very first socket in the hash table is returned.
1857 */
1858 static void *listening_get_next(struct seq_file *seq, void *cur)
1859 {
1860 struct inet_connection_sock *icsk;
1861 struct hlist_nulls_node *node;
1862 struct sock *sk = cur;
1863 struct inet_listen_hashbucket *ilb;
1864 struct tcp_iter_state *st = seq->private;
1865 struct net *net = seq_file_net(seq);
1866
1867 if (!sk) {
1868 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1869 spin_lock_bh(&ilb->lock);
1870 sk = sk_nulls_head(&ilb->head);
1871 st->offset = 0;
1872 goto get_sk;
1873 }
1874 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1875 ++st->num;
1876 ++st->offset;
1877
1878 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1879 struct request_sock *req = cur;
1880
1881 icsk = inet_csk(st->syn_wait_sk);
1882 req = req->dl_next;
1883 while (1) {
1884 while (req) {
1885 if (req->rsk_ops->family == st->family) {
1886 cur = req;
1887 goto out;
1888 }
1889 req = req->dl_next;
1890 }
1891 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1892 break;
1893 get_req:
1894 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1895 }
1896 sk = sk_nulls_next(st->syn_wait_sk);
1897 st->state = TCP_SEQ_STATE_LISTENING;
1898 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1899 } else {
1900 icsk = inet_csk(sk);
1901 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1902 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1903 goto start_req;
1904 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1905 sk = sk_nulls_next(sk);
1906 }
1907 get_sk:
1908 sk_nulls_for_each_from(sk, node) {
1909 if (!net_eq(sock_net(sk), net))
1910 continue;
1911 if (sk->sk_family == st->family) {
1912 cur = sk;
1913 goto out;
1914 }
1915 icsk = inet_csk(sk);
1916 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1917 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1918 start_req:
1919 st->uid = sock_i_uid(sk);
1920 st->syn_wait_sk = sk;
1921 st->state = TCP_SEQ_STATE_OPENREQ;
1922 st->sbucket = 0;
1923 goto get_req;
1924 }
1925 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1926 }
1927 spin_unlock_bh(&ilb->lock);
1928 st->offset = 0;
1929 if (++st->bucket < INET_LHTABLE_SIZE) {
1930 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1931 spin_lock_bh(&ilb->lock);
1932 sk = sk_nulls_head(&ilb->head);
1933 goto get_sk;
1934 }
1935 cur = NULL;
1936 out:
1937 return cur;
1938 }
1939
1940 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1941 {
1942 struct tcp_iter_state *st = seq->private;
1943 void *rc;
1944
1945 st->bucket = 0;
1946 st->offset = 0;
1947 rc = listening_get_next(seq, NULL);
1948
1949 while (rc && *pos) {
1950 rc = listening_get_next(seq, rc);
1951 --*pos;
1952 }
1953 return rc;
1954 }
1955
1956 static inline bool empty_bucket(const struct tcp_iter_state *st)
1957 {
1958 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1959 }
1960
1961 /*
1962 * Get first established socket starting from bucket given in st->bucket.
1963 * If st->bucket is zero, the very first socket in the hash is returned.
1964 */
1965 static void *established_get_first(struct seq_file *seq)
1966 {
1967 struct tcp_iter_state *st = seq->private;
1968 struct net *net = seq_file_net(seq);
1969 void *rc = NULL;
1970
1971 st->offset = 0;
1972 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1973 struct sock *sk;
1974 struct hlist_nulls_node *node;
1975 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1976
1977 /* Lockless fast path for the common case of empty buckets */
1978 if (empty_bucket(st))
1979 continue;
1980
1981 spin_lock_bh(lock);
1982 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1983 if (sk->sk_family != st->family ||
1984 !net_eq(sock_net(sk), net)) {
1985 continue;
1986 }
1987 rc = sk;
1988 goto out;
1989 }
1990 spin_unlock_bh(lock);
1991 }
1992 out:
1993 return rc;
1994 }
1995
1996 static void *established_get_next(struct seq_file *seq, void *cur)
1997 {
1998 struct sock *sk = cur;
1999 struct hlist_nulls_node *node;
2000 struct tcp_iter_state *st = seq->private;
2001 struct net *net = seq_file_net(seq);
2002
2003 ++st->num;
2004 ++st->offset;
2005
2006 sk = sk_nulls_next(sk);
2007
2008 sk_nulls_for_each_from(sk, node) {
2009 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2010 return sk;
2011 }
2012
2013 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2014 ++st->bucket;
2015 return established_get_first(seq);
2016 }
2017
2018 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2019 {
2020 struct tcp_iter_state *st = seq->private;
2021 void *rc;
2022
2023 st->bucket = 0;
2024 rc = established_get_first(seq);
2025
2026 while (rc && pos) {
2027 rc = established_get_next(seq, rc);
2028 --pos;
2029 }
2030 return rc;
2031 }
2032
2033 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2034 {
2035 void *rc;
2036 struct tcp_iter_state *st = seq->private;
2037
2038 st->state = TCP_SEQ_STATE_LISTENING;
2039 rc = listening_get_idx(seq, &pos);
2040
2041 if (!rc) {
2042 st->state = TCP_SEQ_STATE_ESTABLISHED;
2043 rc = established_get_idx(seq, pos);
2044 }
2045
2046 return rc;
2047 }
2048
2049 static void *tcp_seek_last_pos(struct seq_file *seq)
2050 {
2051 struct tcp_iter_state *st = seq->private;
2052 int offset = st->offset;
2053 int orig_num = st->num;
2054 void *rc = NULL;
2055
2056 switch (st->state) {
2057 case TCP_SEQ_STATE_OPENREQ:
2058 case TCP_SEQ_STATE_LISTENING:
2059 if (st->bucket >= INET_LHTABLE_SIZE)
2060 break;
2061 st->state = TCP_SEQ_STATE_LISTENING;
2062 rc = listening_get_next(seq, NULL);
2063 while (offset-- && rc)
2064 rc = listening_get_next(seq, rc);
2065 if (rc)
2066 break;
2067 st->bucket = 0;
2068 st->state = TCP_SEQ_STATE_ESTABLISHED;
2069 /* Fallthrough */
2070 case TCP_SEQ_STATE_ESTABLISHED:
2071 if (st->bucket > tcp_hashinfo.ehash_mask)
2072 break;
2073 rc = established_get_first(seq);
2074 while (offset-- && rc)
2075 rc = established_get_next(seq, rc);
2076 }
2077
2078 st->num = orig_num;
2079
2080 return rc;
2081 }
2082
2083 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2084 {
2085 struct tcp_iter_state *st = seq->private;
2086 void *rc;
2087
2088 if (*pos && *pos == st->last_pos) {
2089 rc = tcp_seek_last_pos(seq);
2090 if (rc)
2091 goto out;
2092 }
2093
2094 st->state = TCP_SEQ_STATE_LISTENING;
2095 st->num = 0;
2096 st->bucket = 0;
2097 st->offset = 0;
2098 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2099
2100 out:
2101 st->last_pos = *pos;
2102 return rc;
2103 }
2104
2105 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2106 {
2107 struct tcp_iter_state *st = seq->private;
2108 void *rc = NULL;
2109
2110 if (v == SEQ_START_TOKEN) {
2111 rc = tcp_get_idx(seq, 0);
2112 goto out;
2113 }
2114
2115 switch (st->state) {
2116 case TCP_SEQ_STATE_OPENREQ:
2117 case TCP_SEQ_STATE_LISTENING:
2118 rc = listening_get_next(seq, v);
2119 if (!rc) {
2120 st->state = TCP_SEQ_STATE_ESTABLISHED;
2121 st->bucket = 0;
2122 st->offset = 0;
2123 rc = established_get_first(seq);
2124 }
2125 break;
2126 case TCP_SEQ_STATE_ESTABLISHED:
2127 rc = established_get_next(seq, v);
2128 break;
2129 }
2130 out:
2131 ++*pos;
2132 st->last_pos = *pos;
2133 return rc;
2134 }
2135
2136 static void tcp_seq_stop(struct seq_file *seq, void *v)
2137 {
2138 struct tcp_iter_state *st = seq->private;
2139
2140 switch (st->state) {
2141 case TCP_SEQ_STATE_OPENREQ:
2142 if (v) {
2143 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2144 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2145 }
2146 case TCP_SEQ_STATE_LISTENING:
2147 if (v != SEQ_START_TOKEN)
2148 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2149 break;
2150 case TCP_SEQ_STATE_ESTABLISHED:
2151 if (v)
2152 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2153 break;
2154 }
2155 }
2156
2157 int tcp_seq_open(struct inode *inode, struct file *file)
2158 {
2159 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2160 struct tcp_iter_state *s;
2161 int err;
2162
2163 err = seq_open_net(inode, file, &afinfo->seq_ops,
2164 sizeof(struct tcp_iter_state));
2165 if (err < 0)
2166 return err;
2167
2168 s = ((struct seq_file *)file->private_data)->private;
2169 s->family = afinfo->family;
2170 s->last_pos = 0;
2171 return 0;
2172 }
2173 EXPORT_SYMBOL(tcp_seq_open);
2174
2175 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2176 {
2177 int rc = 0;
2178 struct proc_dir_entry *p;
2179
2180 afinfo->seq_ops.start = tcp_seq_start;
2181 afinfo->seq_ops.next = tcp_seq_next;
2182 afinfo->seq_ops.stop = tcp_seq_stop;
2183
2184 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2185 afinfo->seq_fops, afinfo);
2186 if (!p)
2187 rc = -ENOMEM;
2188 return rc;
2189 }
2190 EXPORT_SYMBOL(tcp_proc_register);
2191
2192 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2193 {
2194 remove_proc_entry(afinfo->name, net->proc_net);
2195 }
2196 EXPORT_SYMBOL(tcp_proc_unregister);
2197
2198 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2199 struct seq_file *f, int i, kuid_t uid)
2200 {
2201 const struct inet_request_sock *ireq = inet_rsk(req);
2202 long delta = req->expires - jiffies;
2203
2204 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2205 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2206 i,
2207 ireq->ir_loc_addr,
2208 ntohs(inet_sk(sk)->inet_sport),
2209 ireq->ir_rmt_addr,
2210 ntohs(ireq->ir_rmt_port),
2211 TCP_SYN_RECV,
2212 0, 0, /* could print option size, but that is af dependent. */
2213 1, /* timers active (only the expire timer) */
2214 jiffies_delta_to_clock_t(delta),
2215 req->num_timeout,
2216 from_kuid_munged(seq_user_ns(f), uid),
2217 0, /* non standard timer */
2218 0, /* open_requests have no inode */
2219 atomic_read(&sk->sk_refcnt),
2220 req);
2221 }
2222
2223 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2224 {
2225 int timer_active;
2226 unsigned long timer_expires;
2227 const struct tcp_sock *tp = tcp_sk(sk);
2228 const struct inet_connection_sock *icsk = inet_csk(sk);
2229 const struct inet_sock *inet = inet_sk(sk);
2230 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2231 __be32 dest = inet->inet_daddr;
2232 __be32 src = inet->inet_rcv_saddr;
2233 __u16 destp = ntohs(inet->inet_dport);
2234 __u16 srcp = ntohs(inet->inet_sport);
2235 int rx_queue;
2236
2237 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2238 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2239 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2240 timer_active = 1;
2241 timer_expires = icsk->icsk_timeout;
2242 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2243 timer_active = 4;
2244 timer_expires = icsk->icsk_timeout;
2245 } else if (timer_pending(&sk->sk_timer)) {
2246 timer_active = 2;
2247 timer_expires = sk->sk_timer.expires;
2248 } else {
2249 timer_active = 0;
2250 timer_expires = jiffies;
2251 }
2252
2253 if (sk->sk_state == TCP_LISTEN)
2254 rx_queue = sk->sk_ack_backlog;
2255 else
2256 /*
2257 * because we dont lock socket, we might find a transient negative value
2258 */
2259 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2260
2261 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2262 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2263 i, src, srcp, dest, destp, sk->sk_state,
2264 tp->write_seq - tp->snd_una,
2265 rx_queue,
2266 timer_active,
2267 jiffies_delta_to_clock_t(timer_expires - jiffies),
2268 icsk->icsk_retransmits,
2269 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2270 icsk->icsk_probes_out,
2271 sock_i_ino(sk),
2272 atomic_read(&sk->sk_refcnt), sk,
2273 jiffies_to_clock_t(icsk->icsk_rto),
2274 jiffies_to_clock_t(icsk->icsk_ack.ato),
2275 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2276 tp->snd_cwnd,
2277 sk->sk_state == TCP_LISTEN ?
2278 (fastopenq ? fastopenq->max_qlen : 0) :
2279 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2280 }
2281
2282 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2283 struct seq_file *f, int i)
2284 {
2285 __be32 dest, src;
2286 __u16 destp, srcp;
2287 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2288
2289 dest = tw->tw_daddr;
2290 src = tw->tw_rcv_saddr;
2291 destp = ntohs(tw->tw_dport);
2292 srcp = ntohs(tw->tw_sport);
2293
2294 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2295 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2296 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2297 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2298 atomic_read(&tw->tw_refcnt), tw);
2299 }
2300
2301 #define TMPSZ 150
2302
2303 static int tcp4_seq_show(struct seq_file *seq, void *v)
2304 {
2305 struct tcp_iter_state *st;
2306 struct sock *sk = v;
2307
2308 seq_setwidth(seq, TMPSZ - 1);
2309 if (v == SEQ_START_TOKEN) {
2310 seq_puts(seq, " sl local_address rem_address st tx_queue "
2311 "rx_queue tr tm->when retrnsmt uid timeout "
2312 "inode");
2313 goto out;
2314 }
2315 st = seq->private;
2316
2317 switch (st->state) {
2318 case TCP_SEQ_STATE_LISTENING:
2319 case TCP_SEQ_STATE_ESTABLISHED:
2320 if (sk->sk_state == TCP_TIME_WAIT)
2321 get_timewait4_sock(v, seq, st->num);
2322 else
2323 get_tcp4_sock(v, seq, st->num);
2324 break;
2325 case TCP_SEQ_STATE_OPENREQ:
2326 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2327 break;
2328 }
2329 out:
2330 seq_pad(seq, '\n');
2331 return 0;
2332 }
2333
2334 static const struct file_operations tcp_afinfo_seq_fops = {
2335 .owner = THIS_MODULE,
2336 .open = tcp_seq_open,
2337 .read = seq_read,
2338 .llseek = seq_lseek,
2339 .release = seq_release_net
2340 };
2341
2342 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2343 .name = "tcp",
2344 .family = AF_INET,
2345 .seq_fops = &tcp_afinfo_seq_fops,
2346 .seq_ops = {
2347 .show = tcp4_seq_show,
2348 },
2349 };
2350
2351 static int __net_init tcp4_proc_init_net(struct net *net)
2352 {
2353 return tcp_proc_register(net, &tcp4_seq_afinfo);
2354 }
2355
2356 static void __net_exit tcp4_proc_exit_net(struct net *net)
2357 {
2358 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2359 }
2360
2361 static struct pernet_operations tcp4_net_ops = {
2362 .init = tcp4_proc_init_net,
2363 .exit = tcp4_proc_exit_net,
2364 };
2365
2366 int __init tcp4_proc_init(void)
2367 {
2368 return register_pernet_subsys(&tcp4_net_ops);
2369 }
2370
2371 void tcp4_proc_exit(void)
2372 {
2373 unregister_pernet_subsys(&tcp4_net_ops);
2374 }
2375 #endif /* CONFIG_PROC_FS */
2376
2377 struct proto tcp_prot = {
2378 .name = "TCP",
2379 .owner = THIS_MODULE,
2380 .close = tcp_close,
2381 .connect = tcp_v4_connect,
2382 .disconnect = tcp_disconnect,
2383 .accept = inet_csk_accept,
2384 .ioctl = tcp_ioctl,
2385 .init = tcp_v4_init_sock,
2386 .destroy = tcp_v4_destroy_sock,
2387 .shutdown = tcp_shutdown,
2388 .setsockopt = tcp_setsockopt,
2389 .getsockopt = tcp_getsockopt,
2390 .recvmsg = tcp_recvmsg,
2391 .sendmsg = tcp_sendmsg,
2392 .sendpage = tcp_sendpage,
2393 .backlog_rcv = tcp_v4_do_rcv,
2394 .release_cb = tcp_release_cb,
2395 .mtu_reduced = tcp_v4_mtu_reduced,
2396 .hash = inet_hash,
2397 .unhash = inet_unhash,
2398 .get_port = inet_csk_get_port,
2399 .enter_memory_pressure = tcp_enter_memory_pressure,
2400 .stream_memory_free = tcp_stream_memory_free,
2401 .sockets_allocated = &tcp_sockets_allocated,
2402 .orphan_count = &tcp_orphan_count,
2403 .memory_allocated = &tcp_memory_allocated,
2404 .memory_pressure = &tcp_memory_pressure,
2405 .sysctl_mem = sysctl_tcp_mem,
2406 .sysctl_wmem = sysctl_tcp_wmem,
2407 .sysctl_rmem = sysctl_tcp_rmem,
2408 .max_header = MAX_TCP_HEADER,
2409 .obj_size = sizeof(struct tcp_sock),
2410 .slab_flags = SLAB_DESTROY_BY_RCU,
2411 .twsk_prot = &tcp_timewait_sock_ops,
2412 .rsk_prot = &tcp_request_sock_ops,
2413 .h.hashinfo = &tcp_hashinfo,
2414 .no_autobind = true,
2415 #ifdef CONFIG_COMPAT
2416 .compat_setsockopt = compat_tcp_setsockopt,
2417 .compat_getsockopt = compat_tcp_getsockopt,
2418 #endif
2419 #ifdef CONFIG_MEMCG_KMEM
2420 .init_cgroup = tcp_init_cgroup,
2421 .destroy_cgroup = tcp_destroy_cgroup,
2422 .proto_cgroup = tcp_proto_cgroup,
2423 #endif
2424 };
2425 EXPORT_SYMBOL(tcp_prot);
2426
2427 static int __net_init tcp_sk_init(struct net *net)
2428 {
2429 net->ipv4.sysctl_tcp_ecn = 2;
2430 return 0;
2431 }
2432
2433 static void __net_exit tcp_sk_exit(struct net *net)
2434 {
2435 }
2436
2437 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2438 {
2439 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2440 }
2441
2442 static struct pernet_operations __net_initdata tcp_sk_ops = {
2443 .init = tcp_sk_init,
2444 .exit = tcp_sk_exit,
2445 .exit_batch = tcp_sk_exit_batch,
2446 };
2447
2448 void __init tcp_v4_init(void)
2449 {
2450 inet_hashinfo_init(&tcp_hashinfo);
2451 if (register_pernet_subsys(&tcp_sk_ops))
2452 panic("Failed to create the TCP control socket.\n");
2453 }
This page took 0.086509 seconds and 5 git commands to generate.