net: convert %p usage to %pK
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
88
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92 __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
98 {
99 return NULL;
100 }
101 #endif
102
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109 ip_hdr(skb)->saddr,
110 tcp_hdr(skb)->dest,
111 tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
118
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
125 holder.
126
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
129 */
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
135 tp->write_seq = 1;
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138 sock_hold(sktw);
139 return 1;
140 }
141
142 return 0;
143 }
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 {
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 struct inet_sock *inet = inet_sk(sk);
151 struct tcp_sock *tp = tcp_sk(sk);
152 __be16 orig_sport, orig_dport;
153 __be32 daddr, nexthop;
154 struct flowi4 *fl4;
155 struct rtable *rt;
156 int err;
157 struct ip_options_rcu *inet_opt;
158
159 if (addr_len < sizeof(struct sockaddr_in))
160 return -EINVAL;
161
162 if (usin->sin_family != AF_INET)
163 return -EAFNOSUPPORT;
164
165 nexthop = daddr = usin->sin_addr.s_addr;
166 inet_opt = rcu_dereference_protected(inet->inet_opt,
167 sock_owned_by_user(sk));
168 if (inet_opt && inet_opt->opt.srr) {
169 if (!daddr)
170 return -EINVAL;
171 nexthop = inet_opt->opt.faddr;
172 }
173
174 orig_sport = inet->inet_sport;
175 orig_dport = usin->sin_port;
176 fl4 = &inet->cork.fl.u.ip4;
177 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
178 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
179 IPPROTO_TCP,
180 orig_sport, orig_dport, sk, true);
181 if (IS_ERR(rt)) {
182 err = PTR_ERR(rt);
183 if (err == -ENETUNREACH)
184 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
185 return err;
186 }
187
188 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
189 ip_rt_put(rt);
190 return -ENETUNREACH;
191 }
192
193 if (!inet_opt || !inet_opt->opt.srr)
194 daddr = fl4->daddr;
195
196 if (!inet->inet_saddr)
197 inet->inet_saddr = fl4->saddr;
198 inet->inet_rcv_saddr = inet->inet_saddr;
199
200 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
201 /* Reset inherited state */
202 tp->rx_opt.ts_recent = 0;
203 tp->rx_opt.ts_recent_stamp = 0;
204 tp->write_seq = 0;
205 }
206
207 if (tcp_death_row.sysctl_tw_recycle &&
208 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
209 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
210 /*
211 * VJ's idea. We save last timestamp seen from
212 * the destination in peer table, when entering state
213 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
214 * when trying new connection.
215 */
216 if (peer) {
217 inet_peer_refcheck(peer);
218 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
219 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
220 tp->rx_opt.ts_recent = peer->tcp_ts;
221 }
222 }
223 }
224
225 inet->inet_dport = usin->sin_port;
226 inet->inet_daddr = daddr;
227
228 inet_csk(sk)->icsk_ext_hdr_len = 0;
229 if (inet_opt)
230 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
231
232 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
233
234 /* Socket identity is still unknown (sport may be zero).
235 * However we set state to SYN-SENT and not releasing socket
236 * lock select source port, enter ourselves into the hash tables and
237 * complete initialization after this.
238 */
239 tcp_set_state(sk, TCP_SYN_SENT);
240 err = inet_hash_connect(&tcp_death_row, sk);
241 if (err)
242 goto failure;
243
244 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
245 inet->inet_sport, inet->inet_dport, sk);
246 if (IS_ERR(rt)) {
247 err = PTR_ERR(rt);
248 rt = NULL;
249 goto failure;
250 }
251 /* OK, now commit destination to socket. */
252 sk->sk_gso_type = SKB_GSO_TCPV4;
253 sk_setup_caps(sk, &rt->dst);
254
255 if (!tp->write_seq)
256 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
257 inet->inet_daddr,
258 inet->inet_sport,
259 usin->sin_port);
260
261 inet->inet_id = tp->write_seq ^ jiffies;
262
263 err = tcp_connect(sk);
264 rt = NULL;
265 if (err)
266 goto failure;
267
268 return 0;
269
270 failure:
271 /*
272 * This unhashes the socket and releases the local port,
273 * if necessary.
274 */
275 tcp_set_state(sk, TCP_CLOSE);
276 ip_rt_put(rt);
277 sk->sk_route_caps = 0;
278 inet->inet_dport = 0;
279 return err;
280 }
281 EXPORT_SYMBOL(tcp_v4_connect);
282
283 /*
284 * This routine does path mtu discovery as defined in RFC1191.
285 */
286 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
287 {
288 struct dst_entry *dst;
289 struct inet_sock *inet = inet_sk(sk);
290
291 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
292 * send out by Linux are always <576bytes so they should go through
293 * unfragmented).
294 */
295 if (sk->sk_state == TCP_LISTEN)
296 return;
297
298 /* We don't check in the destentry if pmtu discovery is forbidden
299 * on this route. We just assume that no packet_to_big packets
300 * are send back when pmtu discovery is not active.
301 * There is a small race when the user changes this flag in the
302 * route, but I think that's acceptable.
303 */
304 if ((dst = __sk_dst_check(sk, 0)) == NULL)
305 return;
306
307 dst->ops->update_pmtu(dst, mtu);
308
309 /* Something is about to be wrong... Remember soft error
310 * for the case, if this connection will not able to recover.
311 */
312 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
313 sk->sk_err_soft = EMSGSIZE;
314
315 mtu = dst_mtu(dst);
316
317 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
318 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
319 tcp_sync_mss(sk, mtu);
320
321 /* Resend the TCP packet because it's
322 * clear that the old packet has been
323 * dropped. This is the new "fast" path mtu
324 * discovery.
325 */
326 tcp_simple_retransmit(sk);
327 } /* else let the usual retransmit timer handle it */
328 }
329
330 /*
331 * This routine is called by the ICMP module when it gets some
332 * sort of error condition. If err < 0 then the socket should
333 * be closed and the error returned to the user. If err > 0
334 * it's just the icmp type << 8 | icmp code. After adjustment
335 * header points to the first 8 bytes of the tcp header. We need
336 * to find the appropriate port.
337 *
338 * The locking strategy used here is very "optimistic". When
339 * someone else accesses the socket the ICMP is just dropped
340 * and for some paths there is no check at all.
341 * A more general error queue to queue errors for later handling
342 * is probably better.
343 *
344 */
345
346 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
347 {
348 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
349 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
350 struct inet_connection_sock *icsk;
351 struct tcp_sock *tp;
352 struct inet_sock *inet;
353 const int type = icmp_hdr(icmp_skb)->type;
354 const int code = icmp_hdr(icmp_skb)->code;
355 struct sock *sk;
356 struct sk_buff *skb;
357 __u32 seq;
358 __u32 remaining;
359 int err;
360 struct net *net = dev_net(icmp_skb->dev);
361
362 if (icmp_skb->len < (iph->ihl << 2) + 8) {
363 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
364 return;
365 }
366
367 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
368 iph->saddr, th->source, inet_iif(icmp_skb));
369 if (!sk) {
370 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
371 return;
372 }
373 if (sk->sk_state == TCP_TIME_WAIT) {
374 inet_twsk_put(inet_twsk(sk));
375 return;
376 }
377
378 bh_lock_sock(sk);
379 /* If too many ICMPs get dropped on busy
380 * servers this needs to be solved differently.
381 */
382 if (sock_owned_by_user(sk))
383 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
384
385 if (sk->sk_state == TCP_CLOSE)
386 goto out;
387
388 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
389 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
390 goto out;
391 }
392
393 icsk = inet_csk(sk);
394 tp = tcp_sk(sk);
395 seq = ntohl(th->seq);
396 if (sk->sk_state != TCP_LISTEN &&
397 !between(seq, tp->snd_una, tp->snd_nxt)) {
398 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
399 goto out;
400 }
401
402 switch (type) {
403 case ICMP_SOURCE_QUENCH:
404 /* Just silently ignore these. */
405 goto out;
406 case ICMP_PARAMETERPROB:
407 err = EPROTO;
408 break;
409 case ICMP_DEST_UNREACH:
410 if (code > NR_ICMP_UNREACH)
411 goto out;
412
413 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
414 if (!sock_owned_by_user(sk))
415 do_pmtu_discovery(sk, iph, info);
416 goto out;
417 }
418
419 err = icmp_err_convert[code].errno;
420 /* check if icmp_skb allows revert of backoff
421 * (see draft-zimmermann-tcp-lcd) */
422 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
423 break;
424 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
425 !icsk->icsk_backoff)
426 break;
427
428 if (sock_owned_by_user(sk))
429 break;
430
431 icsk->icsk_backoff--;
432 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
433 icsk->icsk_backoff;
434 tcp_bound_rto(sk);
435
436 skb = tcp_write_queue_head(sk);
437 BUG_ON(!skb);
438
439 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
440 tcp_time_stamp - TCP_SKB_CB(skb)->when);
441
442 if (remaining) {
443 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
444 remaining, TCP_RTO_MAX);
445 } else {
446 /* RTO revert clocked out retransmission.
447 * Will retransmit now */
448 tcp_retransmit_timer(sk);
449 }
450
451 break;
452 case ICMP_TIME_EXCEEDED:
453 err = EHOSTUNREACH;
454 break;
455 default:
456 goto out;
457 }
458
459 switch (sk->sk_state) {
460 struct request_sock *req, **prev;
461 case TCP_LISTEN:
462 if (sock_owned_by_user(sk))
463 goto out;
464
465 req = inet_csk_search_req(sk, &prev, th->dest,
466 iph->daddr, iph->saddr);
467 if (!req)
468 goto out;
469
470 /* ICMPs are not backlogged, hence we cannot get
471 an established socket here.
472 */
473 WARN_ON(req->sk);
474
475 if (seq != tcp_rsk(req)->snt_isn) {
476 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
477 goto out;
478 }
479
480 /*
481 * Still in SYN_RECV, just remove it silently.
482 * There is no good way to pass the error to the newly
483 * created socket, and POSIX does not want network
484 * errors returned from accept().
485 */
486 inet_csk_reqsk_queue_drop(sk, req, prev);
487 goto out;
488
489 case TCP_SYN_SENT:
490 case TCP_SYN_RECV: /* Cannot happen.
491 It can f.e. if SYNs crossed.
492 */
493 if (!sock_owned_by_user(sk)) {
494 sk->sk_err = err;
495
496 sk->sk_error_report(sk);
497
498 tcp_done(sk);
499 } else {
500 sk->sk_err_soft = err;
501 }
502 goto out;
503 }
504
505 /* If we've already connected we will keep trying
506 * until we time out, or the user gives up.
507 *
508 * rfc1122 4.2.3.9 allows to consider as hard errors
509 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
510 * but it is obsoleted by pmtu discovery).
511 *
512 * Note, that in modern internet, where routing is unreliable
513 * and in each dark corner broken firewalls sit, sending random
514 * errors ordered by their masters even this two messages finally lose
515 * their original sense (even Linux sends invalid PORT_UNREACHs)
516 *
517 * Now we are in compliance with RFCs.
518 * --ANK (980905)
519 */
520
521 inet = inet_sk(sk);
522 if (!sock_owned_by_user(sk) && inet->recverr) {
523 sk->sk_err = err;
524 sk->sk_error_report(sk);
525 } else { /* Only an error on timeout */
526 sk->sk_err_soft = err;
527 }
528
529 out:
530 bh_unlock_sock(sk);
531 sock_put(sk);
532 }
533
534 static void __tcp_v4_send_check(struct sk_buff *skb,
535 __be32 saddr, __be32 daddr)
536 {
537 struct tcphdr *th = tcp_hdr(skb);
538
539 if (skb->ip_summed == CHECKSUM_PARTIAL) {
540 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
541 skb->csum_start = skb_transport_header(skb) - skb->head;
542 skb->csum_offset = offsetof(struct tcphdr, check);
543 } else {
544 th->check = tcp_v4_check(skb->len, saddr, daddr,
545 csum_partial(th,
546 th->doff << 2,
547 skb->csum));
548 }
549 }
550
551 /* This routine computes an IPv4 TCP checksum. */
552 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
553 {
554 struct inet_sock *inet = inet_sk(sk);
555
556 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
557 }
558 EXPORT_SYMBOL(tcp_v4_send_check);
559
560 int tcp_v4_gso_send_check(struct sk_buff *skb)
561 {
562 const struct iphdr *iph;
563 struct tcphdr *th;
564
565 if (!pskb_may_pull(skb, sizeof(*th)))
566 return -EINVAL;
567
568 iph = ip_hdr(skb);
569 th = tcp_hdr(skb);
570
571 th->check = 0;
572 skb->ip_summed = CHECKSUM_PARTIAL;
573 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
574 return 0;
575 }
576
577 /*
578 * This routine will send an RST to the other tcp.
579 *
580 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
581 * for reset.
582 * Answer: if a packet caused RST, it is not for a socket
583 * existing in our system, if it is matched to a socket,
584 * it is just duplicate segment or bug in other side's TCP.
585 * So that we build reply only basing on parameters
586 * arrived with segment.
587 * Exception: precedence violation. We do not implement it in any case.
588 */
589
590 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
591 {
592 struct tcphdr *th = tcp_hdr(skb);
593 struct {
594 struct tcphdr th;
595 #ifdef CONFIG_TCP_MD5SIG
596 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
597 #endif
598 } rep;
599 struct ip_reply_arg arg;
600 #ifdef CONFIG_TCP_MD5SIG
601 struct tcp_md5sig_key *key;
602 #endif
603 struct net *net;
604
605 /* Never send a reset in response to a reset. */
606 if (th->rst)
607 return;
608
609 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
610 return;
611
612 /* Swap the send and the receive. */
613 memset(&rep, 0, sizeof(rep));
614 rep.th.dest = th->source;
615 rep.th.source = th->dest;
616 rep.th.doff = sizeof(struct tcphdr) / 4;
617 rep.th.rst = 1;
618
619 if (th->ack) {
620 rep.th.seq = th->ack_seq;
621 } else {
622 rep.th.ack = 1;
623 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
624 skb->len - (th->doff << 2));
625 }
626
627 memset(&arg, 0, sizeof(arg));
628 arg.iov[0].iov_base = (unsigned char *)&rep;
629 arg.iov[0].iov_len = sizeof(rep.th);
630
631 #ifdef CONFIG_TCP_MD5SIG
632 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
633 if (key) {
634 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
635 (TCPOPT_NOP << 16) |
636 (TCPOPT_MD5SIG << 8) |
637 TCPOLEN_MD5SIG);
638 /* Update length and the length the header thinks exists */
639 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
640 rep.th.doff = arg.iov[0].iov_len / 4;
641
642 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
643 key, ip_hdr(skb)->saddr,
644 ip_hdr(skb)->daddr, &rep.th);
645 }
646 #endif
647 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
648 ip_hdr(skb)->saddr, /* XXX */
649 arg.iov[0].iov_len, IPPROTO_TCP, 0);
650 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
651 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
652
653 net = dev_net(skb_dst(skb)->dev);
654 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
655 &arg, arg.iov[0].iov_len);
656
657 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
658 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
659 }
660
661 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
662 outside socket context is ugly, certainly. What can I do?
663 */
664
665 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
666 u32 win, u32 ts, int oif,
667 struct tcp_md5sig_key *key,
668 int reply_flags)
669 {
670 struct tcphdr *th = tcp_hdr(skb);
671 struct {
672 struct tcphdr th;
673 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
674 #ifdef CONFIG_TCP_MD5SIG
675 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
676 #endif
677 ];
678 } rep;
679 struct ip_reply_arg arg;
680 struct net *net = dev_net(skb_dst(skb)->dev);
681
682 memset(&rep.th, 0, sizeof(struct tcphdr));
683 memset(&arg, 0, sizeof(arg));
684
685 arg.iov[0].iov_base = (unsigned char *)&rep;
686 arg.iov[0].iov_len = sizeof(rep.th);
687 if (ts) {
688 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
689 (TCPOPT_TIMESTAMP << 8) |
690 TCPOLEN_TIMESTAMP);
691 rep.opt[1] = htonl(tcp_time_stamp);
692 rep.opt[2] = htonl(ts);
693 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
694 }
695
696 /* Swap the send and the receive. */
697 rep.th.dest = th->source;
698 rep.th.source = th->dest;
699 rep.th.doff = arg.iov[0].iov_len / 4;
700 rep.th.seq = htonl(seq);
701 rep.th.ack_seq = htonl(ack);
702 rep.th.ack = 1;
703 rep.th.window = htons(win);
704
705 #ifdef CONFIG_TCP_MD5SIG
706 if (key) {
707 int offset = (ts) ? 3 : 0;
708
709 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
710 (TCPOPT_NOP << 16) |
711 (TCPOPT_MD5SIG << 8) |
712 TCPOLEN_MD5SIG);
713 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
714 rep.th.doff = arg.iov[0].iov_len/4;
715
716 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
717 key, ip_hdr(skb)->saddr,
718 ip_hdr(skb)->daddr, &rep.th);
719 }
720 #endif
721 arg.flags = reply_flags;
722 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
723 ip_hdr(skb)->saddr, /* XXX */
724 arg.iov[0].iov_len, IPPROTO_TCP, 0);
725 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
726 if (oif)
727 arg.bound_dev_if = oif;
728
729 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
730 &arg, arg.iov[0].iov_len);
731
732 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
733 }
734
735 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
736 {
737 struct inet_timewait_sock *tw = inet_twsk(sk);
738 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
739
740 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
741 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
742 tcptw->tw_ts_recent,
743 tw->tw_bound_dev_if,
744 tcp_twsk_md5_key(tcptw),
745 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
746 );
747
748 inet_twsk_put(tw);
749 }
750
751 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
752 struct request_sock *req)
753 {
754 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
755 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
756 req->ts_recent,
757 0,
758 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
759 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
760 }
761
762 /*
763 * Send a SYN-ACK after having received a SYN.
764 * This still operates on a request_sock only, not on a big
765 * socket.
766 */
767 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
768 struct request_sock *req,
769 struct request_values *rvp)
770 {
771 const struct inet_request_sock *ireq = inet_rsk(req);
772 struct flowi4 fl4;
773 int err = -1;
774 struct sk_buff * skb;
775
776 /* First, grab a route. */
777 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
778 return -1;
779
780 skb = tcp_make_synack(sk, dst, req, rvp);
781
782 if (skb) {
783 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
784
785 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
786 ireq->rmt_addr,
787 ireq->opt);
788 err = net_xmit_eval(err);
789 }
790
791 dst_release(dst);
792 return err;
793 }
794
795 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
796 struct request_values *rvp)
797 {
798 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
799 return tcp_v4_send_synack(sk, NULL, req, rvp);
800 }
801
802 /*
803 * IPv4 request_sock destructor.
804 */
805 static void tcp_v4_reqsk_destructor(struct request_sock *req)
806 {
807 kfree(inet_rsk(req)->opt);
808 }
809
810 static void syn_flood_warning(const struct sk_buff *skb)
811 {
812 const char *msg;
813
814 #ifdef CONFIG_SYN_COOKIES
815 if (sysctl_tcp_syncookies)
816 msg = "Sending cookies";
817 else
818 #endif
819 msg = "Dropping request";
820
821 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
822 ntohs(tcp_hdr(skb)->dest), msg);
823 }
824
825 /*
826 * Save and compile IPv4 options into the request_sock if needed.
827 */
828 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
829 struct sk_buff *skb)
830 {
831 const struct ip_options *opt = &(IPCB(skb)->opt);
832 struct ip_options_rcu *dopt = NULL;
833
834 if (opt && opt->optlen) {
835 int opt_size = sizeof(*dopt) + opt->optlen;
836
837 dopt = kmalloc(opt_size, GFP_ATOMIC);
838 if (dopt) {
839 if (ip_options_echo(&dopt->opt, skb)) {
840 kfree(dopt);
841 dopt = NULL;
842 }
843 }
844 }
845 return dopt;
846 }
847
848 #ifdef CONFIG_TCP_MD5SIG
849 /*
850 * RFC2385 MD5 checksumming requires a mapping of
851 * IP address->MD5 Key.
852 * We need to maintain these in the sk structure.
853 */
854
855 /* Find the Key structure for an address. */
856 static struct tcp_md5sig_key *
857 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
858 {
859 struct tcp_sock *tp = tcp_sk(sk);
860 int i;
861
862 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
863 return NULL;
864 for (i = 0; i < tp->md5sig_info->entries4; i++) {
865 if (tp->md5sig_info->keys4[i].addr == addr)
866 return &tp->md5sig_info->keys4[i].base;
867 }
868 return NULL;
869 }
870
871 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
872 struct sock *addr_sk)
873 {
874 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
875 }
876 EXPORT_SYMBOL(tcp_v4_md5_lookup);
877
878 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
879 struct request_sock *req)
880 {
881 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
882 }
883
884 /* This can be called on a newly created socket, from other files */
885 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
886 u8 *newkey, u8 newkeylen)
887 {
888 /* Add Key to the list */
889 struct tcp_md5sig_key *key;
890 struct tcp_sock *tp = tcp_sk(sk);
891 struct tcp4_md5sig_key *keys;
892
893 key = tcp_v4_md5_do_lookup(sk, addr);
894 if (key) {
895 /* Pre-existing entry - just update that one. */
896 kfree(key->key);
897 key->key = newkey;
898 key->keylen = newkeylen;
899 } else {
900 struct tcp_md5sig_info *md5sig;
901
902 if (!tp->md5sig_info) {
903 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
904 GFP_ATOMIC);
905 if (!tp->md5sig_info) {
906 kfree(newkey);
907 return -ENOMEM;
908 }
909 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
910 }
911 if (tcp_alloc_md5sig_pool(sk) == NULL) {
912 kfree(newkey);
913 return -ENOMEM;
914 }
915 md5sig = tp->md5sig_info;
916
917 if (md5sig->alloced4 == md5sig->entries4) {
918 keys = kmalloc((sizeof(*keys) *
919 (md5sig->entries4 + 1)), GFP_ATOMIC);
920 if (!keys) {
921 kfree(newkey);
922 tcp_free_md5sig_pool();
923 return -ENOMEM;
924 }
925
926 if (md5sig->entries4)
927 memcpy(keys, md5sig->keys4,
928 sizeof(*keys) * md5sig->entries4);
929
930 /* Free old key list, and reference new one */
931 kfree(md5sig->keys4);
932 md5sig->keys4 = keys;
933 md5sig->alloced4++;
934 }
935 md5sig->entries4++;
936 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
937 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
938 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
939 }
940 return 0;
941 }
942 EXPORT_SYMBOL(tcp_v4_md5_do_add);
943
944 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
945 u8 *newkey, u8 newkeylen)
946 {
947 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
948 newkey, newkeylen);
949 }
950
951 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
952 {
953 struct tcp_sock *tp = tcp_sk(sk);
954 int i;
955
956 for (i = 0; i < tp->md5sig_info->entries4; i++) {
957 if (tp->md5sig_info->keys4[i].addr == addr) {
958 /* Free the key */
959 kfree(tp->md5sig_info->keys4[i].base.key);
960 tp->md5sig_info->entries4--;
961
962 if (tp->md5sig_info->entries4 == 0) {
963 kfree(tp->md5sig_info->keys4);
964 tp->md5sig_info->keys4 = NULL;
965 tp->md5sig_info->alloced4 = 0;
966 } else if (tp->md5sig_info->entries4 != i) {
967 /* Need to do some manipulation */
968 memmove(&tp->md5sig_info->keys4[i],
969 &tp->md5sig_info->keys4[i+1],
970 (tp->md5sig_info->entries4 - i) *
971 sizeof(struct tcp4_md5sig_key));
972 }
973 tcp_free_md5sig_pool();
974 return 0;
975 }
976 }
977 return -ENOENT;
978 }
979 EXPORT_SYMBOL(tcp_v4_md5_do_del);
980
981 static void tcp_v4_clear_md5_list(struct sock *sk)
982 {
983 struct tcp_sock *tp = tcp_sk(sk);
984
985 /* Free each key, then the set of key keys,
986 * the crypto element, and then decrement our
987 * hold on the last resort crypto.
988 */
989 if (tp->md5sig_info->entries4) {
990 int i;
991 for (i = 0; i < tp->md5sig_info->entries4; i++)
992 kfree(tp->md5sig_info->keys4[i].base.key);
993 tp->md5sig_info->entries4 = 0;
994 tcp_free_md5sig_pool();
995 }
996 if (tp->md5sig_info->keys4) {
997 kfree(tp->md5sig_info->keys4);
998 tp->md5sig_info->keys4 = NULL;
999 tp->md5sig_info->alloced4 = 0;
1000 }
1001 }
1002
1003 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1004 int optlen)
1005 {
1006 struct tcp_md5sig cmd;
1007 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1008 u8 *newkey;
1009
1010 if (optlen < sizeof(cmd))
1011 return -EINVAL;
1012
1013 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1014 return -EFAULT;
1015
1016 if (sin->sin_family != AF_INET)
1017 return -EINVAL;
1018
1019 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1020 if (!tcp_sk(sk)->md5sig_info)
1021 return -ENOENT;
1022 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1023 }
1024
1025 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1026 return -EINVAL;
1027
1028 if (!tcp_sk(sk)->md5sig_info) {
1029 struct tcp_sock *tp = tcp_sk(sk);
1030 struct tcp_md5sig_info *p;
1031
1032 p = kzalloc(sizeof(*p), sk->sk_allocation);
1033 if (!p)
1034 return -EINVAL;
1035
1036 tp->md5sig_info = p;
1037 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1038 }
1039
1040 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1041 if (!newkey)
1042 return -ENOMEM;
1043 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1044 newkey, cmd.tcpm_keylen);
1045 }
1046
1047 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1048 __be32 daddr, __be32 saddr, int nbytes)
1049 {
1050 struct tcp4_pseudohdr *bp;
1051 struct scatterlist sg;
1052
1053 bp = &hp->md5_blk.ip4;
1054
1055 /*
1056 * 1. the TCP pseudo-header (in the order: source IP address,
1057 * destination IP address, zero-padded protocol number, and
1058 * segment length)
1059 */
1060 bp->saddr = saddr;
1061 bp->daddr = daddr;
1062 bp->pad = 0;
1063 bp->protocol = IPPROTO_TCP;
1064 bp->len = cpu_to_be16(nbytes);
1065
1066 sg_init_one(&sg, bp, sizeof(*bp));
1067 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1068 }
1069
1070 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1071 __be32 daddr, __be32 saddr, struct tcphdr *th)
1072 {
1073 struct tcp_md5sig_pool *hp;
1074 struct hash_desc *desc;
1075
1076 hp = tcp_get_md5sig_pool();
1077 if (!hp)
1078 goto clear_hash_noput;
1079 desc = &hp->md5_desc;
1080
1081 if (crypto_hash_init(desc))
1082 goto clear_hash;
1083 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1084 goto clear_hash;
1085 if (tcp_md5_hash_header(hp, th))
1086 goto clear_hash;
1087 if (tcp_md5_hash_key(hp, key))
1088 goto clear_hash;
1089 if (crypto_hash_final(desc, md5_hash))
1090 goto clear_hash;
1091
1092 tcp_put_md5sig_pool();
1093 return 0;
1094
1095 clear_hash:
1096 tcp_put_md5sig_pool();
1097 clear_hash_noput:
1098 memset(md5_hash, 0, 16);
1099 return 1;
1100 }
1101
1102 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1103 struct sock *sk, struct request_sock *req,
1104 struct sk_buff *skb)
1105 {
1106 struct tcp_md5sig_pool *hp;
1107 struct hash_desc *desc;
1108 struct tcphdr *th = tcp_hdr(skb);
1109 __be32 saddr, daddr;
1110
1111 if (sk) {
1112 saddr = inet_sk(sk)->inet_saddr;
1113 daddr = inet_sk(sk)->inet_daddr;
1114 } else if (req) {
1115 saddr = inet_rsk(req)->loc_addr;
1116 daddr = inet_rsk(req)->rmt_addr;
1117 } else {
1118 const struct iphdr *iph = ip_hdr(skb);
1119 saddr = iph->saddr;
1120 daddr = iph->daddr;
1121 }
1122
1123 hp = tcp_get_md5sig_pool();
1124 if (!hp)
1125 goto clear_hash_noput;
1126 desc = &hp->md5_desc;
1127
1128 if (crypto_hash_init(desc))
1129 goto clear_hash;
1130
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1136 goto clear_hash;
1137 if (tcp_md5_hash_key(hp, key))
1138 goto clear_hash;
1139 if (crypto_hash_final(desc, md5_hash))
1140 goto clear_hash;
1141
1142 tcp_put_md5sig_pool();
1143 return 0;
1144
1145 clear_hash:
1146 tcp_put_md5sig_pool();
1147 clear_hash_noput:
1148 memset(md5_hash, 0, 16);
1149 return 1;
1150 }
1151 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1152
1153 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1154 {
1155 /*
1156 * This gets called for each TCP segment that arrives
1157 * so we want to be efficient.
1158 * We have 3 drop cases:
1159 * o No MD5 hash and one expected.
1160 * o MD5 hash and we're not expecting one.
1161 * o MD5 hash and its wrong.
1162 */
1163 __u8 *hash_location = NULL;
1164 struct tcp_md5sig_key *hash_expected;
1165 const struct iphdr *iph = ip_hdr(skb);
1166 struct tcphdr *th = tcp_hdr(skb);
1167 int genhash;
1168 unsigned char newhash[16];
1169
1170 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1171 hash_location = tcp_parse_md5sig_option(th);
1172
1173 /* We've parsed the options - do we have a hash? */
1174 if (!hash_expected && !hash_location)
1175 return 0;
1176
1177 if (hash_expected && !hash_location) {
1178 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1179 return 1;
1180 }
1181
1182 if (!hash_expected && hash_location) {
1183 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1184 return 1;
1185 }
1186
1187 /* Okay, so this is hash_expected and hash_location -
1188 * so we need to calculate the checksum.
1189 */
1190 genhash = tcp_v4_md5_hash_skb(newhash,
1191 hash_expected,
1192 NULL, NULL, skb);
1193
1194 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1195 if (net_ratelimit()) {
1196 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1197 &iph->saddr, ntohs(th->source),
1198 &iph->daddr, ntohs(th->dest),
1199 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1200 }
1201 return 1;
1202 }
1203 return 0;
1204 }
1205
1206 #endif
1207
1208 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1209 .family = PF_INET,
1210 .obj_size = sizeof(struct tcp_request_sock),
1211 .rtx_syn_ack = tcp_v4_rtx_synack,
1212 .send_ack = tcp_v4_reqsk_send_ack,
1213 .destructor = tcp_v4_reqsk_destructor,
1214 .send_reset = tcp_v4_send_reset,
1215 .syn_ack_timeout = tcp_syn_ack_timeout,
1216 };
1217
1218 #ifdef CONFIG_TCP_MD5SIG
1219 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1220 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1221 .calc_md5_hash = tcp_v4_md5_hash_skb,
1222 };
1223 #endif
1224
1225 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1226 {
1227 struct tcp_extend_values tmp_ext;
1228 struct tcp_options_received tmp_opt;
1229 u8 *hash_location;
1230 struct request_sock *req;
1231 struct inet_request_sock *ireq;
1232 struct tcp_sock *tp = tcp_sk(sk);
1233 struct dst_entry *dst = NULL;
1234 __be32 saddr = ip_hdr(skb)->saddr;
1235 __be32 daddr = ip_hdr(skb)->daddr;
1236 __u32 isn = TCP_SKB_CB(skb)->when;
1237 #ifdef CONFIG_SYN_COOKIES
1238 int want_cookie = 0;
1239 #else
1240 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1241 #endif
1242
1243 /* Never answer to SYNs send to broadcast or multicast */
1244 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1245 goto drop;
1246
1247 /* TW buckets are converted to open requests without
1248 * limitations, they conserve resources and peer is
1249 * evidently real one.
1250 */
1251 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1252 if (net_ratelimit())
1253 syn_flood_warning(skb);
1254 #ifdef CONFIG_SYN_COOKIES
1255 if (sysctl_tcp_syncookies) {
1256 want_cookie = 1;
1257 } else
1258 #endif
1259 goto drop;
1260 }
1261
1262 /* Accept backlog is full. If we have already queued enough
1263 * of warm entries in syn queue, drop request. It is better than
1264 * clogging syn queue with openreqs with exponentially increasing
1265 * timeout.
1266 */
1267 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1268 goto drop;
1269
1270 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1271 if (!req)
1272 goto drop;
1273
1274 #ifdef CONFIG_TCP_MD5SIG
1275 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1276 #endif
1277
1278 tcp_clear_options(&tmp_opt);
1279 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1280 tmp_opt.user_mss = tp->rx_opt.user_mss;
1281 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1282
1283 if (tmp_opt.cookie_plus > 0 &&
1284 tmp_opt.saw_tstamp &&
1285 !tp->rx_opt.cookie_out_never &&
1286 (sysctl_tcp_cookie_size > 0 ||
1287 (tp->cookie_values != NULL &&
1288 tp->cookie_values->cookie_desired > 0))) {
1289 u8 *c;
1290 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1291 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1292
1293 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1294 goto drop_and_release;
1295
1296 /* Secret recipe starts with IP addresses */
1297 *mess++ ^= (__force u32)daddr;
1298 *mess++ ^= (__force u32)saddr;
1299
1300 /* plus variable length Initiator Cookie */
1301 c = (u8 *)mess;
1302 while (l-- > 0)
1303 *c++ ^= *hash_location++;
1304
1305 #ifdef CONFIG_SYN_COOKIES
1306 want_cookie = 0; /* not our kind of cookie */
1307 #endif
1308 tmp_ext.cookie_out_never = 0; /* false */
1309 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1310 } else if (!tp->rx_opt.cookie_in_always) {
1311 /* redundant indications, but ensure initialization. */
1312 tmp_ext.cookie_out_never = 1; /* true */
1313 tmp_ext.cookie_plus = 0;
1314 } else {
1315 goto drop_and_release;
1316 }
1317 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1318
1319 if (want_cookie && !tmp_opt.saw_tstamp)
1320 tcp_clear_options(&tmp_opt);
1321
1322 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1323 tcp_openreq_init(req, &tmp_opt, skb);
1324
1325 ireq = inet_rsk(req);
1326 ireq->loc_addr = daddr;
1327 ireq->rmt_addr = saddr;
1328 ireq->no_srccheck = inet_sk(sk)->transparent;
1329 ireq->opt = tcp_v4_save_options(sk, skb);
1330
1331 if (security_inet_conn_request(sk, skb, req))
1332 goto drop_and_free;
1333
1334 if (!want_cookie || tmp_opt.tstamp_ok)
1335 TCP_ECN_create_request(req, tcp_hdr(skb));
1336
1337 if (want_cookie) {
1338 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1339 req->cookie_ts = tmp_opt.tstamp_ok;
1340 } else if (!isn) {
1341 struct inet_peer *peer = NULL;
1342 struct flowi4 fl4;
1343
1344 /* VJ's idea. We save last timestamp seen
1345 * from the destination in peer table, when entering
1346 * state TIME-WAIT, and check against it before
1347 * accepting new connection request.
1348 *
1349 * If "isn" is not zero, this request hit alive
1350 * timewait bucket, so that all the necessary checks
1351 * are made in the function processing timewait state.
1352 */
1353 if (tmp_opt.saw_tstamp &&
1354 tcp_death_row.sysctl_tw_recycle &&
1355 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1356 fl4.daddr == saddr &&
1357 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1358 inet_peer_refcheck(peer);
1359 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1360 (s32)(peer->tcp_ts - req->ts_recent) >
1361 TCP_PAWS_WINDOW) {
1362 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1363 goto drop_and_release;
1364 }
1365 }
1366 /* Kill the following clause, if you dislike this way. */
1367 else if (!sysctl_tcp_syncookies &&
1368 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1369 (sysctl_max_syn_backlog >> 2)) &&
1370 (!peer || !peer->tcp_ts_stamp) &&
1371 (!dst || !dst_metric(dst, RTAX_RTT))) {
1372 /* Without syncookies last quarter of
1373 * backlog is filled with destinations,
1374 * proven to be alive.
1375 * It means that we continue to communicate
1376 * to destinations, already remembered
1377 * to the moment of synflood.
1378 */
1379 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1380 &saddr, ntohs(tcp_hdr(skb)->source));
1381 goto drop_and_release;
1382 }
1383
1384 isn = tcp_v4_init_sequence(skb);
1385 }
1386 tcp_rsk(req)->snt_isn = isn;
1387
1388 if (tcp_v4_send_synack(sk, dst, req,
1389 (struct request_values *)&tmp_ext) ||
1390 want_cookie)
1391 goto drop_and_free;
1392
1393 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1394 return 0;
1395
1396 drop_and_release:
1397 dst_release(dst);
1398 drop_and_free:
1399 reqsk_free(req);
1400 drop:
1401 return 0;
1402 }
1403 EXPORT_SYMBOL(tcp_v4_conn_request);
1404
1405
1406 /*
1407 * The three way handshake has completed - we got a valid synack -
1408 * now create the new socket.
1409 */
1410 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1411 struct request_sock *req,
1412 struct dst_entry *dst)
1413 {
1414 struct inet_request_sock *ireq;
1415 struct inet_sock *newinet;
1416 struct tcp_sock *newtp;
1417 struct sock *newsk;
1418 #ifdef CONFIG_TCP_MD5SIG
1419 struct tcp_md5sig_key *key;
1420 #endif
1421 struct ip_options_rcu *inet_opt;
1422
1423 if (sk_acceptq_is_full(sk))
1424 goto exit_overflow;
1425
1426 newsk = tcp_create_openreq_child(sk, req, skb);
1427 if (!newsk)
1428 goto exit_nonewsk;
1429
1430 newsk->sk_gso_type = SKB_GSO_TCPV4;
1431
1432 newtp = tcp_sk(newsk);
1433 newinet = inet_sk(newsk);
1434 ireq = inet_rsk(req);
1435 newinet->inet_daddr = ireq->rmt_addr;
1436 newinet->inet_rcv_saddr = ireq->loc_addr;
1437 newinet->inet_saddr = ireq->loc_addr;
1438 inet_opt = ireq->opt;
1439 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1440 ireq->opt = NULL;
1441 newinet->mc_index = inet_iif(skb);
1442 newinet->mc_ttl = ip_hdr(skb)->ttl;
1443 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1444 if (inet_opt)
1445 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1446 newinet->inet_id = newtp->write_seq ^ jiffies;
1447
1448 if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1449 goto put_and_exit;
1450
1451 sk_setup_caps(newsk, dst);
1452
1453 tcp_mtup_init(newsk);
1454 tcp_sync_mss(newsk, dst_mtu(dst));
1455 newtp->advmss = dst_metric_advmss(dst);
1456 if (tcp_sk(sk)->rx_opt.user_mss &&
1457 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1458 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1459
1460 tcp_initialize_rcv_mss(newsk);
1461
1462 #ifdef CONFIG_TCP_MD5SIG
1463 /* Copy over the MD5 key from the original socket */
1464 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1465 if (key != NULL) {
1466 /*
1467 * We're using one, so create a matching key
1468 * on the newsk structure. If we fail to get
1469 * memory, then we end up not copying the key
1470 * across. Shucks.
1471 */
1472 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1473 if (newkey != NULL)
1474 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1475 newkey, key->keylen);
1476 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1477 }
1478 #endif
1479
1480 if (__inet_inherit_port(sk, newsk) < 0)
1481 goto put_and_exit;
1482 __inet_hash_nolisten(newsk, NULL);
1483
1484 return newsk;
1485
1486 exit_overflow:
1487 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1488 exit_nonewsk:
1489 dst_release(dst);
1490 exit:
1491 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1492 return NULL;
1493 put_and_exit:
1494 sock_put(newsk);
1495 goto exit;
1496 }
1497 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1498
1499 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1500 {
1501 struct tcphdr *th = tcp_hdr(skb);
1502 const struct iphdr *iph = ip_hdr(skb);
1503 struct sock *nsk;
1504 struct request_sock **prev;
1505 /* Find possible connection requests. */
1506 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1507 iph->saddr, iph->daddr);
1508 if (req)
1509 return tcp_check_req(sk, skb, req, prev);
1510
1511 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1512 th->source, iph->daddr, th->dest, inet_iif(skb));
1513
1514 if (nsk) {
1515 if (nsk->sk_state != TCP_TIME_WAIT) {
1516 bh_lock_sock(nsk);
1517 return nsk;
1518 }
1519 inet_twsk_put(inet_twsk(nsk));
1520 return NULL;
1521 }
1522
1523 #ifdef CONFIG_SYN_COOKIES
1524 if (!th->syn)
1525 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1526 #endif
1527 return sk;
1528 }
1529
1530 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1531 {
1532 const struct iphdr *iph = ip_hdr(skb);
1533
1534 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1535 if (!tcp_v4_check(skb->len, iph->saddr,
1536 iph->daddr, skb->csum)) {
1537 skb->ip_summed = CHECKSUM_UNNECESSARY;
1538 return 0;
1539 }
1540 }
1541
1542 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1543 skb->len, IPPROTO_TCP, 0);
1544
1545 if (skb->len <= 76) {
1546 return __skb_checksum_complete(skb);
1547 }
1548 return 0;
1549 }
1550
1551
1552 /* The socket must have it's spinlock held when we get
1553 * here.
1554 *
1555 * We have a potential double-lock case here, so even when
1556 * doing backlog processing we use the BH locking scheme.
1557 * This is because we cannot sleep with the original spinlock
1558 * held.
1559 */
1560 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1561 {
1562 struct sock *rsk;
1563 #ifdef CONFIG_TCP_MD5SIG
1564 /*
1565 * We really want to reject the packet as early as possible
1566 * if:
1567 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1568 * o There is an MD5 option and we're not expecting one
1569 */
1570 if (tcp_v4_inbound_md5_hash(sk, skb))
1571 goto discard;
1572 #endif
1573
1574 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1575 sock_rps_save_rxhash(sk, skb->rxhash);
1576 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1577 rsk = sk;
1578 goto reset;
1579 }
1580 return 0;
1581 }
1582
1583 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1584 goto csum_err;
1585
1586 if (sk->sk_state == TCP_LISTEN) {
1587 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1588 if (!nsk)
1589 goto discard;
1590
1591 if (nsk != sk) {
1592 if (tcp_child_process(sk, nsk, skb)) {
1593 rsk = nsk;
1594 goto reset;
1595 }
1596 return 0;
1597 }
1598 } else
1599 sock_rps_save_rxhash(sk, skb->rxhash);
1600
1601 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1602 rsk = sk;
1603 goto reset;
1604 }
1605 return 0;
1606
1607 reset:
1608 tcp_v4_send_reset(rsk, skb);
1609 discard:
1610 kfree_skb(skb);
1611 /* Be careful here. If this function gets more complicated and
1612 * gcc suffers from register pressure on the x86, sk (in %ebx)
1613 * might be destroyed here. This current version compiles correctly,
1614 * but you have been warned.
1615 */
1616 return 0;
1617
1618 csum_err:
1619 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1620 goto discard;
1621 }
1622 EXPORT_SYMBOL(tcp_v4_do_rcv);
1623
1624 /*
1625 * From tcp_input.c
1626 */
1627
1628 int tcp_v4_rcv(struct sk_buff *skb)
1629 {
1630 const struct iphdr *iph;
1631 struct tcphdr *th;
1632 struct sock *sk;
1633 int ret;
1634 struct net *net = dev_net(skb->dev);
1635
1636 if (skb->pkt_type != PACKET_HOST)
1637 goto discard_it;
1638
1639 /* Count it even if it's bad */
1640 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1641
1642 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1643 goto discard_it;
1644
1645 th = tcp_hdr(skb);
1646
1647 if (th->doff < sizeof(struct tcphdr) / 4)
1648 goto bad_packet;
1649 if (!pskb_may_pull(skb, th->doff * 4))
1650 goto discard_it;
1651
1652 /* An explanation is required here, I think.
1653 * Packet length and doff are validated by header prediction,
1654 * provided case of th->doff==0 is eliminated.
1655 * So, we defer the checks. */
1656 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1657 goto bad_packet;
1658
1659 th = tcp_hdr(skb);
1660 iph = ip_hdr(skb);
1661 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1662 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1663 skb->len - th->doff * 4);
1664 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1665 TCP_SKB_CB(skb)->when = 0;
1666 TCP_SKB_CB(skb)->flags = iph->tos;
1667 TCP_SKB_CB(skb)->sacked = 0;
1668
1669 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1670 if (!sk)
1671 goto no_tcp_socket;
1672
1673 process:
1674 if (sk->sk_state == TCP_TIME_WAIT)
1675 goto do_time_wait;
1676
1677 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1678 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1679 goto discard_and_relse;
1680 }
1681
1682 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1683 goto discard_and_relse;
1684 nf_reset(skb);
1685
1686 if (sk_filter(sk, skb))
1687 goto discard_and_relse;
1688
1689 skb->dev = NULL;
1690
1691 bh_lock_sock_nested(sk);
1692 ret = 0;
1693 if (!sock_owned_by_user(sk)) {
1694 #ifdef CONFIG_NET_DMA
1695 struct tcp_sock *tp = tcp_sk(sk);
1696 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1697 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1698 if (tp->ucopy.dma_chan)
1699 ret = tcp_v4_do_rcv(sk, skb);
1700 else
1701 #endif
1702 {
1703 if (!tcp_prequeue(sk, skb))
1704 ret = tcp_v4_do_rcv(sk, skb);
1705 }
1706 } else if (unlikely(sk_add_backlog(sk, skb))) {
1707 bh_unlock_sock(sk);
1708 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1709 goto discard_and_relse;
1710 }
1711 bh_unlock_sock(sk);
1712
1713 sock_put(sk);
1714
1715 return ret;
1716
1717 no_tcp_socket:
1718 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1719 goto discard_it;
1720
1721 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1722 bad_packet:
1723 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1724 } else {
1725 tcp_v4_send_reset(NULL, skb);
1726 }
1727
1728 discard_it:
1729 /* Discard frame. */
1730 kfree_skb(skb);
1731 return 0;
1732
1733 discard_and_relse:
1734 sock_put(sk);
1735 goto discard_it;
1736
1737 do_time_wait:
1738 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1739 inet_twsk_put(inet_twsk(sk));
1740 goto discard_it;
1741 }
1742
1743 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1744 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1745 inet_twsk_put(inet_twsk(sk));
1746 goto discard_it;
1747 }
1748 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1749 case TCP_TW_SYN: {
1750 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1751 &tcp_hashinfo,
1752 iph->daddr, th->dest,
1753 inet_iif(skb));
1754 if (sk2) {
1755 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1756 inet_twsk_put(inet_twsk(sk));
1757 sk = sk2;
1758 goto process;
1759 }
1760 /* Fall through to ACK */
1761 }
1762 case TCP_TW_ACK:
1763 tcp_v4_timewait_ack(sk, skb);
1764 break;
1765 case TCP_TW_RST:
1766 goto no_tcp_socket;
1767 case TCP_TW_SUCCESS:;
1768 }
1769 goto discard_it;
1770 }
1771
1772 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1773 {
1774 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1775 struct inet_sock *inet = inet_sk(sk);
1776 struct inet_peer *peer;
1777
1778 if (!rt ||
1779 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1780 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1781 *release_it = true;
1782 } else {
1783 if (!rt->peer)
1784 rt_bind_peer(rt, inet->inet_daddr, 1);
1785 peer = rt->peer;
1786 *release_it = false;
1787 }
1788
1789 return peer;
1790 }
1791 EXPORT_SYMBOL(tcp_v4_get_peer);
1792
1793 void *tcp_v4_tw_get_peer(struct sock *sk)
1794 {
1795 struct inet_timewait_sock *tw = inet_twsk(sk);
1796
1797 return inet_getpeer_v4(tw->tw_daddr, 1);
1798 }
1799 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1800
1801 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1802 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1803 .twsk_unique = tcp_twsk_unique,
1804 .twsk_destructor= tcp_twsk_destructor,
1805 .twsk_getpeer = tcp_v4_tw_get_peer,
1806 };
1807
1808 const struct inet_connection_sock_af_ops ipv4_specific = {
1809 .queue_xmit = ip_queue_xmit,
1810 .send_check = tcp_v4_send_check,
1811 .rebuild_header = inet_sk_rebuild_header,
1812 .conn_request = tcp_v4_conn_request,
1813 .syn_recv_sock = tcp_v4_syn_recv_sock,
1814 .get_peer = tcp_v4_get_peer,
1815 .net_header_len = sizeof(struct iphdr),
1816 .setsockopt = ip_setsockopt,
1817 .getsockopt = ip_getsockopt,
1818 .addr2sockaddr = inet_csk_addr2sockaddr,
1819 .sockaddr_len = sizeof(struct sockaddr_in),
1820 .bind_conflict = inet_csk_bind_conflict,
1821 #ifdef CONFIG_COMPAT
1822 .compat_setsockopt = compat_ip_setsockopt,
1823 .compat_getsockopt = compat_ip_getsockopt,
1824 #endif
1825 };
1826 EXPORT_SYMBOL(ipv4_specific);
1827
1828 #ifdef CONFIG_TCP_MD5SIG
1829 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1830 .md5_lookup = tcp_v4_md5_lookup,
1831 .calc_md5_hash = tcp_v4_md5_hash_skb,
1832 .md5_add = tcp_v4_md5_add_func,
1833 .md5_parse = tcp_v4_parse_md5_keys,
1834 };
1835 #endif
1836
1837 /* NOTE: A lot of things set to zero explicitly by call to
1838 * sk_alloc() so need not be done here.
1839 */
1840 static int tcp_v4_init_sock(struct sock *sk)
1841 {
1842 struct inet_connection_sock *icsk = inet_csk(sk);
1843 struct tcp_sock *tp = tcp_sk(sk);
1844
1845 skb_queue_head_init(&tp->out_of_order_queue);
1846 tcp_init_xmit_timers(sk);
1847 tcp_prequeue_init(tp);
1848
1849 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1850 tp->mdev = TCP_TIMEOUT_INIT;
1851
1852 /* So many TCP implementations out there (incorrectly) count the
1853 * initial SYN frame in their delayed-ACK and congestion control
1854 * algorithms that we must have the following bandaid to talk
1855 * efficiently to them. -DaveM
1856 */
1857 tp->snd_cwnd = 2;
1858
1859 /* See draft-stevens-tcpca-spec-01 for discussion of the
1860 * initialization of these values.
1861 */
1862 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1863 tp->snd_cwnd_clamp = ~0;
1864 tp->mss_cache = TCP_MSS_DEFAULT;
1865
1866 tp->reordering = sysctl_tcp_reordering;
1867 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1868
1869 sk->sk_state = TCP_CLOSE;
1870
1871 sk->sk_write_space = sk_stream_write_space;
1872 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1873
1874 icsk->icsk_af_ops = &ipv4_specific;
1875 icsk->icsk_sync_mss = tcp_sync_mss;
1876 #ifdef CONFIG_TCP_MD5SIG
1877 tp->af_specific = &tcp_sock_ipv4_specific;
1878 #endif
1879
1880 /* TCP Cookie Transactions */
1881 if (sysctl_tcp_cookie_size > 0) {
1882 /* Default, cookies without s_data_payload. */
1883 tp->cookie_values =
1884 kzalloc(sizeof(*tp->cookie_values),
1885 sk->sk_allocation);
1886 if (tp->cookie_values != NULL)
1887 kref_init(&tp->cookie_values->kref);
1888 }
1889 /* Presumed zeroed, in order of appearance:
1890 * cookie_in_always, cookie_out_never,
1891 * s_data_constant, s_data_in, s_data_out
1892 */
1893 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1894 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1895
1896 local_bh_disable();
1897 percpu_counter_inc(&tcp_sockets_allocated);
1898 local_bh_enable();
1899
1900 return 0;
1901 }
1902
1903 void tcp_v4_destroy_sock(struct sock *sk)
1904 {
1905 struct tcp_sock *tp = tcp_sk(sk);
1906
1907 tcp_clear_xmit_timers(sk);
1908
1909 tcp_cleanup_congestion_control(sk);
1910
1911 /* Cleanup up the write buffer. */
1912 tcp_write_queue_purge(sk);
1913
1914 /* Cleans up our, hopefully empty, out_of_order_queue. */
1915 __skb_queue_purge(&tp->out_of_order_queue);
1916
1917 #ifdef CONFIG_TCP_MD5SIG
1918 /* Clean up the MD5 key list, if any */
1919 if (tp->md5sig_info) {
1920 tcp_v4_clear_md5_list(sk);
1921 kfree(tp->md5sig_info);
1922 tp->md5sig_info = NULL;
1923 }
1924 #endif
1925
1926 #ifdef CONFIG_NET_DMA
1927 /* Cleans up our sk_async_wait_queue */
1928 __skb_queue_purge(&sk->sk_async_wait_queue);
1929 #endif
1930
1931 /* Clean prequeue, it must be empty really */
1932 __skb_queue_purge(&tp->ucopy.prequeue);
1933
1934 /* Clean up a referenced TCP bind bucket. */
1935 if (inet_csk(sk)->icsk_bind_hash)
1936 inet_put_port(sk);
1937
1938 /*
1939 * If sendmsg cached page exists, toss it.
1940 */
1941 if (sk->sk_sndmsg_page) {
1942 __free_page(sk->sk_sndmsg_page);
1943 sk->sk_sndmsg_page = NULL;
1944 }
1945
1946 /* TCP Cookie Transactions */
1947 if (tp->cookie_values != NULL) {
1948 kref_put(&tp->cookie_values->kref,
1949 tcp_cookie_values_release);
1950 tp->cookie_values = NULL;
1951 }
1952
1953 percpu_counter_dec(&tcp_sockets_allocated);
1954 }
1955 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1956
1957 #ifdef CONFIG_PROC_FS
1958 /* Proc filesystem TCP sock list dumping. */
1959
1960 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1961 {
1962 return hlist_nulls_empty(head) ? NULL :
1963 list_entry(head->first, struct inet_timewait_sock, tw_node);
1964 }
1965
1966 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1967 {
1968 return !is_a_nulls(tw->tw_node.next) ?
1969 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1970 }
1971
1972 /*
1973 * Get next listener socket follow cur. If cur is NULL, get first socket
1974 * starting from bucket given in st->bucket; when st->bucket is zero the
1975 * very first socket in the hash table is returned.
1976 */
1977 static void *listening_get_next(struct seq_file *seq, void *cur)
1978 {
1979 struct inet_connection_sock *icsk;
1980 struct hlist_nulls_node *node;
1981 struct sock *sk = cur;
1982 struct inet_listen_hashbucket *ilb;
1983 struct tcp_iter_state *st = seq->private;
1984 struct net *net = seq_file_net(seq);
1985
1986 if (!sk) {
1987 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1988 spin_lock_bh(&ilb->lock);
1989 sk = sk_nulls_head(&ilb->head);
1990 st->offset = 0;
1991 goto get_sk;
1992 }
1993 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1994 ++st->num;
1995 ++st->offset;
1996
1997 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1998 struct request_sock *req = cur;
1999
2000 icsk = inet_csk(st->syn_wait_sk);
2001 req = req->dl_next;
2002 while (1) {
2003 while (req) {
2004 if (req->rsk_ops->family == st->family) {
2005 cur = req;
2006 goto out;
2007 }
2008 req = req->dl_next;
2009 }
2010 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2011 break;
2012 get_req:
2013 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2014 }
2015 sk = sk_nulls_next(st->syn_wait_sk);
2016 st->state = TCP_SEQ_STATE_LISTENING;
2017 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2018 } else {
2019 icsk = inet_csk(sk);
2020 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2021 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2022 goto start_req;
2023 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024 sk = sk_nulls_next(sk);
2025 }
2026 get_sk:
2027 sk_nulls_for_each_from(sk, node) {
2028 if (!net_eq(sock_net(sk), net))
2029 continue;
2030 if (sk->sk_family == st->family) {
2031 cur = sk;
2032 goto out;
2033 }
2034 icsk = inet_csk(sk);
2035 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2036 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2037 start_req:
2038 st->uid = sock_i_uid(sk);
2039 st->syn_wait_sk = sk;
2040 st->state = TCP_SEQ_STATE_OPENREQ;
2041 st->sbucket = 0;
2042 goto get_req;
2043 }
2044 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2045 }
2046 spin_unlock_bh(&ilb->lock);
2047 st->offset = 0;
2048 if (++st->bucket < INET_LHTABLE_SIZE) {
2049 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2050 spin_lock_bh(&ilb->lock);
2051 sk = sk_nulls_head(&ilb->head);
2052 goto get_sk;
2053 }
2054 cur = NULL;
2055 out:
2056 return cur;
2057 }
2058
2059 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2060 {
2061 struct tcp_iter_state *st = seq->private;
2062 void *rc;
2063
2064 st->bucket = 0;
2065 st->offset = 0;
2066 rc = listening_get_next(seq, NULL);
2067
2068 while (rc && *pos) {
2069 rc = listening_get_next(seq, rc);
2070 --*pos;
2071 }
2072 return rc;
2073 }
2074
2075 static inline int empty_bucket(struct tcp_iter_state *st)
2076 {
2077 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2078 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2079 }
2080
2081 /*
2082 * Get first established socket starting from bucket given in st->bucket.
2083 * If st->bucket is zero, the very first socket in the hash is returned.
2084 */
2085 static void *established_get_first(struct seq_file *seq)
2086 {
2087 struct tcp_iter_state *st = seq->private;
2088 struct net *net = seq_file_net(seq);
2089 void *rc = NULL;
2090
2091 st->offset = 0;
2092 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2093 struct sock *sk;
2094 struct hlist_nulls_node *node;
2095 struct inet_timewait_sock *tw;
2096 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2097
2098 /* Lockless fast path for the common case of empty buckets */
2099 if (empty_bucket(st))
2100 continue;
2101
2102 spin_lock_bh(lock);
2103 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2104 if (sk->sk_family != st->family ||
2105 !net_eq(sock_net(sk), net)) {
2106 continue;
2107 }
2108 rc = sk;
2109 goto out;
2110 }
2111 st->state = TCP_SEQ_STATE_TIME_WAIT;
2112 inet_twsk_for_each(tw, node,
2113 &tcp_hashinfo.ehash[st->bucket].twchain) {
2114 if (tw->tw_family != st->family ||
2115 !net_eq(twsk_net(tw), net)) {
2116 continue;
2117 }
2118 rc = tw;
2119 goto out;
2120 }
2121 spin_unlock_bh(lock);
2122 st->state = TCP_SEQ_STATE_ESTABLISHED;
2123 }
2124 out:
2125 return rc;
2126 }
2127
2128 static void *established_get_next(struct seq_file *seq, void *cur)
2129 {
2130 struct sock *sk = cur;
2131 struct inet_timewait_sock *tw;
2132 struct hlist_nulls_node *node;
2133 struct tcp_iter_state *st = seq->private;
2134 struct net *net = seq_file_net(seq);
2135
2136 ++st->num;
2137 ++st->offset;
2138
2139 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2140 tw = cur;
2141 tw = tw_next(tw);
2142 get_tw:
2143 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2144 tw = tw_next(tw);
2145 }
2146 if (tw) {
2147 cur = tw;
2148 goto out;
2149 }
2150 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2151 st->state = TCP_SEQ_STATE_ESTABLISHED;
2152
2153 /* Look for next non empty bucket */
2154 st->offset = 0;
2155 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2156 empty_bucket(st))
2157 ;
2158 if (st->bucket > tcp_hashinfo.ehash_mask)
2159 return NULL;
2160
2161 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2162 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2163 } else
2164 sk = sk_nulls_next(sk);
2165
2166 sk_nulls_for_each_from(sk, node) {
2167 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2168 goto found;
2169 }
2170
2171 st->state = TCP_SEQ_STATE_TIME_WAIT;
2172 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2173 goto get_tw;
2174 found:
2175 cur = sk;
2176 out:
2177 return cur;
2178 }
2179
2180 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2181 {
2182 struct tcp_iter_state *st = seq->private;
2183 void *rc;
2184
2185 st->bucket = 0;
2186 rc = established_get_first(seq);
2187
2188 while (rc && pos) {
2189 rc = established_get_next(seq, rc);
2190 --pos;
2191 }
2192 return rc;
2193 }
2194
2195 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2196 {
2197 void *rc;
2198 struct tcp_iter_state *st = seq->private;
2199
2200 st->state = TCP_SEQ_STATE_LISTENING;
2201 rc = listening_get_idx(seq, &pos);
2202
2203 if (!rc) {
2204 st->state = TCP_SEQ_STATE_ESTABLISHED;
2205 rc = established_get_idx(seq, pos);
2206 }
2207
2208 return rc;
2209 }
2210
2211 static void *tcp_seek_last_pos(struct seq_file *seq)
2212 {
2213 struct tcp_iter_state *st = seq->private;
2214 int offset = st->offset;
2215 int orig_num = st->num;
2216 void *rc = NULL;
2217
2218 switch (st->state) {
2219 case TCP_SEQ_STATE_OPENREQ:
2220 case TCP_SEQ_STATE_LISTENING:
2221 if (st->bucket >= INET_LHTABLE_SIZE)
2222 break;
2223 st->state = TCP_SEQ_STATE_LISTENING;
2224 rc = listening_get_next(seq, NULL);
2225 while (offset-- && rc)
2226 rc = listening_get_next(seq, rc);
2227 if (rc)
2228 break;
2229 st->bucket = 0;
2230 /* Fallthrough */
2231 case TCP_SEQ_STATE_ESTABLISHED:
2232 case TCP_SEQ_STATE_TIME_WAIT:
2233 st->state = TCP_SEQ_STATE_ESTABLISHED;
2234 if (st->bucket > tcp_hashinfo.ehash_mask)
2235 break;
2236 rc = established_get_first(seq);
2237 while (offset-- && rc)
2238 rc = established_get_next(seq, rc);
2239 }
2240
2241 st->num = orig_num;
2242
2243 return rc;
2244 }
2245
2246 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2247 {
2248 struct tcp_iter_state *st = seq->private;
2249 void *rc;
2250
2251 if (*pos && *pos == st->last_pos) {
2252 rc = tcp_seek_last_pos(seq);
2253 if (rc)
2254 goto out;
2255 }
2256
2257 st->state = TCP_SEQ_STATE_LISTENING;
2258 st->num = 0;
2259 st->bucket = 0;
2260 st->offset = 0;
2261 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2262
2263 out:
2264 st->last_pos = *pos;
2265 return rc;
2266 }
2267
2268 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270 struct tcp_iter_state *st = seq->private;
2271 void *rc = NULL;
2272
2273 if (v == SEQ_START_TOKEN) {
2274 rc = tcp_get_idx(seq, 0);
2275 goto out;
2276 }
2277
2278 switch (st->state) {
2279 case TCP_SEQ_STATE_OPENREQ:
2280 case TCP_SEQ_STATE_LISTENING:
2281 rc = listening_get_next(seq, v);
2282 if (!rc) {
2283 st->state = TCP_SEQ_STATE_ESTABLISHED;
2284 st->bucket = 0;
2285 st->offset = 0;
2286 rc = established_get_first(seq);
2287 }
2288 break;
2289 case TCP_SEQ_STATE_ESTABLISHED:
2290 case TCP_SEQ_STATE_TIME_WAIT:
2291 rc = established_get_next(seq, v);
2292 break;
2293 }
2294 out:
2295 ++*pos;
2296 st->last_pos = *pos;
2297 return rc;
2298 }
2299
2300 static void tcp_seq_stop(struct seq_file *seq, void *v)
2301 {
2302 struct tcp_iter_state *st = seq->private;
2303
2304 switch (st->state) {
2305 case TCP_SEQ_STATE_OPENREQ:
2306 if (v) {
2307 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2308 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2309 }
2310 case TCP_SEQ_STATE_LISTENING:
2311 if (v != SEQ_START_TOKEN)
2312 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2313 break;
2314 case TCP_SEQ_STATE_TIME_WAIT:
2315 case TCP_SEQ_STATE_ESTABLISHED:
2316 if (v)
2317 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2318 break;
2319 }
2320 }
2321
2322 static int tcp_seq_open(struct inode *inode, struct file *file)
2323 {
2324 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2325 struct tcp_iter_state *s;
2326 int err;
2327
2328 err = seq_open_net(inode, file, &afinfo->seq_ops,
2329 sizeof(struct tcp_iter_state));
2330 if (err < 0)
2331 return err;
2332
2333 s = ((struct seq_file *)file->private_data)->private;
2334 s->family = afinfo->family;
2335 s->last_pos = 0;
2336 return 0;
2337 }
2338
2339 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2340 {
2341 int rc = 0;
2342 struct proc_dir_entry *p;
2343
2344 afinfo->seq_fops.open = tcp_seq_open;
2345 afinfo->seq_fops.read = seq_read;
2346 afinfo->seq_fops.llseek = seq_lseek;
2347 afinfo->seq_fops.release = seq_release_net;
2348
2349 afinfo->seq_ops.start = tcp_seq_start;
2350 afinfo->seq_ops.next = tcp_seq_next;
2351 afinfo->seq_ops.stop = tcp_seq_stop;
2352
2353 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354 &afinfo->seq_fops, afinfo);
2355 if (!p)
2356 rc = -ENOMEM;
2357 return rc;
2358 }
2359 EXPORT_SYMBOL(tcp_proc_register);
2360
2361 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362 {
2363 proc_net_remove(net, afinfo->name);
2364 }
2365 EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367 static void get_openreq4(struct sock *sk, struct request_sock *req,
2368 struct seq_file *f, int i, int uid, int *len)
2369 {
2370 const struct inet_request_sock *ireq = inet_rsk(req);
2371 int ttd = req->expires - jiffies;
2372
2373 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375 i,
2376 ireq->loc_addr,
2377 ntohs(inet_sk(sk)->inet_sport),
2378 ireq->rmt_addr,
2379 ntohs(ireq->rmt_port),
2380 TCP_SYN_RECV,
2381 0, 0, /* could print option size, but that is af dependent. */
2382 1, /* timers active (only the expire timer) */
2383 jiffies_to_clock_t(ttd),
2384 req->retrans,
2385 uid,
2386 0, /* non standard timer */
2387 0, /* open_requests have no inode */
2388 atomic_read(&sk->sk_refcnt),
2389 req,
2390 len);
2391 }
2392
2393 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394 {
2395 int timer_active;
2396 unsigned long timer_expires;
2397 struct tcp_sock *tp = tcp_sk(sk);
2398 const struct inet_connection_sock *icsk = inet_csk(sk);
2399 struct inet_sock *inet = inet_sk(sk);
2400 __be32 dest = inet->inet_daddr;
2401 __be32 src = inet->inet_rcv_saddr;
2402 __u16 destp = ntohs(inet->inet_dport);
2403 __u16 srcp = ntohs(inet->inet_sport);
2404 int rx_queue;
2405
2406 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2407 timer_active = 1;
2408 timer_expires = icsk->icsk_timeout;
2409 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410 timer_active = 4;
2411 timer_expires = icsk->icsk_timeout;
2412 } else if (timer_pending(&sk->sk_timer)) {
2413 timer_active = 2;
2414 timer_expires = sk->sk_timer.expires;
2415 } else {
2416 timer_active = 0;
2417 timer_expires = jiffies;
2418 }
2419
2420 if (sk->sk_state == TCP_LISTEN)
2421 rx_queue = sk->sk_ack_backlog;
2422 else
2423 /*
2424 * because we dont lock socket, we might find a transient negative value
2425 */
2426 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2427
2428 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430 i, src, srcp, dest, destp, sk->sk_state,
2431 tp->write_seq - tp->snd_una,
2432 rx_queue,
2433 timer_active,
2434 jiffies_to_clock_t(timer_expires - jiffies),
2435 icsk->icsk_retransmits,
2436 sock_i_uid(sk),
2437 icsk->icsk_probes_out,
2438 sock_i_ino(sk),
2439 atomic_read(&sk->sk_refcnt), sk,
2440 jiffies_to_clock_t(icsk->icsk_rto),
2441 jiffies_to_clock_t(icsk->icsk_ack.ato),
2442 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443 tp->snd_cwnd,
2444 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445 len);
2446 }
2447
2448 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2449 struct seq_file *f, int i, int *len)
2450 {
2451 __be32 dest, src;
2452 __u16 destp, srcp;
2453 int ttd = tw->tw_ttd - jiffies;
2454
2455 if (ttd < 0)
2456 ttd = 0;
2457
2458 dest = tw->tw_daddr;
2459 src = tw->tw_rcv_saddr;
2460 destp = ntohs(tw->tw_dport);
2461 srcp = ntohs(tw->tw_sport);
2462
2463 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467 atomic_read(&tw->tw_refcnt), tw, len);
2468 }
2469
2470 #define TMPSZ 150
2471
2472 static int tcp4_seq_show(struct seq_file *seq, void *v)
2473 {
2474 struct tcp_iter_state *st;
2475 int len;
2476
2477 if (v == SEQ_START_TOKEN) {
2478 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479 " sl local_address rem_address st tx_queue "
2480 "rx_queue tr tm->when retrnsmt uid timeout "
2481 "inode");
2482 goto out;
2483 }
2484 st = seq->private;
2485
2486 switch (st->state) {
2487 case TCP_SEQ_STATE_LISTENING:
2488 case TCP_SEQ_STATE_ESTABLISHED:
2489 get_tcp4_sock(v, seq, st->num, &len);
2490 break;
2491 case TCP_SEQ_STATE_OPENREQ:
2492 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493 break;
2494 case TCP_SEQ_STATE_TIME_WAIT:
2495 get_timewait4_sock(v, seq, st->num, &len);
2496 break;
2497 }
2498 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499 out:
2500 return 0;
2501 }
2502
2503 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2504 .name = "tcp",
2505 .family = AF_INET,
2506 .seq_fops = {
2507 .owner = THIS_MODULE,
2508 },
2509 .seq_ops = {
2510 .show = tcp4_seq_show,
2511 },
2512 };
2513
2514 static int __net_init tcp4_proc_init_net(struct net *net)
2515 {
2516 return tcp_proc_register(net, &tcp4_seq_afinfo);
2517 }
2518
2519 static void __net_exit tcp4_proc_exit_net(struct net *net)
2520 {
2521 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2522 }
2523
2524 static struct pernet_operations tcp4_net_ops = {
2525 .init = tcp4_proc_init_net,
2526 .exit = tcp4_proc_exit_net,
2527 };
2528
2529 int __init tcp4_proc_init(void)
2530 {
2531 return register_pernet_subsys(&tcp4_net_ops);
2532 }
2533
2534 void tcp4_proc_exit(void)
2535 {
2536 unregister_pernet_subsys(&tcp4_net_ops);
2537 }
2538 #endif /* CONFIG_PROC_FS */
2539
2540 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2541 {
2542 const struct iphdr *iph = skb_gro_network_header(skb);
2543
2544 switch (skb->ip_summed) {
2545 case CHECKSUM_COMPLETE:
2546 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2547 skb->csum)) {
2548 skb->ip_summed = CHECKSUM_UNNECESSARY;
2549 break;
2550 }
2551
2552 /* fall through */
2553 case CHECKSUM_NONE:
2554 NAPI_GRO_CB(skb)->flush = 1;
2555 return NULL;
2556 }
2557
2558 return tcp_gro_receive(head, skb);
2559 }
2560
2561 int tcp4_gro_complete(struct sk_buff *skb)
2562 {
2563 const struct iphdr *iph = ip_hdr(skb);
2564 struct tcphdr *th = tcp_hdr(skb);
2565
2566 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2567 iph->saddr, iph->daddr, 0);
2568 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2569
2570 return tcp_gro_complete(skb);
2571 }
2572
2573 struct proto tcp_prot = {
2574 .name = "TCP",
2575 .owner = THIS_MODULE,
2576 .close = tcp_close,
2577 .connect = tcp_v4_connect,
2578 .disconnect = tcp_disconnect,
2579 .accept = inet_csk_accept,
2580 .ioctl = tcp_ioctl,
2581 .init = tcp_v4_init_sock,
2582 .destroy = tcp_v4_destroy_sock,
2583 .shutdown = tcp_shutdown,
2584 .setsockopt = tcp_setsockopt,
2585 .getsockopt = tcp_getsockopt,
2586 .recvmsg = tcp_recvmsg,
2587 .sendmsg = tcp_sendmsg,
2588 .sendpage = tcp_sendpage,
2589 .backlog_rcv = tcp_v4_do_rcv,
2590 .hash = inet_hash,
2591 .unhash = inet_unhash,
2592 .get_port = inet_csk_get_port,
2593 .enter_memory_pressure = tcp_enter_memory_pressure,
2594 .sockets_allocated = &tcp_sockets_allocated,
2595 .orphan_count = &tcp_orphan_count,
2596 .memory_allocated = &tcp_memory_allocated,
2597 .memory_pressure = &tcp_memory_pressure,
2598 .sysctl_mem = sysctl_tcp_mem,
2599 .sysctl_wmem = sysctl_tcp_wmem,
2600 .sysctl_rmem = sysctl_tcp_rmem,
2601 .max_header = MAX_TCP_HEADER,
2602 .obj_size = sizeof(struct tcp_sock),
2603 .slab_flags = SLAB_DESTROY_BY_RCU,
2604 .twsk_prot = &tcp_timewait_sock_ops,
2605 .rsk_prot = &tcp_request_sock_ops,
2606 .h.hashinfo = &tcp_hashinfo,
2607 .no_autobind = true,
2608 #ifdef CONFIG_COMPAT
2609 .compat_setsockopt = compat_tcp_setsockopt,
2610 .compat_getsockopt = compat_tcp_getsockopt,
2611 #endif
2612 };
2613 EXPORT_SYMBOL(tcp_prot);
2614
2615
2616 static int __net_init tcp_sk_init(struct net *net)
2617 {
2618 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2619 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2620 }
2621
2622 static void __net_exit tcp_sk_exit(struct net *net)
2623 {
2624 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2625 }
2626
2627 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2628 {
2629 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2630 }
2631
2632 static struct pernet_operations __net_initdata tcp_sk_ops = {
2633 .init = tcp_sk_init,
2634 .exit = tcp_sk_exit,
2635 .exit_batch = tcp_sk_exit_batch,
2636 };
2637
2638 void __init tcp_v4_init(void)
2639 {
2640 inet_hashinfo_init(&tcp_hashinfo);
2641 if (register_pernet_subsys(&tcp_sk_ops))
2642 panic("Failed to create the TCP control socket.\n");
2643 }
This page took 0.128743 seconds and 5 git commands to generate.