netlink: make nlmsg_end() and genlmsg_end() void
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77 #include <net/busy_poll.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
96
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
99
100 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
101 {
102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103 ip_hdr(skb)->saddr,
104 tcp_hdr(skb)->dest,
105 tcp_hdr(skb)->source);
106 }
107
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
109 {
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112
113 /* With PAWS, it is safe from the viewpoint
114 of data integrity. Even without PAWS it is safe provided sequence
115 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
116
117 Actually, the idea is close to VJ's one, only timestamp cache is
118 held not per host, but per port pair and TW bucket is used as state
119 holder.
120
121 If TW bucket has been already destroyed we fall back to VJ's scheme
122 and use initial timestamp retrieved from peer table.
123 */
124 if (tcptw->tw_ts_recent_stamp &&
125 (twp == NULL || (sysctl_tcp_tw_reuse &&
126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 if (tp->write_seq == 0)
129 tp->write_seq = 1;
130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132 sock_hold(sktw);
133 return 1;
134 }
135
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
139
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
142 {
143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 struct inet_sock *inet = inet_sk(sk);
145 struct tcp_sock *tp = tcp_sk(sk);
146 __be16 orig_sport, orig_dport;
147 __be32 daddr, nexthop;
148 struct flowi4 *fl4;
149 struct rtable *rt;
150 int err;
151 struct ip_options_rcu *inet_opt;
152
153 if (addr_len < sizeof(struct sockaddr_in))
154 return -EINVAL;
155
156 if (usin->sin_family != AF_INET)
157 return -EAFNOSUPPORT;
158
159 nexthop = daddr = usin->sin_addr.s_addr;
160 inet_opt = rcu_dereference_protected(inet->inet_opt,
161 sock_owned_by_user(sk));
162 if (inet_opt && inet_opt->opt.srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet_opt->opt.faddr;
166 }
167
168 orig_sport = inet->inet_sport;
169 orig_dport = usin->sin_port;
170 fl4 = &inet->cork.fl.u.ip4;
171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173 IPPROTO_TCP,
174 orig_sport, orig_dport, sk);
175 if (IS_ERR(rt)) {
176 err = PTR_ERR(rt);
177 if (err == -ENETUNREACH)
178 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 return err;
180 }
181
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 ip_rt_put(rt);
184 return -ENETUNREACH;
185 }
186
187 if (!inet_opt || !inet_opt->opt.srr)
188 daddr = fl4->daddr;
189
190 if (!inet->inet_saddr)
191 inet->inet_saddr = fl4->saddr;
192 inet->inet_rcv_saddr = inet->inet_saddr;
193
194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
198 if (likely(!tp->repair))
199 tp->write_seq = 0;
200 }
201
202 if (tcp_death_row.sysctl_tw_recycle &&
203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
204 tcp_fetch_timewait_stamp(sk, &rt->dst);
205
206 inet->inet_dport = usin->sin_port;
207 inet->inet_daddr = daddr;
208
209 inet_csk(sk)->icsk_ext_hdr_len = 0;
210 if (inet_opt)
211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212
213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214
215 /* Socket identity is still unknown (sport may be zero).
216 * However we set state to SYN-SENT and not releasing socket
217 * lock select source port, enter ourselves into the hash tables and
218 * complete initialization after this.
219 */
220 tcp_set_state(sk, TCP_SYN_SENT);
221 err = inet_hash_connect(&tcp_death_row, sk);
222 if (err)
223 goto failure;
224
225 inet_set_txhash(sk);
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254 failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272 void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302 }
303 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
304
305 static void do_redirect(struct sk_buff *skb, struct sock *sk)
306 {
307 struct dst_entry *dst = __sk_dst_check(sk, 0);
308
309 if (dst)
310 dst->ops->redirect(dst, sk, skb);
311 }
312
313 /*
314 * This routine is called by the ICMP module when it gets some
315 * sort of error condition. If err < 0 then the socket should
316 * be closed and the error returned to the user. If err > 0
317 * it's just the icmp type << 8 | icmp code. After adjustment
318 * header points to the first 8 bytes of the tcp header. We need
319 * to find the appropriate port.
320 *
321 * The locking strategy used here is very "optimistic". When
322 * someone else accesses the socket the ICMP is just dropped
323 * and for some paths there is no check at all.
324 * A more general error queue to queue errors for later handling
325 * is probably better.
326 *
327 */
328
329 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
330 {
331 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
332 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
333 struct inet_connection_sock *icsk;
334 struct tcp_sock *tp;
335 struct inet_sock *inet;
336 const int type = icmp_hdr(icmp_skb)->type;
337 const int code = icmp_hdr(icmp_skb)->code;
338 struct sock *sk;
339 struct sk_buff *skb;
340 struct request_sock *fastopen;
341 __u32 seq, snd_una;
342 __u32 remaining;
343 int err;
344 struct net *net = dev_net(icmp_skb->dev);
345
346 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
347 iph->saddr, th->source, inet_iif(icmp_skb));
348 if (!sk) {
349 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350 return;
351 }
352 if (sk->sk_state == TCP_TIME_WAIT) {
353 inet_twsk_put(inet_twsk(sk));
354 return;
355 }
356
357 bh_lock_sock(sk);
358 /* If too many ICMPs get dropped on busy
359 * servers this needs to be solved differently.
360 * We do take care of PMTU discovery (RFC1191) special case :
361 * we can receive locally generated ICMP messages while socket is held.
362 */
363 if (sock_owned_by_user(sk)) {
364 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
365 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
366 }
367 if (sk->sk_state == TCP_CLOSE)
368 goto out;
369
370 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
371 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
372 goto out;
373 }
374
375 icsk = inet_csk(sk);
376 tp = tcp_sk(sk);
377 seq = ntohl(th->seq);
378 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
379 fastopen = tp->fastopen_rsk;
380 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
381 if (sk->sk_state != TCP_LISTEN &&
382 !between(seq, snd_una, tp->snd_nxt)) {
383 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
384 goto out;
385 }
386
387 switch (type) {
388 case ICMP_REDIRECT:
389 do_redirect(icmp_skb, sk);
390 goto out;
391 case ICMP_SOURCE_QUENCH:
392 /* Just silently ignore these. */
393 goto out;
394 case ICMP_PARAMETERPROB:
395 err = EPROTO;
396 break;
397 case ICMP_DEST_UNREACH:
398 if (code > NR_ICMP_UNREACH)
399 goto out;
400
401 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
402 /* We are not interested in TCP_LISTEN and open_requests
403 * (SYN-ACKs send out by Linux are always <576bytes so
404 * they should go through unfragmented).
405 */
406 if (sk->sk_state == TCP_LISTEN)
407 goto out;
408
409 tp->mtu_info = info;
410 if (!sock_owned_by_user(sk)) {
411 tcp_v4_mtu_reduced(sk);
412 } else {
413 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
414 sock_hold(sk);
415 }
416 goto out;
417 }
418
419 err = icmp_err_convert[code].errno;
420 /* check if icmp_skb allows revert of backoff
421 * (see draft-zimmermann-tcp-lcd) */
422 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
423 break;
424 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
425 !icsk->icsk_backoff || fastopen)
426 break;
427
428 if (sock_owned_by_user(sk))
429 break;
430
431 icsk->icsk_backoff--;
432 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
433 TCP_TIMEOUT_INIT;
434 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
435
436 skb = tcp_write_queue_head(sk);
437 BUG_ON(!skb);
438
439 remaining = icsk->icsk_rto -
440 min(icsk->icsk_rto,
441 tcp_time_stamp - tcp_skb_timestamp(skb));
442
443 if (remaining) {
444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 remaining, TCP_RTO_MAX);
446 } else {
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk);
450 }
451
452 break;
453 case ICMP_TIME_EXCEEDED:
454 err = EHOSTUNREACH;
455 break;
456 default:
457 goto out;
458 }
459
460 switch (sk->sk_state) {
461 struct request_sock *req, **prev;
462 case TCP_LISTEN:
463 if (sock_owned_by_user(sk))
464 goto out;
465
466 req = inet_csk_search_req(sk, &prev, th->dest,
467 iph->daddr, iph->saddr);
468 if (!req)
469 goto out;
470
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
473 */
474 WARN_ON(req->sk);
475
476 if (seq != tcp_rsk(req)->snt_isn) {
477 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 goto out;
479 }
480
481 /*
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
486 */
487 inet_csk_reqsk_queue_drop(sk, req, prev);
488 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
489 goto out;
490
491 case TCP_SYN_SENT:
492 case TCP_SYN_RECV:
493 /* Only in fast or simultaneous open. If a fast open socket is
494 * is already accepted it is treated as a connected one below.
495 */
496 if (fastopen && fastopen->sk == NULL)
497 break;
498
499 if (!sock_owned_by_user(sk)) {
500 sk->sk_err = err;
501
502 sk->sk_error_report(sk);
503
504 tcp_done(sk);
505 } else {
506 sk->sk_err_soft = err;
507 }
508 goto out;
509 }
510
511 /* If we've already connected we will keep trying
512 * until we time out, or the user gives up.
513 *
514 * rfc1122 4.2.3.9 allows to consider as hard errors
515 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
516 * but it is obsoleted by pmtu discovery).
517 *
518 * Note, that in modern internet, where routing is unreliable
519 * and in each dark corner broken firewalls sit, sending random
520 * errors ordered by their masters even this two messages finally lose
521 * their original sense (even Linux sends invalid PORT_UNREACHs)
522 *
523 * Now we are in compliance with RFCs.
524 * --ANK (980905)
525 */
526
527 inet = inet_sk(sk);
528 if (!sock_owned_by_user(sk) && inet->recverr) {
529 sk->sk_err = err;
530 sk->sk_error_report(sk);
531 } else { /* Only an error on timeout */
532 sk->sk_err_soft = err;
533 }
534
535 out:
536 bh_unlock_sock(sk);
537 sock_put(sk);
538 }
539
540 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
541 {
542 struct tcphdr *th = tcp_hdr(skb);
543
544 if (skb->ip_summed == CHECKSUM_PARTIAL) {
545 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
546 skb->csum_start = skb_transport_header(skb) - skb->head;
547 skb->csum_offset = offsetof(struct tcphdr, check);
548 } else {
549 th->check = tcp_v4_check(skb->len, saddr, daddr,
550 csum_partial(th,
551 th->doff << 2,
552 skb->csum));
553 }
554 }
555
556 /* This routine computes an IPv4 TCP checksum. */
557 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
558 {
559 const struct inet_sock *inet = inet_sk(sk);
560
561 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
562 }
563 EXPORT_SYMBOL(tcp_v4_send_check);
564
565 /*
566 * This routine will send an RST to the other tcp.
567 *
568 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
569 * for reset.
570 * Answer: if a packet caused RST, it is not for a socket
571 * existing in our system, if it is matched to a socket,
572 * it is just duplicate segment or bug in other side's TCP.
573 * So that we build reply only basing on parameters
574 * arrived with segment.
575 * Exception: precedence violation. We do not implement it in any case.
576 */
577
578 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
579 {
580 const struct tcphdr *th = tcp_hdr(skb);
581 struct {
582 struct tcphdr th;
583 #ifdef CONFIG_TCP_MD5SIG
584 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
585 #endif
586 } rep;
587 struct ip_reply_arg arg;
588 #ifdef CONFIG_TCP_MD5SIG
589 struct tcp_md5sig_key *key;
590 const __u8 *hash_location = NULL;
591 unsigned char newhash[16];
592 int genhash;
593 struct sock *sk1 = NULL;
594 #endif
595 struct net *net;
596
597 /* Never send a reset in response to a reset. */
598 if (th->rst)
599 return;
600
601 /* If sk not NULL, it means we did a successful lookup and incoming
602 * route had to be correct. prequeue might have dropped our dst.
603 */
604 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
605 return;
606
607 /* Swap the send and the receive. */
608 memset(&rep, 0, sizeof(rep));
609 rep.th.dest = th->source;
610 rep.th.source = th->dest;
611 rep.th.doff = sizeof(struct tcphdr) / 4;
612 rep.th.rst = 1;
613
614 if (th->ack) {
615 rep.th.seq = th->ack_seq;
616 } else {
617 rep.th.ack = 1;
618 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
619 skb->len - (th->doff << 2));
620 }
621
622 memset(&arg, 0, sizeof(arg));
623 arg.iov[0].iov_base = (unsigned char *)&rep;
624 arg.iov[0].iov_len = sizeof(rep.th);
625
626 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
627 #ifdef CONFIG_TCP_MD5SIG
628 hash_location = tcp_parse_md5sig_option(th);
629 if (!sk && hash_location) {
630 /*
631 * active side is lost. Try to find listening socket through
632 * source port, and then find md5 key through listening socket.
633 * we are not loose security here:
634 * Incoming packet is checked with md5 hash with finding key,
635 * no RST generated if md5 hash doesn't match.
636 */
637 sk1 = __inet_lookup_listener(net,
638 &tcp_hashinfo, ip_hdr(skb)->saddr,
639 th->source, ip_hdr(skb)->daddr,
640 ntohs(th->source), inet_iif(skb));
641 /* don't send rst if it can't find key */
642 if (!sk1)
643 return;
644 rcu_read_lock();
645 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
646 &ip_hdr(skb)->saddr, AF_INET);
647 if (!key)
648 goto release_sk1;
649
650 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
651 if (genhash || memcmp(hash_location, newhash, 16) != 0)
652 goto release_sk1;
653 } else {
654 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
655 &ip_hdr(skb)->saddr,
656 AF_INET) : NULL;
657 }
658
659 if (key) {
660 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
661 (TCPOPT_NOP << 16) |
662 (TCPOPT_MD5SIG << 8) |
663 TCPOLEN_MD5SIG);
664 /* Update length and the length the header thinks exists */
665 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
666 rep.th.doff = arg.iov[0].iov_len / 4;
667
668 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
669 key, ip_hdr(skb)->saddr,
670 ip_hdr(skb)->daddr, &rep.th);
671 }
672 #endif
673 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
674 ip_hdr(skb)->saddr, /* XXX */
675 arg.iov[0].iov_len, IPPROTO_TCP, 0);
676 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
677 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
678 /* When socket is gone, all binding information is lost.
679 * routing might fail in this case. No choice here, if we choose to force
680 * input interface, we will misroute in case of asymmetric route.
681 */
682 if (sk)
683 arg.bound_dev_if = sk->sk_bound_dev_if;
684
685 arg.tos = ip_hdr(skb)->tos;
686 ip_send_unicast_reply(net, skb, &TCP_SKB_CB(skb)->header.h4.opt,
687 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
688 &arg, arg.iov[0].iov_len);
689
690 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
691 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
692
693 #ifdef CONFIG_TCP_MD5SIG
694 release_sk1:
695 if (sk1) {
696 rcu_read_unlock();
697 sock_put(sk1);
698 }
699 #endif
700 }
701
702 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
703 outside socket context is ugly, certainly. What can I do?
704 */
705
706 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
707 u32 win, u32 tsval, u32 tsecr, int oif,
708 struct tcp_md5sig_key *key,
709 int reply_flags, u8 tos)
710 {
711 const struct tcphdr *th = tcp_hdr(skb);
712 struct {
713 struct tcphdr th;
714 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
715 #ifdef CONFIG_TCP_MD5SIG
716 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
717 #endif
718 ];
719 } rep;
720 struct ip_reply_arg arg;
721 struct net *net = dev_net(skb_dst(skb)->dev);
722
723 memset(&rep.th, 0, sizeof(struct tcphdr));
724 memset(&arg, 0, sizeof(arg));
725
726 arg.iov[0].iov_base = (unsigned char *)&rep;
727 arg.iov[0].iov_len = sizeof(rep.th);
728 if (tsecr) {
729 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
730 (TCPOPT_TIMESTAMP << 8) |
731 TCPOLEN_TIMESTAMP);
732 rep.opt[1] = htonl(tsval);
733 rep.opt[2] = htonl(tsecr);
734 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
735 }
736
737 /* Swap the send and the receive. */
738 rep.th.dest = th->source;
739 rep.th.source = th->dest;
740 rep.th.doff = arg.iov[0].iov_len / 4;
741 rep.th.seq = htonl(seq);
742 rep.th.ack_seq = htonl(ack);
743 rep.th.ack = 1;
744 rep.th.window = htons(win);
745
746 #ifdef CONFIG_TCP_MD5SIG
747 if (key) {
748 int offset = (tsecr) ? 3 : 0;
749
750 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
751 (TCPOPT_NOP << 16) |
752 (TCPOPT_MD5SIG << 8) |
753 TCPOLEN_MD5SIG);
754 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
755 rep.th.doff = arg.iov[0].iov_len/4;
756
757 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
758 key, ip_hdr(skb)->saddr,
759 ip_hdr(skb)->daddr, &rep.th);
760 }
761 #endif
762 arg.flags = reply_flags;
763 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
764 ip_hdr(skb)->saddr, /* XXX */
765 arg.iov[0].iov_len, IPPROTO_TCP, 0);
766 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
767 if (oif)
768 arg.bound_dev_if = oif;
769 arg.tos = tos;
770 ip_send_unicast_reply(net, skb, &TCP_SKB_CB(skb)->header.h4.opt,
771 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
772 &arg, arg.iov[0].iov_len);
773
774 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
775 }
776
777 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
778 {
779 struct inet_timewait_sock *tw = inet_twsk(sk);
780 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
781
782 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
783 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
784 tcp_time_stamp + tcptw->tw_ts_offset,
785 tcptw->tw_ts_recent,
786 tw->tw_bound_dev_if,
787 tcp_twsk_md5_key(tcptw),
788 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
789 tw->tw_tos
790 );
791
792 inet_twsk_put(tw);
793 }
794
795 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
796 struct request_sock *req)
797 {
798 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
799 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
800 */
801 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
802 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
803 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
804 tcp_time_stamp,
805 req->ts_recent,
806 0,
807 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
808 AF_INET),
809 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
810 ip_hdr(skb)->tos);
811 }
812
813 /*
814 * Send a SYN-ACK after having received a SYN.
815 * This still operates on a request_sock only, not on a big
816 * socket.
817 */
818 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
819 struct flowi *fl,
820 struct request_sock *req,
821 u16 queue_mapping,
822 struct tcp_fastopen_cookie *foc)
823 {
824 const struct inet_request_sock *ireq = inet_rsk(req);
825 struct flowi4 fl4;
826 int err = -1;
827 struct sk_buff *skb;
828
829 /* First, grab a route. */
830 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
831 return -1;
832
833 skb = tcp_make_synack(sk, dst, req, foc);
834
835 if (skb) {
836 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
837
838 skb_set_queue_mapping(skb, queue_mapping);
839 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
840 ireq->ir_rmt_addr,
841 ireq->opt);
842 err = net_xmit_eval(err);
843 }
844
845 return err;
846 }
847
848 /*
849 * IPv4 request_sock destructor.
850 */
851 static void tcp_v4_reqsk_destructor(struct request_sock *req)
852 {
853 kfree(inet_rsk(req)->opt);
854 }
855
856 /*
857 * Return true if a syncookie should be sent
858 */
859 bool tcp_syn_flood_action(struct sock *sk,
860 const struct sk_buff *skb,
861 const char *proto)
862 {
863 const char *msg = "Dropping request";
864 bool want_cookie = false;
865 struct listen_sock *lopt;
866
867 #ifdef CONFIG_SYN_COOKIES
868 if (sysctl_tcp_syncookies) {
869 msg = "Sending cookies";
870 want_cookie = true;
871 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
872 } else
873 #endif
874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
875
876 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
877 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
878 lopt->synflood_warned = 1;
879 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
880 proto, ntohs(tcp_hdr(skb)->dest), msg);
881 }
882 return want_cookie;
883 }
884 EXPORT_SYMBOL(tcp_syn_flood_action);
885
886 #ifdef CONFIG_TCP_MD5SIG
887 /*
888 * RFC2385 MD5 checksumming requires a mapping of
889 * IP address->MD5 Key.
890 * We need to maintain these in the sk structure.
891 */
892
893 /* Find the Key structure for an address. */
894 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
895 const union tcp_md5_addr *addr,
896 int family)
897 {
898 struct tcp_sock *tp = tcp_sk(sk);
899 struct tcp_md5sig_key *key;
900 unsigned int size = sizeof(struct in_addr);
901 struct tcp_md5sig_info *md5sig;
902
903 /* caller either holds rcu_read_lock() or socket lock */
904 md5sig = rcu_dereference_check(tp->md5sig_info,
905 sock_owned_by_user(sk) ||
906 lockdep_is_held(&sk->sk_lock.slock));
907 if (!md5sig)
908 return NULL;
909 #if IS_ENABLED(CONFIG_IPV6)
910 if (family == AF_INET6)
911 size = sizeof(struct in6_addr);
912 #endif
913 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
914 if (key->family != family)
915 continue;
916 if (!memcmp(&key->addr, addr, size))
917 return key;
918 }
919 return NULL;
920 }
921 EXPORT_SYMBOL(tcp_md5_do_lookup);
922
923 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
924 struct sock *addr_sk)
925 {
926 union tcp_md5_addr *addr;
927
928 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
929 return tcp_md5_do_lookup(sk, addr, AF_INET);
930 }
931 EXPORT_SYMBOL(tcp_v4_md5_lookup);
932
933 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
934 struct request_sock *req)
935 {
936 union tcp_md5_addr *addr;
937
938 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
939 return tcp_md5_do_lookup(sk, addr, AF_INET);
940 }
941
942 /* This can be called on a newly created socket, from other files */
943 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
944 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
945 {
946 /* Add Key to the list */
947 struct tcp_md5sig_key *key;
948 struct tcp_sock *tp = tcp_sk(sk);
949 struct tcp_md5sig_info *md5sig;
950
951 key = tcp_md5_do_lookup(sk, addr, family);
952 if (key) {
953 /* Pre-existing entry - just update that one. */
954 memcpy(key->key, newkey, newkeylen);
955 key->keylen = newkeylen;
956 return 0;
957 }
958
959 md5sig = rcu_dereference_protected(tp->md5sig_info,
960 sock_owned_by_user(sk));
961 if (!md5sig) {
962 md5sig = kmalloc(sizeof(*md5sig), gfp);
963 if (!md5sig)
964 return -ENOMEM;
965
966 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
967 INIT_HLIST_HEAD(&md5sig->head);
968 rcu_assign_pointer(tp->md5sig_info, md5sig);
969 }
970
971 key = sock_kmalloc(sk, sizeof(*key), gfp);
972 if (!key)
973 return -ENOMEM;
974 if (!tcp_alloc_md5sig_pool()) {
975 sock_kfree_s(sk, key, sizeof(*key));
976 return -ENOMEM;
977 }
978
979 memcpy(key->key, newkey, newkeylen);
980 key->keylen = newkeylen;
981 key->family = family;
982 memcpy(&key->addr, addr,
983 (family == AF_INET6) ? sizeof(struct in6_addr) :
984 sizeof(struct in_addr));
985 hlist_add_head_rcu(&key->node, &md5sig->head);
986 return 0;
987 }
988 EXPORT_SYMBOL(tcp_md5_do_add);
989
990 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
991 {
992 struct tcp_md5sig_key *key;
993
994 key = tcp_md5_do_lookup(sk, addr, family);
995 if (!key)
996 return -ENOENT;
997 hlist_del_rcu(&key->node);
998 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
999 kfree_rcu(key, rcu);
1000 return 0;
1001 }
1002 EXPORT_SYMBOL(tcp_md5_do_del);
1003
1004 static void tcp_clear_md5_list(struct sock *sk)
1005 {
1006 struct tcp_sock *tp = tcp_sk(sk);
1007 struct tcp_md5sig_key *key;
1008 struct hlist_node *n;
1009 struct tcp_md5sig_info *md5sig;
1010
1011 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1012
1013 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1014 hlist_del_rcu(&key->node);
1015 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1016 kfree_rcu(key, rcu);
1017 }
1018 }
1019
1020 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1021 int optlen)
1022 {
1023 struct tcp_md5sig cmd;
1024 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1025
1026 if (optlen < sizeof(cmd))
1027 return -EINVAL;
1028
1029 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1030 return -EFAULT;
1031
1032 if (sin->sin_family != AF_INET)
1033 return -EINVAL;
1034
1035 if (!cmd.tcpm_keylen)
1036 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1037 AF_INET);
1038
1039 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1040 return -EINVAL;
1041
1042 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1043 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1044 GFP_KERNEL);
1045 }
1046
1047 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1048 __be32 daddr, __be32 saddr, int nbytes)
1049 {
1050 struct tcp4_pseudohdr *bp;
1051 struct scatterlist sg;
1052
1053 bp = &hp->md5_blk.ip4;
1054
1055 /*
1056 * 1. the TCP pseudo-header (in the order: source IP address,
1057 * destination IP address, zero-padded protocol number, and
1058 * segment length)
1059 */
1060 bp->saddr = saddr;
1061 bp->daddr = daddr;
1062 bp->pad = 0;
1063 bp->protocol = IPPROTO_TCP;
1064 bp->len = cpu_to_be16(nbytes);
1065
1066 sg_init_one(&sg, bp, sizeof(*bp));
1067 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1068 }
1069
1070 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1071 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1072 {
1073 struct tcp_md5sig_pool *hp;
1074 struct hash_desc *desc;
1075
1076 hp = tcp_get_md5sig_pool();
1077 if (!hp)
1078 goto clear_hash_noput;
1079 desc = &hp->md5_desc;
1080
1081 if (crypto_hash_init(desc))
1082 goto clear_hash;
1083 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1084 goto clear_hash;
1085 if (tcp_md5_hash_header(hp, th))
1086 goto clear_hash;
1087 if (tcp_md5_hash_key(hp, key))
1088 goto clear_hash;
1089 if (crypto_hash_final(desc, md5_hash))
1090 goto clear_hash;
1091
1092 tcp_put_md5sig_pool();
1093 return 0;
1094
1095 clear_hash:
1096 tcp_put_md5sig_pool();
1097 clear_hash_noput:
1098 memset(md5_hash, 0, 16);
1099 return 1;
1100 }
1101
1102 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1103 const struct sock *sk, const struct request_sock *req,
1104 const struct sk_buff *skb)
1105 {
1106 struct tcp_md5sig_pool *hp;
1107 struct hash_desc *desc;
1108 const struct tcphdr *th = tcp_hdr(skb);
1109 __be32 saddr, daddr;
1110
1111 if (sk) {
1112 saddr = inet_sk(sk)->inet_saddr;
1113 daddr = inet_sk(sk)->inet_daddr;
1114 } else if (req) {
1115 saddr = inet_rsk(req)->ir_loc_addr;
1116 daddr = inet_rsk(req)->ir_rmt_addr;
1117 } else {
1118 const struct iphdr *iph = ip_hdr(skb);
1119 saddr = iph->saddr;
1120 daddr = iph->daddr;
1121 }
1122
1123 hp = tcp_get_md5sig_pool();
1124 if (!hp)
1125 goto clear_hash_noput;
1126 desc = &hp->md5_desc;
1127
1128 if (crypto_hash_init(desc))
1129 goto clear_hash;
1130
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1136 goto clear_hash;
1137 if (tcp_md5_hash_key(hp, key))
1138 goto clear_hash;
1139 if (crypto_hash_final(desc, md5_hash))
1140 goto clear_hash;
1141
1142 tcp_put_md5sig_pool();
1143 return 0;
1144
1145 clear_hash:
1146 tcp_put_md5sig_pool();
1147 clear_hash_noput:
1148 memset(md5_hash, 0, 16);
1149 return 1;
1150 }
1151 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1152
1153 static bool __tcp_v4_inbound_md5_hash(struct sock *sk,
1154 const struct sk_buff *skb)
1155 {
1156 /*
1157 * This gets called for each TCP segment that arrives
1158 * so we want to be efficient.
1159 * We have 3 drop cases:
1160 * o No MD5 hash and one expected.
1161 * o MD5 hash and we're not expecting one.
1162 * o MD5 hash and its wrong.
1163 */
1164 const __u8 *hash_location = NULL;
1165 struct tcp_md5sig_key *hash_expected;
1166 const struct iphdr *iph = ip_hdr(skb);
1167 const struct tcphdr *th = tcp_hdr(skb);
1168 int genhash;
1169 unsigned char newhash[16];
1170
1171 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1172 AF_INET);
1173 hash_location = tcp_parse_md5sig_option(th);
1174
1175 /* We've parsed the options - do we have a hash? */
1176 if (!hash_expected && !hash_location)
1177 return false;
1178
1179 if (hash_expected && !hash_location) {
1180 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1181 return true;
1182 }
1183
1184 if (!hash_expected && hash_location) {
1185 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1186 return true;
1187 }
1188
1189 /* Okay, so this is hash_expected and hash_location -
1190 * so we need to calculate the checksum.
1191 */
1192 genhash = tcp_v4_md5_hash_skb(newhash,
1193 hash_expected,
1194 NULL, NULL, skb);
1195
1196 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1197 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1198 &iph->saddr, ntohs(th->source),
1199 &iph->daddr, ntohs(th->dest),
1200 genhash ? " tcp_v4_calc_md5_hash failed"
1201 : "");
1202 return true;
1203 }
1204 return false;
1205 }
1206
1207 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1208 {
1209 bool ret;
1210
1211 rcu_read_lock();
1212 ret = __tcp_v4_inbound_md5_hash(sk, skb);
1213 rcu_read_unlock();
1214
1215 return ret;
1216 }
1217
1218 #endif
1219
1220 static void tcp_v4_init_req(struct request_sock *req, struct sock *sk,
1221 struct sk_buff *skb)
1222 {
1223 struct inet_request_sock *ireq = inet_rsk(req);
1224
1225 ireq->ir_loc_addr = ip_hdr(skb)->daddr;
1226 ireq->ir_rmt_addr = ip_hdr(skb)->saddr;
1227 ireq->no_srccheck = inet_sk(sk)->transparent;
1228 ireq->opt = tcp_v4_save_options(skb);
1229 }
1230
1231 static struct dst_entry *tcp_v4_route_req(struct sock *sk, struct flowi *fl,
1232 const struct request_sock *req,
1233 bool *strict)
1234 {
1235 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1236
1237 if (strict) {
1238 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1239 *strict = true;
1240 else
1241 *strict = false;
1242 }
1243
1244 return dst;
1245 }
1246
1247 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1248 .family = PF_INET,
1249 .obj_size = sizeof(struct tcp_request_sock),
1250 .rtx_syn_ack = tcp_rtx_synack,
1251 .send_ack = tcp_v4_reqsk_send_ack,
1252 .destructor = tcp_v4_reqsk_destructor,
1253 .send_reset = tcp_v4_send_reset,
1254 .syn_ack_timeout = tcp_syn_ack_timeout,
1255 };
1256
1257 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258 .mss_clamp = TCP_MSS_DEFAULT,
1259 #ifdef CONFIG_TCP_MD5SIG
1260 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1261 .calc_md5_hash = tcp_v4_md5_hash_skb,
1262 #endif
1263 .init_req = tcp_v4_init_req,
1264 #ifdef CONFIG_SYN_COOKIES
1265 .cookie_init_seq = cookie_v4_init_sequence,
1266 #endif
1267 .route_req = tcp_v4_route_req,
1268 .init_seq = tcp_v4_init_sequence,
1269 .send_synack = tcp_v4_send_synack,
1270 .queue_hash_add = inet_csk_reqsk_queue_hash_add,
1271 };
1272
1273 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274 {
1275 /* Never answer to SYNs send to broadcast or multicast */
1276 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1277 goto drop;
1278
1279 return tcp_conn_request(&tcp_request_sock_ops,
1280 &tcp_request_sock_ipv4_ops, sk, skb);
1281
1282 drop:
1283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1284 return 0;
1285 }
1286 EXPORT_SYMBOL(tcp_v4_conn_request);
1287
1288
1289 /*
1290 * The three way handshake has completed - we got a valid synack -
1291 * now create the new socket.
1292 */
1293 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1294 struct request_sock *req,
1295 struct dst_entry *dst)
1296 {
1297 struct inet_request_sock *ireq;
1298 struct inet_sock *newinet;
1299 struct tcp_sock *newtp;
1300 struct sock *newsk;
1301 #ifdef CONFIG_TCP_MD5SIG
1302 struct tcp_md5sig_key *key;
1303 #endif
1304 struct ip_options_rcu *inet_opt;
1305
1306 if (sk_acceptq_is_full(sk))
1307 goto exit_overflow;
1308
1309 newsk = tcp_create_openreq_child(sk, req, skb);
1310 if (!newsk)
1311 goto exit_nonewsk;
1312
1313 newsk->sk_gso_type = SKB_GSO_TCPV4;
1314 inet_sk_rx_dst_set(newsk, skb);
1315
1316 newtp = tcp_sk(newsk);
1317 newinet = inet_sk(newsk);
1318 ireq = inet_rsk(req);
1319 newinet->inet_daddr = ireq->ir_rmt_addr;
1320 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1321 newinet->inet_saddr = ireq->ir_loc_addr;
1322 inet_opt = ireq->opt;
1323 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1324 ireq->opt = NULL;
1325 newinet->mc_index = inet_iif(skb);
1326 newinet->mc_ttl = ip_hdr(skb)->ttl;
1327 newinet->rcv_tos = ip_hdr(skb)->tos;
1328 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1329 inet_set_txhash(newsk);
1330 if (inet_opt)
1331 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1332 newinet->inet_id = newtp->write_seq ^ jiffies;
1333
1334 if (!dst) {
1335 dst = inet_csk_route_child_sock(sk, newsk, req);
1336 if (!dst)
1337 goto put_and_exit;
1338 } else {
1339 /* syncookie case : see end of cookie_v4_check() */
1340 }
1341 sk_setup_caps(newsk, dst);
1342
1343 tcp_ca_openreq_child(newsk, dst);
1344
1345 tcp_sync_mss(newsk, dst_mtu(dst));
1346 newtp->advmss = dst_metric_advmss(dst);
1347 if (tcp_sk(sk)->rx_opt.user_mss &&
1348 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1349 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1350
1351 tcp_initialize_rcv_mss(newsk);
1352
1353 #ifdef CONFIG_TCP_MD5SIG
1354 /* Copy over the MD5 key from the original socket */
1355 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1356 AF_INET);
1357 if (key != NULL) {
1358 /*
1359 * We're using one, so create a matching key
1360 * on the newsk structure. If we fail to get
1361 * memory, then we end up not copying the key
1362 * across. Shucks.
1363 */
1364 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1365 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1366 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1367 }
1368 #endif
1369
1370 if (__inet_inherit_port(sk, newsk) < 0)
1371 goto put_and_exit;
1372 __inet_hash_nolisten(newsk, NULL);
1373
1374 return newsk;
1375
1376 exit_overflow:
1377 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1378 exit_nonewsk:
1379 dst_release(dst);
1380 exit:
1381 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1382 return NULL;
1383 put_and_exit:
1384 inet_csk_prepare_forced_close(newsk);
1385 tcp_done(newsk);
1386 goto exit;
1387 }
1388 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1389
1390 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1391 {
1392 struct tcphdr *th = tcp_hdr(skb);
1393 const struct iphdr *iph = ip_hdr(skb);
1394 struct sock *nsk;
1395 struct request_sock **prev;
1396 /* Find possible connection requests. */
1397 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1398 iph->saddr, iph->daddr);
1399 if (req)
1400 return tcp_check_req(sk, skb, req, prev, false);
1401
1402 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1403 th->source, iph->daddr, th->dest, inet_iif(skb));
1404
1405 if (nsk) {
1406 if (nsk->sk_state != TCP_TIME_WAIT) {
1407 bh_lock_sock(nsk);
1408 return nsk;
1409 }
1410 inet_twsk_put(inet_twsk(nsk));
1411 return NULL;
1412 }
1413
1414 #ifdef CONFIG_SYN_COOKIES
1415 if (!th->syn)
1416 sk = cookie_v4_check(sk, skb);
1417 #endif
1418 return sk;
1419 }
1420
1421 /* The socket must have it's spinlock held when we get
1422 * here.
1423 *
1424 * We have a potential double-lock case here, so even when
1425 * doing backlog processing we use the BH locking scheme.
1426 * This is because we cannot sleep with the original spinlock
1427 * held.
1428 */
1429 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1430 {
1431 struct sock *rsk;
1432
1433 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1434 struct dst_entry *dst = sk->sk_rx_dst;
1435
1436 sock_rps_save_rxhash(sk, skb);
1437 sk_mark_napi_id(sk, skb);
1438 if (dst) {
1439 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1440 dst->ops->check(dst, 0) == NULL) {
1441 dst_release(dst);
1442 sk->sk_rx_dst = NULL;
1443 }
1444 }
1445 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1446 return 0;
1447 }
1448
1449 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1450 goto csum_err;
1451
1452 if (sk->sk_state == TCP_LISTEN) {
1453 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1454 if (!nsk)
1455 goto discard;
1456
1457 if (nsk != sk) {
1458 sock_rps_save_rxhash(nsk, skb);
1459 sk_mark_napi_id(sk, skb);
1460 if (tcp_child_process(sk, nsk, skb)) {
1461 rsk = nsk;
1462 goto reset;
1463 }
1464 return 0;
1465 }
1466 } else
1467 sock_rps_save_rxhash(sk, skb);
1468
1469 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1470 rsk = sk;
1471 goto reset;
1472 }
1473 return 0;
1474
1475 reset:
1476 tcp_v4_send_reset(rsk, skb);
1477 discard:
1478 kfree_skb(skb);
1479 /* Be careful here. If this function gets more complicated and
1480 * gcc suffers from register pressure on the x86, sk (in %ebx)
1481 * might be destroyed here. This current version compiles correctly,
1482 * but you have been warned.
1483 */
1484 return 0;
1485
1486 csum_err:
1487 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1488 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1489 goto discard;
1490 }
1491 EXPORT_SYMBOL(tcp_v4_do_rcv);
1492
1493 void tcp_v4_early_demux(struct sk_buff *skb)
1494 {
1495 const struct iphdr *iph;
1496 const struct tcphdr *th;
1497 struct sock *sk;
1498
1499 if (skb->pkt_type != PACKET_HOST)
1500 return;
1501
1502 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1503 return;
1504
1505 iph = ip_hdr(skb);
1506 th = tcp_hdr(skb);
1507
1508 if (th->doff < sizeof(struct tcphdr) / 4)
1509 return;
1510
1511 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1512 iph->saddr, th->source,
1513 iph->daddr, ntohs(th->dest),
1514 skb->skb_iif);
1515 if (sk) {
1516 skb->sk = sk;
1517 skb->destructor = sock_edemux;
1518 if (sk->sk_state != TCP_TIME_WAIT) {
1519 struct dst_entry *dst = sk->sk_rx_dst;
1520
1521 if (dst)
1522 dst = dst_check(dst, 0);
1523 if (dst &&
1524 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1525 skb_dst_set_noref(skb, dst);
1526 }
1527 }
1528 }
1529
1530 /* Packet is added to VJ-style prequeue for processing in process
1531 * context, if a reader task is waiting. Apparently, this exciting
1532 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1533 * failed somewhere. Latency? Burstiness? Well, at least now we will
1534 * see, why it failed. 8)8) --ANK
1535 *
1536 */
1537 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1538 {
1539 struct tcp_sock *tp = tcp_sk(sk);
1540
1541 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1542 return false;
1543
1544 if (skb->len <= tcp_hdrlen(skb) &&
1545 skb_queue_len(&tp->ucopy.prequeue) == 0)
1546 return false;
1547
1548 /* Before escaping RCU protected region, we need to take care of skb
1549 * dst. Prequeue is only enabled for established sockets.
1550 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1551 * Instead of doing full sk_rx_dst validity here, let's perform
1552 * an optimistic check.
1553 */
1554 if (likely(sk->sk_rx_dst))
1555 skb_dst_drop(skb);
1556 else
1557 skb_dst_force(skb);
1558
1559 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1560 tp->ucopy.memory += skb->truesize;
1561 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1562 struct sk_buff *skb1;
1563
1564 BUG_ON(sock_owned_by_user(sk));
1565
1566 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1567 sk_backlog_rcv(sk, skb1);
1568 NET_INC_STATS_BH(sock_net(sk),
1569 LINUX_MIB_TCPPREQUEUEDROPPED);
1570 }
1571
1572 tp->ucopy.memory = 0;
1573 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1574 wake_up_interruptible_sync_poll(sk_sleep(sk),
1575 POLLIN | POLLRDNORM | POLLRDBAND);
1576 if (!inet_csk_ack_scheduled(sk))
1577 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1578 (3 * tcp_rto_min(sk)) / 4,
1579 TCP_RTO_MAX);
1580 }
1581 return true;
1582 }
1583 EXPORT_SYMBOL(tcp_prequeue);
1584
1585 /*
1586 * From tcp_input.c
1587 */
1588
1589 int tcp_v4_rcv(struct sk_buff *skb)
1590 {
1591 const struct iphdr *iph;
1592 const struct tcphdr *th;
1593 struct sock *sk;
1594 int ret;
1595 struct net *net = dev_net(skb->dev);
1596
1597 if (skb->pkt_type != PACKET_HOST)
1598 goto discard_it;
1599
1600 /* Count it even if it's bad */
1601 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1602
1603 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1604 goto discard_it;
1605
1606 th = tcp_hdr(skb);
1607
1608 if (th->doff < sizeof(struct tcphdr) / 4)
1609 goto bad_packet;
1610 if (!pskb_may_pull(skb, th->doff * 4))
1611 goto discard_it;
1612
1613 /* An explanation is required here, I think.
1614 * Packet length and doff are validated by header prediction,
1615 * provided case of th->doff==0 is eliminated.
1616 * So, we defer the checks. */
1617
1618 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1619 goto csum_error;
1620
1621 th = tcp_hdr(skb);
1622 iph = ip_hdr(skb);
1623 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1624 * barrier() makes sure compiler wont play fool^Waliasing games.
1625 */
1626 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1627 sizeof(struct inet_skb_parm));
1628 barrier();
1629
1630 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1631 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1632 skb->len - th->doff * 4);
1633 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1634 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1635 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1636 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1637 TCP_SKB_CB(skb)->sacked = 0;
1638
1639 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1640 if (!sk)
1641 goto no_tcp_socket;
1642
1643 process:
1644 if (sk->sk_state == TCP_TIME_WAIT)
1645 goto do_time_wait;
1646
1647 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1648 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1649 goto discard_and_relse;
1650 }
1651
1652 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1653 goto discard_and_relse;
1654
1655 #ifdef CONFIG_TCP_MD5SIG
1656 /*
1657 * We really want to reject the packet as early as possible
1658 * if:
1659 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1660 * o There is an MD5 option and we're not expecting one
1661 */
1662 if (tcp_v4_inbound_md5_hash(sk, skb))
1663 goto discard_and_relse;
1664 #endif
1665
1666 nf_reset(skb);
1667
1668 if (sk_filter(sk, skb))
1669 goto discard_and_relse;
1670
1671 sk_incoming_cpu_update(sk);
1672 skb->dev = NULL;
1673
1674 bh_lock_sock_nested(sk);
1675 ret = 0;
1676 if (!sock_owned_by_user(sk)) {
1677 if (!tcp_prequeue(sk, skb))
1678 ret = tcp_v4_do_rcv(sk, skb);
1679 } else if (unlikely(sk_add_backlog(sk, skb,
1680 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1681 bh_unlock_sock(sk);
1682 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1683 goto discard_and_relse;
1684 }
1685 bh_unlock_sock(sk);
1686
1687 sock_put(sk);
1688
1689 return ret;
1690
1691 no_tcp_socket:
1692 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1693 goto discard_it;
1694
1695 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1696 csum_error:
1697 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1698 bad_packet:
1699 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1700 } else {
1701 tcp_v4_send_reset(NULL, skb);
1702 }
1703
1704 discard_it:
1705 /* Discard frame. */
1706 kfree_skb(skb);
1707 return 0;
1708
1709 discard_and_relse:
1710 sock_put(sk);
1711 goto discard_it;
1712
1713 do_time_wait:
1714 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1715 inet_twsk_put(inet_twsk(sk));
1716 goto discard_it;
1717 }
1718
1719 if (skb->len < (th->doff << 2)) {
1720 inet_twsk_put(inet_twsk(sk));
1721 goto bad_packet;
1722 }
1723 if (tcp_checksum_complete(skb)) {
1724 inet_twsk_put(inet_twsk(sk));
1725 goto csum_error;
1726 }
1727 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1728 case TCP_TW_SYN: {
1729 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1730 &tcp_hashinfo,
1731 iph->saddr, th->source,
1732 iph->daddr, th->dest,
1733 inet_iif(skb));
1734 if (sk2) {
1735 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1736 inet_twsk_put(inet_twsk(sk));
1737 sk = sk2;
1738 goto process;
1739 }
1740 /* Fall through to ACK */
1741 }
1742 case TCP_TW_ACK:
1743 tcp_v4_timewait_ack(sk, skb);
1744 break;
1745 case TCP_TW_RST:
1746 goto no_tcp_socket;
1747 case TCP_TW_SUCCESS:;
1748 }
1749 goto discard_it;
1750 }
1751
1752 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1753 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1754 .twsk_unique = tcp_twsk_unique,
1755 .twsk_destructor= tcp_twsk_destructor,
1756 };
1757
1758 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1759 {
1760 struct dst_entry *dst = skb_dst(skb);
1761
1762 if (dst) {
1763 dst_hold(dst);
1764 sk->sk_rx_dst = dst;
1765 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1766 }
1767 }
1768 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1769
1770 const struct inet_connection_sock_af_ops ipv4_specific = {
1771 .queue_xmit = ip_queue_xmit,
1772 .send_check = tcp_v4_send_check,
1773 .rebuild_header = inet_sk_rebuild_header,
1774 .sk_rx_dst_set = inet_sk_rx_dst_set,
1775 .conn_request = tcp_v4_conn_request,
1776 .syn_recv_sock = tcp_v4_syn_recv_sock,
1777 .net_header_len = sizeof(struct iphdr),
1778 .setsockopt = ip_setsockopt,
1779 .getsockopt = ip_getsockopt,
1780 .addr2sockaddr = inet_csk_addr2sockaddr,
1781 .sockaddr_len = sizeof(struct sockaddr_in),
1782 .bind_conflict = inet_csk_bind_conflict,
1783 #ifdef CONFIG_COMPAT
1784 .compat_setsockopt = compat_ip_setsockopt,
1785 .compat_getsockopt = compat_ip_getsockopt,
1786 #endif
1787 .mtu_reduced = tcp_v4_mtu_reduced,
1788 };
1789 EXPORT_SYMBOL(ipv4_specific);
1790
1791 #ifdef CONFIG_TCP_MD5SIG
1792 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1793 .md5_lookup = tcp_v4_md5_lookup,
1794 .calc_md5_hash = tcp_v4_md5_hash_skb,
1795 .md5_parse = tcp_v4_parse_md5_keys,
1796 };
1797 #endif
1798
1799 /* NOTE: A lot of things set to zero explicitly by call to
1800 * sk_alloc() so need not be done here.
1801 */
1802 static int tcp_v4_init_sock(struct sock *sk)
1803 {
1804 struct inet_connection_sock *icsk = inet_csk(sk);
1805
1806 tcp_init_sock(sk);
1807
1808 icsk->icsk_af_ops = &ipv4_specific;
1809
1810 #ifdef CONFIG_TCP_MD5SIG
1811 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1812 #endif
1813
1814 return 0;
1815 }
1816
1817 void tcp_v4_destroy_sock(struct sock *sk)
1818 {
1819 struct tcp_sock *tp = tcp_sk(sk);
1820
1821 tcp_clear_xmit_timers(sk);
1822
1823 tcp_cleanup_congestion_control(sk);
1824
1825 /* Cleanup up the write buffer. */
1826 tcp_write_queue_purge(sk);
1827
1828 /* Cleans up our, hopefully empty, out_of_order_queue. */
1829 __skb_queue_purge(&tp->out_of_order_queue);
1830
1831 #ifdef CONFIG_TCP_MD5SIG
1832 /* Clean up the MD5 key list, if any */
1833 if (tp->md5sig_info) {
1834 tcp_clear_md5_list(sk);
1835 kfree_rcu(tp->md5sig_info, rcu);
1836 tp->md5sig_info = NULL;
1837 }
1838 #endif
1839
1840 /* Clean prequeue, it must be empty really */
1841 __skb_queue_purge(&tp->ucopy.prequeue);
1842
1843 /* Clean up a referenced TCP bind bucket. */
1844 if (inet_csk(sk)->icsk_bind_hash)
1845 inet_put_port(sk);
1846
1847 BUG_ON(tp->fastopen_rsk != NULL);
1848
1849 /* If socket is aborted during connect operation */
1850 tcp_free_fastopen_req(tp);
1851
1852 sk_sockets_allocated_dec(sk);
1853 sock_release_memcg(sk);
1854 }
1855 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1856
1857 #ifdef CONFIG_PROC_FS
1858 /* Proc filesystem TCP sock list dumping. */
1859
1860 /*
1861 * Get next listener socket follow cur. If cur is NULL, get first socket
1862 * starting from bucket given in st->bucket; when st->bucket is zero the
1863 * very first socket in the hash table is returned.
1864 */
1865 static void *listening_get_next(struct seq_file *seq, void *cur)
1866 {
1867 struct inet_connection_sock *icsk;
1868 struct hlist_nulls_node *node;
1869 struct sock *sk = cur;
1870 struct inet_listen_hashbucket *ilb;
1871 struct tcp_iter_state *st = seq->private;
1872 struct net *net = seq_file_net(seq);
1873
1874 if (!sk) {
1875 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1876 spin_lock_bh(&ilb->lock);
1877 sk = sk_nulls_head(&ilb->head);
1878 st->offset = 0;
1879 goto get_sk;
1880 }
1881 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1882 ++st->num;
1883 ++st->offset;
1884
1885 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1886 struct request_sock *req = cur;
1887
1888 icsk = inet_csk(st->syn_wait_sk);
1889 req = req->dl_next;
1890 while (1) {
1891 while (req) {
1892 if (req->rsk_ops->family == st->family) {
1893 cur = req;
1894 goto out;
1895 }
1896 req = req->dl_next;
1897 }
1898 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1899 break;
1900 get_req:
1901 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1902 }
1903 sk = sk_nulls_next(st->syn_wait_sk);
1904 st->state = TCP_SEQ_STATE_LISTENING;
1905 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1906 } else {
1907 icsk = inet_csk(sk);
1908 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1909 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1910 goto start_req;
1911 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1912 sk = sk_nulls_next(sk);
1913 }
1914 get_sk:
1915 sk_nulls_for_each_from(sk, node) {
1916 if (!net_eq(sock_net(sk), net))
1917 continue;
1918 if (sk->sk_family == st->family) {
1919 cur = sk;
1920 goto out;
1921 }
1922 icsk = inet_csk(sk);
1923 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1924 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1925 start_req:
1926 st->uid = sock_i_uid(sk);
1927 st->syn_wait_sk = sk;
1928 st->state = TCP_SEQ_STATE_OPENREQ;
1929 st->sbucket = 0;
1930 goto get_req;
1931 }
1932 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1933 }
1934 spin_unlock_bh(&ilb->lock);
1935 st->offset = 0;
1936 if (++st->bucket < INET_LHTABLE_SIZE) {
1937 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1938 spin_lock_bh(&ilb->lock);
1939 sk = sk_nulls_head(&ilb->head);
1940 goto get_sk;
1941 }
1942 cur = NULL;
1943 out:
1944 return cur;
1945 }
1946
1947 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1948 {
1949 struct tcp_iter_state *st = seq->private;
1950 void *rc;
1951
1952 st->bucket = 0;
1953 st->offset = 0;
1954 rc = listening_get_next(seq, NULL);
1955
1956 while (rc && *pos) {
1957 rc = listening_get_next(seq, rc);
1958 --*pos;
1959 }
1960 return rc;
1961 }
1962
1963 static inline bool empty_bucket(const struct tcp_iter_state *st)
1964 {
1965 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1966 }
1967
1968 /*
1969 * Get first established socket starting from bucket given in st->bucket.
1970 * If st->bucket is zero, the very first socket in the hash is returned.
1971 */
1972 static void *established_get_first(struct seq_file *seq)
1973 {
1974 struct tcp_iter_state *st = seq->private;
1975 struct net *net = seq_file_net(seq);
1976 void *rc = NULL;
1977
1978 st->offset = 0;
1979 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1980 struct sock *sk;
1981 struct hlist_nulls_node *node;
1982 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1983
1984 /* Lockless fast path for the common case of empty buckets */
1985 if (empty_bucket(st))
1986 continue;
1987
1988 spin_lock_bh(lock);
1989 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1990 if (sk->sk_family != st->family ||
1991 !net_eq(sock_net(sk), net)) {
1992 continue;
1993 }
1994 rc = sk;
1995 goto out;
1996 }
1997 spin_unlock_bh(lock);
1998 }
1999 out:
2000 return rc;
2001 }
2002
2003 static void *established_get_next(struct seq_file *seq, void *cur)
2004 {
2005 struct sock *sk = cur;
2006 struct hlist_nulls_node *node;
2007 struct tcp_iter_state *st = seq->private;
2008 struct net *net = seq_file_net(seq);
2009
2010 ++st->num;
2011 ++st->offset;
2012
2013 sk = sk_nulls_next(sk);
2014
2015 sk_nulls_for_each_from(sk, node) {
2016 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2017 return sk;
2018 }
2019
2020 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2021 ++st->bucket;
2022 return established_get_first(seq);
2023 }
2024
2025 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2026 {
2027 struct tcp_iter_state *st = seq->private;
2028 void *rc;
2029
2030 st->bucket = 0;
2031 rc = established_get_first(seq);
2032
2033 while (rc && pos) {
2034 rc = established_get_next(seq, rc);
2035 --pos;
2036 }
2037 return rc;
2038 }
2039
2040 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2041 {
2042 void *rc;
2043 struct tcp_iter_state *st = seq->private;
2044
2045 st->state = TCP_SEQ_STATE_LISTENING;
2046 rc = listening_get_idx(seq, &pos);
2047
2048 if (!rc) {
2049 st->state = TCP_SEQ_STATE_ESTABLISHED;
2050 rc = established_get_idx(seq, pos);
2051 }
2052
2053 return rc;
2054 }
2055
2056 static void *tcp_seek_last_pos(struct seq_file *seq)
2057 {
2058 struct tcp_iter_state *st = seq->private;
2059 int offset = st->offset;
2060 int orig_num = st->num;
2061 void *rc = NULL;
2062
2063 switch (st->state) {
2064 case TCP_SEQ_STATE_OPENREQ:
2065 case TCP_SEQ_STATE_LISTENING:
2066 if (st->bucket >= INET_LHTABLE_SIZE)
2067 break;
2068 st->state = TCP_SEQ_STATE_LISTENING;
2069 rc = listening_get_next(seq, NULL);
2070 while (offset-- && rc)
2071 rc = listening_get_next(seq, rc);
2072 if (rc)
2073 break;
2074 st->bucket = 0;
2075 st->state = TCP_SEQ_STATE_ESTABLISHED;
2076 /* Fallthrough */
2077 case TCP_SEQ_STATE_ESTABLISHED:
2078 if (st->bucket > tcp_hashinfo.ehash_mask)
2079 break;
2080 rc = established_get_first(seq);
2081 while (offset-- && rc)
2082 rc = established_get_next(seq, rc);
2083 }
2084
2085 st->num = orig_num;
2086
2087 return rc;
2088 }
2089
2090 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2091 {
2092 struct tcp_iter_state *st = seq->private;
2093 void *rc;
2094
2095 if (*pos && *pos == st->last_pos) {
2096 rc = tcp_seek_last_pos(seq);
2097 if (rc)
2098 goto out;
2099 }
2100
2101 st->state = TCP_SEQ_STATE_LISTENING;
2102 st->num = 0;
2103 st->bucket = 0;
2104 st->offset = 0;
2105 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2106
2107 out:
2108 st->last_pos = *pos;
2109 return rc;
2110 }
2111
2112 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2113 {
2114 struct tcp_iter_state *st = seq->private;
2115 void *rc = NULL;
2116
2117 if (v == SEQ_START_TOKEN) {
2118 rc = tcp_get_idx(seq, 0);
2119 goto out;
2120 }
2121
2122 switch (st->state) {
2123 case TCP_SEQ_STATE_OPENREQ:
2124 case TCP_SEQ_STATE_LISTENING:
2125 rc = listening_get_next(seq, v);
2126 if (!rc) {
2127 st->state = TCP_SEQ_STATE_ESTABLISHED;
2128 st->bucket = 0;
2129 st->offset = 0;
2130 rc = established_get_first(seq);
2131 }
2132 break;
2133 case TCP_SEQ_STATE_ESTABLISHED:
2134 rc = established_get_next(seq, v);
2135 break;
2136 }
2137 out:
2138 ++*pos;
2139 st->last_pos = *pos;
2140 return rc;
2141 }
2142
2143 static void tcp_seq_stop(struct seq_file *seq, void *v)
2144 {
2145 struct tcp_iter_state *st = seq->private;
2146
2147 switch (st->state) {
2148 case TCP_SEQ_STATE_OPENREQ:
2149 if (v) {
2150 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2151 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2152 }
2153 case TCP_SEQ_STATE_LISTENING:
2154 if (v != SEQ_START_TOKEN)
2155 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2156 break;
2157 case TCP_SEQ_STATE_ESTABLISHED:
2158 if (v)
2159 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2160 break;
2161 }
2162 }
2163
2164 int tcp_seq_open(struct inode *inode, struct file *file)
2165 {
2166 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2167 struct tcp_iter_state *s;
2168 int err;
2169
2170 err = seq_open_net(inode, file, &afinfo->seq_ops,
2171 sizeof(struct tcp_iter_state));
2172 if (err < 0)
2173 return err;
2174
2175 s = ((struct seq_file *)file->private_data)->private;
2176 s->family = afinfo->family;
2177 s->last_pos = 0;
2178 return 0;
2179 }
2180 EXPORT_SYMBOL(tcp_seq_open);
2181
2182 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2183 {
2184 int rc = 0;
2185 struct proc_dir_entry *p;
2186
2187 afinfo->seq_ops.start = tcp_seq_start;
2188 afinfo->seq_ops.next = tcp_seq_next;
2189 afinfo->seq_ops.stop = tcp_seq_stop;
2190
2191 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2192 afinfo->seq_fops, afinfo);
2193 if (!p)
2194 rc = -ENOMEM;
2195 return rc;
2196 }
2197 EXPORT_SYMBOL(tcp_proc_register);
2198
2199 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2200 {
2201 remove_proc_entry(afinfo->name, net->proc_net);
2202 }
2203 EXPORT_SYMBOL(tcp_proc_unregister);
2204
2205 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2206 struct seq_file *f, int i, kuid_t uid)
2207 {
2208 const struct inet_request_sock *ireq = inet_rsk(req);
2209 long delta = req->expires - jiffies;
2210
2211 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2212 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2213 i,
2214 ireq->ir_loc_addr,
2215 ntohs(inet_sk(sk)->inet_sport),
2216 ireq->ir_rmt_addr,
2217 ntohs(ireq->ir_rmt_port),
2218 TCP_SYN_RECV,
2219 0, 0, /* could print option size, but that is af dependent. */
2220 1, /* timers active (only the expire timer) */
2221 jiffies_delta_to_clock_t(delta),
2222 req->num_timeout,
2223 from_kuid_munged(seq_user_ns(f), uid),
2224 0, /* non standard timer */
2225 0, /* open_requests have no inode */
2226 atomic_read(&sk->sk_refcnt),
2227 req);
2228 }
2229
2230 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2231 {
2232 int timer_active;
2233 unsigned long timer_expires;
2234 const struct tcp_sock *tp = tcp_sk(sk);
2235 const struct inet_connection_sock *icsk = inet_csk(sk);
2236 const struct inet_sock *inet = inet_sk(sk);
2237 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2238 __be32 dest = inet->inet_daddr;
2239 __be32 src = inet->inet_rcv_saddr;
2240 __u16 destp = ntohs(inet->inet_dport);
2241 __u16 srcp = ntohs(inet->inet_sport);
2242 int rx_queue;
2243
2244 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2245 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2246 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2247 timer_active = 1;
2248 timer_expires = icsk->icsk_timeout;
2249 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2250 timer_active = 4;
2251 timer_expires = icsk->icsk_timeout;
2252 } else if (timer_pending(&sk->sk_timer)) {
2253 timer_active = 2;
2254 timer_expires = sk->sk_timer.expires;
2255 } else {
2256 timer_active = 0;
2257 timer_expires = jiffies;
2258 }
2259
2260 if (sk->sk_state == TCP_LISTEN)
2261 rx_queue = sk->sk_ack_backlog;
2262 else
2263 /*
2264 * because we dont lock socket, we might find a transient negative value
2265 */
2266 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2267
2268 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2269 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2270 i, src, srcp, dest, destp, sk->sk_state,
2271 tp->write_seq - tp->snd_una,
2272 rx_queue,
2273 timer_active,
2274 jiffies_delta_to_clock_t(timer_expires - jiffies),
2275 icsk->icsk_retransmits,
2276 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2277 icsk->icsk_probes_out,
2278 sock_i_ino(sk),
2279 atomic_read(&sk->sk_refcnt), sk,
2280 jiffies_to_clock_t(icsk->icsk_rto),
2281 jiffies_to_clock_t(icsk->icsk_ack.ato),
2282 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2283 tp->snd_cwnd,
2284 sk->sk_state == TCP_LISTEN ?
2285 (fastopenq ? fastopenq->max_qlen : 0) :
2286 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2287 }
2288
2289 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2290 struct seq_file *f, int i)
2291 {
2292 __be32 dest, src;
2293 __u16 destp, srcp;
2294 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2295
2296 dest = tw->tw_daddr;
2297 src = tw->tw_rcv_saddr;
2298 destp = ntohs(tw->tw_dport);
2299 srcp = ntohs(tw->tw_sport);
2300
2301 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2302 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2303 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2304 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2305 atomic_read(&tw->tw_refcnt), tw);
2306 }
2307
2308 #define TMPSZ 150
2309
2310 static int tcp4_seq_show(struct seq_file *seq, void *v)
2311 {
2312 struct tcp_iter_state *st;
2313 struct sock *sk = v;
2314
2315 seq_setwidth(seq, TMPSZ - 1);
2316 if (v == SEQ_START_TOKEN) {
2317 seq_puts(seq, " sl local_address rem_address st tx_queue "
2318 "rx_queue tr tm->when retrnsmt uid timeout "
2319 "inode");
2320 goto out;
2321 }
2322 st = seq->private;
2323
2324 switch (st->state) {
2325 case TCP_SEQ_STATE_LISTENING:
2326 case TCP_SEQ_STATE_ESTABLISHED:
2327 if (sk->sk_state == TCP_TIME_WAIT)
2328 get_timewait4_sock(v, seq, st->num);
2329 else
2330 get_tcp4_sock(v, seq, st->num);
2331 break;
2332 case TCP_SEQ_STATE_OPENREQ:
2333 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2334 break;
2335 }
2336 out:
2337 seq_pad(seq, '\n');
2338 return 0;
2339 }
2340
2341 static const struct file_operations tcp_afinfo_seq_fops = {
2342 .owner = THIS_MODULE,
2343 .open = tcp_seq_open,
2344 .read = seq_read,
2345 .llseek = seq_lseek,
2346 .release = seq_release_net
2347 };
2348
2349 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2350 .name = "tcp",
2351 .family = AF_INET,
2352 .seq_fops = &tcp_afinfo_seq_fops,
2353 .seq_ops = {
2354 .show = tcp4_seq_show,
2355 },
2356 };
2357
2358 static int __net_init tcp4_proc_init_net(struct net *net)
2359 {
2360 return tcp_proc_register(net, &tcp4_seq_afinfo);
2361 }
2362
2363 static void __net_exit tcp4_proc_exit_net(struct net *net)
2364 {
2365 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2366 }
2367
2368 static struct pernet_operations tcp4_net_ops = {
2369 .init = tcp4_proc_init_net,
2370 .exit = tcp4_proc_exit_net,
2371 };
2372
2373 int __init tcp4_proc_init(void)
2374 {
2375 return register_pernet_subsys(&tcp4_net_ops);
2376 }
2377
2378 void tcp4_proc_exit(void)
2379 {
2380 unregister_pernet_subsys(&tcp4_net_ops);
2381 }
2382 #endif /* CONFIG_PROC_FS */
2383
2384 struct proto tcp_prot = {
2385 .name = "TCP",
2386 .owner = THIS_MODULE,
2387 .close = tcp_close,
2388 .connect = tcp_v4_connect,
2389 .disconnect = tcp_disconnect,
2390 .accept = inet_csk_accept,
2391 .ioctl = tcp_ioctl,
2392 .init = tcp_v4_init_sock,
2393 .destroy = tcp_v4_destroy_sock,
2394 .shutdown = tcp_shutdown,
2395 .setsockopt = tcp_setsockopt,
2396 .getsockopt = tcp_getsockopt,
2397 .recvmsg = tcp_recvmsg,
2398 .sendmsg = tcp_sendmsg,
2399 .sendpage = tcp_sendpage,
2400 .backlog_rcv = tcp_v4_do_rcv,
2401 .release_cb = tcp_release_cb,
2402 .hash = inet_hash,
2403 .unhash = inet_unhash,
2404 .get_port = inet_csk_get_port,
2405 .enter_memory_pressure = tcp_enter_memory_pressure,
2406 .stream_memory_free = tcp_stream_memory_free,
2407 .sockets_allocated = &tcp_sockets_allocated,
2408 .orphan_count = &tcp_orphan_count,
2409 .memory_allocated = &tcp_memory_allocated,
2410 .memory_pressure = &tcp_memory_pressure,
2411 .sysctl_mem = sysctl_tcp_mem,
2412 .sysctl_wmem = sysctl_tcp_wmem,
2413 .sysctl_rmem = sysctl_tcp_rmem,
2414 .max_header = MAX_TCP_HEADER,
2415 .obj_size = sizeof(struct tcp_sock),
2416 .slab_flags = SLAB_DESTROY_BY_RCU,
2417 .twsk_prot = &tcp_timewait_sock_ops,
2418 .rsk_prot = &tcp_request_sock_ops,
2419 .h.hashinfo = &tcp_hashinfo,
2420 .no_autobind = true,
2421 #ifdef CONFIG_COMPAT
2422 .compat_setsockopt = compat_tcp_setsockopt,
2423 .compat_getsockopt = compat_tcp_getsockopt,
2424 #endif
2425 #ifdef CONFIG_MEMCG_KMEM
2426 .init_cgroup = tcp_init_cgroup,
2427 .destroy_cgroup = tcp_destroy_cgroup,
2428 .proto_cgroup = tcp_proto_cgroup,
2429 #endif
2430 };
2431 EXPORT_SYMBOL(tcp_prot);
2432
2433 static int __net_init tcp_sk_init(struct net *net)
2434 {
2435 net->ipv4.sysctl_tcp_ecn = 2;
2436 return 0;
2437 }
2438
2439 static void __net_exit tcp_sk_exit(struct net *net)
2440 {
2441 }
2442
2443 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2444 {
2445 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2446 }
2447
2448 static struct pernet_operations __net_initdata tcp_sk_ops = {
2449 .init = tcp_sk_init,
2450 .exit = tcp_sk_exit,
2451 .exit_batch = tcp_sk_exit_batch,
2452 };
2453
2454 void __init tcp_v4_init(void)
2455 {
2456 inet_hashinfo_init(&tcp_hashinfo);
2457 if (register_pernet_subsys(&tcp_sk_ops))
2458 panic("Failed to create the TCP control socket.\n");
2459 }
This page took 0.122838 seconds and 5 git commands to generate.