Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 #include <net/busy_poll.h>
79
80 #include <linux/inet.h>
81 #include <linux/ipv6.h>
82 #include <linux/stddef.h>
83 #include <linux/proc_fs.h>
84 #include <linux/seq_file.h>
85
86 #include <linux/crypto.h>
87 #include <linux/scatterlist.h>
88
89 int sysctl_tcp_tw_reuse __read_mostly;
90 int sysctl_tcp_low_latency __read_mostly;
91 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94 #ifdef CONFIG_TCP_MD5SIG
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98
99 struct inet_hashinfo tcp_hashinfo;
100 EXPORT_SYMBOL(tcp_hashinfo);
101
102 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 {
104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 ip_hdr(skb)->saddr,
106 tcp_hdr(skb)->dest,
107 tcp_hdr(skb)->source);
108 }
109
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 struct tcp_sock *tp = tcp_sk(sk);
114
115 /* With PAWS, it is safe from the viewpoint
116 of data integrity. Even without PAWS it is safe provided sequence
117 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119 Actually, the idea is close to VJ's one, only timestamp cache is
120 held not per host, but per port pair and TW bucket is used as state
121 holder.
122
123 If TW bucket has been already destroyed we fall back to VJ's scheme
124 and use initial timestamp retrieved from peer table.
125 */
126 if (tcptw->tw_ts_recent_stamp &&
127 (twp == NULL || (sysctl_tcp_tw_reuse &&
128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 if (tp->write_seq == 0)
131 tp->write_seq = 1;
132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 sock_hold(sktw);
135 return 1;
136 }
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142 /* This will initiate an outgoing connection. */
143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 {
145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 struct inet_sock *inet = inet_sk(sk);
147 struct tcp_sock *tp = tcp_sk(sk);
148 __be16 orig_sport, orig_dport;
149 __be32 daddr, nexthop;
150 struct flowi4 *fl4;
151 struct rtable *rt;
152 int err;
153 struct ip_options_rcu *inet_opt;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 inet_opt = rcu_dereference_protected(inet->inet_opt,
163 sock_owned_by_user(sk));
164 if (inet_opt && inet_opt->opt.srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet_opt->opt.faddr;
168 }
169
170 orig_sport = inet->inet_sport;
171 orig_dport = usin->sin_port;
172 fl4 = &inet->cork.fl.u.ip4;
173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 IPPROTO_TCP,
176 orig_sport, orig_dport, sk);
177 if (IS_ERR(rt)) {
178 err = PTR_ERR(rt);
179 if (err == -ENETUNREACH)
180 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 return err;
182 }
183
184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 ip_rt_put(rt);
186 return -ENETUNREACH;
187 }
188
189 if (!inet_opt || !inet_opt->opt.srr)
190 daddr = fl4->daddr;
191
192 if (!inet->inet_saddr)
193 inet->inet_saddr = fl4->saddr;
194 inet->inet_rcv_saddr = inet->inet_saddr;
195
196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 /* Reset inherited state */
198 tp->rx_opt.ts_recent = 0;
199 tp->rx_opt.ts_recent_stamp = 0;
200 if (likely(!tp->repair))
201 tp->write_seq = 0;
202 }
203
204 if (tcp_death_row.sysctl_tw_recycle &&
205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208 inet->inet_dport = usin->sin_port;
209 inet->inet_daddr = daddr;
210
211 inet_set_txhash(sk);
212
213 inet_csk(sk)->icsk_ext_hdr_len = 0;
214 if (inet_opt)
215 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
216
217 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
218
219 /* Socket identity is still unknown (sport may be zero).
220 * However we set state to SYN-SENT and not releasing socket
221 * lock select source port, enter ourselves into the hash tables and
222 * complete initialization after this.
223 */
224 tcp_set_state(sk, TCP_SYN_SENT);
225 err = inet_hash_connect(&tcp_death_row, sk);
226 if (err)
227 goto failure;
228
229 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
230 inet->inet_sport, inet->inet_dport, sk);
231 if (IS_ERR(rt)) {
232 err = PTR_ERR(rt);
233 rt = NULL;
234 goto failure;
235 }
236 /* OK, now commit destination to socket. */
237 sk->sk_gso_type = SKB_GSO_TCPV4;
238 sk_setup_caps(sk, &rt->dst);
239
240 if (!tp->write_seq && likely(!tp->repair))
241 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
242 inet->inet_daddr,
243 inet->inet_sport,
244 usin->sin_port);
245
246 inet->inet_id = tp->write_seq ^ jiffies;
247
248 err = tcp_connect(sk);
249
250 rt = NULL;
251 if (err)
252 goto failure;
253
254 return 0;
255
256 failure:
257 /*
258 * This unhashes the socket and releases the local port,
259 * if necessary.
260 */
261 tcp_set_state(sk, TCP_CLOSE);
262 ip_rt_put(rt);
263 sk->sk_route_caps = 0;
264 inet->inet_dport = 0;
265 return err;
266 }
267 EXPORT_SYMBOL(tcp_v4_connect);
268
269 /*
270 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
271 * It can be called through tcp_release_cb() if socket was owned by user
272 * at the time tcp_v4_err() was called to handle ICMP message.
273 */
274 static void tcp_v4_mtu_reduced(struct sock *sk)
275 {
276 struct dst_entry *dst;
277 struct inet_sock *inet = inet_sk(sk);
278 u32 mtu = tcp_sk(sk)->mtu_info;
279
280 dst = inet_csk_update_pmtu(sk, mtu);
281 if (!dst)
282 return;
283
284 /* Something is about to be wrong... Remember soft error
285 * for the case, if this connection will not able to recover.
286 */
287 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
288 sk->sk_err_soft = EMSGSIZE;
289
290 mtu = dst_mtu(dst);
291
292 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
293 ip_sk_accept_pmtu(sk) &&
294 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
295 tcp_sync_mss(sk, mtu);
296
297 /* Resend the TCP packet because it's
298 * clear that the old packet has been
299 * dropped. This is the new "fast" path mtu
300 * discovery.
301 */
302 tcp_simple_retransmit(sk);
303 } /* else let the usual retransmit timer handle it */
304 }
305
306 static void do_redirect(struct sk_buff *skb, struct sock *sk)
307 {
308 struct dst_entry *dst = __sk_dst_check(sk, 0);
309
310 if (dst)
311 dst->ops->redirect(dst, sk, skb);
312 }
313
314 /*
315 * This routine is called by the ICMP module when it gets some
316 * sort of error condition. If err < 0 then the socket should
317 * be closed and the error returned to the user. If err > 0
318 * it's just the icmp type << 8 | icmp code. After adjustment
319 * header points to the first 8 bytes of the tcp header. We need
320 * to find the appropriate port.
321 *
322 * The locking strategy used here is very "optimistic". When
323 * someone else accesses the socket the ICMP is just dropped
324 * and for some paths there is no check at all.
325 * A more general error queue to queue errors for later handling
326 * is probably better.
327 *
328 */
329
330 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
331 {
332 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
333 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
334 struct inet_connection_sock *icsk;
335 struct tcp_sock *tp;
336 struct inet_sock *inet;
337 const int type = icmp_hdr(icmp_skb)->type;
338 const int code = icmp_hdr(icmp_skb)->code;
339 struct sock *sk;
340 struct sk_buff *skb;
341 struct request_sock *fastopen;
342 __u32 seq, snd_una;
343 __u32 remaining;
344 int err;
345 struct net *net = dev_net(icmp_skb->dev);
346
347 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
348 iph->saddr, th->source, inet_iif(icmp_skb));
349 if (!sk) {
350 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
351 return;
352 }
353 if (sk->sk_state == TCP_TIME_WAIT) {
354 inet_twsk_put(inet_twsk(sk));
355 return;
356 }
357
358 bh_lock_sock(sk);
359 /* If too many ICMPs get dropped on busy
360 * servers this needs to be solved differently.
361 * We do take care of PMTU discovery (RFC1191) special case :
362 * we can receive locally generated ICMP messages while socket is held.
363 */
364 if (sock_owned_by_user(sk)) {
365 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
366 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
367 }
368 if (sk->sk_state == TCP_CLOSE)
369 goto out;
370
371 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
372 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
373 goto out;
374 }
375
376 icsk = inet_csk(sk);
377 tp = tcp_sk(sk);
378 seq = ntohl(th->seq);
379 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
380 fastopen = tp->fastopen_rsk;
381 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
382 if (sk->sk_state != TCP_LISTEN &&
383 !between(seq, snd_una, tp->snd_nxt)) {
384 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385 goto out;
386 }
387
388 switch (type) {
389 case ICMP_REDIRECT:
390 do_redirect(icmp_skb, sk);
391 goto out;
392 case ICMP_SOURCE_QUENCH:
393 /* Just silently ignore these. */
394 goto out;
395 case ICMP_PARAMETERPROB:
396 err = EPROTO;
397 break;
398 case ICMP_DEST_UNREACH:
399 if (code > NR_ICMP_UNREACH)
400 goto out;
401
402 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
403 /* We are not interested in TCP_LISTEN and open_requests
404 * (SYN-ACKs send out by Linux are always <576bytes so
405 * they should go through unfragmented).
406 */
407 if (sk->sk_state == TCP_LISTEN)
408 goto out;
409
410 tp->mtu_info = info;
411 if (!sock_owned_by_user(sk)) {
412 tcp_v4_mtu_reduced(sk);
413 } else {
414 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
415 sock_hold(sk);
416 }
417 goto out;
418 }
419
420 err = icmp_err_convert[code].errno;
421 /* check if icmp_skb allows revert of backoff
422 * (see draft-zimmermann-tcp-lcd) */
423 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424 break;
425 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
426 !icsk->icsk_backoff || fastopen)
427 break;
428
429 if (sock_owned_by_user(sk))
430 break;
431
432 icsk->icsk_backoff--;
433 inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
434 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435 tcp_bound_rto(sk);
436
437 skb = tcp_write_queue_head(sk);
438 BUG_ON(!skb);
439
440 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443 if (remaining) {
444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 remaining, TCP_RTO_MAX);
446 } else {
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk);
450 }
451
452 break;
453 case ICMP_TIME_EXCEEDED:
454 err = EHOSTUNREACH;
455 break;
456 default:
457 goto out;
458 }
459
460 switch (sk->sk_state) {
461 struct request_sock *req, **prev;
462 case TCP_LISTEN:
463 if (sock_owned_by_user(sk))
464 goto out;
465
466 req = inet_csk_search_req(sk, &prev, th->dest,
467 iph->daddr, iph->saddr);
468 if (!req)
469 goto out;
470
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
473 */
474 WARN_ON(req->sk);
475
476 if (seq != tcp_rsk(req)->snt_isn) {
477 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 goto out;
479 }
480
481 /*
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
486 */
487 inet_csk_reqsk_queue_drop(sk, req, prev);
488 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
489 goto out;
490
491 case TCP_SYN_SENT:
492 case TCP_SYN_RECV:
493 /* Only in fast or simultaneous open. If a fast open socket is
494 * is already accepted it is treated as a connected one below.
495 */
496 if (fastopen && fastopen->sk == NULL)
497 break;
498
499 if (!sock_owned_by_user(sk)) {
500 sk->sk_err = err;
501
502 sk->sk_error_report(sk);
503
504 tcp_done(sk);
505 } else {
506 sk->sk_err_soft = err;
507 }
508 goto out;
509 }
510
511 /* If we've already connected we will keep trying
512 * until we time out, or the user gives up.
513 *
514 * rfc1122 4.2.3.9 allows to consider as hard errors
515 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
516 * but it is obsoleted by pmtu discovery).
517 *
518 * Note, that in modern internet, where routing is unreliable
519 * and in each dark corner broken firewalls sit, sending random
520 * errors ordered by their masters even this two messages finally lose
521 * their original sense (even Linux sends invalid PORT_UNREACHs)
522 *
523 * Now we are in compliance with RFCs.
524 * --ANK (980905)
525 */
526
527 inet = inet_sk(sk);
528 if (!sock_owned_by_user(sk) && inet->recverr) {
529 sk->sk_err = err;
530 sk->sk_error_report(sk);
531 } else { /* Only an error on timeout */
532 sk->sk_err_soft = err;
533 }
534
535 out:
536 bh_unlock_sock(sk);
537 sock_put(sk);
538 }
539
540 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
541 {
542 struct tcphdr *th = tcp_hdr(skb);
543
544 if (skb->ip_summed == CHECKSUM_PARTIAL) {
545 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
546 skb->csum_start = skb_transport_header(skb) - skb->head;
547 skb->csum_offset = offsetof(struct tcphdr, check);
548 } else {
549 th->check = tcp_v4_check(skb->len, saddr, daddr,
550 csum_partial(th,
551 th->doff << 2,
552 skb->csum));
553 }
554 }
555
556 /* This routine computes an IPv4 TCP checksum. */
557 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
558 {
559 const struct inet_sock *inet = inet_sk(sk);
560
561 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
562 }
563 EXPORT_SYMBOL(tcp_v4_send_check);
564
565 /*
566 * This routine will send an RST to the other tcp.
567 *
568 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
569 * for reset.
570 * Answer: if a packet caused RST, it is not for a socket
571 * existing in our system, if it is matched to a socket,
572 * it is just duplicate segment or bug in other side's TCP.
573 * So that we build reply only basing on parameters
574 * arrived with segment.
575 * Exception: precedence violation. We do not implement it in any case.
576 */
577
578 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
579 {
580 const struct tcphdr *th = tcp_hdr(skb);
581 struct {
582 struct tcphdr th;
583 #ifdef CONFIG_TCP_MD5SIG
584 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
585 #endif
586 } rep;
587 struct ip_reply_arg arg;
588 #ifdef CONFIG_TCP_MD5SIG
589 struct tcp_md5sig_key *key;
590 const __u8 *hash_location = NULL;
591 unsigned char newhash[16];
592 int genhash;
593 struct sock *sk1 = NULL;
594 #endif
595 struct net *net;
596
597 /* Never send a reset in response to a reset. */
598 if (th->rst)
599 return;
600
601 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
602 return;
603
604 /* Swap the send and the receive. */
605 memset(&rep, 0, sizeof(rep));
606 rep.th.dest = th->source;
607 rep.th.source = th->dest;
608 rep.th.doff = sizeof(struct tcphdr) / 4;
609 rep.th.rst = 1;
610
611 if (th->ack) {
612 rep.th.seq = th->ack_seq;
613 } else {
614 rep.th.ack = 1;
615 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
616 skb->len - (th->doff << 2));
617 }
618
619 memset(&arg, 0, sizeof(arg));
620 arg.iov[0].iov_base = (unsigned char *)&rep;
621 arg.iov[0].iov_len = sizeof(rep.th);
622
623 #ifdef CONFIG_TCP_MD5SIG
624 hash_location = tcp_parse_md5sig_option(th);
625 if (!sk && hash_location) {
626 /*
627 * active side is lost. Try to find listening socket through
628 * source port, and then find md5 key through listening socket.
629 * we are not loose security here:
630 * Incoming packet is checked with md5 hash with finding key,
631 * no RST generated if md5 hash doesn't match.
632 */
633 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
634 &tcp_hashinfo, ip_hdr(skb)->saddr,
635 th->source, ip_hdr(skb)->daddr,
636 ntohs(th->source), inet_iif(skb));
637 /* don't send rst if it can't find key */
638 if (!sk1)
639 return;
640 rcu_read_lock();
641 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
642 &ip_hdr(skb)->saddr, AF_INET);
643 if (!key)
644 goto release_sk1;
645
646 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
647 if (genhash || memcmp(hash_location, newhash, 16) != 0)
648 goto release_sk1;
649 } else {
650 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
651 &ip_hdr(skb)->saddr,
652 AF_INET) : NULL;
653 }
654
655 if (key) {
656 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
657 (TCPOPT_NOP << 16) |
658 (TCPOPT_MD5SIG << 8) |
659 TCPOLEN_MD5SIG);
660 /* Update length and the length the header thinks exists */
661 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
662 rep.th.doff = arg.iov[0].iov_len / 4;
663
664 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
665 key, ip_hdr(skb)->saddr,
666 ip_hdr(skb)->daddr, &rep.th);
667 }
668 #endif
669 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
670 ip_hdr(skb)->saddr, /* XXX */
671 arg.iov[0].iov_len, IPPROTO_TCP, 0);
672 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
673 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
674 /* When socket is gone, all binding information is lost.
675 * routing might fail in this case. No choice here, if we choose to force
676 * input interface, we will misroute in case of asymmetric route.
677 */
678 if (sk)
679 arg.bound_dev_if = sk->sk_bound_dev_if;
680
681 net = dev_net(skb_dst(skb)->dev);
682 arg.tos = ip_hdr(skb)->tos;
683 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
684 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
685
686 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
687 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
688
689 #ifdef CONFIG_TCP_MD5SIG
690 release_sk1:
691 if (sk1) {
692 rcu_read_unlock();
693 sock_put(sk1);
694 }
695 #endif
696 }
697
698 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
699 outside socket context is ugly, certainly. What can I do?
700 */
701
702 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
703 u32 win, u32 tsval, u32 tsecr, int oif,
704 struct tcp_md5sig_key *key,
705 int reply_flags, u8 tos)
706 {
707 const struct tcphdr *th = tcp_hdr(skb);
708 struct {
709 struct tcphdr th;
710 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
711 #ifdef CONFIG_TCP_MD5SIG
712 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
713 #endif
714 ];
715 } rep;
716 struct ip_reply_arg arg;
717 struct net *net = dev_net(skb_dst(skb)->dev);
718
719 memset(&rep.th, 0, sizeof(struct tcphdr));
720 memset(&arg, 0, sizeof(arg));
721
722 arg.iov[0].iov_base = (unsigned char *)&rep;
723 arg.iov[0].iov_len = sizeof(rep.th);
724 if (tsecr) {
725 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
726 (TCPOPT_TIMESTAMP << 8) |
727 TCPOLEN_TIMESTAMP);
728 rep.opt[1] = htonl(tsval);
729 rep.opt[2] = htonl(tsecr);
730 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
731 }
732
733 /* Swap the send and the receive. */
734 rep.th.dest = th->source;
735 rep.th.source = th->dest;
736 rep.th.doff = arg.iov[0].iov_len / 4;
737 rep.th.seq = htonl(seq);
738 rep.th.ack_seq = htonl(ack);
739 rep.th.ack = 1;
740 rep.th.window = htons(win);
741
742 #ifdef CONFIG_TCP_MD5SIG
743 if (key) {
744 int offset = (tsecr) ? 3 : 0;
745
746 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
747 (TCPOPT_NOP << 16) |
748 (TCPOPT_MD5SIG << 8) |
749 TCPOLEN_MD5SIG);
750 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
751 rep.th.doff = arg.iov[0].iov_len/4;
752
753 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
754 key, ip_hdr(skb)->saddr,
755 ip_hdr(skb)->daddr, &rep.th);
756 }
757 #endif
758 arg.flags = reply_flags;
759 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
760 ip_hdr(skb)->saddr, /* XXX */
761 arg.iov[0].iov_len, IPPROTO_TCP, 0);
762 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
763 if (oif)
764 arg.bound_dev_if = oif;
765 arg.tos = tos;
766 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
767 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
768
769 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
770 }
771
772 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
773 {
774 struct inet_timewait_sock *tw = inet_twsk(sk);
775 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
776
777 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
778 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
779 tcp_time_stamp + tcptw->tw_ts_offset,
780 tcptw->tw_ts_recent,
781 tw->tw_bound_dev_if,
782 tcp_twsk_md5_key(tcptw),
783 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
784 tw->tw_tos
785 );
786
787 inet_twsk_put(tw);
788 }
789
790 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
791 struct request_sock *req)
792 {
793 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
794 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
795 */
796 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
797 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
798 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
799 tcp_time_stamp,
800 req->ts_recent,
801 0,
802 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
803 AF_INET),
804 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
805 ip_hdr(skb)->tos);
806 }
807
808 /*
809 * Send a SYN-ACK after having received a SYN.
810 * This still operates on a request_sock only, not on a big
811 * socket.
812 */
813 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
814 struct flowi *fl,
815 struct request_sock *req,
816 u16 queue_mapping,
817 struct tcp_fastopen_cookie *foc)
818 {
819 const struct inet_request_sock *ireq = inet_rsk(req);
820 struct flowi4 fl4;
821 int err = -1;
822 struct sk_buff *skb;
823
824 /* First, grab a route. */
825 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
826 return -1;
827
828 skb = tcp_make_synack(sk, dst, req, foc);
829
830 if (skb) {
831 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
832
833 skb_set_queue_mapping(skb, queue_mapping);
834 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
835 ireq->ir_rmt_addr,
836 ireq->opt);
837 err = net_xmit_eval(err);
838 }
839
840 return err;
841 }
842
843 /*
844 * IPv4 request_sock destructor.
845 */
846 static void tcp_v4_reqsk_destructor(struct request_sock *req)
847 {
848 kfree(inet_rsk(req)->opt);
849 }
850
851 /*
852 * Return true if a syncookie should be sent
853 */
854 bool tcp_syn_flood_action(struct sock *sk,
855 const struct sk_buff *skb,
856 const char *proto)
857 {
858 const char *msg = "Dropping request";
859 bool want_cookie = false;
860 struct listen_sock *lopt;
861
862 #ifdef CONFIG_SYN_COOKIES
863 if (sysctl_tcp_syncookies) {
864 msg = "Sending cookies";
865 want_cookie = true;
866 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
867 } else
868 #endif
869 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
870
871 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
872 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
873 lopt->synflood_warned = 1;
874 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
875 proto, ntohs(tcp_hdr(skb)->dest), msg);
876 }
877 return want_cookie;
878 }
879 EXPORT_SYMBOL(tcp_syn_flood_action);
880
881 /*
882 * Save and compile IPv4 options into the request_sock if needed.
883 */
884 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
885 {
886 const struct ip_options *opt = &(IPCB(skb)->opt);
887 struct ip_options_rcu *dopt = NULL;
888
889 if (opt && opt->optlen) {
890 int opt_size = sizeof(*dopt) + opt->optlen;
891
892 dopt = kmalloc(opt_size, GFP_ATOMIC);
893 if (dopt) {
894 if (ip_options_echo(&dopt->opt, skb)) {
895 kfree(dopt);
896 dopt = NULL;
897 }
898 }
899 }
900 return dopt;
901 }
902
903 #ifdef CONFIG_TCP_MD5SIG
904 /*
905 * RFC2385 MD5 checksumming requires a mapping of
906 * IP address->MD5 Key.
907 * We need to maintain these in the sk structure.
908 */
909
910 /* Find the Key structure for an address. */
911 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
912 const union tcp_md5_addr *addr,
913 int family)
914 {
915 struct tcp_sock *tp = tcp_sk(sk);
916 struct tcp_md5sig_key *key;
917 unsigned int size = sizeof(struct in_addr);
918 struct tcp_md5sig_info *md5sig;
919
920 /* caller either holds rcu_read_lock() or socket lock */
921 md5sig = rcu_dereference_check(tp->md5sig_info,
922 sock_owned_by_user(sk) ||
923 lockdep_is_held(&sk->sk_lock.slock));
924 if (!md5sig)
925 return NULL;
926 #if IS_ENABLED(CONFIG_IPV6)
927 if (family == AF_INET6)
928 size = sizeof(struct in6_addr);
929 #endif
930 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
931 if (key->family != family)
932 continue;
933 if (!memcmp(&key->addr, addr, size))
934 return key;
935 }
936 return NULL;
937 }
938 EXPORT_SYMBOL(tcp_md5_do_lookup);
939
940 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
941 struct sock *addr_sk)
942 {
943 union tcp_md5_addr *addr;
944
945 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
946 return tcp_md5_do_lookup(sk, addr, AF_INET);
947 }
948 EXPORT_SYMBOL(tcp_v4_md5_lookup);
949
950 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
951 struct request_sock *req)
952 {
953 union tcp_md5_addr *addr;
954
955 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
956 return tcp_md5_do_lookup(sk, addr, AF_INET);
957 }
958
959 /* This can be called on a newly created socket, from other files */
960 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
961 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
962 {
963 /* Add Key to the list */
964 struct tcp_md5sig_key *key;
965 struct tcp_sock *tp = tcp_sk(sk);
966 struct tcp_md5sig_info *md5sig;
967
968 key = tcp_md5_do_lookup(sk, addr, family);
969 if (key) {
970 /* Pre-existing entry - just update that one. */
971 memcpy(key->key, newkey, newkeylen);
972 key->keylen = newkeylen;
973 return 0;
974 }
975
976 md5sig = rcu_dereference_protected(tp->md5sig_info,
977 sock_owned_by_user(sk));
978 if (!md5sig) {
979 md5sig = kmalloc(sizeof(*md5sig), gfp);
980 if (!md5sig)
981 return -ENOMEM;
982
983 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
984 INIT_HLIST_HEAD(&md5sig->head);
985 rcu_assign_pointer(tp->md5sig_info, md5sig);
986 }
987
988 key = sock_kmalloc(sk, sizeof(*key), gfp);
989 if (!key)
990 return -ENOMEM;
991 if (!tcp_alloc_md5sig_pool()) {
992 sock_kfree_s(sk, key, sizeof(*key));
993 return -ENOMEM;
994 }
995
996 memcpy(key->key, newkey, newkeylen);
997 key->keylen = newkeylen;
998 key->family = family;
999 memcpy(&key->addr, addr,
1000 (family == AF_INET6) ? sizeof(struct in6_addr) :
1001 sizeof(struct in_addr));
1002 hlist_add_head_rcu(&key->node, &md5sig->head);
1003 return 0;
1004 }
1005 EXPORT_SYMBOL(tcp_md5_do_add);
1006
1007 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1008 {
1009 struct tcp_md5sig_key *key;
1010
1011 key = tcp_md5_do_lookup(sk, addr, family);
1012 if (!key)
1013 return -ENOENT;
1014 hlist_del_rcu(&key->node);
1015 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1016 kfree_rcu(key, rcu);
1017 return 0;
1018 }
1019 EXPORT_SYMBOL(tcp_md5_do_del);
1020
1021 static void tcp_clear_md5_list(struct sock *sk)
1022 {
1023 struct tcp_sock *tp = tcp_sk(sk);
1024 struct tcp_md5sig_key *key;
1025 struct hlist_node *n;
1026 struct tcp_md5sig_info *md5sig;
1027
1028 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1029
1030 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1031 hlist_del_rcu(&key->node);
1032 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1033 kfree_rcu(key, rcu);
1034 }
1035 }
1036
1037 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1038 int optlen)
1039 {
1040 struct tcp_md5sig cmd;
1041 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1042
1043 if (optlen < sizeof(cmd))
1044 return -EINVAL;
1045
1046 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1047 return -EFAULT;
1048
1049 if (sin->sin_family != AF_INET)
1050 return -EINVAL;
1051
1052 if (!cmd.tcpm_keylen)
1053 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1054 AF_INET);
1055
1056 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1057 return -EINVAL;
1058
1059 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1060 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1061 GFP_KERNEL);
1062 }
1063
1064 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1065 __be32 daddr, __be32 saddr, int nbytes)
1066 {
1067 struct tcp4_pseudohdr *bp;
1068 struct scatterlist sg;
1069
1070 bp = &hp->md5_blk.ip4;
1071
1072 /*
1073 * 1. the TCP pseudo-header (in the order: source IP address,
1074 * destination IP address, zero-padded protocol number, and
1075 * segment length)
1076 */
1077 bp->saddr = saddr;
1078 bp->daddr = daddr;
1079 bp->pad = 0;
1080 bp->protocol = IPPROTO_TCP;
1081 bp->len = cpu_to_be16(nbytes);
1082
1083 sg_init_one(&sg, bp, sizeof(*bp));
1084 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1085 }
1086
1087 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1088 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1089 {
1090 struct tcp_md5sig_pool *hp;
1091 struct hash_desc *desc;
1092
1093 hp = tcp_get_md5sig_pool();
1094 if (!hp)
1095 goto clear_hash_noput;
1096 desc = &hp->md5_desc;
1097
1098 if (crypto_hash_init(desc))
1099 goto clear_hash;
1100 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1101 goto clear_hash;
1102 if (tcp_md5_hash_header(hp, th))
1103 goto clear_hash;
1104 if (tcp_md5_hash_key(hp, key))
1105 goto clear_hash;
1106 if (crypto_hash_final(desc, md5_hash))
1107 goto clear_hash;
1108
1109 tcp_put_md5sig_pool();
1110 return 0;
1111
1112 clear_hash:
1113 tcp_put_md5sig_pool();
1114 clear_hash_noput:
1115 memset(md5_hash, 0, 16);
1116 return 1;
1117 }
1118
1119 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1120 const struct sock *sk, const struct request_sock *req,
1121 const struct sk_buff *skb)
1122 {
1123 struct tcp_md5sig_pool *hp;
1124 struct hash_desc *desc;
1125 const struct tcphdr *th = tcp_hdr(skb);
1126 __be32 saddr, daddr;
1127
1128 if (sk) {
1129 saddr = inet_sk(sk)->inet_saddr;
1130 daddr = inet_sk(sk)->inet_daddr;
1131 } else if (req) {
1132 saddr = inet_rsk(req)->ir_loc_addr;
1133 daddr = inet_rsk(req)->ir_rmt_addr;
1134 } else {
1135 const struct iphdr *iph = ip_hdr(skb);
1136 saddr = iph->saddr;
1137 daddr = iph->daddr;
1138 }
1139
1140 hp = tcp_get_md5sig_pool();
1141 if (!hp)
1142 goto clear_hash_noput;
1143 desc = &hp->md5_desc;
1144
1145 if (crypto_hash_init(desc))
1146 goto clear_hash;
1147
1148 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1149 goto clear_hash;
1150 if (tcp_md5_hash_header(hp, th))
1151 goto clear_hash;
1152 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1153 goto clear_hash;
1154 if (tcp_md5_hash_key(hp, key))
1155 goto clear_hash;
1156 if (crypto_hash_final(desc, md5_hash))
1157 goto clear_hash;
1158
1159 tcp_put_md5sig_pool();
1160 return 0;
1161
1162 clear_hash:
1163 tcp_put_md5sig_pool();
1164 clear_hash_noput:
1165 memset(md5_hash, 0, 16);
1166 return 1;
1167 }
1168 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1169
1170 static bool __tcp_v4_inbound_md5_hash(struct sock *sk,
1171 const struct sk_buff *skb)
1172 {
1173 /*
1174 * This gets called for each TCP segment that arrives
1175 * so we want to be efficient.
1176 * We have 3 drop cases:
1177 * o No MD5 hash and one expected.
1178 * o MD5 hash and we're not expecting one.
1179 * o MD5 hash and its wrong.
1180 */
1181 const __u8 *hash_location = NULL;
1182 struct tcp_md5sig_key *hash_expected;
1183 const struct iphdr *iph = ip_hdr(skb);
1184 const struct tcphdr *th = tcp_hdr(skb);
1185 int genhash;
1186 unsigned char newhash[16];
1187
1188 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1189 AF_INET);
1190 hash_location = tcp_parse_md5sig_option(th);
1191
1192 /* We've parsed the options - do we have a hash? */
1193 if (!hash_expected && !hash_location)
1194 return false;
1195
1196 if (hash_expected && !hash_location) {
1197 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1198 return true;
1199 }
1200
1201 if (!hash_expected && hash_location) {
1202 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1203 return true;
1204 }
1205
1206 /* Okay, so this is hash_expected and hash_location -
1207 * so we need to calculate the checksum.
1208 */
1209 genhash = tcp_v4_md5_hash_skb(newhash,
1210 hash_expected,
1211 NULL, NULL, skb);
1212
1213 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1214 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1215 &iph->saddr, ntohs(th->source),
1216 &iph->daddr, ntohs(th->dest),
1217 genhash ? " tcp_v4_calc_md5_hash failed"
1218 : "");
1219 return true;
1220 }
1221 return false;
1222 }
1223
1224 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1225 {
1226 bool ret;
1227
1228 rcu_read_lock();
1229 ret = __tcp_v4_inbound_md5_hash(sk, skb);
1230 rcu_read_unlock();
1231
1232 return ret;
1233 }
1234
1235 #endif
1236
1237 static void tcp_v4_init_req(struct request_sock *req, struct sock *sk,
1238 struct sk_buff *skb)
1239 {
1240 struct inet_request_sock *ireq = inet_rsk(req);
1241
1242 ireq->ir_loc_addr = ip_hdr(skb)->daddr;
1243 ireq->ir_rmt_addr = ip_hdr(skb)->saddr;
1244 ireq->no_srccheck = inet_sk(sk)->transparent;
1245 ireq->opt = tcp_v4_save_options(skb);
1246 }
1247
1248 static struct dst_entry *tcp_v4_route_req(struct sock *sk, struct flowi *fl,
1249 const struct request_sock *req,
1250 bool *strict)
1251 {
1252 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1253
1254 if (strict) {
1255 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1256 *strict = true;
1257 else
1258 *strict = false;
1259 }
1260
1261 return dst;
1262 }
1263
1264 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1265 .family = PF_INET,
1266 .obj_size = sizeof(struct tcp_request_sock),
1267 .rtx_syn_ack = tcp_rtx_synack,
1268 .send_ack = tcp_v4_reqsk_send_ack,
1269 .destructor = tcp_v4_reqsk_destructor,
1270 .send_reset = tcp_v4_send_reset,
1271 .syn_ack_timeout = tcp_syn_ack_timeout,
1272 };
1273
1274 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1275 .mss_clamp = TCP_MSS_DEFAULT,
1276 #ifdef CONFIG_TCP_MD5SIG
1277 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1278 .calc_md5_hash = tcp_v4_md5_hash_skb,
1279 #endif
1280 .init_req = tcp_v4_init_req,
1281 #ifdef CONFIG_SYN_COOKIES
1282 .cookie_init_seq = cookie_v4_init_sequence,
1283 #endif
1284 .route_req = tcp_v4_route_req,
1285 .init_seq = tcp_v4_init_sequence,
1286 .send_synack = tcp_v4_send_synack,
1287 .queue_hash_add = inet_csk_reqsk_queue_hash_add,
1288 };
1289
1290 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1291 {
1292 /* Never answer to SYNs send to broadcast or multicast */
1293 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1294 goto drop;
1295
1296 return tcp_conn_request(&tcp_request_sock_ops,
1297 &tcp_request_sock_ipv4_ops, sk, skb);
1298
1299 drop:
1300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1301 return 0;
1302 }
1303 EXPORT_SYMBOL(tcp_v4_conn_request);
1304
1305
1306 /*
1307 * The three way handshake has completed - we got a valid synack -
1308 * now create the new socket.
1309 */
1310 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1311 struct request_sock *req,
1312 struct dst_entry *dst)
1313 {
1314 struct inet_request_sock *ireq;
1315 struct inet_sock *newinet;
1316 struct tcp_sock *newtp;
1317 struct sock *newsk;
1318 #ifdef CONFIG_TCP_MD5SIG
1319 struct tcp_md5sig_key *key;
1320 #endif
1321 struct ip_options_rcu *inet_opt;
1322
1323 if (sk_acceptq_is_full(sk))
1324 goto exit_overflow;
1325
1326 newsk = tcp_create_openreq_child(sk, req, skb);
1327 if (!newsk)
1328 goto exit_nonewsk;
1329
1330 newsk->sk_gso_type = SKB_GSO_TCPV4;
1331 inet_sk_rx_dst_set(newsk, skb);
1332
1333 newtp = tcp_sk(newsk);
1334 newinet = inet_sk(newsk);
1335 ireq = inet_rsk(req);
1336 newinet->inet_daddr = ireq->ir_rmt_addr;
1337 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1338 newinet->inet_saddr = ireq->ir_loc_addr;
1339 inet_opt = ireq->opt;
1340 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1341 ireq->opt = NULL;
1342 newinet->mc_index = inet_iif(skb);
1343 newinet->mc_ttl = ip_hdr(skb)->ttl;
1344 newinet->rcv_tos = ip_hdr(skb)->tos;
1345 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1346 inet_set_txhash(newsk);
1347 if (inet_opt)
1348 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1349 newinet->inet_id = newtp->write_seq ^ jiffies;
1350
1351 if (!dst) {
1352 dst = inet_csk_route_child_sock(sk, newsk, req);
1353 if (!dst)
1354 goto put_and_exit;
1355 } else {
1356 /* syncookie case : see end of cookie_v4_check() */
1357 }
1358 sk_setup_caps(newsk, dst);
1359
1360 tcp_sync_mss(newsk, dst_mtu(dst));
1361 newtp->advmss = dst_metric_advmss(dst);
1362 if (tcp_sk(sk)->rx_opt.user_mss &&
1363 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1364 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1365
1366 tcp_initialize_rcv_mss(newsk);
1367
1368 #ifdef CONFIG_TCP_MD5SIG
1369 /* Copy over the MD5 key from the original socket */
1370 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1371 AF_INET);
1372 if (key != NULL) {
1373 /*
1374 * We're using one, so create a matching key
1375 * on the newsk structure. If we fail to get
1376 * memory, then we end up not copying the key
1377 * across. Shucks.
1378 */
1379 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1380 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1381 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1382 }
1383 #endif
1384
1385 if (__inet_inherit_port(sk, newsk) < 0)
1386 goto put_and_exit;
1387 __inet_hash_nolisten(newsk, NULL);
1388
1389 return newsk;
1390
1391 exit_overflow:
1392 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1393 exit_nonewsk:
1394 dst_release(dst);
1395 exit:
1396 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1397 return NULL;
1398 put_and_exit:
1399 inet_csk_prepare_forced_close(newsk);
1400 tcp_done(newsk);
1401 goto exit;
1402 }
1403 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1404
1405 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1406 {
1407 struct tcphdr *th = tcp_hdr(skb);
1408 const struct iphdr *iph = ip_hdr(skb);
1409 struct sock *nsk;
1410 struct request_sock **prev;
1411 /* Find possible connection requests. */
1412 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1413 iph->saddr, iph->daddr);
1414 if (req)
1415 return tcp_check_req(sk, skb, req, prev, false);
1416
1417 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1418 th->source, iph->daddr, th->dest, inet_iif(skb));
1419
1420 if (nsk) {
1421 if (nsk->sk_state != TCP_TIME_WAIT) {
1422 bh_lock_sock(nsk);
1423 return nsk;
1424 }
1425 inet_twsk_put(inet_twsk(nsk));
1426 return NULL;
1427 }
1428
1429 #ifdef CONFIG_SYN_COOKIES
1430 if (!th->syn)
1431 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1432 #endif
1433 return sk;
1434 }
1435
1436 /* The socket must have it's spinlock held when we get
1437 * here.
1438 *
1439 * We have a potential double-lock case here, so even when
1440 * doing backlog processing we use the BH locking scheme.
1441 * This is because we cannot sleep with the original spinlock
1442 * held.
1443 */
1444 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1445 {
1446 struct sock *rsk;
1447
1448 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1449 struct dst_entry *dst = sk->sk_rx_dst;
1450
1451 sock_rps_save_rxhash(sk, skb);
1452 if (dst) {
1453 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1454 dst->ops->check(dst, 0) == NULL) {
1455 dst_release(dst);
1456 sk->sk_rx_dst = NULL;
1457 }
1458 }
1459 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1460 return 0;
1461 }
1462
1463 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1464 goto csum_err;
1465
1466 if (sk->sk_state == TCP_LISTEN) {
1467 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1468 if (!nsk)
1469 goto discard;
1470
1471 if (nsk != sk) {
1472 sock_rps_save_rxhash(nsk, skb);
1473 if (tcp_child_process(sk, nsk, skb)) {
1474 rsk = nsk;
1475 goto reset;
1476 }
1477 return 0;
1478 }
1479 } else
1480 sock_rps_save_rxhash(sk, skb);
1481
1482 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1483 rsk = sk;
1484 goto reset;
1485 }
1486 return 0;
1487
1488 reset:
1489 tcp_v4_send_reset(rsk, skb);
1490 discard:
1491 kfree_skb(skb);
1492 /* Be careful here. If this function gets more complicated and
1493 * gcc suffers from register pressure on the x86, sk (in %ebx)
1494 * might be destroyed here. This current version compiles correctly,
1495 * but you have been warned.
1496 */
1497 return 0;
1498
1499 csum_err:
1500 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1501 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1502 goto discard;
1503 }
1504 EXPORT_SYMBOL(tcp_v4_do_rcv);
1505
1506 void tcp_v4_early_demux(struct sk_buff *skb)
1507 {
1508 const struct iphdr *iph;
1509 const struct tcphdr *th;
1510 struct sock *sk;
1511
1512 if (skb->pkt_type != PACKET_HOST)
1513 return;
1514
1515 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1516 return;
1517
1518 iph = ip_hdr(skb);
1519 th = tcp_hdr(skb);
1520
1521 if (th->doff < sizeof(struct tcphdr) / 4)
1522 return;
1523
1524 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1525 iph->saddr, th->source,
1526 iph->daddr, ntohs(th->dest),
1527 skb->skb_iif);
1528 if (sk) {
1529 skb->sk = sk;
1530 skb->destructor = sock_edemux;
1531 if (sk->sk_state != TCP_TIME_WAIT) {
1532 struct dst_entry *dst = sk->sk_rx_dst;
1533
1534 if (dst)
1535 dst = dst_check(dst, 0);
1536 if (dst &&
1537 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1538 skb_dst_set_noref(skb, dst);
1539 }
1540 }
1541 }
1542
1543 /* Packet is added to VJ-style prequeue for processing in process
1544 * context, if a reader task is waiting. Apparently, this exciting
1545 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1546 * failed somewhere. Latency? Burstiness? Well, at least now we will
1547 * see, why it failed. 8)8) --ANK
1548 *
1549 */
1550 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1551 {
1552 struct tcp_sock *tp = tcp_sk(sk);
1553
1554 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1555 return false;
1556
1557 if (skb->len <= tcp_hdrlen(skb) &&
1558 skb_queue_len(&tp->ucopy.prequeue) == 0)
1559 return false;
1560
1561 skb_dst_force(skb);
1562 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1563 tp->ucopy.memory += skb->truesize;
1564 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1565 struct sk_buff *skb1;
1566
1567 BUG_ON(sock_owned_by_user(sk));
1568
1569 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1570 sk_backlog_rcv(sk, skb1);
1571 NET_INC_STATS_BH(sock_net(sk),
1572 LINUX_MIB_TCPPREQUEUEDROPPED);
1573 }
1574
1575 tp->ucopy.memory = 0;
1576 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1577 wake_up_interruptible_sync_poll(sk_sleep(sk),
1578 POLLIN | POLLRDNORM | POLLRDBAND);
1579 if (!inet_csk_ack_scheduled(sk))
1580 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1581 (3 * tcp_rto_min(sk)) / 4,
1582 TCP_RTO_MAX);
1583 }
1584 return true;
1585 }
1586 EXPORT_SYMBOL(tcp_prequeue);
1587
1588 /*
1589 * From tcp_input.c
1590 */
1591
1592 int tcp_v4_rcv(struct sk_buff *skb)
1593 {
1594 const struct iphdr *iph;
1595 const struct tcphdr *th;
1596 struct sock *sk;
1597 int ret;
1598 struct net *net = dev_net(skb->dev);
1599
1600 if (skb->pkt_type != PACKET_HOST)
1601 goto discard_it;
1602
1603 /* Count it even if it's bad */
1604 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1605
1606 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1607 goto discard_it;
1608
1609 th = tcp_hdr(skb);
1610
1611 if (th->doff < sizeof(struct tcphdr) / 4)
1612 goto bad_packet;
1613 if (!pskb_may_pull(skb, th->doff * 4))
1614 goto discard_it;
1615
1616 /* An explanation is required here, I think.
1617 * Packet length and doff are validated by header prediction,
1618 * provided case of th->doff==0 is eliminated.
1619 * So, we defer the checks. */
1620
1621 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1622 goto csum_error;
1623
1624 th = tcp_hdr(skb);
1625 iph = ip_hdr(skb);
1626 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1627 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1628 skb->len - th->doff * 4);
1629 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1630 TCP_SKB_CB(skb)->when = 0;
1631 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1632 TCP_SKB_CB(skb)->sacked = 0;
1633
1634 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1635 if (!sk)
1636 goto no_tcp_socket;
1637
1638 process:
1639 if (sk->sk_state == TCP_TIME_WAIT)
1640 goto do_time_wait;
1641
1642 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1643 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1644 goto discard_and_relse;
1645 }
1646
1647 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1648 goto discard_and_relse;
1649
1650 #ifdef CONFIG_TCP_MD5SIG
1651 /*
1652 * We really want to reject the packet as early as possible
1653 * if:
1654 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1655 * o There is an MD5 option and we're not expecting one
1656 */
1657 if (tcp_v4_inbound_md5_hash(sk, skb))
1658 goto discard_and_relse;
1659 #endif
1660
1661 nf_reset(skb);
1662
1663 if (sk_filter(sk, skb))
1664 goto discard_and_relse;
1665
1666 sk_mark_napi_id(sk, skb);
1667 skb->dev = NULL;
1668
1669 bh_lock_sock_nested(sk);
1670 ret = 0;
1671 if (!sock_owned_by_user(sk)) {
1672 #ifdef CONFIG_NET_DMA
1673 struct tcp_sock *tp = tcp_sk(sk);
1674 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1675 tp->ucopy.dma_chan = net_dma_find_channel();
1676 if (tp->ucopy.dma_chan)
1677 ret = tcp_v4_do_rcv(sk, skb);
1678 else
1679 #endif
1680 {
1681 if (!tcp_prequeue(sk, skb))
1682 ret = tcp_v4_do_rcv(sk, skb);
1683 }
1684 } else if (unlikely(sk_add_backlog(sk, skb,
1685 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1686 bh_unlock_sock(sk);
1687 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1688 goto discard_and_relse;
1689 }
1690 bh_unlock_sock(sk);
1691
1692 sock_put(sk);
1693
1694 return ret;
1695
1696 no_tcp_socket:
1697 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1698 goto discard_it;
1699
1700 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1701 csum_error:
1702 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1703 bad_packet:
1704 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1705 } else {
1706 tcp_v4_send_reset(NULL, skb);
1707 }
1708
1709 discard_it:
1710 /* Discard frame. */
1711 kfree_skb(skb);
1712 return 0;
1713
1714 discard_and_relse:
1715 sock_put(sk);
1716 goto discard_it;
1717
1718 do_time_wait:
1719 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1720 inet_twsk_put(inet_twsk(sk));
1721 goto discard_it;
1722 }
1723
1724 if (skb->len < (th->doff << 2)) {
1725 inet_twsk_put(inet_twsk(sk));
1726 goto bad_packet;
1727 }
1728 if (tcp_checksum_complete(skb)) {
1729 inet_twsk_put(inet_twsk(sk));
1730 goto csum_error;
1731 }
1732 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1733 case TCP_TW_SYN: {
1734 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1735 &tcp_hashinfo,
1736 iph->saddr, th->source,
1737 iph->daddr, th->dest,
1738 inet_iif(skb));
1739 if (sk2) {
1740 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1741 inet_twsk_put(inet_twsk(sk));
1742 sk = sk2;
1743 goto process;
1744 }
1745 /* Fall through to ACK */
1746 }
1747 case TCP_TW_ACK:
1748 tcp_v4_timewait_ack(sk, skb);
1749 break;
1750 case TCP_TW_RST:
1751 goto no_tcp_socket;
1752 case TCP_TW_SUCCESS:;
1753 }
1754 goto discard_it;
1755 }
1756
1757 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1758 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1759 .twsk_unique = tcp_twsk_unique,
1760 .twsk_destructor= tcp_twsk_destructor,
1761 };
1762
1763 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1764 {
1765 struct dst_entry *dst = skb_dst(skb);
1766
1767 dst_hold(dst);
1768 sk->sk_rx_dst = dst;
1769 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1770 }
1771 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1772
1773 const struct inet_connection_sock_af_ops ipv4_specific = {
1774 .queue_xmit = ip_queue_xmit,
1775 .send_check = tcp_v4_send_check,
1776 .rebuild_header = inet_sk_rebuild_header,
1777 .sk_rx_dst_set = inet_sk_rx_dst_set,
1778 .conn_request = tcp_v4_conn_request,
1779 .syn_recv_sock = tcp_v4_syn_recv_sock,
1780 .net_header_len = sizeof(struct iphdr),
1781 .setsockopt = ip_setsockopt,
1782 .getsockopt = ip_getsockopt,
1783 .addr2sockaddr = inet_csk_addr2sockaddr,
1784 .sockaddr_len = sizeof(struct sockaddr_in),
1785 .bind_conflict = inet_csk_bind_conflict,
1786 #ifdef CONFIG_COMPAT
1787 .compat_setsockopt = compat_ip_setsockopt,
1788 .compat_getsockopt = compat_ip_getsockopt,
1789 #endif
1790 };
1791 EXPORT_SYMBOL(ipv4_specific);
1792
1793 #ifdef CONFIG_TCP_MD5SIG
1794 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1795 .md5_lookup = tcp_v4_md5_lookup,
1796 .calc_md5_hash = tcp_v4_md5_hash_skb,
1797 .md5_parse = tcp_v4_parse_md5_keys,
1798 };
1799 #endif
1800
1801 /* NOTE: A lot of things set to zero explicitly by call to
1802 * sk_alloc() so need not be done here.
1803 */
1804 static int tcp_v4_init_sock(struct sock *sk)
1805 {
1806 struct inet_connection_sock *icsk = inet_csk(sk);
1807
1808 tcp_init_sock(sk);
1809
1810 icsk->icsk_af_ops = &ipv4_specific;
1811
1812 #ifdef CONFIG_TCP_MD5SIG
1813 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1814 #endif
1815
1816 return 0;
1817 }
1818
1819 void tcp_v4_destroy_sock(struct sock *sk)
1820 {
1821 struct tcp_sock *tp = tcp_sk(sk);
1822
1823 tcp_clear_xmit_timers(sk);
1824
1825 tcp_cleanup_congestion_control(sk);
1826
1827 /* Cleanup up the write buffer. */
1828 tcp_write_queue_purge(sk);
1829
1830 /* Cleans up our, hopefully empty, out_of_order_queue. */
1831 __skb_queue_purge(&tp->out_of_order_queue);
1832
1833 #ifdef CONFIG_TCP_MD5SIG
1834 /* Clean up the MD5 key list, if any */
1835 if (tp->md5sig_info) {
1836 tcp_clear_md5_list(sk);
1837 kfree_rcu(tp->md5sig_info, rcu);
1838 tp->md5sig_info = NULL;
1839 }
1840 #endif
1841
1842 #ifdef CONFIG_NET_DMA
1843 /* Cleans up our sk_async_wait_queue */
1844 __skb_queue_purge(&sk->sk_async_wait_queue);
1845 #endif
1846
1847 /* Clean prequeue, it must be empty really */
1848 __skb_queue_purge(&tp->ucopy.prequeue);
1849
1850 /* Clean up a referenced TCP bind bucket. */
1851 if (inet_csk(sk)->icsk_bind_hash)
1852 inet_put_port(sk);
1853
1854 BUG_ON(tp->fastopen_rsk != NULL);
1855
1856 /* If socket is aborted during connect operation */
1857 tcp_free_fastopen_req(tp);
1858
1859 sk_sockets_allocated_dec(sk);
1860 sock_release_memcg(sk);
1861 }
1862 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1863
1864 #ifdef CONFIG_PROC_FS
1865 /* Proc filesystem TCP sock list dumping. */
1866
1867 /*
1868 * Get next listener socket follow cur. If cur is NULL, get first socket
1869 * starting from bucket given in st->bucket; when st->bucket is zero the
1870 * very first socket in the hash table is returned.
1871 */
1872 static void *listening_get_next(struct seq_file *seq, void *cur)
1873 {
1874 struct inet_connection_sock *icsk;
1875 struct hlist_nulls_node *node;
1876 struct sock *sk = cur;
1877 struct inet_listen_hashbucket *ilb;
1878 struct tcp_iter_state *st = seq->private;
1879 struct net *net = seq_file_net(seq);
1880
1881 if (!sk) {
1882 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1883 spin_lock_bh(&ilb->lock);
1884 sk = sk_nulls_head(&ilb->head);
1885 st->offset = 0;
1886 goto get_sk;
1887 }
1888 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1889 ++st->num;
1890 ++st->offset;
1891
1892 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1893 struct request_sock *req = cur;
1894
1895 icsk = inet_csk(st->syn_wait_sk);
1896 req = req->dl_next;
1897 while (1) {
1898 while (req) {
1899 if (req->rsk_ops->family == st->family) {
1900 cur = req;
1901 goto out;
1902 }
1903 req = req->dl_next;
1904 }
1905 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1906 break;
1907 get_req:
1908 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1909 }
1910 sk = sk_nulls_next(st->syn_wait_sk);
1911 st->state = TCP_SEQ_STATE_LISTENING;
1912 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1913 } else {
1914 icsk = inet_csk(sk);
1915 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1916 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1917 goto start_req;
1918 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1919 sk = sk_nulls_next(sk);
1920 }
1921 get_sk:
1922 sk_nulls_for_each_from(sk, node) {
1923 if (!net_eq(sock_net(sk), net))
1924 continue;
1925 if (sk->sk_family == st->family) {
1926 cur = sk;
1927 goto out;
1928 }
1929 icsk = inet_csk(sk);
1930 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1931 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1932 start_req:
1933 st->uid = sock_i_uid(sk);
1934 st->syn_wait_sk = sk;
1935 st->state = TCP_SEQ_STATE_OPENREQ;
1936 st->sbucket = 0;
1937 goto get_req;
1938 }
1939 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1940 }
1941 spin_unlock_bh(&ilb->lock);
1942 st->offset = 0;
1943 if (++st->bucket < INET_LHTABLE_SIZE) {
1944 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1945 spin_lock_bh(&ilb->lock);
1946 sk = sk_nulls_head(&ilb->head);
1947 goto get_sk;
1948 }
1949 cur = NULL;
1950 out:
1951 return cur;
1952 }
1953
1954 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1955 {
1956 struct tcp_iter_state *st = seq->private;
1957 void *rc;
1958
1959 st->bucket = 0;
1960 st->offset = 0;
1961 rc = listening_get_next(seq, NULL);
1962
1963 while (rc && *pos) {
1964 rc = listening_get_next(seq, rc);
1965 --*pos;
1966 }
1967 return rc;
1968 }
1969
1970 static inline bool empty_bucket(const struct tcp_iter_state *st)
1971 {
1972 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1973 }
1974
1975 /*
1976 * Get first established socket starting from bucket given in st->bucket.
1977 * If st->bucket is zero, the very first socket in the hash is returned.
1978 */
1979 static void *established_get_first(struct seq_file *seq)
1980 {
1981 struct tcp_iter_state *st = seq->private;
1982 struct net *net = seq_file_net(seq);
1983 void *rc = NULL;
1984
1985 st->offset = 0;
1986 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1987 struct sock *sk;
1988 struct hlist_nulls_node *node;
1989 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1990
1991 /* Lockless fast path for the common case of empty buckets */
1992 if (empty_bucket(st))
1993 continue;
1994
1995 spin_lock_bh(lock);
1996 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1997 if (sk->sk_family != st->family ||
1998 !net_eq(sock_net(sk), net)) {
1999 continue;
2000 }
2001 rc = sk;
2002 goto out;
2003 }
2004 spin_unlock_bh(lock);
2005 }
2006 out:
2007 return rc;
2008 }
2009
2010 static void *established_get_next(struct seq_file *seq, void *cur)
2011 {
2012 struct sock *sk = cur;
2013 struct hlist_nulls_node *node;
2014 struct tcp_iter_state *st = seq->private;
2015 struct net *net = seq_file_net(seq);
2016
2017 ++st->num;
2018 ++st->offset;
2019
2020 sk = sk_nulls_next(sk);
2021
2022 sk_nulls_for_each_from(sk, node) {
2023 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2024 return sk;
2025 }
2026
2027 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2028 ++st->bucket;
2029 return established_get_first(seq);
2030 }
2031
2032 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2033 {
2034 struct tcp_iter_state *st = seq->private;
2035 void *rc;
2036
2037 st->bucket = 0;
2038 rc = established_get_first(seq);
2039
2040 while (rc && pos) {
2041 rc = established_get_next(seq, rc);
2042 --pos;
2043 }
2044 return rc;
2045 }
2046
2047 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2048 {
2049 void *rc;
2050 struct tcp_iter_state *st = seq->private;
2051
2052 st->state = TCP_SEQ_STATE_LISTENING;
2053 rc = listening_get_idx(seq, &pos);
2054
2055 if (!rc) {
2056 st->state = TCP_SEQ_STATE_ESTABLISHED;
2057 rc = established_get_idx(seq, pos);
2058 }
2059
2060 return rc;
2061 }
2062
2063 static void *tcp_seek_last_pos(struct seq_file *seq)
2064 {
2065 struct tcp_iter_state *st = seq->private;
2066 int offset = st->offset;
2067 int orig_num = st->num;
2068 void *rc = NULL;
2069
2070 switch (st->state) {
2071 case TCP_SEQ_STATE_OPENREQ:
2072 case TCP_SEQ_STATE_LISTENING:
2073 if (st->bucket >= INET_LHTABLE_SIZE)
2074 break;
2075 st->state = TCP_SEQ_STATE_LISTENING;
2076 rc = listening_get_next(seq, NULL);
2077 while (offset-- && rc)
2078 rc = listening_get_next(seq, rc);
2079 if (rc)
2080 break;
2081 st->bucket = 0;
2082 st->state = TCP_SEQ_STATE_ESTABLISHED;
2083 /* Fallthrough */
2084 case TCP_SEQ_STATE_ESTABLISHED:
2085 if (st->bucket > tcp_hashinfo.ehash_mask)
2086 break;
2087 rc = established_get_first(seq);
2088 while (offset-- && rc)
2089 rc = established_get_next(seq, rc);
2090 }
2091
2092 st->num = orig_num;
2093
2094 return rc;
2095 }
2096
2097 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2098 {
2099 struct tcp_iter_state *st = seq->private;
2100 void *rc;
2101
2102 if (*pos && *pos == st->last_pos) {
2103 rc = tcp_seek_last_pos(seq);
2104 if (rc)
2105 goto out;
2106 }
2107
2108 st->state = TCP_SEQ_STATE_LISTENING;
2109 st->num = 0;
2110 st->bucket = 0;
2111 st->offset = 0;
2112 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2113
2114 out:
2115 st->last_pos = *pos;
2116 return rc;
2117 }
2118
2119 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2120 {
2121 struct tcp_iter_state *st = seq->private;
2122 void *rc = NULL;
2123
2124 if (v == SEQ_START_TOKEN) {
2125 rc = tcp_get_idx(seq, 0);
2126 goto out;
2127 }
2128
2129 switch (st->state) {
2130 case TCP_SEQ_STATE_OPENREQ:
2131 case TCP_SEQ_STATE_LISTENING:
2132 rc = listening_get_next(seq, v);
2133 if (!rc) {
2134 st->state = TCP_SEQ_STATE_ESTABLISHED;
2135 st->bucket = 0;
2136 st->offset = 0;
2137 rc = established_get_first(seq);
2138 }
2139 break;
2140 case TCP_SEQ_STATE_ESTABLISHED:
2141 rc = established_get_next(seq, v);
2142 break;
2143 }
2144 out:
2145 ++*pos;
2146 st->last_pos = *pos;
2147 return rc;
2148 }
2149
2150 static void tcp_seq_stop(struct seq_file *seq, void *v)
2151 {
2152 struct tcp_iter_state *st = seq->private;
2153
2154 switch (st->state) {
2155 case TCP_SEQ_STATE_OPENREQ:
2156 if (v) {
2157 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2158 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2159 }
2160 case TCP_SEQ_STATE_LISTENING:
2161 if (v != SEQ_START_TOKEN)
2162 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2163 break;
2164 case TCP_SEQ_STATE_ESTABLISHED:
2165 if (v)
2166 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2167 break;
2168 }
2169 }
2170
2171 int tcp_seq_open(struct inode *inode, struct file *file)
2172 {
2173 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2174 struct tcp_iter_state *s;
2175 int err;
2176
2177 err = seq_open_net(inode, file, &afinfo->seq_ops,
2178 sizeof(struct tcp_iter_state));
2179 if (err < 0)
2180 return err;
2181
2182 s = ((struct seq_file *)file->private_data)->private;
2183 s->family = afinfo->family;
2184 s->last_pos = 0;
2185 return 0;
2186 }
2187 EXPORT_SYMBOL(tcp_seq_open);
2188
2189 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2190 {
2191 int rc = 0;
2192 struct proc_dir_entry *p;
2193
2194 afinfo->seq_ops.start = tcp_seq_start;
2195 afinfo->seq_ops.next = tcp_seq_next;
2196 afinfo->seq_ops.stop = tcp_seq_stop;
2197
2198 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2199 afinfo->seq_fops, afinfo);
2200 if (!p)
2201 rc = -ENOMEM;
2202 return rc;
2203 }
2204 EXPORT_SYMBOL(tcp_proc_register);
2205
2206 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2207 {
2208 remove_proc_entry(afinfo->name, net->proc_net);
2209 }
2210 EXPORT_SYMBOL(tcp_proc_unregister);
2211
2212 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2213 struct seq_file *f, int i, kuid_t uid)
2214 {
2215 const struct inet_request_sock *ireq = inet_rsk(req);
2216 long delta = req->expires - jiffies;
2217
2218 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2219 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2220 i,
2221 ireq->ir_loc_addr,
2222 ntohs(inet_sk(sk)->inet_sport),
2223 ireq->ir_rmt_addr,
2224 ntohs(ireq->ir_rmt_port),
2225 TCP_SYN_RECV,
2226 0, 0, /* could print option size, but that is af dependent. */
2227 1, /* timers active (only the expire timer) */
2228 jiffies_delta_to_clock_t(delta),
2229 req->num_timeout,
2230 from_kuid_munged(seq_user_ns(f), uid),
2231 0, /* non standard timer */
2232 0, /* open_requests have no inode */
2233 atomic_read(&sk->sk_refcnt),
2234 req);
2235 }
2236
2237 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2238 {
2239 int timer_active;
2240 unsigned long timer_expires;
2241 const struct tcp_sock *tp = tcp_sk(sk);
2242 const struct inet_connection_sock *icsk = inet_csk(sk);
2243 const struct inet_sock *inet = inet_sk(sk);
2244 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2245 __be32 dest = inet->inet_daddr;
2246 __be32 src = inet->inet_rcv_saddr;
2247 __u16 destp = ntohs(inet->inet_dport);
2248 __u16 srcp = ntohs(inet->inet_sport);
2249 int rx_queue;
2250
2251 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2252 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2253 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2254 timer_active = 1;
2255 timer_expires = icsk->icsk_timeout;
2256 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2257 timer_active = 4;
2258 timer_expires = icsk->icsk_timeout;
2259 } else if (timer_pending(&sk->sk_timer)) {
2260 timer_active = 2;
2261 timer_expires = sk->sk_timer.expires;
2262 } else {
2263 timer_active = 0;
2264 timer_expires = jiffies;
2265 }
2266
2267 if (sk->sk_state == TCP_LISTEN)
2268 rx_queue = sk->sk_ack_backlog;
2269 else
2270 /*
2271 * because we dont lock socket, we might find a transient negative value
2272 */
2273 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2274
2275 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2276 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2277 i, src, srcp, dest, destp, sk->sk_state,
2278 tp->write_seq - tp->snd_una,
2279 rx_queue,
2280 timer_active,
2281 jiffies_delta_to_clock_t(timer_expires - jiffies),
2282 icsk->icsk_retransmits,
2283 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2284 icsk->icsk_probes_out,
2285 sock_i_ino(sk),
2286 atomic_read(&sk->sk_refcnt), sk,
2287 jiffies_to_clock_t(icsk->icsk_rto),
2288 jiffies_to_clock_t(icsk->icsk_ack.ato),
2289 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2290 tp->snd_cwnd,
2291 sk->sk_state == TCP_LISTEN ?
2292 (fastopenq ? fastopenq->max_qlen : 0) :
2293 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2294 }
2295
2296 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2297 struct seq_file *f, int i)
2298 {
2299 __be32 dest, src;
2300 __u16 destp, srcp;
2301 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2302
2303 dest = tw->tw_daddr;
2304 src = tw->tw_rcv_saddr;
2305 destp = ntohs(tw->tw_dport);
2306 srcp = ntohs(tw->tw_sport);
2307
2308 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2309 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2310 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2311 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2312 atomic_read(&tw->tw_refcnt), tw);
2313 }
2314
2315 #define TMPSZ 150
2316
2317 static int tcp4_seq_show(struct seq_file *seq, void *v)
2318 {
2319 struct tcp_iter_state *st;
2320 struct sock *sk = v;
2321
2322 seq_setwidth(seq, TMPSZ - 1);
2323 if (v == SEQ_START_TOKEN) {
2324 seq_puts(seq, " sl local_address rem_address st tx_queue "
2325 "rx_queue tr tm->when retrnsmt uid timeout "
2326 "inode");
2327 goto out;
2328 }
2329 st = seq->private;
2330
2331 switch (st->state) {
2332 case TCP_SEQ_STATE_LISTENING:
2333 case TCP_SEQ_STATE_ESTABLISHED:
2334 if (sk->sk_state == TCP_TIME_WAIT)
2335 get_timewait4_sock(v, seq, st->num);
2336 else
2337 get_tcp4_sock(v, seq, st->num);
2338 break;
2339 case TCP_SEQ_STATE_OPENREQ:
2340 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2341 break;
2342 }
2343 out:
2344 seq_pad(seq, '\n');
2345 return 0;
2346 }
2347
2348 static const struct file_operations tcp_afinfo_seq_fops = {
2349 .owner = THIS_MODULE,
2350 .open = tcp_seq_open,
2351 .read = seq_read,
2352 .llseek = seq_lseek,
2353 .release = seq_release_net
2354 };
2355
2356 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2357 .name = "tcp",
2358 .family = AF_INET,
2359 .seq_fops = &tcp_afinfo_seq_fops,
2360 .seq_ops = {
2361 .show = tcp4_seq_show,
2362 },
2363 };
2364
2365 static int __net_init tcp4_proc_init_net(struct net *net)
2366 {
2367 return tcp_proc_register(net, &tcp4_seq_afinfo);
2368 }
2369
2370 static void __net_exit tcp4_proc_exit_net(struct net *net)
2371 {
2372 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2373 }
2374
2375 static struct pernet_operations tcp4_net_ops = {
2376 .init = tcp4_proc_init_net,
2377 .exit = tcp4_proc_exit_net,
2378 };
2379
2380 int __init tcp4_proc_init(void)
2381 {
2382 return register_pernet_subsys(&tcp4_net_ops);
2383 }
2384
2385 void tcp4_proc_exit(void)
2386 {
2387 unregister_pernet_subsys(&tcp4_net_ops);
2388 }
2389 #endif /* CONFIG_PROC_FS */
2390
2391 struct proto tcp_prot = {
2392 .name = "TCP",
2393 .owner = THIS_MODULE,
2394 .close = tcp_close,
2395 .connect = tcp_v4_connect,
2396 .disconnect = tcp_disconnect,
2397 .accept = inet_csk_accept,
2398 .ioctl = tcp_ioctl,
2399 .init = tcp_v4_init_sock,
2400 .destroy = tcp_v4_destroy_sock,
2401 .shutdown = tcp_shutdown,
2402 .setsockopt = tcp_setsockopt,
2403 .getsockopt = tcp_getsockopt,
2404 .recvmsg = tcp_recvmsg,
2405 .sendmsg = tcp_sendmsg,
2406 .sendpage = tcp_sendpage,
2407 .backlog_rcv = tcp_v4_do_rcv,
2408 .release_cb = tcp_release_cb,
2409 .mtu_reduced = tcp_v4_mtu_reduced,
2410 .hash = inet_hash,
2411 .unhash = inet_unhash,
2412 .get_port = inet_csk_get_port,
2413 .enter_memory_pressure = tcp_enter_memory_pressure,
2414 .stream_memory_free = tcp_stream_memory_free,
2415 .sockets_allocated = &tcp_sockets_allocated,
2416 .orphan_count = &tcp_orphan_count,
2417 .memory_allocated = &tcp_memory_allocated,
2418 .memory_pressure = &tcp_memory_pressure,
2419 .sysctl_mem = sysctl_tcp_mem,
2420 .sysctl_wmem = sysctl_tcp_wmem,
2421 .sysctl_rmem = sysctl_tcp_rmem,
2422 .max_header = MAX_TCP_HEADER,
2423 .obj_size = sizeof(struct tcp_sock),
2424 .slab_flags = SLAB_DESTROY_BY_RCU,
2425 .twsk_prot = &tcp_timewait_sock_ops,
2426 .rsk_prot = &tcp_request_sock_ops,
2427 .h.hashinfo = &tcp_hashinfo,
2428 .no_autobind = true,
2429 #ifdef CONFIG_COMPAT
2430 .compat_setsockopt = compat_tcp_setsockopt,
2431 .compat_getsockopt = compat_tcp_getsockopt,
2432 #endif
2433 #ifdef CONFIG_MEMCG_KMEM
2434 .init_cgroup = tcp_init_cgroup,
2435 .destroy_cgroup = tcp_destroy_cgroup,
2436 .proto_cgroup = tcp_proto_cgroup,
2437 #endif
2438 };
2439 EXPORT_SYMBOL(tcp_prot);
2440
2441 static int __net_init tcp_sk_init(struct net *net)
2442 {
2443 net->ipv4.sysctl_tcp_ecn = 2;
2444 return 0;
2445 }
2446
2447 static void __net_exit tcp_sk_exit(struct net *net)
2448 {
2449 }
2450
2451 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2452 {
2453 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2454 }
2455
2456 static struct pernet_operations __net_initdata tcp_sk_ops = {
2457 .init = tcp_sk_init,
2458 .exit = tcp_sk_exit,
2459 .exit_batch = tcp_sk_exit_batch,
2460 };
2461
2462 void __init tcp_v4_init(void)
2463 {
2464 inet_hashinfo_init(&tcp_hashinfo);
2465 if (register_pernet_subsys(&tcp_sk_ops))
2466 panic("Failed to create the TCP control socket.\n");
2467 }
This page took 0.12834 seconds and 5 git commands to generate.