Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83
84 #include <crypto/hash.h>
85 #include <linux/scatterlist.h>
86
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91 #ifdef CONFIG_TCP_MD5SIG
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, const struct tcphdr *th);
94 #endif
95
96 struct inet_hashinfo tcp_hashinfo;
97 EXPORT_SYMBOL(tcp_hashinfo);
98
99 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
100 {
101 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
102 ip_hdr(skb)->saddr,
103 tcp_hdr(skb)->dest,
104 tcp_hdr(skb)->source);
105 }
106
107 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108 {
109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
110 struct tcp_sock *tp = tcp_sk(sk);
111
112 /* With PAWS, it is safe from the viewpoint
113 of data integrity. Even without PAWS it is safe provided sequence
114 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
115
116 Actually, the idea is close to VJ's one, only timestamp cache is
117 held not per host, but per port pair and TW bucket is used as state
118 holder.
119
120 If TW bucket has been already destroyed we fall back to VJ's scheme
121 and use initial timestamp retrieved from peer table.
122 */
123 if (tcptw->tw_ts_recent_stamp &&
124 (!twp || (sysctl_tcp_tw_reuse &&
125 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
126 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
127 if (tp->write_seq == 0)
128 tp->write_seq = 1;
129 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
130 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
131 sock_hold(sktw);
132 return 1;
133 }
134
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
138
139 /* This will initiate an outgoing connection. */
140 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
141 {
142 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
143 struct inet_sock *inet = inet_sk(sk);
144 struct tcp_sock *tp = tcp_sk(sk);
145 __be16 orig_sport, orig_dport;
146 __be32 daddr, nexthop;
147 struct flowi4 *fl4;
148 struct rtable *rt;
149 int err;
150 struct ip_options_rcu *inet_opt;
151
152 if (addr_len < sizeof(struct sockaddr_in))
153 return -EINVAL;
154
155 if (usin->sin_family != AF_INET)
156 return -EAFNOSUPPORT;
157
158 nexthop = daddr = usin->sin_addr.s_addr;
159 inet_opt = rcu_dereference_protected(inet->inet_opt,
160 lockdep_sock_is_held(sk));
161 if (inet_opt && inet_opt->opt.srr) {
162 if (!daddr)
163 return -EINVAL;
164 nexthop = inet_opt->opt.faddr;
165 }
166
167 orig_sport = inet->inet_sport;
168 orig_dport = usin->sin_port;
169 fl4 = &inet->cork.fl.u.ip4;
170 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 orig_sport, orig_dport, sk);
174 if (IS_ERR(rt)) {
175 err = PTR_ERR(rt);
176 if (err == -ENETUNREACH)
177 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178 return err;
179 }
180
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182 ip_rt_put(rt);
183 return -ENETUNREACH;
184 }
185
186 if (!inet_opt || !inet_opt->opt.srr)
187 daddr = fl4->daddr;
188
189 if (!inet->inet_saddr)
190 inet->inet_saddr = fl4->saddr;
191 sk_rcv_saddr_set(sk, inet->inet_saddr);
192
193 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
197 if (likely(!tp->repair))
198 tp->write_seq = 0;
199 }
200
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
203 tcp_fetch_timewait_stamp(sk, &rt->dst);
204
205 inet->inet_dport = usin->sin_port;
206 sk_daddr_set(sk, daddr);
207
208 inet_csk(sk)->icsk_ext_hdr_len = 0;
209 if (inet_opt)
210 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
211
212 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
213
214 /* Socket identity is still unknown (sport may be zero).
215 * However we set state to SYN-SENT and not releasing socket
216 * lock select source port, enter ourselves into the hash tables and
217 * complete initialization after this.
218 */
219 tcp_set_state(sk, TCP_SYN_SENT);
220 err = inet_hash_connect(&tcp_death_row, sk);
221 if (err)
222 goto failure;
223
224 sk_set_txhash(sk);
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 ip_sk_accept_pmtu(sk) &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
293
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
298 */
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
301 }
302 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
303
304 static void do_redirect(struct sk_buff *skb, struct sock *sk)
305 {
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310 }
311
312
313 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
314 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
315 {
316 struct request_sock *req = inet_reqsk(sk);
317 struct net *net = sock_net(sk);
318
319 /* ICMPs are not backlogged, hence we cannot get
320 * an established socket here.
321 */
322 if (seq != tcp_rsk(req)->snt_isn) {
323 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
324 } else if (abort) {
325 /*
326 * Still in SYN_RECV, just remove it silently.
327 * There is no good way to pass the error to the newly
328 * created socket, and POSIX does not want network
329 * errors returned from accept().
330 */
331 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
332 tcp_listendrop(req->rsk_listener);
333 }
334 reqsk_put(req);
335 }
336 EXPORT_SYMBOL(tcp_req_err);
337
338 /*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355 {
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 struct request_sock *fastopen;
366 __u32 seq, snd_una;
367 __u32 remaining;
368 int err;
369 struct net *net = dev_net(icmp_skb->dev);
370
371 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
372 th->dest, iph->saddr, ntohs(th->source),
373 inet_iif(icmp_skb));
374 if (!sk) {
375 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
376 return;
377 }
378 if (sk->sk_state == TCP_TIME_WAIT) {
379 inet_twsk_put(inet_twsk(sk));
380 return;
381 }
382 seq = ntohl(th->seq);
383 if (sk->sk_state == TCP_NEW_SYN_RECV)
384 return tcp_req_err(sk, seq,
385 type == ICMP_PARAMETERPROB ||
386 type == ICMP_TIME_EXCEEDED ||
387 (type == ICMP_DEST_UNREACH &&
388 (code == ICMP_NET_UNREACH ||
389 code == ICMP_HOST_UNREACH)));
390
391 bh_lock_sock(sk);
392 /* If too many ICMPs get dropped on busy
393 * servers this needs to be solved differently.
394 * We do take care of PMTU discovery (RFC1191) special case :
395 * we can receive locally generated ICMP messages while socket is held.
396 */
397 if (sock_owned_by_user(sk)) {
398 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
399 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
400 }
401 if (sk->sk_state == TCP_CLOSE)
402 goto out;
403
404 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
405 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
406 goto out;
407 }
408
409 icsk = inet_csk(sk);
410 tp = tcp_sk(sk);
411 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
412 fastopen = tp->fastopen_rsk;
413 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
414 if (sk->sk_state != TCP_LISTEN &&
415 !between(seq, snd_una, tp->snd_nxt)) {
416 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
417 goto out;
418 }
419
420 switch (type) {
421 case ICMP_REDIRECT:
422 do_redirect(icmp_skb, sk);
423 goto out;
424 case ICMP_SOURCE_QUENCH:
425 /* Just silently ignore these. */
426 goto out;
427 case ICMP_PARAMETERPROB:
428 err = EPROTO;
429 break;
430 case ICMP_DEST_UNREACH:
431 if (code > NR_ICMP_UNREACH)
432 goto out;
433
434 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
435 /* We are not interested in TCP_LISTEN and open_requests
436 * (SYN-ACKs send out by Linux are always <576bytes so
437 * they should go through unfragmented).
438 */
439 if (sk->sk_state == TCP_LISTEN)
440 goto out;
441
442 tp->mtu_info = info;
443 if (!sock_owned_by_user(sk)) {
444 tcp_v4_mtu_reduced(sk);
445 } else {
446 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
447 sock_hold(sk);
448 }
449 goto out;
450 }
451
452 err = icmp_err_convert[code].errno;
453 /* check if icmp_skb allows revert of backoff
454 * (see draft-zimmermann-tcp-lcd) */
455 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
456 break;
457 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
458 !icsk->icsk_backoff || fastopen)
459 break;
460
461 if (sock_owned_by_user(sk))
462 break;
463
464 icsk->icsk_backoff--;
465 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
466 TCP_TIMEOUT_INIT;
467 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
468
469 skb = tcp_write_queue_head(sk);
470 BUG_ON(!skb);
471
472 remaining = icsk->icsk_rto -
473 min(icsk->icsk_rto,
474 tcp_time_stamp - tcp_skb_timestamp(skb));
475
476 if (remaining) {
477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
478 remaining, TCP_RTO_MAX);
479 } else {
480 /* RTO revert clocked out retransmission.
481 * Will retransmit now */
482 tcp_retransmit_timer(sk);
483 }
484
485 break;
486 case ICMP_TIME_EXCEEDED:
487 err = EHOSTUNREACH;
488 break;
489 default:
490 goto out;
491 }
492
493 switch (sk->sk_state) {
494 case TCP_SYN_SENT:
495 case TCP_SYN_RECV:
496 /* Only in fast or simultaneous open. If a fast open socket is
497 * is already accepted it is treated as a connected one below.
498 */
499 if (fastopen && !fastopen->sk)
500 break;
501
502 if (!sock_owned_by_user(sk)) {
503 sk->sk_err = err;
504
505 sk->sk_error_report(sk);
506
507 tcp_done(sk);
508 } else {
509 sk->sk_err_soft = err;
510 }
511 goto out;
512 }
513
514 /* If we've already connected we will keep trying
515 * until we time out, or the user gives up.
516 *
517 * rfc1122 4.2.3.9 allows to consider as hard errors
518 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
519 * but it is obsoleted by pmtu discovery).
520 *
521 * Note, that in modern internet, where routing is unreliable
522 * and in each dark corner broken firewalls sit, sending random
523 * errors ordered by their masters even this two messages finally lose
524 * their original sense (even Linux sends invalid PORT_UNREACHs)
525 *
526 * Now we are in compliance with RFCs.
527 * --ANK (980905)
528 */
529
530 inet = inet_sk(sk);
531 if (!sock_owned_by_user(sk) && inet->recverr) {
532 sk->sk_err = err;
533 sk->sk_error_report(sk);
534 } else { /* Only an error on timeout */
535 sk->sk_err_soft = err;
536 }
537
538 out:
539 bh_unlock_sock(sk);
540 sock_put(sk);
541 }
542
543 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
544 {
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 /*
569 * This routine will send an RST to the other tcp.
570 *
571 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
572 * for reset.
573 * Answer: if a packet caused RST, it is not for a socket
574 * existing in our system, if it is matched to a socket,
575 * it is just duplicate segment or bug in other side's TCP.
576 * So that we build reply only basing on parameters
577 * arrived with segment.
578 * Exception: precedence violation. We do not implement it in any case.
579 */
580
581 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
582 {
583 const struct tcphdr *th = tcp_hdr(skb);
584 struct {
585 struct tcphdr th;
586 #ifdef CONFIG_TCP_MD5SIG
587 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
588 #endif
589 } rep;
590 struct ip_reply_arg arg;
591 #ifdef CONFIG_TCP_MD5SIG
592 struct tcp_md5sig_key *key = NULL;
593 const __u8 *hash_location = NULL;
594 unsigned char newhash[16];
595 int genhash;
596 struct sock *sk1 = NULL;
597 #endif
598 struct net *net;
599
600 /* Never send a reset in response to a reset. */
601 if (th->rst)
602 return;
603
604 /* If sk not NULL, it means we did a successful lookup and incoming
605 * route had to be correct. prequeue might have dropped our dst.
606 */
607 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
608 return;
609
610 /* Swap the send and the receive. */
611 memset(&rep, 0, sizeof(rep));
612 rep.th.dest = th->source;
613 rep.th.source = th->dest;
614 rep.th.doff = sizeof(struct tcphdr) / 4;
615 rep.th.rst = 1;
616
617 if (th->ack) {
618 rep.th.seq = th->ack_seq;
619 } else {
620 rep.th.ack = 1;
621 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
622 skb->len - (th->doff << 2));
623 }
624
625 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
628
629 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
630 #ifdef CONFIG_TCP_MD5SIG
631 rcu_read_lock();
632 hash_location = tcp_parse_md5sig_option(th);
633 if (sk && sk_fullsock(sk)) {
634 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
635 &ip_hdr(skb)->saddr, AF_INET);
636 } else if (hash_location) {
637 /*
638 * active side is lost. Try to find listening socket through
639 * source port, and then find md5 key through listening socket.
640 * we are not loose security here:
641 * Incoming packet is checked with md5 hash with finding key,
642 * no RST generated if md5 hash doesn't match.
643 */
644 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
645 ip_hdr(skb)->saddr,
646 th->source, ip_hdr(skb)->daddr,
647 ntohs(th->source), inet_iif(skb));
648 /* don't send rst if it can't find key */
649 if (!sk1)
650 goto out;
651
652 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
653 &ip_hdr(skb)->saddr, AF_INET);
654 if (!key)
655 goto out;
656
657
658 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
659 if (genhash || memcmp(hash_location, newhash, 16) != 0)
660 goto out;
661
662 }
663
664 if (key) {
665 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
666 (TCPOPT_NOP << 16) |
667 (TCPOPT_MD5SIG << 8) |
668 TCPOLEN_MD5SIG);
669 /* Update length and the length the header thinks exists */
670 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
671 rep.th.doff = arg.iov[0].iov_len / 4;
672
673 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
674 key, ip_hdr(skb)->saddr,
675 ip_hdr(skb)->daddr, &rep.th);
676 }
677 #endif
678 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
679 ip_hdr(skb)->saddr, /* XXX */
680 arg.iov[0].iov_len, IPPROTO_TCP, 0);
681 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
682 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
683
684 /* When socket is gone, all binding information is lost.
685 * routing might fail in this case. No choice here, if we choose to force
686 * input interface, we will misroute in case of asymmetric route.
687 */
688 if (sk)
689 arg.bound_dev_if = sk->sk_bound_dev_if;
690
691 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
692 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
693
694 arg.tos = ip_hdr(skb)->tos;
695 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
696 skb, &TCP_SKB_CB(skb)->header.h4.opt,
697 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
698 &arg, arg.iov[0].iov_len);
699
700 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
701 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
702
703 #ifdef CONFIG_TCP_MD5SIG
704 out:
705 rcu_read_unlock();
706 #endif
707 }
708
709 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
710 outside socket context is ugly, certainly. What can I do?
711 */
712
713 static void tcp_v4_send_ack(struct net *net,
714 struct sk_buff *skb, u32 seq, u32 ack,
715 u32 win, u32 tsval, u32 tsecr, int oif,
716 struct tcp_md5sig_key *key,
717 int reply_flags, u8 tos)
718 {
719 const struct tcphdr *th = tcp_hdr(skb);
720 struct {
721 struct tcphdr th;
722 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
723 #ifdef CONFIG_TCP_MD5SIG
724 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
725 #endif
726 ];
727 } rep;
728 struct ip_reply_arg arg;
729
730 memset(&rep.th, 0, sizeof(struct tcphdr));
731 memset(&arg, 0, sizeof(arg));
732
733 arg.iov[0].iov_base = (unsigned char *)&rep;
734 arg.iov[0].iov_len = sizeof(rep.th);
735 if (tsecr) {
736 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
737 (TCPOPT_TIMESTAMP << 8) |
738 TCPOLEN_TIMESTAMP);
739 rep.opt[1] = htonl(tsval);
740 rep.opt[2] = htonl(tsecr);
741 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
742 }
743
744 /* Swap the send and the receive. */
745 rep.th.dest = th->source;
746 rep.th.source = th->dest;
747 rep.th.doff = arg.iov[0].iov_len / 4;
748 rep.th.seq = htonl(seq);
749 rep.th.ack_seq = htonl(ack);
750 rep.th.ack = 1;
751 rep.th.window = htons(win);
752
753 #ifdef CONFIG_TCP_MD5SIG
754 if (key) {
755 int offset = (tsecr) ? 3 : 0;
756
757 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
758 (TCPOPT_NOP << 16) |
759 (TCPOPT_MD5SIG << 8) |
760 TCPOLEN_MD5SIG);
761 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
762 rep.th.doff = arg.iov[0].iov_len/4;
763
764 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
765 key, ip_hdr(skb)->saddr,
766 ip_hdr(skb)->daddr, &rep.th);
767 }
768 #endif
769 arg.flags = reply_flags;
770 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
771 ip_hdr(skb)->saddr, /* XXX */
772 arg.iov[0].iov_len, IPPROTO_TCP, 0);
773 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
774 if (oif)
775 arg.bound_dev_if = oif;
776 arg.tos = tos;
777 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
778 skb, &TCP_SKB_CB(skb)->header.h4.opt,
779 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
780 &arg, arg.iov[0].iov_len);
781
782 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
783 }
784
785 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
786 {
787 struct inet_timewait_sock *tw = inet_twsk(sk);
788 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
789
790 tcp_v4_send_ack(sock_net(sk), skb,
791 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
792 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
793 tcp_time_stamp + tcptw->tw_ts_offset,
794 tcptw->tw_ts_recent,
795 tw->tw_bound_dev_if,
796 tcp_twsk_md5_key(tcptw),
797 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
798 tw->tw_tos
799 );
800
801 inet_twsk_put(tw);
802 }
803
804 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
805 struct request_sock *req)
806 {
807 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
808 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
809 */
810 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
811 tcp_sk(sk)->snd_nxt;
812
813 tcp_v4_send_ack(sock_net(sk), skb, seq,
814 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
815 tcp_time_stamp,
816 req->ts_recent,
817 0,
818 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
819 AF_INET),
820 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
821 ip_hdr(skb)->tos);
822 }
823
824 /*
825 * Send a SYN-ACK after having received a SYN.
826 * This still operates on a request_sock only, not on a big
827 * socket.
828 */
829 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
830 struct flowi *fl,
831 struct request_sock *req,
832 struct tcp_fastopen_cookie *foc,
833 enum tcp_synack_type synack_type)
834 {
835 const struct inet_request_sock *ireq = inet_rsk(req);
836 struct flowi4 fl4;
837 int err = -1;
838 struct sk_buff *skb;
839
840 /* First, grab a route. */
841 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
842 return -1;
843
844 skb = tcp_make_synack(sk, dst, req, foc, synack_type);
845
846 if (skb) {
847 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
848
849 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
850 ireq->ir_rmt_addr,
851 ireq->opt);
852 err = net_xmit_eval(err);
853 }
854
855 return err;
856 }
857
858 /*
859 * IPv4 request_sock destructor.
860 */
861 static void tcp_v4_reqsk_destructor(struct request_sock *req)
862 {
863 kfree(inet_rsk(req)->opt);
864 }
865
866 #ifdef CONFIG_TCP_MD5SIG
867 /*
868 * RFC2385 MD5 checksumming requires a mapping of
869 * IP address->MD5 Key.
870 * We need to maintain these in the sk structure.
871 */
872
873 /* Find the Key structure for an address. */
874 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
875 const union tcp_md5_addr *addr,
876 int family)
877 {
878 const struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp_md5sig_key *key;
880 unsigned int size = sizeof(struct in_addr);
881 const struct tcp_md5sig_info *md5sig;
882
883 /* caller either holds rcu_read_lock() or socket lock */
884 md5sig = rcu_dereference_check(tp->md5sig_info,
885 lockdep_sock_is_held(sk));
886 if (!md5sig)
887 return NULL;
888 #if IS_ENABLED(CONFIG_IPV6)
889 if (family == AF_INET6)
890 size = sizeof(struct in6_addr);
891 #endif
892 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
893 if (key->family != family)
894 continue;
895 if (!memcmp(&key->addr, addr, size))
896 return key;
897 }
898 return NULL;
899 }
900 EXPORT_SYMBOL(tcp_md5_do_lookup);
901
902 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
903 const struct sock *addr_sk)
904 {
905 const union tcp_md5_addr *addr;
906
907 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
908 return tcp_md5_do_lookup(sk, addr, AF_INET);
909 }
910 EXPORT_SYMBOL(tcp_v4_md5_lookup);
911
912 /* This can be called on a newly created socket, from other files */
913 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
914 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
915 {
916 /* Add Key to the list */
917 struct tcp_md5sig_key *key;
918 struct tcp_sock *tp = tcp_sk(sk);
919 struct tcp_md5sig_info *md5sig;
920
921 key = tcp_md5_do_lookup(sk, addr, family);
922 if (key) {
923 /* Pre-existing entry - just update that one. */
924 memcpy(key->key, newkey, newkeylen);
925 key->keylen = newkeylen;
926 return 0;
927 }
928
929 md5sig = rcu_dereference_protected(tp->md5sig_info,
930 lockdep_sock_is_held(sk));
931 if (!md5sig) {
932 md5sig = kmalloc(sizeof(*md5sig), gfp);
933 if (!md5sig)
934 return -ENOMEM;
935
936 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
937 INIT_HLIST_HEAD(&md5sig->head);
938 rcu_assign_pointer(tp->md5sig_info, md5sig);
939 }
940
941 key = sock_kmalloc(sk, sizeof(*key), gfp);
942 if (!key)
943 return -ENOMEM;
944 if (!tcp_alloc_md5sig_pool()) {
945 sock_kfree_s(sk, key, sizeof(*key));
946 return -ENOMEM;
947 }
948
949 memcpy(key->key, newkey, newkeylen);
950 key->keylen = newkeylen;
951 key->family = family;
952 memcpy(&key->addr, addr,
953 (family == AF_INET6) ? sizeof(struct in6_addr) :
954 sizeof(struct in_addr));
955 hlist_add_head_rcu(&key->node, &md5sig->head);
956 return 0;
957 }
958 EXPORT_SYMBOL(tcp_md5_do_add);
959
960 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
961 {
962 struct tcp_md5sig_key *key;
963
964 key = tcp_md5_do_lookup(sk, addr, family);
965 if (!key)
966 return -ENOENT;
967 hlist_del_rcu(&key->node);
968 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
969 kfree_rcu(key, rcu);
970 return 0;
971 }
972 EXPORT_SYMBOL(tcp_md5_do_del);
973
974 static void tcp_clear_md5_list(struct sock *sk)
975 {
976 struct tcp_sock *tp = tcp_sk(sk);
977 struct tcp_md5sig_key *key;
978 struct hlist_node *n;
979 struct tcp_md5sig_info *md5sig;
980
981 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
982
983 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
984 hlist_del_rcu(&key->node);
985 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
986 kfree_rcu(key, rcu);
987 }
988 }
989
990 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
991 int optlen)
992 {
993 struct tcp_md5sig cmd;
994 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
995
996 if (optlen < sizeof(cmd))
997 return -EINVAL;
998
999 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1000 return -EFAULT;
1001
1002 if (sin->sin_family != AF_INET)
1003 return -EINVAL;
1004
1005 if (!cmd.tcpm_keylen)
1006 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1007 AF_INET);
1008
1009 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1010 return -EINVAL;
1011
1012 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1013 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1014 GFP_KERNEL);
1015 }
1016
1017 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1018 __be32 daddr, __be32 saddr, int nbytes)
1019 {
1020 struct tcp4_pseudohdr *bp;
1021 struct scatterlist sg;
1022
1023 bp = &hp->md5_blk.ip4;
1024
1025 /*
1026 * 1. the TCP pseudo-header (in the order: source IP address,
1027 * destination IP address, zero-padded protocol number, and
1028 * segment length)
1029 */
1030 bp->saddr = saddr;
1031 bp->daddr = daddr;
1032 bp->pad = 0;
1033 bp->protocol = IPPROTO_TCP;
1034 bp->len = cpu_to_be16(nbytes);
1035
1036 sg_init_one(&sg, bp, sizeof(*bp));
1037 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp));
1038 return crypto_ahash_update(hp->md5_req);
1039 }
1040
1041 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1042 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1043 {
1044 struct tcp_md5sig_pool *hp;
1045 struct ahash_request *req;
1046
1047 hp = tcp_get_md5sig_pool();
1048 if (!hp)
1049 goto clear_hash_noput;
1050 req = hp->md5_req;
1051
1052 if (crypto_ahash_init(req))
1053 goto clear_hash;
1054 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1055 goto clear_hash;
1056 if (tcp_md5_hash_header(hp, th))
1057 goto clear_hash;
1058 if (tcp_md5_hash_key(hp, key))
1059 goto clear_hash;
1060 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1061 if (crypto_ahash_final(req))
1062 goto clear_hash;
1063
1064 tcp_put_md5sig_pool();
1065 return 0;
1066
1067 clear_hash:
1068 tcp_put_md5sig_pool();
1069 clear_hash_noput:
1070 memset(md5_hash, 0, 16);
1071 return 1;
1072 }
1073
1074 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1075 const struct sock *sk,
1076 const struct sk_buff *skb)
1077 {
1078 struct tcp_md5sig_pool *hp;
1079 struct ahash_request *req;
1080 const struct tcphdr *th = tcp_hdr(skb);
1081 __be32 saddr, daddr;
1082
1083 if (sk) { /* valid for establish/request sockets */
1084 saddr = sk->sk_rcv_saddr;
1085 daddr = sk->sk_daddr;
1086 } else {
1087 const struct iphdr *iph = ip_hdr(skb);
1088 saddr = iph->saddr;
1089 daddr = iph->daddr;
1090 }
1091
1092 hp = tcp_get_md5sig_pool();
1093 if (!hp)
1094 goto clear_hash_noput;
1095 req = hp->md5_req;
1096
1097 if (crypto_ahash_init(req))
1098 goto clear_hash;
1099
1100 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1101 goto clear_hash;
1102 if (tcp_md5_hash_header(hp, th))
1103 goto clear_hash;
1104 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1105 goto clear_hash;
1106 if (tcp_md5_hash_key(hp, key))
1107 goto clear_hash;
1108 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1109 if (crypto_ahash_final(req))
1110 goto clear_hash;
1111
1112 tcp_put_md5sig_pool();
1113 return 0;
1114
1115 clear_hash:
1116 tcp_put_md5sig_pool();
1117 clear_hash_noput:
1118 memset(md5_hash, 0, 16);
1119 return 1;
1120 }
1121 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1122
1123 #endif
1124
1125 /* Called with rcu_read_lock() */
1126 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1127 const struct sk_buff *skb)
1128 {
1129 #ifdef CONFIG_TCP_MD5SIG
1130 /*
1131 * This gets called for each TCP segment that arrives
1132 * so we want to be efficient.
1133 * We have 3 drop cases:
1134 * o No MD5 hash and one expected.
1135 * o MD5 hash and we're not expecting one.
1136 * o MD5 hash and its wrong.
1137 */
1138 const __u8 *hash_location = NULL;
1139 struct tcp_md5sig_key *hash_expected;
1140 const struct iphdr *iph = ip_hdr(skb);
1141 const struct tcphdr *th = tcp_hdr(skb);
1142 int genhash;
1143 unsigned char newhash[16];
1144
1145 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1146 AF_INET);
1147 hash_location = tcp_parse_md5sig_option(th);
1148
1149 /* We've parsed the options - do we have a hash? */
1150 if (!hash_expected && !hash_location)
1151 return false;
1152
1153 if (hash_expected && !hash_location) {
1154 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1155 return true;
1156 }
1157
1158 if (!hash_expected && hash_location) {
1159 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1160 return true;
1161 }
1162
1163 /* Okay, so this is hash_expected and hash_location -
1164 * so we need to calculate the checksum.
1165 */
1166 genhash = tcp_v4_md5_hash_skb(newhash,
1167 hash_expected,
1168 NULL, skb);
1169
1170 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1171 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1172 &iph->saddr, ntohs(th->source),
1173 &iph->daddr, ntohs(th->dest),
1174 genhash ? " tcp_v4_calc_md5_hash failed"
1175 : "");
1176 return true;
1177 }
1178 return false;
1179 #endif
1180 return false;
1181 }
1182
1183 static void tcp_v4_init_req(struct request_sock *req,
1184 const struct sock *sk_listener,
1185 struct sk_buff *skb)
1186 {
1187 struct inet_request_sock *ireq = inet_rsk(req);
1188
1189 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1190 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1191 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1192 ireq->opt = tcp_v4_save_options(skb);
1193 }
1194
1195 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1196 struct flowi *fl,
1197 const struct request_sock *req,
1198 bool *strict)
1199 {
1200 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1201
1202 if (strict) {
1203 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1204 *strict = true;
1205 else
1206 *strict = false;
1207 }
1208
1209 return dst;
1210 }
1211
1212 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1213 .family = PF_INET,
1214 .obj_size = sizeof(struct tcp_request_sock),
1215 .rtx_syn_ack = tcp_rtx_synack,
1216 .send_ack = tcp_v4_reqsk_send_ack,
1217 .destructor = tcp_v4_reqsk_destructor,
1218 .send_reset = tcp_v4_send_reset,
1219 .syn_ack_timeout = tcp_syn_ack_timeout,
1220 };
1221
1222 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1223 .mss_clamp = TCP_MSS_DEFAULT,
1224 #ifdef CONFIG_TCP_MD5SIG
1225 .req_md5_lookup = tcp_v4_md5_lookup,
1226 .calc_md5_hash = tcp_v4_md5_hash_skb,
1227 #endif
1228 .init_req = tcp_v4_init_req,
1229 #ifdef CONFIG_SYN_COOKIES
1230 .cookie_init_seq = cookie_v4_init_sequence,
1231 #endif
1232 .route_req = tcp_v4_route_req,
1233 .init_seq = tcp_v4_init_sequence,
1234 .send_synack = tcp_v4_send_synack,
1235 };
1236
1237 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1238 {
1239 /* Never answer to SYNs send to broadcast or multicast */
1240 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1241 goto drop;
1242
1243 return tcp_conn_request(&tcp_request_sock_ops,
1244 &tcp_request_sock_ipv4_ops, sk, skb);
1245
1246 drop:
1247 tcp_listendrop(sk);
1248 return 0;
1249 }
1250 EXPORT_SYMBOL(tcp_v4_conn_request);
1251
1252
1253 /*
1254 * The three way handshake has completed - we got a valid synack -
1255 * now create the new socket.
1256 */
1257 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1258 struct request_sock *req,
1259 struct dst_entry *dst,
1260 struct request_sock *req_unhash,
1261 bool *own_req)
1262 {
1263 struct inet_request_sock *ireq;
1264 struct inet_sock *newinet;
1265 struct tcp_sock *newtp;
1266 struct sock *newsk;
1267 #ifdef CONFIG_TCP_MD5SIG
1268 struct tcp_md5sig_key *key;
1269 #endif
1270 struct ip_options_rcu *inet_opt;
1271
1272 if (sk_acceptq_is_full(sk))
1273 goto exit_overflow;
1274
1275 newsk = tcp_create_openreq_child(sk, req, skb);
1276 if (!newsk)
1277 goto exit_nonewsk;
1278
1279 newsk->sk_gso_type = SKB_GSO_TCPV4;
1280 inet_sk_rx_dst_set(newsk, skb);
1281
1282 newtp = tcp_sk(newsk);
1283 newinet = inet_sk(newsk);
1284 ireq = inet_rsk(req);
1285 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1286 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1287 newsk->sk_bound_dev_if = ireq->ir_iif;
1288 newinet->inet_saddr = ireq->ir_loc_addr;
1289 inet_opt = ireq->opt;
1290 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1291 ireq->opt = NULL;
1292 newinet->mc_index = inet_iif(skb);
1293 newinet->mc_ttl = ip_hdr(skb)->ttl;
1294 newinet->rcv_tos = ip_hdr(skb)->tos;
1295 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1296 if (inet_opt)
1297 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1298 newinet->inet_id = newtp->write_seq ^ jiffies;
1299
1300 if (!dst) {
1301 dst = inet_csk_route_child_sock(sk, newsk, req);
1302 if (!dst)
1303 goto put_and_exit;
1304 } else {
1305 /* syncookie case : see end of cookie_v4_check() */
1306 }
1307 sk_setup_caps(newsk, dst);
1308
1309 tcp_ca_openreq_child(newsk, dst);
1310
1311 tcp_sync_mss(newsk, dst_mtu(dst));
1312 newtp->advmss = dst_metric_advmss(dst);
1313 if (tcp_sk(sk)->rx_opt.user_mss &&
1314 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1315 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1316
1317 tcp_initialize_rcv_mss(newsk);
1318
1319 #ifdef CONFIG_TCP_MD5SIG
1320 /* Copy over the MD5 key from the original socket */
1321 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1322 AF_INET);
1323 if (key) {
1324 /*
1325 * We're using one, so create a matching key
1326 * on the newsk structure. If we fail to get
1327 * memory, then we end up not copying the key
1328 * across. Shucks.
1329 */
1330 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1331 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1332 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1333 }
1334 #endif
1335
1336 if (__inet_inherit_port(sk, newsk) < 0)
1337 goto put_and_exit;
1338 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1339 if (*own_req)
1340 tcp_move_syn(newtp, req);
1341
1342 return newsk;
1343
1344 exit_overflow:
1345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1346 exit_nonewsk:
1347 dst_release(dst);
1348 exit:
1349 tcp_listendrop(sk);
1350 return NULL;
1351 put_and_exit:
1352 inet_csk_prepare_forced_close(newsk);
1353 tcp_done(newsk);
1354 goto exit;
1355 }
1356 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1357
1358 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1359 {
1360 #ifdef CONFIG_SYN_COOKIES
1361 const struct tcphdr *th = tcp_hdr(skb);
1362
1363 if (!th->syn)
1364 sk = cookie_v4_check(sk, skb);
1365 #endif
1366 return sk;
1367 }
1368
1369 /* The socket must have it's spinlock held when we get
1370 * here, unless it is a TCP_LISTEN socket.
1371 *
1372 * We have a potential double-lock case here, so even when
1373 * doing backlog processing we use the BH locking scheme.
1374 * This is because we cannot sleep with the original spinlock
1375 * held.
1376 */
1377 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1378 {
1379 struct sock *rsk;
1380
1381 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1382 struct dst_entry *dst = sk->sk_rx_dst;
1383
1384 sock_rps_save_rxhash(sk, skb);
1385 sk_mark_napi_id(sk, skb);
1386 if (dst) {
1387 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1388 !dst->ops->check(dst, 0)) {
1389 dst_release(dst);
1390 sk->sk_rx_dst = NULL;
1391 }
1392 }
1393 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1394 return 0;
1395 }
1396
1397 if (tcp_checksum_complete(skb))
1398 goto csum_err;
1399
1400 if (sk->sk_state == TCP_LISTEN) {
1401 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1402
1403 if (!nsk)
1404 goto discard;
1405 if (nsk != sk) {
1406 sock_rps_save_rxhash(nsk, skb);
1407 sk_mark_napi_id(nsk, skb);
1408 if (tcp_child_process(sk, nsk, skb)) {
1409 rsk = nsk;
1410 goto reset;
1411 }
1412 return 0;
1413 }
1414 } else
1415 sock_rps_save_rxhash(sk, skb);
1416
1417 if (tcp_rcv_state_process(sk, skb)) {
1418 rsk = sk;
1419 goto reset;
1420 }
1421 return 0;
1422
1423 reset:
1424 tcp_v4_send_reset(rsk, skb);
1425 discard:
1426 kfree_skb(skb);
1427 /* Be careful here. If this function gets more complicated and
1428 * gcc suffers from register pressure on the x86, sk (in %ebx)
1429 * might be destroyed here. This current version compiles correctly,
1430 * but you have been warned.
1431 */
1432 return 0;
1433
1434 csum_err:
1435 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1436 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1437 goto discard;
1438 }
1439 EXPORT_SYMBOL(tcp_v4_do_rcv);
1440
1441 void tcp_v4_early_demux(struct sk_buff *skb)
1442 {
1443 const struct iphdr *iph;
1444 const struct tcphdr *th;
1445 struct sock *sk;
1446
1447 if (skb->pkt_type != PACKET_HOST)
1448 return;
1449
1450 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1451 return;
1452
1453 iph = ip_hdr(skb);
1454 th = tcp_hdr(skb);
1455
1456 if (th->doff < sizeof(struct tcphdr) / 4)
1457 return;
1458
1459 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1460 iph->saddr, th->source,
1461 iph->daddr, ntohs(th->dest),
1462 skb->skb_iif);
1463 if (sk) {
1464 skb->sk = sk;
1465 skb->destructor = sock_edemux;
1466 if (sk_fullsock(sk)) {
1467 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1468
1469 if (dst)
1470 dst = dst_check(dst, 0);
1471 if (dst &&
1472 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1473 skb_dst_set_noref(skb, dst);
1474 }
1475 }
1476 }
1477
1478 /* Packet is added to VJ-style prequeue for processing in process
1479 * context, if a reader task is waiting. Apparently, this exciting
1480 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1481 * failed somewhere. Latency? Burstiness? Well, at least now we will
1482 * see, why it failed. 8)8) --ANK
1483 *
1484 */
1485 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1486 {
1487 struct tcp_sock *tp = tcp_sk(sk);
1488
1489 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1490 return false;
1491
1492 if (skb->len <= tcp_hdrlen(skb) &&
1493 skb_queue_len(&tp->ucopy.prequeue) == 0)
1494 return false;
1495
1496 /* Before escaping RCU protected region, we need to take care of skb
1497 * dst. Prequeue is only enabled for established sockets.
1498 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1499 * Instead of doing full sk_rx_dst validity here, let's perform
1500 * an optimistic check.
1501 */
1502 if (likely(sk->sk_rx_dst))
1503 skb_dst_drop(skb);
1504 else
1505 skb_dst_force_safe(skb);
1506
1507 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1508 tp->ucopy.memory += skb->truesize;
1509 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1510 struct sk_buff *skb1;
1511
1512 BUG_ON(sock_owned_by_user(sk));
1513
1514 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1515 sk_backlog_rcv(sk, skb1);
1516 NET_INC_STATS_BH(sock_net(sk),
1517 LINUX_MIB_TCPPREQUEUEDROPPED);
1518 }
1519
1520 tp->ucopy.memory = 0;
1521 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1522 wake_up_interruptible_sync_poll(sk_sleep(sk),
1523 POLLIN | POLLRDNORM | POLLRDBAND);
1524 if (!inet_csk_ack_scheduled(sk))
1525 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1526 (3 * tcp_rto_min(sk)) / 4,
1527 TCP_RTO_MAX);
1528 }
1529 return true;
1530 }
1531 EXPORT_SYMBOL(tcp_prequeue);
1532
1533 /*
1534 * From tcp_input.c
1535 */
1536
1537 int tcp_v4_rcv(struct sk_buff *skb)
1538 {
1539 struct net *net = dev_net(skb->dev);
1540 const struct iphdr *iph;
1541 const struct tcphdr *th;
1542 bool refcounted;
1543 struct sock *sk;
1544 int ret;
1545
1546 if (skb->pkt_type != PACKET_HOST)
1547 goto discard_it;
1548
1549 /* Count it even if it's bad */
1550 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1551
1552 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1553 goto discard_it;
1554
1555 th = tcp_hdr(skb);
1556
1557 if (th->doff < sizeof(struct tcphdr) / 4)
1558 goto bad_packet;
1559 if (!pskb_may_pull(skb, th->doff * 4))
1560 goto discard_it;
1561
1562 /* An explanation is required here, I think.
1563 * Packet length and doff are validated by header prediction,
1564 * provided case of th->doff==0 is eliminated.
1565 * So, we defer the checks. */
1566
1567 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1568 goto csum_error;
1569
1570 th = tcp_hdr(skb);
1571 iph = ip_hdr(skb);
1572 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1573 * barrier() makes sure compiler wont play fool^Waliasing games.
1574 */
1575 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1576 sizeof(struct inet_skb_parm));
1577 barrier();
1578
1579 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1580 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1581 skb->len - th->doff * 4);
1582 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1583 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1584 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1585 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1586 TCP_SKB_CB(skb)->sacked = 0;
1587
1588 lookup:
1589 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1590 th->dest, &refcounted);
1591 if (!sk)
1592 goto no_tcp_socket;
1593
1594 process:
1595 if (sk->sk_state == TCP_TIME_WAIT)
1596 goto do_time_wait;
1597
1598 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1599 struct request_sock *req = inet_reqsk(sk);
1600 struct sock *nsk;
1601
1602 sk = req->rsk_listener;
1603 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1604 reqsk_put(req);
1605 goto discard_it;
1606 }
1607 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1608 inet_csk_reqsk_queue_drop_and_put(sk, req);
1609 goto lookup;
1610 }
1611 /* We own a reference on the listener, increase it again
1612 * as we might lose it too soon.
1613 */
1614 sock_hold(sk);
1615 refcounted = true;
1616 nsk = tcp_check_req(sk, skb, req, false);
1617 if (!nsk) {
1618 reqsk_put(req);
1619 goto discard_and_relse;
1620 }
1621 if (nsk == sk) {
1622 reqsk_put(req);
1623 } else if (tcp_child_process(sk, nsk, skb)) {
1624 tcp_v4_send_reset(nsk, skb);
1625 goto discard_and_relse;
1626 } else {
1627 sock_put(sk);
1628 return 0;
1629 }
1630 }
1631 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1632 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1633 goto discard_and_relse;
1634 }
1635
1636 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1637 goto discard_and_relse;
1638
1639 if (tcp_v4_inbound_md5_hash(sk, skb))
1640 goto discard_and_relse;
1641
1642 nf_reset(skb);
1643
1644 if (sk_filter(sk, skb))
1645 goto discard_and_relse;
1646
1647 skb->dev = NULL;
1648
1649 if (sk->sk_state == TCP_LISTEN) {
1650 ret = tcp_v4_do_rcv(sk, skb);
1651 goto put_and_return;
1652 }
1653
1654 sk_incoming_cpu_update(sk);
1655
1656 bh_lock_sock_nested(sk);
1657 tcp_segs_in(tcp_sk(sk), skb);
1658 ret = 0;
1659 if (!sock_owned_by_user(sk)) {
1660 if (!tcp_prequeue(sk, skb))
1661 ret = tcp_v4_do_rcv(sk, skb);
1662 } else if (unlikely(sk_add_backlog(sk, skb,
1663 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1664 bh_unlock_sock(sk);
1665 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1666 goto discard_and_relse;
1667 }
1668 bh_unlock_sock(sk);
1669
1670 put_and_return:
1671 if (refcounted)
1672 sock_put(sk);
1673
1674 return ret;
1675
1676 no_tcp_socket:
1677 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1678 goto discard_it;
1679
1680 if (tcp_checksum_complete(skb)) {
1681 csum_error:
1682 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1683 bad_packet:
1684 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1685 } else {
1686 tcp_v4_send_reset(NULL, skb);
1687 }
1688
1689 discard_it:
1690 /* Discard frame. */
1691 kfree_skb(skb);
1692 return 0;
1693
1694 discard_and_relse:
1695 sk_drops_add(sk, skb);
1696 if (refcounted)
1697 sock_put(sk);
1698 goto discard_it;
1699
1700 do_time_wait:
1701 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1702 inet_twsk_put(inet_twsk(sk));
1703 goto discard_it;
1704 }
1705
1706 if (tcp_checksum_complete(skb)) {
1707 inet_twsk_put(inet_twsk(sk));
1708 goto csum_error;
1709 }
1710 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1711 case TCP_TW_SYN: {
1712 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1713 &tcp_hashinfo, skb,
1714 __tcp_hdrlen(th),
1715 iph->saddr, th->source,
1716 iph->daddr, th->dest,
1717 inet_iif(skb));
1718 if (sk2) {
1719 inet_twsk_deschedule_put(inet_twsk(sk));
1720 sk = sk2;
1721 refcounted = false;
1722 goto process;
1723 }
1724 /* Fall through to ACK */
1725 }
1726 case TCP_TW_ACK:
1727 tcp_v4_timewait_ack(sk, skb);
1728 break;
1729 case TCP_TW_RST:
1730 tcp_v4_send_reset(sk, skb);
1731 inet_twsk_deschedule_put(inet_twsk(sk));
1732 goto discard_it;
1733 case TCP_TW_SUCCESS:;
1734 }
1735 goto discard_it;
1736 }
1737
1738 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1739 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1740 .twsk_unique = tcp_twsk_unique,
1741 .twsk_destructor= tcp_twsk_destructor,
1742 };
1743
1744 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1745 {
1746 struct dst_entry *dst = skb_dst(skb);
1747
1748 if (dst && dst_hold_safe(dst)) {
1749 sk->sk_rx_dst = dst;
1750 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1751 }
1752 }
1753 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1754
1755 const struct inet_connection_sock_af_ops ipv4_specific = {
1756 .queue_xmit = ip_queue_xmit,
1757 .send_check = tcp_v4_send_check,
1758 .rebuild_header = inet_sk_rebuild_header,
1759 .sk_rx_dst_set = inet_sk_rx_dst_set,
1760 .conn_request = tcp_v4_conn_request,
1761 .syn_recv_sock = tcp_v4_syn_recv_sock,
1762 .net_header_len = sizeof(struct iphdr),
1763 .setsockopt = ip_setsockopt,
1764 .getsockopt = ip_getsockopt,
1765 .addr2sockaddr = inet_csk_addr2sockaddr,
1766 .sockaddr_len = sizeof(struct sockaddr_in),
1767 .bind_conflict = inet_csk_bind_conflict,
1768 #ifdef CONFIG_COMPAT
1769 .compat_setsockopt = compat_ip_setsockopt,
1770 .compat_getsockopt = compat_ip_getsockopt,
1771 #endif
1772 .mtu_reduced = tcp_v4_mtu_reduced,
1773 };
1774 EXPORT_SYMBOL(ipv4_specific);
1775
1776 #ifdef CONFIG_TCP_MD5SIG
1777 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1778 .md5_lookup = tcp_v4_md5_lookup,
1779 .calc_md5_hash = tcp_v4_md5_hash_skb,
1780 .md5_parse = tcp_v4_parse_md5_keys,
1781 };
1782 #endif
1783
1784 /* NOTE: A lot of things set to zero explicitly by call to
1785 * sk_alloc() so need not be done here.
1786 */
1787 static int tcp_v4_init_sock(struct sock *sk)
1788 {
1789 struct inet_connection_sock *icsk = inet_csk(sk);
1790
1791 tcp_init_sock(sk);
1792
1793 icsk->icsk_af_ops = &ipv4_specific;
1794
1795 #ifdef CONFIG_TCP_MD5SIG
1796 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1797 #endif
1798
1799 return 0;
1800 }
1801
1802 void tcp_v4_destroy_sock(struct sock *sk)
1803 {
1804 struct tcp_sock *tp = tcp_sk(sk);
1805
1806 tcp_clear_xmit_timers(sk);
1807
1808 tcp_cleanup_congestion_control(sk);
1809
1810 /* Cleanup up the write buffer. */
1811 tcp_write_queue_purge(sk);
1812
1813 /* Cleans up our, hopefully empty, out_of_order_queue. */
1814 __skb_queue_purge(&tp->out_of_order_queue);
1815
1816 #ifdef CONFIG_TCP_MD5SIG
1817 /* Clean up the MD5 key list, if any */
1818 if (tp->md5sig_info) {
1819 tcp_clear_md5_list(sk);
1820 kfree_rcu(tp->md5sig_info, rcu);
1821 tp->md5sig_info = NULL;
1822 }
1823 #endif
1824
1825 /* Clean prequeue, it must be empty really */
1826 __skb_queue_purge(&tp->ucopy.prequeue);
1827
1828 /* Clean up a referenced TCP bind bucket. */
1829 if (inet_csk(sk)->icsk_bind_hash)
1830 inet_put_port(sk);
1831
1832 BUG_ON(tp->fastopen_rsk);
1833
1834 /* If socket is aborted during connect operation */
1835 tcp_free_fastopen_req(tp);
1836 tcp_saved_syn_free(tp);
1837
1838 sk_sockets_allocated_dec(sk);
1839
1840 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1841 sock_release_memcg(sk);
1842 }
1843 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1844
1845 #ifdef CONFIG_PROC_FS
1846 /* Proc filesystem TCP sock list dumping. */
1847
1848 /*
1849 * Get next listener socket follow cur. If cur is NULL, get first socket
1850 * starting from bucket given in st->bucket; when st->bucket is zero the
1851 * very first socket in the hash table is returned.
1852 */
1853 static void *listening_get_next(struct seq_file *seq, void *cur)
1854 {
1855 struct tcp_iter_state *st = seq->private;
1856 struct net *net = seq_file_net(seq);
1857 struct inet_listen_hashbucket *ilb;
1858 struct inet_connection_sock *icsk;
1859 struct sock *sk = cur;
1860
1861 if (!sk) {
1862 get_head:
1863 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1864 spin_lock_bh(&ilb->lock);
1865 sk = sk_head(&ilb->head);
1866 st->offset = 0;
1867 goto get_sk;
1868 }
1869 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1870 ++st->num;
1871 ++st->offset;
1872
1873 sk = sk_next(sk);
1874 get_sk:
1875 sk_for_each_from(sk) {
1876 if (!net_eq(sock_net(sk), net))
1877 continue;
1878 if (sk->sk_family == st->family)
1879 return sk;
1880 icsk = inet_csk(sk);
1881 }
1882 spin_unlock_bh(&ilb->lock);
1883 st->offset = 0;
1884 if (++st->bucket < INET_LHTABLE_SIZE)
1885 goto get_head;
1886 return NULL;
1887 }
1888
1889 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1890 {
1891 struct tcp_iter_state *st = seq->private;
1892 void *rc;
1893
1894 st->bucket = 0;
1895 st->offset = 0;
1896 rc = listening_get_next(seq, NULL);
1897
1898 while (rc && *pos) {
1899 rc = listening_get_next(seq, rc);
1900 --*pos;
1901 }
1902 return rc;
1903 }
1904
1905 static inline bool empty_bucket(const struct tcp_iter_state *st)
1906 {
1907 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1908 }
1909
1910 /*
1911 * Get first established socket starting from bucket given in st->bucket.
1912 * If st->bucket is zero, the very first socket in the hash is returned.
1913 */
1914 static void *established_get_first(struct seq_file *seq)
1915 {
1916 struct tcp_iter_state *st = seq->private;
1917 struct net *net = seq_file_net(seq);
1918 void *rc = NULL;
1919
1920 st->offset = 0;
1921 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1922 struct sock *sk;
1923 struct hlist_nulls_node *node;
1924 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1925
1926 /* Lockless fast path for the common case of empty buckets */
1927 if (empty_bucket(st))
1928 continue;
1929
1930 spin_lock_bh(lock);
1931 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1932 if (sk->sk_family != st->family ||
1933 !net_eq(sock_net(sk), net)) {
1934 continue;
1935 }
1936 rc = sk;
1937 goto out;
1938 }
1939 spin_unlock_bh(lock);
1940 }
1941 out:
1942 return rc;
1943 }
1944
1945 static void *established_get_next(struct seq_file *seq, void *cur)
1946 {
1947 struct sock *sk = cur;
1948 struct hlist_nulls_node *node;
1949 struct tcp_iter_state *st = seq->private;
1950 struct net *net = seq_file_net(seq);
1951
1952 ++st->num;
1953 ++st->offset;
1954
1955 sk = sk_nulls_next(sk);
1956
1957 sk_nulls_for_each_from(sk, node) {
1958 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1959 return sk;
1960 }
1961
1962 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1963 ++st->bucket;
1964 return established_get_first(seq);
1965 }
1966
1967 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1968 {
1969 struct tcp_iter_state *st = seq->private;
1970 void *rc;
1971
1972 st->bucket = 0;
1973 rc = established_get_first(seq);
1974
1975 while (rc && pos) {
1976 rc = established_get_next(seq, rc);
1977 --pos;
1978 }
1979 return rc;
1980 }
1981
1982 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1983 {
1984 void *rc;
1985 struct tcp_iter_state *st = seq->private;
1986
1987 st->state = TCP_SEQ_STATE_LISTENING;
1988 rc = listening_get_idx(seq, &pos);
1989
1990 if (!rc) {
1991 st->state = TCP_SEQ_STATE_ESTABLISHED;
1992 rc = established_get_idx(seq, pos);
1993 }
1994
1995 return rc;
1996 }
1997
1998 static void *tcp_seek_last_pos(struct seq_file *seq)
1999 {
2000 struct tcp_iter_state *st = seq->private;
2001 int offset = st->offset;
2002 int orig_num = st->num;
2003 void *rc = NULL;
2004
2005 switch (st->state) {
2006 case TCP_SEQ_STATE_LISTENING:
2007 if (st->bucket >= INET_LHTABLE_SIZE)
2008 break;
2009 st->state = TCP_SEQ_STATE_LISTENING;
2010 rc = listening_get_next(seq, NULL);
2011 while (offset-- && rc)
2012 rc = listening_get_next(seq, rc);
2013 if (rc)
2014 break;
2015 st->bucket = 0;
2016 st->state = TCP_SEQ_STATE_ESTABLISHED;
2017 /* Fallthrough */
2018 case TCP_SEQ_STATE_ESTABLISHED:
2019 if (st->bucket > tcp_hashinfo.ehash_mask)
2020 break;
2021 rc = established_get_first(seq);
2022 while (offset-- && rc)
2023 rc = established_get_next(seq, rc);
2024 }
2025
2026 st->num = orig_num;
2027
2028 return rc;
2029 }
2030
2031 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2032 {
2033 struct tcp_iter_state *st = seq->private;
2034 void *rc;
2035
2036 if (*pos && *pos == st->last_pos) {
2037 rc = tcp_seek_last_pos(seq);
2038 if (rc)
2039 goto out;
2040 }
2041
2042 st->state = TCP_SEQ_STATE_LISTENING;
2043 st->num = 0;
2044 st->bucket = 0;
2045 st->offset = 0;
2046 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2047
2048 out:
2049 st->last_pos = *pos;
2050 return rc;
2051 }
2052
2053 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2054 {
2055 struct tcp_iter_state *st = seq->private;
2056 void *rc = NULL;
2057
2058 if (v == SEQ_START_TOKEN) {
2059 rc = tcp_get_idx(seq, 0);
2060 goto out;
2061 }
2062
2063 switch (st->state) {
2064 case TCP_SEQ_STATE_LISTENING:
2065 rc = listening_get_next(seq, v);
2066 if (!rc) {
2067 st->state = TCP_SEQ_STATE_ESTABLISHED;
2068 st->bucket = 0;
2069 st->offset = 0;
2070 rc = established_get_first(seq);
2071 }
2072 break;
2073 case TCP_SEQ_STATE_ESTABLISHED:
2074 rc = established_get_next(seq, v);
2075 break;
2076 }
2077 out:
2078 ++*pos;
2079 st->last_pos = *pos;
2080 return rc;
2081 }
2082
2083 static void tcp_seq_stop(struct seq_file *seq, void *v)
2084 {
2085 struct tcp_iter_state *st = seq->private;
2086
2087 switch (st->state) {
2088 case TCP_SEQ_STATE_LISTENING:
2089 if (v != SEQ_START_TOKEN)
2090 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2091 break;
2092 case TCP_SEQ_STATE_ESTABLISHED:
2093 if (v)
2094 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2095 break;
2096 }
2097 }
2098
2099 int tcp_seq_open(struct inode *inode, struct file *file)
2100 {
2101 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2102 struct tcp_iter_state *s;
2103 int err;
2104
2105 err = seq_open_net(inode, file, &afinfo->seq_ops,
2106 sizeof(struct tcp_iter_state));
2107 if (err < 0)
2108 return err;
2109
2110 s = ((struct seq_file *)file->private_data)->private;
2111 s->family = afinfo->family;
2112 s->last_pos = 0;
2113 return 0;
2114 }
2115 EXPORT_SYMBOL(tcp_seq_open);
2116
2117 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2118 {
2119 int rc = 0;
2120 struct proc_dir_entry *p;
2121
2122 afinfo->seq_ops.start = tcp_seq_start;
2123 afinfo->seq_ops.next = tcp_seq_next;
2124 afinfo->seq_ops.stop = tcp_seq_stop;
2125
2126 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2127 afinfo->seq_fops, afinfo);
2128 if (!p)
2129 rc = -ENOMEM;
2130 return rc;
2131 }
2132 EXPORT_SYMBOL(tcp_proc_register);
2133
2134 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2135 {
2136 remove_proc_entry(afinfo->name, net->proc_net);
2137 }
2138 EXPORT_SYMBOL(tcp_proc_unregister);
2139
2140 static void get_openreq4(const struct request_sock *req,
2141 struct seq_file *f, int i)
2142 {
2143 const struct inet_request_sock *ireq = inet_rsk(req);
2144 long delta = req->rsk_timer.expires - jiffies;
2145
2146 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2147 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2148 i,
2149 ireq->ir_loc_addr,
2150 ireq->ir_num,
2151 ireq->ir_rmt_addr,
2152 ntohs(ireq->ir_rmt_port),
2153 TCP_SYN_RECV,
2154 0, 0, /* could print option size, but that is af dependent. */
2155 1, /* timers active (only the expire timer) */
2156 jiffies_delta_to_clock_t(delta),
2157 req->num_timeout,
2158 from_kuid_munged(seq_user_ns(f),
2159 sock_i_uid(req->rsk_listener)),
2160 0, /* non standard timer */
2161 0, /* open_requests have no inode */
2162 0,
2163 req);
2164 }
2165
2166 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2167 {
2168 int timer_active;
2169 unsigned long timer_expires;
2170 const struct tcp_sock *tp = tcp_sk(sk);
2171 const struct inet_connection_sock *icsk = inet_csk(sk);
2172 const struct inet_sock *inet = inet_sk(sk);
2173 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2174 __be32 dest = inet->inet_daddr;
2175 __be32 src = inet->inet_rcv_saddr;
2176 __u16 destp = ntohs(inet->inet_dport);
2177 __u16 srcp = ntohs(inet->inet_sport);
2178 int rx_queue;
2179 int state;
2180
2181 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2182 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2183 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2184 timer_active = 1;
2185 timer_expires = icsk->icsk_timeout;
2186 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2187 timer_active = 4;
2188 timer_expires = icsk->icsk_timeout;
2189 } else if (timer_pending(&sk->sk_timer)) {
2190 timer_active = 2;
2191 timer_expires = sk->sk_timer.expires;
2192 } else {
2193 timer_active = 0;
2194 timer_expires = jiffies;
2195 }
2196
2197 state = sk_state_load(sk);
2198 if (state == TCP_LISTEN)
2199 rx_queue = sk->sk_ack_backlog;
2200 else
2201 /* Because we don't lock the socket,
2202 * we might find a transient negative value.
2203 */
2204 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2205
2206 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2207 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2208 i, src, srcp, dest, destp, state,
2209 tp->write_seq - tp->snd_una,
2210 rx_queue,
2211 timer_active,
2212 jiffies_delta_to_clock_t(timer_expires - jiffies),
2213 icsk->icsk_retransmits,
2214 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2215 icsk->icsk_probes_out,
2216 sock_i_ino(sk),
2217 atomic_read(&sk->sk_refcnt), sk,
2218 jiffies_to_clock_t(icsk->icsk_rto),
2219 jiffies_to_clock_t(icsk->icsk_ack.ato),
2220 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2221 tp->snd_cwnd,
2222 state == TCP_LISTEN ?
2223 fastopenq->max_qlen :
2224 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2225 }
2226
2227 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2228 struct seq_file *f, int i)
2229 {
2230 long delta = tw->tw_timer.expires - jiffies;
2231 __be32 dest, src;
2232 __u16 destp, srcp;
2233
2234 dest = tw->tw_daddr;
2235 src = tw->tw_rcv_saddr;
2236 destp = ntohs(tw->tw_dport);
2237 srcp = ntohs(tw->tw_sport);
2238
2239 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2240 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2241 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2242 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2243 atomic_read(&tw->tw_refcnt), tw);
2244 }
2245
2246 #define TMPSZ 150
2247
2248 static int tcp4_seq_show(struct seq_file *seq, void *v)
2249 {
2250 struct tcp_iter_state *st;
2251 struct sock *sk = v;
2252
2253 seq_setwidth(seq, TMPSZ - 1);
2254 if (v == SEQ_START_TOKEN) {
2255 seq_puts(seq, " sl local_address rem_address st tx_queue "
2256 "rx_queue tr tm->when retrnsmt uid timeout "
2257 "inode");
2258 goto out;
2259 }
2260 st = seq->private;
2261
2262 if (sk->sk_state == TCP_TIME_WAIT)
2263 get_timewait4_sock(v, seq, st->num);
2264 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2265 get_openreq4(v, seq, st->num);
2266 else
2267 get_tcp4_sock(v, seq, st->num);
2268 out:
2269 seq_pad(seq, '\n');
2270 return 0;
2271 }
2272
2273 static const struct file_operations tcp_afinfo_seq_fops = {
2274 .owner = THIS_MODULE,
2275 .open = tcp_seq_open,
2276 .read = seq_read,
2277 .llseek = seq_lseek,
2278 .release = seq_release_net
2279 };
2280
2281 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2282 .name = "tcp",
2283 .family = AF_INET,
2284 .seq_fops = &tcp_afinfo_seq_fops,
2285 .seq_ops = {
2286 .show = tcp4_seq_show,
2287 },
2288 };
2289
2290 static int __net_init tcp4_proc_init_net(struct net *net)
2291 {
2292 return tcp_proc_register(net, &tcp4_seq_afinfo);
2293 }
2294
2295 static void __net_exit tcp4_proc_exit_net(struct net *net)
2296 {
2297 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2298 }
2299
2300 static struct pernet_operations tcp4_net_ops = {
2301 .init = tcp4_proc_init_net,
2302 .exit = tcp4_proc_exit_net,
2303 };
2304
2305 int __init tcp4_proc_init(void)
2306 {
2307 return register_pernet_subsys(&tcp4_net_ops);
2308 }
2309
2310 void tcp4_proc_exit(void)
2311 {
2312 unregister_pernet_subsys(&tcp4_net_ops);
2313 }
2314 #endif /* CONFIG_PROC_FS */
2315
2316 struct proto tcp_prot = {
2317 .name = "TCP",
2318 .owner = THIS_MODULE,
2319 .close = tcp_close,
2320 .connect = tcp_v4_connect,
2321 .disconnect = tcp_disconnect,
2322 .accept = inet_csk_accept,
2323 .ioctl = tcp_ioctl,
2324 .init = tcp_v4_init_sock,
2325 .destroy = tcp_v4_destroy_sock,
2326 .shutdown = tcp_shutdown,
2327 .setsockopt = tcp_setsockopt,
2328 .getsockopt = tcp_getsockopt,
2329 .recvmsg = tcp_recvmsg,
2330 .sendmsg = tcp_sendmsg,
2331 .sendpage = tcp_sendpage,
2332 .backlog_rcv = tcp_v4_do_rcv,
2333 .release_cb = tcp_release_cb,
2334 .hash = inet_hash,
2335 .unhash = inet_unhash,
2336 .get_port = inet_csk_get_port,
2337 .enter_memory_pressure = tcp_enter_memory_pressure,
2338 .stream_memory_free = tcp_stream_memory_free,
2339 .sockets_allocated = &tcp_sockets_allocated,
2340 .orphan_count = &tcp_orphan_count,
2341 .memory_allocated = &tcp_memory_allocated,
2342 .memory_pressure = &tcp_memory_pressure,
2343 .sysctl_mem = sysctl_tcp_mem,
2344 .sysctl_wmem = sysctl_tcp_wmem,
2345 .sysctl_rmem = sysctl_tcp_rmem,
2346 .max_header = MAX_TCP_HEADER,
2347 .obj_size = sizeof(struct tcp_sock),
2348 .slab_flags = SLAB_DESTROY_BY_RCU,
2349 .twsk_prot = &tcp_timewait_sock_ops,
2350 .rsk_prot = &tcp_request_sock_ops,
2351 .h.hashinfo = &tcp_hashinfo,
2352 .no_autobind = true,
2353 #ifdef CONFIG_COMPAT
2354 .compat_setsockopt = compat_tcp_setsockopt,
2355 .compat_getsockopt = compat_tcp_getsockopt,
2356 #endif
2357 .diag_destroy = tcp_abort,
2358 };
2359 EXPORT_SYMBOL(tcp_prot);
2360
2361 static void __net_exit tcp_sk_exit(struct net *net)
2362 {
2363 int cpu;
2364
2365 for_each_possible_cpu(cpu)
2366 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2367 free_percpu(net->ipv4.tcp_sk);
2368 }
2369
2370 static int __net_init tcp_sk_init(struct net *net)
2371 {
2372 int res, cpu;
2373
2374 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2375 if (!net->ipv4.tcp_sk)
2376 return -ENOMEM;
2377
2378 for_each_possible_cpu(cpu) {
2379 struct sock *sk;
2380
2381 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2382 IPPROTO_TCP, net);
2383 if (res)
2384 goto fail;
2385 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2386 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2387 }
2388
2389 net->ipv4.sysctl_tcp_ecn = 2;
2390 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2391
2392 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2393 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2394 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2395
2396 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2397 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2398 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2399
2400 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2401 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2402 net->ipv4.sysctl_tcp_syncookies = 1;
2403 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2404 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2405 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2406 net->ipv4.sysctl_tcp_orphan_retries = 0;
2407 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2408 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2409
2410 return 0;
2411 fail:
2412 tcp_sk_exit(net);
2413
2414 return res;
2415 }
2416
2417 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2418 {
2419 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2420 }
2421
2422 static struct pernet_operations __net_initdata tcp_sk_ops = {
2423 .init = tcp_sk_init,
2424 .exit = tcp_sk_exit,
2425 .exit_batch = tcp_sk_exit_batch,
2426 };
2427
2428 void __init tcp_v4_init(void)
2429 {
2430 inet_hashinfo_init(&tcp_hashinfo);
2431 if (register_pernet_subsys(&tcp_sk_ops))
2432 panic("Failed to create the TCP control socket.\n");
2433 }
This page took 0.105898 seconds and 6 git commands to generate.