Merge branch 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63
64 #include <net/net_namespace.h>
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
74
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
83
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
86
87
88 #ifdef CONFIG_TCP_MD5SIG
89 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 __be32 addr);
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
92 __be32 daddr, __be32 saddr, struct tcphdr *th);
93 #else
94 static inline
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
96 {
97 return NULL;
98 }
99 #endif
100
101 struct inet_hashinfo tcp_hashinfo;
102
103 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
104 {
105 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
106 ip_hdr(skb)->saddr,
107 tcp_hdr(skb)->dest,
108 tcp_hdr(skb)->source);
109 }
110
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
115
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
119
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
122 holder.
123
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
126 */
127 if (tcptw->tw_ts_recent_stamp &&
128 (twp == NULL || (sysctl_tcp_tw_reuse &&
129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 if (tp->write_seq == 0)
132 tp->write_seq = 1;
133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 sock_hold(sktw);
136 return 1;
137 }
138
139 return 0;
140 }
141
142 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
143
144 /* This will initiate an outgoing connection. */
145 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
146 {
147 struct inet_sock *inet = inet_sk(sk);
148 struct tcp_sock *tp = tcp_sk(sk);
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 struct rtable *rt;
151 __be32 daddr, nexthop;
152 int tmp;
153 int err;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 if (inet->opt && inet->opt->srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet->opt->faddr;
166 }
167
168 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
169 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
170 IPPROTO_TCP,
171 inet->inet_sport, usin->sin_port, sk, 1);
172 if (tmp < 0) {
173 if (tmp == -ENETUNREACH)
174 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
175 return tmp;
176 }
177
178 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
179 ip_rt_put(rt);
180 return -ENETUNREACH;
181 }
182
183 if (!inet->opt || !inet->opt->srr)
184 daddr = rt->rt_dst;
185
186 if (!inet->inet_saddr)
187 inet->inet_saddr = rt->rt_src;
188 inet->inet_rcv_saddr = inet->inet_saddr;
189
190 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
191 /* Reset inherited state */
192 tp->rx_opt.ts_recent = 0;
193 tp->rx_opt.ts_recent_stamp = 0;
194 tp->write_seq = 0;
195 }
196
197 if (tcp_death_row.sysctl_tw_recycle &&
198 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
199 struct inet_peer *peer = rt_get_peer(rt);
200 /*
201 * VJ's idea. We save last timestamp seen from
202 * the destination in peer table, when entering state
203 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
204 * when trying new connection.
205 */
206 if (peer != NULL &&
207 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
208 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
209 tp->rx_opt.ts_recent = peer->tcp_ts;
210 }
211 }
212
213 inet->inet_dport = usin->sin_port;
214 inet->inet_daddr = daddr;
215
216 inet_csk(sk)->icsk_ext_hdr_len = 0;
217 if (inet->opt)
218 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
219
220 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
221
222 /* Socket identity is still unknown (sport may be zero).
223 * However we set state to SYN-SENT and not releasing socket
224 * lock select source port, enter ourselves into the hash tables and
225 * complete initialization after this.
226 */
227 tcp_set_state(sk, TCP_SYN_SENT);
228 err = inet_hash_connect(&tcp_death_row, sk);
229 if (err)
230 goto failure;
231
232 err = ip_route_newports(&rt, IPPROTO_TCP,
233 inet->inet_sport, inet->inet_dport, sk);
234 if (err)
235 goto failure;
236
237 /* OK, now commit destination to socket. */
238 sk->sk_gso_type = SKB_GSO_TCPV4;
239 sk_setup_caps(sk, &rt->u.dst);
240
241 if (!tp->write_seq)
242 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
243 inet->inet_daddr,
244 inet->inet_sport,
245 usin->sin_port);
246
247 inet->inet_id = tp->write_seq ^ jiffies;
248
249 err = tcp_connect(sk);
250 rt = NULL;
251 if (err)
252 goto failure;
253
254 return 0;
255
256 failure:
257 /*
258 * This unhashes the socket and releases the local port,
259 * if necessary.
260 */
261 tcp_set_state(sk, TCP_CLOSE);
262 ip_rt_put(rt);
263 sk->sk_route_caps = 0;
264 inet->inet_dport = 0;
265 return err;
266 }
267
268 /*
269 * This routine does path mtu discovery as defined in RFC1191.
270 */
271 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275
276 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
277 * send out by Linux are always <576bytes so they should go through
278 * unfragmented).
279 */
280 if (sk->sk_state == TCP_LISTEN)
281 return;
282
283 /* We don't check in the destentry if pmtu discovery is forbidden
284 * on this route. We just assume that no packet_to_big packets
285 * are send back when pmtu discovery is not active.
286 * There is a small race when the user changes this flag in the
287 * route, but I think that's acceptable.
288 */
289 if ((dst = __sk_dst_check(sk, 0)) == NULL)
290 return;
291
292 dst->ops->update_pmtu(dst, mtu);
293
294 /* Something is about to be wrong... Remember soft error
295 * for the case, if this connection will not able to recover.
296 */
297 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
298 sk->sk_err_soft = EMSGSIZE;
299
300 mtu = dst_mtu(dst);
301
302 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
303 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
304 tcp_sync_mss(sk, mtu);
305
306 /* Resend the TCP packet because it's
307 * clear that the old packet has been
308 * dropped. This is the new "fast" path mtu
309 * discovery.
310 */
311 tcp_simple_retransmit(sk);
312 } /* else let the usual retransmit timer handle it */
313 }
314
315 /*
316 * This routine is called by the ICMP module when it gets some
317 * sort of error condition. If err < 0 then the socket should
318 * be closed and the error returned to the user. If err > 0
319 * it's just the icmp type << 8 | icmp code. After adjustment
320 * header points to the first 8 bytes of the tcp header. We need
321 * to find the appropriate port.
322 *
323 * The locking strategy used here is very "optimistic". When
324 * someone else accesses the socket the ICMP is just dropped
325 * and for some paths there is no check at all.
326 * A more general error queue to queue errors for later handling
327 * is probably better.
328 *
329 */
330
331 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
332 {
333 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
334 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
335 struct inet_connection_sock *icsk;
336 struct tcp_sock *tp;
337 struct inet_sock *inet;
338 const int type = icmp_hdr(icmp_skb)->type;
339 const int code = icmp_hdr(icmp_skb)->code;
340 struct sock *sk;
341 struct sk_buff *skb;
342 __u32 seq;
343 __u32 remaining;
344 int err;
345 struct net *net = dev_net(icmp_skb->dev);
346
347 if (icmp_skb->len < (iph->ihl << 2) + 8) {
348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
349 return;
350 }
351
352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353 iph->saddr, th->source, inet_iif(icmp_skb));
354 if (!sk) {
355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
356 return;
357 }
358 if (sk->sk_state == TCP_TIME_WAIT) {
359 inet_twsk_put(inet_twsk(sk));
360 return;
361 }
362
363 bh_lock_sock(sk);
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
366 */
367 if (sock_owned_by_user(sk))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369
370 if (sk->sk_state == TCP_CLOSE)
371 goto out;
372
373 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
374 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
375 goto out;
376 }
377
378 icsk = inet_csk(sk);
379 tp = tcp_sk(sk);
380 seq = ntohl(th->seq);
381 if (sk->sk_state != TCP_LISTEN &&
382 !between(seq, tp->snd_una, tp->snd_nxt)) {
383 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
384 goto out;
385 }
386
387 switch (type) {
388 case ICMP_SOURCE_QUENCH:
389 /* Just silently ignore these. */
390 goto out;
391 case ICMP_PARAMETERPROB:
392 err = EPROTO;
393 break;
394 case ICMP_DEST_UNREACH:
395 if (code > NR_ICMP_UNREACH)
396 goto out;
397
398 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
399 if (!sock_owned_by_user(sk))
400 do_pmtu_discovery(sk, iph, info);
401 goto out;
402 }
403
404 err = icmp_err_convert[code].errno;
405 /* check if icmp_skb allows revert of backoff
406 * (see draft-zimmermann-tcp-lcd) */
407 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
408 break;
409 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
410 !icsk->icsk_backoff)
411 break;
412
413 icsk->icsk_backoff--;
414 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
415 icsk->icsk_backoff;
416 tcp_bound_rto(sk);
417
418 skb = tcp_write_queue_head(sk);
419 BUG_ON(!skb);
420
421 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
422 tcp_time_stamp - TCP_SKB_CB(skb)->when);
423
424 if (remaining) {
425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
426 remaining, TCP_RTO_MAX);
427 } else if (sock_owned_by_user(sk)) {
428 /* RTO revert clocked out retransmission,
429 * but socket is locked. Will defer. */
430 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
431 HZ/20, TCP_RTO_MAX);
432 } else {
433 /* RTO revert clocked out retransmission.
434 * Will retransmit now */
435 tcp_retransmit_timer(sk);
436 }
437
438 break;
439 case ICMP_TIME_EXCEEDED:
440 err = EHOSTUNREACH;
441 break;
442 default:
443 goto out;
444 }
445
446 switch (sk->sk_state) {
447 struct request_sock *req, **prev;
448 case TCP_LISTEN:
449 if (sock_owned_by_user(sk))
450 goto out;
451
452 req = inet_csk_search_req(sk, &prev, th->dest,
453 iph->daddr, iph->saddr);
454 if (!req)
455 goto out;
456
457 /* ICMPs are not backlogged, hence we cannot get
458 an established socket here.
459 */
460 WARN_ON(req->sk);
461
462 if (seq != tcp_rsk(req)->snt_isn) {
463 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
464 goto out;
465 }
466
467 /*
468 * Still in SYN_RECV, just remove it silently.
469 * There is no good way to pass the error to the newly
470 * created socket, and POSIX does not want network
471 * errors returned from accept().
472 */
473 inet_csk_reqsk_queue_drop(sk, req, prev);
474 goto out;
475
476 case TCP_SYN_SENT:
477 case TCP_SYN_RECV: /* Cannot happen.
478 It can f.e. if SYNs crossed.
479 */
480 if (!sock_owned_by_user(sk)) {
481 sk->sk_err = err;
482
483 sk->sk_error_report(sk);
484
485 tcp_done(sk);
486 } else {
487 sk->sk_err_soft = err;
488 }
489 goto out;
490 }
491
492 /* If we've already connected we will keep trying
493 * until we time out, or the user gives up.
494 *
495 * rfc1122 4.2.3.9 allows to consider as hard errors
496 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
497 * but it is obsoleted by pmtu discovery).
498 *
499 * Note, that in modern internet, where routing is unreliable
500 * and in each dark corner broken firewalls sit, sending random
501 * errors ordered by their masters even this two messages finally lose
502 * their original sense (even Linux sends invalid PORT_UNREACHs)
503 *
504 * Now we are in compliance with RFCs.
505 * --ANK (980905)
506 */
507
508 inet = inet_sk(sk);
509 if (!sock_owned_by_user(sk) && inet->recverr) {
510 sk->sk_err = err;
511 sk->sk_error_report(sk);
512 } else { /* Only an error on timeout */
513 sk->sk_err_soft = err;
514 }
515
516 out:
517 bh_unlock_sock(sk);
518 sock_put(sk);
519 }
520
521 /* This routine computes an IPv4 TCP checksum. */
522 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
523 {
524 struct inet_sock *inet = inet_sk(sk);
525 struct tcphdr *th = tcp_hdr(skb);
526
527 if (skb->ip_summed == CHECKSUM_PARTIAL) {
528 th->check = ~tcp_v4_check(len, inet->inet_saddr,
529 inet->inet_daddr, 0);
530 skb->csum_start = skb_transport_header(skb) - skb->head;
531 skb->csum_offset = offsetof(struct tcphdr, check);
532 } else {
533 th->check = tcp_v4_check(len, inet->inet_saddr,
534 inet->inet_daddr,
535 csum_partial(th,
536 th->doff << 2,
537 skb->csum));
538 }
539 }
540
541 int tcp_v4_gso_send_check(struct sk_buff *skb)
542 {
543 const struct iphdr *iph;
544 struct tcphdr *th;
545
546 if (!pskb_may_pull(skb, sizeof(*th)))
547 return -EINVAL;
548
549 iph = ip_hdr(skb);
550 th = tcp_hdr(skb);
551
552 th->check = 0;
553 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
554 skb->csum_start = skb_transport_header(skb) - skb->head;
555 skb->csum_offset = offsetof(struct tcphdr, check);
556 skb->ip_summed = CHECKSUM_PARTIAL;
557 return 0;
558 }
559
560 /*
561 * This routine will send an RST to the other tcp.
562 *
563 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
564 * for reset.
565 * Answer: if a packet caused RST, it is not for a socket
566 * existing in our system, if it is matched to a socket,
567 * it is just duplicate segment or bug in other side's TCP.
568 * So that we build reply only basing on parameters
569 * arrived with segment.
570 * Exception: precedence violation. We do not implement it in any case.
571 */
572
573 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
574 {
575 struct tcphdr *th = tcp_hdr(skb);
576 struct {
577 struct tcphdr th;
578 #ifdef CONFIG_TCP_MD5SIG
579 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
580 #endif
581 } rep;
582 struct ip_reply_arg arg;
583 #ifdef CONFIG_TCP_MD5SIG
584 struct tcp_md5sig_key *key;
585 #endif
586 struct net *net;
587
588 /* Never send a reset in response to a reset. */
589 if (th->rst)
590 return;
591
592 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
593 return;
594
595 /* Swap the send and the receive. */
596 memset(&rep, 0, sizeof(rep));
597 rep.th.dest = th->source;
598 rep.th.source = th->dest;
599 rep.th.doff = sizeof(struct tcphdr) / 4;
600 rep.th.rst = 1;
601
602 if (th->ack) {
603 rep.th.seq = th->ack_seq;
604 } else {
605 rep.th.ack = 1;
606 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
607 skb->len - (th->doff << 2));
608 }
609
610 memset(&arg, 0, sizeof(arg));
611 arg.iov[0].iov_base = (unsigned char *)&rep;
612 arg.iov[0].iov_len = sizeof(rep.th);
613
614 #ifdef CONFIG_TCP_MD5SIG
615 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
616 if (key) {
617 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
618 (TCPOPT_NOP << 16) |
619 (TCPOPT_MD5SIG << 8) |
620 TCPOLEN_MD5SIG);
621 /* Update length and the length the header thinks exists */
622 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
623 rep.th.doff = arg.iov[0].iov_len / 4;
624
625 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
626 key, ip_hdr(skb)->saddr,
627 ip_hdr(skb)->daddr, &rep.th);
628 }
629 #endif
630 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
631 ip_hdr(skb)->saddr, /* XXX */
632 arg.iov[0].iov_len, IPPROTO_TCP, 0);
633 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
634 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
635
636 net = dev_net(skb_dst(skb)->dev);
637 ip_send_reply(net->ipv4.tcp_sock, skb,
638 &arg, arg.iov[0].iov_len);
639
640 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
641 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
642 }
643
644 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
645 outside socket context is ugly, certainly. What can I do?
646 */
647
648 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
649 u32 win, u32 ts, int oif,
650 struct tcp_md5sig_key *key,
651 int reply_flags)
652 {
653 struct tcphdr *th = tcp_hdr(skb);
654 struct {
655 struct tcphdr th;
656 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
657 #ifdef CONFIG_TCP_MD5SIG
658 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
659 #endif
660 ];
661 } rep;
662 struct ip_reply_arg arg;
663 struct net *net = dev_net(skb_dst(skb)->dev);
664
665 memset(&rep.th, 0, sizeof(struct tcphdr));
666 memset(&arg, 0, sizeof(arg));
667
668 arg.iov[0].iov_base = (unsigned char *)&rep;
669 arg.iov[0].iov_len = sizeof(rep.th);
670 if (ts) {
671 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
672 (TCPOPT_TIMESTAMP << 8) |
673 TCPOLEN_TIMESTAMP);
674 rep.opt[1] = htonl(tcp_time_stamp);
675 rep.opt[2] = htonl(ts);
676 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
677 }
678
679 /* Swap the send and the receive. */
680 rep.th.dest = th->source;
681 rep.th.source = th->dest;
682 rep.th.doff = arg.iov[0].iov_len / 4;
683 rep.th.seq = htonl(seq);
684 rep.th.ack_seq = htonl(ack);
685 rep.th.ack = 1;
686 rep.th.window = htons(win);
687
688 #ifdef CONFIG_TCP_MD5SIG
689 if (key) {
690 int offset = (ts) ? 3 : 0;
691
692 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
693 (TCPOPT_NOP << 16) |
694 (TCPOPT_MD5SIG << 8) |
695 TCPOLEN_MD5SIG);
696 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
697 rep.th.doff = arg.iov[0].iov_len/4;
698
699 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
700 key, ip_hdr(skb)->saddr,
701 ip_hdr(skb)->daddr, &rep.th);
702 }
703 #endif
704 arg.flags = reply_flags;
705 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
706 ip_hdr(skb)->saddr, /* XXX */
707 arg.iov[0].iov_len, IPPROTO_TCP, 0);
708 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
709 if (oif)
710 arg.bound_dev_if = oif;
711
712 ip_send_reply(net->ipv4.tcp_sock, skb,
713 &arg, arg.iov[0].iov_len);
714
715 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
716 }
717
718 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
719 {
720 struct inet_timewait_sock *tw = inet_twsk(sk);
721 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
722
723 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
724 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
725 tcptw->tw_ts_recent,
726 tw->tw_bound_dev_if,
727 tcp_twsk_md5_key(tcptw),
728 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
729 );
730
731 inet_twsk_put(tw);
732 }
733
734 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
735 struct request_sock *req)
736 {
737 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
738 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
739 req->ts_recent,
740 0,
741 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
742 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
743 }
744
745 /*
746 * Send a SYN-ACK after having received a SYN.
747 * This still operates on a request_sock only, not on a big
748 * socket.
749 */
750 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
751 struct request_sock *req,
752 struct request_values *rvp)
753 {
754 const struct inet_request_sock *ireq = inet_rsk(req);
755 int err = -1;
756 struct sk_buff * skb;
757
758 /* First, grab a route. */
759 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
760 return -1;
761
762 skb = tcp_make_synack(sk, dst, req, rvp);
763
764 if (skb) {
765 struct tcphdr *th = tcp_hdr(skb);
766
767 th->check = tcp_v4_check(skb->len,
768 ireq->loc_addr,
769 ireq->rmt_addr,
770 csum_partial(th, skb->len,
771 skb->csum));
772
773 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
774 ireq->rmt_addr,
775 ireq->opt);
776 err = net_xmit_eval(err);
777 }
778
779 dst_release(dst);
780 return err;
781 }
782
783 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
784 struct request_values *rvp)
785 {
786 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
787 return tcp_v4_send_synack(sk, NULL, req, rvp);
788 }
789
790 /*
791 * IPv4 request_sock destructor.
792 */
793 static void tcp_v4_reqsk_destructor(struct request_sock *req)
794 {
795 kfree(inet_rsk(req)->opt);
796 }
797
798 #ifdef CONFIG_SYN_COOKIES
799 static void syn_flood_warning(struct sk_buff *skb)
800 {
801 static unsigned long warntime;
802
803 if (time_after(jiffies, (warntime + HZ * 60))) {
804 warntime = jiffies;
805 printk(KERN_INFO
806 "possible SYN flooding on port %d. Sending cookies.\n",
807 ntohs(tcp_hdr(skb)->dest));
808 }
809 }
810 #endif
811
812 /*
813 * Save and compile IPv4 options into the request_sock if needed.
814 */
815 static struct ip_options *tcp_v4_save_options(struct sock *sk,
816 struct sk_buff *skb)
817 {
818 struct ip_options *opt = &(IPCB(skb)->opt);
819 struct ip_options *dopt = NULL;
820
821 if (opt && opt->optlen) {
822 int opt_size = optlength(opt);
823 dopt = kmalloc(opt_size, GFP_ATOMIC);
824 if (dopt) {
825 if (ip_options_echo(dopt, skb)) {
826 kfree(dopt);
827 dopt = NULL;
828 }
829 }
830 }
831 return dopt;
832 }
833
834 #ifdef CONFIG_TCP_MD5SIG
835 /*
836 * RFC2385 MD5 checksumming requires a mapping of
837 * IP address->MD5 Key.
838 * We need to maintain these in the sk structure.
839 */
840
841 /* Find the Key structure for an address. */
842 static struct tcp_md5sig_key *
843 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
844 {
845 struct tcp_sock *tp = tcp_sk(sk);
846 int i;
847
848 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
849 return NULL;
850 for (i = 0; i < tp->md5sig_info->entries4; i++) {
851 if (tp->md5sig_info->keys4[i].addr == addr)
852 return &tp->md5sig_info->keys4[i].base;
853 }
854 return NULL;
855 }
856
857 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
858 struct sock *addr_sk)
859 {
860 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
861 }
862
863 EXPORT_SYMBOL(tcp_v4_md5_lookup);
864
865 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
866 struct request_sock *req)
867 {
868 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
869 }
870
871 /* This can be called on a newly created socket, from other files */
872 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
873 u8 *newkey, u8 newkeylen)
874 {
875 /* Add Key to the list */
876 struct tcp_md5sig_key *key;
877 struct tcp_sock *tp = tcp_sk(sk);
878 struct tcp4_md5sig_key *keys;
879
880 key = tcp_v4_md5_do_lookup(sk, addr);
881 if (key) {
882 /* Pre-existing entry - just update that one. */
883 kfree(key->key);
884 key->key = newkey;
885 key->keylen = newkeylen;
886 } else {
887 struct tcp_md5sig_info *md5sig;
888
889 if (!tp->md5sig_info) {
890 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
891 GFP_ATOMIC);
892 if (!tp->md5sig_info) {
893 kfree(newkey);
894 return -ENOMEM;
895 }
896 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
897 }
898 if (tcp_alloc_md5sig_pool(sk) == NULL) {
899 kfree(newkey);
900 return -ENOMEM;
901 }
902 md5sig = tp->md5sig_info;
903
904 if (md5sig->alloced4 == md5sig->entries4) {
905 keys = kmalloc((sizeof(*keys) *
906 (md5sig->entries4 + 1)), GFP_ATOMIC);
907 if (!keys) {
908 kfree(newkey);
909 tcp_free_md5sig_pool();
910 return -ENOMEM;
911 }
912
913 if (md5sig->entries4)
914 memcpy(keys, md5sig->keys4,
915 sizeof(*keys) * md5sig->entries4);
916
917 /* Free old key list, and reference new one */
918 kfree(md5sig->keys4);
919 md5sig->keys4 = keys;
920 md5sig->alloced4++;
921 }
922 md5sig->entries4++;
923 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
924 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
925 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
926 }
927 return 0;
928 }
929
930 EXPORT_SYMBOL(tcp_v4_md5_do_add);
931
932 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
933 u8 *newkey, u8 newkeylen)
934 {
935 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
936 newkey, newkeylen);
937 }
938
939 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
940 {
941 struct tcp_sock *tp = tcp_sk(sk);
942 int i;
943
944 for (i = 0; i < tp->md5sig_info->entries4; i++) {
945 if (tp->md5sig_info->keys4[i].addr == addr) {
946 /* Free the key */
947 kfree(tp->md5sig_info->keys4[i].base.key);
948 tp->md5sig_info->entries4--;
949
950 if (tp->md5sig_info->entries4 == 0) {
951 kfree(tp->md5sig_info->keys4);
952 tp->md5sig_info->keys4 = NULL;
953 tp->md5sig_info->alloced4 = 0;
954 } else if (tp->md5sig_info->entries4 != i) {
955 /* Need to do some manipulation */
956 memmove(&tp->md5sig_info->keys4[i],
957 &tp->md5sig_info->keys4[i+1],
958 (tp->md5sig_info->entries4 - i) *
959 sizeof(struct tcp4_md5sig_key));
960 }
961 tcp_free_md5sig_pool();
962 return 0;
963 }
964 }
965 return -ENOENT;
966 }
967
968 EXPORT_SYMBOL(tcp_v4_md5_do_del);
969
970 static void tcp_v4_clear_md5_list(struct sock *sk)
971 {
972 struct tcp_sock *tp = tcp_sk(sk);
973
974 /* Free each key, then the set of key keys,
975 * the crypto element, and then decrement our
976 * hold on the last resort crypto.
977 */
978 if (tp->md5sig_info->entries4) {
979 int i;
980 for (i = 0; i < tp->md5sig_info->entries4; i++)
981 kfree(tp->md5sig_info->keys4[i].base.key);
982 tp->md5sig_info->entries4 = 0;
983 tcp_free_md5sig_pool();
984 }
985 if (tp->md5sig_info->keys4) {
986 kfree(tp->md5sig_info->keys4);
987 tp->md5sig_info->keys4 = NULL;
988 tp->md5sig_info->alloced4 = 0;
989 }
990 }
991
992 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
993 int optlen)
994 {
995 struct tcp_md5sig cmd;
996 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
997 u8 *newkey;
998
999 if (optlen < sizeof(cmd))
1000 return -EINVAL;
1001
1002 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1003 return -EFAULT;
1004
1005 if (sin->sin_family != AF_INET)
1006 return -EINVAL;
1007
1008 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1009 if (!tcp_sk(sk)->md5sig_info)
1010 return -ENOENT;
1011 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1012 }
1013
1014 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1015 return -EINVAL;
1016
1017 if (!tcp_sk(sk)->md5sig_info) {
1018 struct tcp_sock *tp = tcp_sk(sk);
1019 struct tcp_md5sig_info *p;
1020
1021 p = kzalloc(sizeof(*p), sk->sk_allocation);
1022 if (!p)
1023 return -EINVAL;
1024
1025 tp->md5sig_info = p;
1026 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1027 }
1028
1029 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1030 if (!newkey)
1031 return -ENOMEM;
1032 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1033 newkey, cmd.tcpm_keylen);
1034 }
1035
1036 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1037 __be32 daddr, __be32 saddr, int nbytes)
1038 {
1039 struct tcp4_pseudohdr *bp;
1040 struct scatterlist sg;
1041
1042 bp = &hp->md5_blk.ip4;
1043
1044 /*
1045 * 1. the TCP pseudo-header (in the order: source IP address,
1046 * destination IP address, zero-padded protocol number, and
1047 * segment length)
1048 */
1049 bp->saddr = saddr;
1050 bp->daddr = daddr;
1051 bp->pad = 0;
1052 bp->protocol = IPPROTO_TCP;
1053 bp->len = cpu_to_be16(nbytes);
1054
1055 sg_init_one(&sg, bp, sizeof(*bp));
1056 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1057 }
1058
1059 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1060 __be32 daddr, __be32 saddr, struct tcphdr *th)
1061 {
1062 struct tcp_md5sig_pool *hp;
1063 struct hash_desc *desc;
1064
1065 hp = tcp_get_md5sig_pool();
1066 if (!hp)
1067 goto clear_hash_noput;
1068 desc = &hp->md5_desc;
1069
1070 if (crypto_hash_init(desc))
1071 goto clear_hash;
1072 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1073 goto clear_hash;
1074 if (tcp_md5_hash_header(hp, th))
1075 goto clear_hash;
1076 if (tcp_md5_hash_key(hp, key))
1077 goto clear_hash;
1078 if (crypto_hash_final(desc, md5_hash))
1079 goto clear_hash;
1080
1081 tcp_put_md5sig_pool();
1082 return 0;
1083
1084 clear_hash:
1085 tcp_put_md5sig_pool();
1086 clear_hash_noput:
1087 memset(md5_hash, 0, 16);
1088 return 1;
1089 }
1090
1091 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1092 struct sock *sk, struct request_sock *req,
1093 struct sk_buff *skb)
1094 {
1095 struct tcp_md5sig_pool *hp;
1096 struct hash_desc *desc;
1097 struct tcphdr *th = tcp_hdr(skb);
1098 __be32 saddr, daddr;
1099
1100 if (sk) {
1101 saddr = inet_sk(sk)->inet_saddr;
1102 daddr = inet_sk(sk)->inet_daddr;
1103 } else if (req) {
1104 saddr = inet_rsk(req)->loc_addr;
1105 daddr = inet_rsk(req)->rmt_addr;
1106 } else {
1107 const struct iphdr *iph = ip_hdr(skb);
1108 saddr = iph->saddr;
1109 daddr = iph->daddr;
1110 }
1111
1112 hp = tcp_get_md5sig_pool();
1113 if (!hp)
1114 goto clear_hash_noput;
1115 desc = &hp->md5_desc;
1116
1117 if (crypto_hash_init(desc))
1118 goto clear_hash;
1119
1120 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1121 goto clear_hash;
1122 if (tcp_md5_hash_header(hp, th))
1123 goto clear_hash;
1124 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1125 goto clear_hash;
1126 if (tcp_md5_hash_key(hp, key))
1127 goto clear_hash;
1128 if (crypto_hash_final(desc, md5_hash))
1129 goto clear_hash;
1130
1131 tcp_put_md5sig_pool();
1132 return 0;
1133
1134 clear_hash:
1135 tcp_put_md5sig_pool();
1136 clear_hash_noput:
1137 memset(md5_hash, 0, 16);
1138 return 1;
1139 }
1140
1141 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1142
1143 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1144 {
1145 /*
1146 * This gets called for each TCP segment that arrives
1147 * so we want to be efficient.
1148 * We have 3 drop cases:
1149 * o No MD5 hash and one expected.
1150 * o MD5 hash and we're not expecting one.
1151 * o MD5 hash and its wrong.
1152 */
1153 __u8 *hash_location = NULL;
1154 struct tcp_md5sig_key *hash_expected;
1155 const struct iphdr *iph = ip_hdr(skb);
1156 struct tcphdr *th = tcp_hdr(skb);
1157 int genhash;
1158 unsigned char newhash[16];
1159
1160 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1161 hash_location = tcp_parse_md5sig_option(th);
1162
1163 /* We've parsed the options - do we have a hash? */
1164 if (!hash_expected && !hash_location)
1165 return 0;
1166
1167 if (hash_expected && !hash_location) {
1168 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1169 return 1;
1170 }
1171
1172 if (!hash_expected && hash_location) {
1173 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1174 return 1;
1175 }
1176
1177 /* Okay, so this is hash_expected and hash_location -
1178 * so we need to calculate the checksum.
1179 */
1180 genhash = tcp_v4_md5_hash_skb(newhash,
1181 hash_expected,
1182 NULL, NULL, skb);
1183
1184 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1185 if (net_ratelimit()) {
1186 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1187 &iph->saddr, ntohs(th->source),
1188 &iph->daddr, ntohs(th->dest),
1189 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1190 }
1191 return 1;
1192 }
1193 return 0;
1194 }
1195
1196 #endif
1197
1198 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1199 .family = PF_INET,
1200 .obj_size = sizeof(struct tcp_request_sock),
1201 .rtx_syn_ack = tcp_v4_rtx_synack,
1202 .send_ack = tcp_v4_reqsk_send_ack,
1203 .destructor = tcp_v4_reqsk_destructor,
1204 .send_reset = tcp_v4_send_reset,
1205 .syn_ack_timeout = tcp_syn_ack_timeout,
1206 };
1207
1208 #ifdef CONFIG_TCP_MD5SIG
1209 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1210 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1211 .calc_md5_hash = tcp_v4_md5_hash_skb,
1212 };
1213 #endif
1214
1215 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1216 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1217 .twsk_unique = tcp_twsk_unique,
1218 .twsk_destructor= tcp_twsk_destructor,
1219 };
1220
1221 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1222 {
1223 struct tcp_extend_values tmp_ext;
1224 struct tcp_options_received tmp_opt;
1225 u8 *hash_location;
1226 struct request_sock *req;
1227 struct inet_request_sock *ireq;
1228 struct tcp_sock *tp = tcp_sk(sk);
1229 struct dst_entry *dst = NULL;
1230 __be32 saddr = ip_hdr(skb)->saddr;
1231 __be32 daddr = ip_hdr(skb)->daddr;
1232 __u32 isn = TCP_SKB_CB(skb)->when;
1233 #ifdef CONFIG_SYN_COOKIES
1234 int want_cookie = 0;
1235 #else
1236 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1237 #endif
1238
1239 /* Never answer to SYNs send to broadcast or multicast */
1240 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1241 goto drop;
1242
1243 /* TW buckets are converted to open requests without
1244 * limitations, they conserve resources and peer is
1245 * evidently real one.
1246 */
1247 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1248 #ifdef CONFIG_SYN_COOKIES
1249 if (sysctl_tcp_syncookies) {
1250 want_cookie = 1;
1251 } else
1252 #endif
1253 goto drop;
1254 }
1255
1256 /* Accept backlog is full. If we have already queued enough
1257 * of warm entries in syn queue, drop request. It is better than
1258 * clogging syn queue with openreqs with exponentially increasing
1259 * timeout.
1260 */
1261 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1262 goto drop;
1263
1264 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1265 if (!req)
1266 goto drop;
1267
1268 #ifdef CONFIG_TCP_MD5SIG
1269 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1270 #endif
1271
1272 tcp_clear_options(&tmp_opt);
1273 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1274 tmp_opt.user_mss = tp->rx_opt.user_mss;
1275 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1276
1277 if (tmp_opt.cookie_plus > 0 &&
1278 tmp_opt.saw_tstamp &&
1279 !tp->rx_opt.cookie_out_never &&
1280 (sysctl_tcp_cookie_size > 0 ||
1281 (tp->cookie_values != NULL &&
1282 tp->cookie_values->cookie_desired > 0))) {
1283 u8 *c;
1284 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1285 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1286
1287 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1288 goto drop_and_release;
1289
1290 /* Secret recipe starts with IP addresses */
1291 *mess++ ^= daddr;
1292 *mess++ ^= saddr;
1293
1294 /* plus variable length Initiator Cookie */
1295 c = (u8 *)mess;
1296 while (l-- > 0)
1297 *c++ ^= *hash_location++;
1298
1299 #ifdef CONFIG_SYN_COOKIES
1300 want_cookie = 0; /* not our kind of cookie */
1301 #endif
1302 tmp_ext.cookie_out_never = 0; /* false */
1303 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1304 } else if (!tp->rx_opt.cookie_in_always) {
1305 /* redundant indications, but ensure initialization. */
1306 tmp_ext.cookie_out_never = 1; /* true */
1307 tmp_ext.cookie_plus = 0;
1308 } else {
1309 goto drop_and_release;
1310 }
1311 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1312
1313 if (want_cookie && !tmp_opt.saw_tstamp)
1314 tcp_clear_options(&tmp_opt);
1315
1316 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1317 tcp_openreq_init(req, &tmp_opt, skb);
1318
1319 ireq = inet_rsk(req);
1320 ireq->loc_addr = daddr;
1321 ireq->rmt_addr = saddr;
1322 ireq->no_srccheck = inet_sk(sk)->transparent;
1323 ireq->opt = tcp_v4_save_options(sk, skb);
1324
1325 if (security_inet_conn_request(sk, skb, req))
1326 goto drop_and_free;
1327
1328 if (!want_cookie)
1329 TCP_ECN_create_request(req, tcp_hdr(skb));
1330
1331 if (want_cookie) {
1332 #ifdef CONFIG_SYN_COOKIES
1333 syn_flood_warning(skb);
1334 req->cookie_ts = tmp_opt.tstamp_ok;
1335 #endif
1336 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1337 } else if (!isn) {
1338 struct inet_peer *peer = NULL;
1339
1340 /* VJ's idea. We save last timestamp seen
1341 * from the destination in peer table, when entering
1342 * state TIME-WAIT, and check against it before
1343 * accepting new connection request.
1344 *
1345 * If "isn" is not zero, this request hit alive
1346 * timewait bucket, so that all the necessary checks
1347 * are made in the function processing timewait state.
1348 */
1349 if (tmp_opt.saw_tstamp &&
1350 tcp_death_row.sysctl_tw_recycle &&
1351 (dst = inet_csk_route_req(sk, req)) != NULL &&
1352 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1353 peer->v4daddr == saddr) {
1354 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1355 (s32)(peer->tcp_ts - req->ts_recent) >
1356 TCP_PAWS_WINDOW) {
1357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1358 goto drop_and_release;
1359 }
1360 }
1361 /* Kill the following clause, if you dislike this way. */
1362 else if (!sysctl_tcp_syncookies &&
1363 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1364 (sysctl_max_syn_backlog >> 2)) &&
1365 (!peer || !peer->tcp_ts_stamp) &&
1366 (!dst || !dst_metric(dst, RTAX_RTT))) {
1367 /* Without syncookies last quarter of
1368 * backlog is filled with destinations,
1369 * proven to be alive.
1370 * It means that we continue to communicate
1371 * to destinations, already remembered
1372 * to the moment of synflood.
1373 */
1374 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1375 &saddr, ntohs(tcp_hdr(skb)->source));
1376 goto drop_and_release;
1377 }
1378
1379 isn = tcp_v4_init_sequence(skb);
1380 }
1381 tcp_rsk(req)->snt_isn = isn;
1382
1383 if (tcp_v4_send_synack(sk, dst, req,
1384 (struct request_values *)&tmp_ext) ||
1385 want_cookie)
1386 goto drop_and_free;
1387
1388 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1389 return 0;
1390
1391 drop_and_release:
1392 dst_release(dst);
1393 drop_and_free:
1394 reqsk_free(req);
1395 drop:
1396 return 0;
1397 }
1398
1399
1400 /*
1401 * The three way handshake has completed - we got a valid synack -
1402 * now create the new socket.
1403 */
1404 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1405 struct request_sock *req,
1406 struct dst_entry *dst)
1407 {
1408 struct inet_request_sock *ireq;
1409 struct inet_sock *newinet;
1410 struct tcp_sock *newtp;
1411 struct sock *newsk;
1412 #ifdef CONFIG_TCP_MD5SIG
1413 struct tcp_md5sig_key *key;
1414 #endif
1415
1416 if (sk_acceptq_is_full(sk))
1417 goto exit_overflow;
1418
1419 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1420 goto exit;
1421
1422 newsk = tcp_create_openreq_child(sk, req, skb);
1423 if (!newsk)
1424 goto exit;
1425
1426 newsk->sk_gso_type = SKB_GSO_TCPV4;
1427 sk_setup_caps(newsk, dst);
1428
1429 newtp = tcp_sk(newsk);
1430 newinet = inet_sk(newsk);
1431 ireq = inet_rsk(req);
1432 newinet->inet_daddr = ireq->rmt_addr;
1433 newinet->inet_rcv_saddr = ireq->loc_addr;
1434 newinet->inet_saddr = ireq->loc_addr;
1435 newinet->opt = ireq->opt;
1436 ireq->opt = NULL;
1437 newinet->mc_index = inet_iif(skb);
1438 newinet->mc_ttl = ip_hdr(skb)->ttl;
1439 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1440 if (newinet->opt)
1441 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1442 newinet->inet_id = newtp->write_seq ^ jiffies;
1443
1444 tcp_mtup_init(newsk);
1445 tcp_sync_mss(newsk, dst_mtu(dst));
1446 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1447 if (tcp_sk(sk)->rx_opt.user_mss &&
1448 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1449 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1450
1451 tcp_initialize_rcv_mss(newsk);
1452
1453 #ifdef CONFIG_TCP_MD5SIG
1454 /* Copy over the MD5 key from the original socket */
1455 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1456 if (key != NULL) {
1457 /*
1458 * We're using one, so create a matching key
1459 * on the newsk structure. If we fail to get
1460 * memory, then we end up not copying the key
1461 * across. Shucks.
1462 */
1463 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1464 if (newkey != NULL)
1465 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1466 newkey, key->keylen);
1467 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1468 }
1469 #endif
1470
1471 __inet_hash_nolisten(newsk, NULL);
1472 __inet_inherit_port(sk, newsk);
1473
1474 return newsk;
1475
1476 exit_overflow:
1477 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1478 exit:
1479 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1480 dst_release(dst);
1481 return NULL;
1482 }
1483
1484 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1485 {
1486 struct tcphdr *th = tcp_hdr(skb);
1487 const struct iphdr *iph = ip_hdr(skb);
1488 struct sock *nsk;
1489 struct request_sock **prev;
1490 /* Find possible connection requests. */
1491 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1492 iph->saddr, iph->daddr);
1493 if (req)
1494 return tcp_check_req(sk, skb, req, prev);
1495
1496 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1497 th->source, iph->daddr, th->dest, inet_iif(skb));
1498
1499 if (nsk) {
1500 if (nsk->sk_state != TCP_TIME_WAIT) {
1501 bh_lock_sock(nsk);
1502 return nsk;
1503 }
1504 inet_twsk_put(inet_twsk(nsk));
1505 return NULL;
1506 }
1507
1508 #ifdef CONFIG_SYN_COOKIES
1509 if (!th->rst && !th->syn && th->ack)
1510 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1511 #endif
1512 return sk;
1513 }
1514
1515 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1516 {
1517 const struct iphdr *iph = ip_hdr(skb);
1518
1519 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1520 if (!tcp_v4_check(skb->len, iph->saddr,
1521 iph->daddr, skb->csum)) {
1522 skb->ip_summed = CHECKSUM_UNNECESSARY;
1523 return 0;
1524 }
1525 }
1526
1527 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1528 skb->len, IPPROTO_TCP, 0);
1529
1530 if (skb->len <= 76) {
1531 return __skb_checksum_complete(skb);
1532 }
1533 return 0;
1534 }
1535
1536
1537 /* The socket must have it's spinlock held when we get
1538 * here.
1539 *
1540 * We have a potential double-lock case here, so even when
1541 * doing backlog processing we use the BH locking scheme.
1542 * This is because we cannot sleep with the original spinlock
1543 * held.
1544 */
1545 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1546 {
1547 struct sock *rsk;
1548 #ifdef CONFIG_TCP_MD5SIG
1549 /*
1550 * We really want to reject the packet as early as possible
1551 * if:
1552 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1553 * o There is an MD5 option and we're not expecting one
1554 */
1555 if (tcp_v4_inbound_md5_hash(sk, skb))
1556 goto discard;
1557 #endif
1558
1559 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1560 TCP_CHECK_TIMER(sk);
1561 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1562 rsk = sk;
1563 goto reset;
1564 }
1565 TCP_CHECK_TIMER(sk);
1566 return 0;
1567 }
1568
1569 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1570 goto csum_err;
1571
1572 if (sk->sk_state == TCP_LISTEN) {
1573 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1574 if (!nsk)
1575 goto discard;
1576
1577 if (nsk != sk) {
1578 if (tcp_child_process(sk, nsk, skb)) {
1579 rsk = nsk;
1580 goto reset;
1581 }
1582 return 0;
1583 }
1584 }
1585
1586 TCP_CHECK_TIMER(sk);
1587 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1588 rsk = sk;
1589 goto reset;
1590 }
1591 TCP_CHECK_TIMER(sk);
1592 return 0;
1593
1594 reset:
1595 tcp_v4_send_reset(rsk, skb);
1596 discard:
1597 kfree_skb(skb);
1598 /* Be careful here. If this function gets more complicated and
1599 * gcc suffers from register pressure on the x86, sk (in %ebx)
1600 * might be destroyed here. This current version compiles correctly,
1601 * but you have been warned.
1602 */
1603 return 0;
1604
1605 csum_err:
1606 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1607 goto discard;
1608 }
1609
1610 /*
1611 * From tcp_input.c
1612 */
1613
1614 int tcp_v4_rcv(struct sk_buff *skb)
1615 {
1616 const struct iphdr *iph;
1617 struct tcphdr *th;
1618 struct sock *sk;
1619 int ret;
1620 struct net *net = dev_net(skb->dev);
1621
1622 if (skb->pkt_type != PACKET_HOST)
1623 goto discard_it;
1624
1625 /* Count it even if it's bad */
1626 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1627
1628 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1629 goto discard_it;
1630
1631 th = tcp_hdr(skb);
1632
1633 if (th->doff < sizeof(struct tcphdr) / 4)
1634 goto bad_packet;
1635 if (!pskb_may_pull(skb, th->doff * 4))
1636 goto discard_it;
1637
1638 /* An explanation is required here, I think.
1639 * Packet length and doff are validated by header prediction,
1640 * provided case of th->doff==0 is eliminated.
1641 * So, we defer the checks. */
1642 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1643 goto bad_packet;
1644
1645 th = tcp_hdr(skb);
1646 iph = ip_hdr(skb);
1647 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1648 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1649 skb->len - th->doff * 4);
1650 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1651 TCP_SKB_CB(skb)->when = 0;
1652 TCP_SKB_CB(skb)->flags = iph->tos;
1653 TCP_SKB_CB(skb)->sacked = 0;
1654
1655 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1656 if (!sk)
1657 goto no_tcp_socket;
1658
1659 process:
1660 if (sk->sk_state == TCP_TIME_WAIT)
1661 goto do_time_wait;
1662
1663 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1664 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1665 goto discard_and_relse;
1666 }
1667
1668 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1669 goto discard_and_relse;
1670 nf_reset(skb);
1671
1672 if (sk_filter(sk, skb))
1673 goto discard_and_relse;
1674
1675 skb->dev = NULL;
1676
1677 bh_lock_sock_nested(sk);
1678 ret = 0;
1679 if (!sock_owned_by_user(sk)) {
1680 #ifdef CONFIG_NET_DMA
1681 struct tcp_sock *tp = tcp_sk(sk);
1682 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1683 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1684 if (tp->ucopy.dma_chan)
1685 ret = tcp_v4_do_rcv(sk, skb);
1686 else
1687 #endif
1688 {
1689 if (!tcp_prequeue(sk, skb))
1690 ret = tcp_v4_do_rcv(sk, skb);
1691 }
1692 } else if (unlikely(sk_add_backlog(sk, skb))) {
1693 bh_unlock_sock(sk);
1694 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1695 goto discard_and_relse;
1696 }
1697 bh_unlock_sock(sk);
1698
1699 sock_put(sk);
1700
1701 return ret;
1702
1703 no_tcp_socket:
1704 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1705 goto discard_it;
1706
1707 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1708 bad_packet:
1709 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1710 } else {
1711 tcp_v4_send_reset(NULL, skb);
1712 }
1713
1714 discard_it:
1715 /* Discard frame. */
1716 kfree_skb(skb);
1717 return 0;
1718
1719 discard_and_relse:
1720 sock_put(sk);
1721 goto discard_it;
1722
1723 do_time_wait:
1724 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1725 inet_twsk_put(inet_twsk(sk));
1726 goto discard_it;
1727 }
1728
1729 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1730 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1731 inet_twsk_put(inet_twsk(sk));
1732 goto discard_it;
1733 }
1734 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1735 case TCP_TW_SYN: {
1736 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1737 &tcp_hashinfo,
1738 iph->daddr, th->dest,
1739 inet_iif(skb));
1740 if (sk2) {
1741 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1742 inet_twsk_put(inet_twsk(sk));
1743 sk = sk2;
1744 goto process;
1745 }
1746 /* Fall through to ACK */
1747 }
1748 case TCP_TW_ACK:
1749 tcp_v4_timewait_ack(sk, skb);
1750 break;
1751 case TCP_TW_RST:
1752 goto no_tcp_socket;
1753 case TCP_TW_SUCCESS:;
1754 }
1755 goto discard_it;
1756 }
1757
1758 /* VJ's idea. Save last timestamp seen from this destination
1759 * and hold it at least for normal timewait interval to use for duplicate
1760 * segment detection in subsequent connections, before they enter synchronized
1761 * state.
1762 */
1763
1764 int tcp_v4_remember_stamp(struct sock *sk)
1765 {
1766 struct inet_sock *inet = inet_sk(sk);
1767 struct tcp_sock *tp = tcp_sk(sk);
1768 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1769 struct inet_peer *peer = NULL;
1770 int release_it = 0;
1771
1772 if (!rt || rt->rt_dst != inet->inet_daddr) {
1773 peer = inet_getpeer(inet->inet_daddr, 1);
1774 release_it = 1;
1775 } else {
1776 if (!rt->peer)
1777 rt_bind_peer(rt, 1);
1778 peer = rt->peer;
1779 }
1780
1781 if (peer) {
1782 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1783 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1784 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1785 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1786 peer->tcp_ts = tp->rx_opt.ts_recent;
1787 }
1788 if (release_it)
1789 inet_putpeer(peer);
1790 return 1;
1791 }
1792
1793 return 0;
1794 }
1795
1796 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1797 {
1798 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1799
1800 if (peer) {
1801 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1802
1803 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1804 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1805 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1806 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1807 peer->tcp_ts = tcptw->tw_ts_recent;
1808 }
1809 inet_putpeer(peer);
1810 return 1;
1811 }
1812
1813 return 0;
1814 }
1815
1816 const struct inet_connection_sock_af_ops ipv4_specific = {
1817 .queue_xmit = ip_queue_xmit,
1818 .send_check = tcp_v4_send_check,
1819 .rebuild_header = inet_sk_rebuild_header,
1820 .conn_request = tcp_v4_conn_request,
1821 .syn_recv_sock = tcp_v4_syn_recv_sock,
1822 .remember_stamp = tcp_v4_remember_stamp,
1823 .net_header_len = sizeof(struct iphdr),
1824 .setsockopt = ip_setsockopt,
1825 .getsockopt = ip_getsockopt,
1826 .addr2sockaddr = inet_csk_addr2sockaddr,
1827 .sockaddr_len = sizeof(struct sockaddr_in),
1828 .bind_conflict = inet_csk_bind_conflict,
1829 #ifdef CONFIG_COMPAT
1830 .compat_setsockopt = compat_ip_setsockopt,
1831 .compat_getsockopt = compat_ip_getsockopt,
1832 #endif
1833 };
1834
1835 #ifdef CONFIG_TCP_MD5SIG
1836 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1837 .md5_lookup = tcp_v4_md5_lookup,
1838 .calc_md5_hash = tcp_v4_md5_hash_skb,
1839 .md5_add = tcp_v4_md5_add_func,
1840 .md5_parse = tcp_v4_parse_md5_keys,
1841 };
1842 #endif
1843
1844 /* NOTE: A lot of things set to zero explicitly by call to
1845 * sk_alloc() so need not be done here.
1846 */
1847 static int tcp_v4_init_sock(struct sock *sk)
1848 {
1849 struct inet_connection_sock *icsk = inet_csk(sk);
1850 struct tcp_sock *tp = tcp_sk(sk);
1851
1852 skb_queue_head_init(&tp->out_of_order_queue);
1853 tcp_init_xmit_timers(sk);
1854 tcp_prequeue_init(tp);
1855
1856 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1857 tp->mdev = TCP_TIMEOUT_INIT;
1858
1859 /* So many TCP implementations out there (incorrectly) count the
1860 * initial SYN frame in their delayed-ACK and congestion control
1861 * algorithms that we must have the following bandaid to talk
1862 * efficiently to them. -DaveM
1863 */
1864 tp->snd_cwnd = 2;
1865
1866 /* See draft-stevens-tcpca-spec-01 for discussion of the
1867 * initialization of these values.
1868 */
1869 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1870 tp->snd_cwnd_clamp = ~0;
1871 tp->mss_cache = TCP_MSS_DEFAULT;
1872
1873 tp->reordering = sysctl_tcp_reordering;
1874 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1875
1876 sk->sk_state = TCP_CLOSE;
1877
1878 sk->sk_write_space = sk_stream_write_space;
1879 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1880
1881 icsk->icsk_af_ops = &ipv4_specific;
1882 icsk->icsk_sync_mss = tcp_sync_mss;
1883 #ifdef CONFIG_TCP_MD5SIG
1884 tp->af_specific = &tcp_sock_ipv4_specific;
1885 #endif
1886
1887 /* TCP Cookie Transactions */
1888 if (sysctl_tcp_cookie_size > 0) {
1889 /* Default, cookies without s_data_payload. */
1890 tp->cookie_values =
1891 kzalloc(sizeof(*tp->cookie_values),
1892 sk->sk_allocation);
1893 if (tp->cookie_values != NULL)
1894 kref_init(&tp->cookie_values->kref);
1895 }
1896 /* Presumed zeroed, in order of appearance:
1897 * cookie_in_always, cookie_out_never,
1898 * s_data_constant, s_data_in, s_data_out
1899 */
1900 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1901 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1902
1903 local_bh_disable();
1904 percpu_counter_inc(&tcp_sockets_allocated);
1905 local_bh_enable();
1906
1907 return 0;
1908 }
1909
1910 void tcp_v4_destroy_sock(struct sock *sk)
1911 {
1912 struct tcp_sock *tp = tcp_sk(sk);
1913
1914 tcp_clear_xmit_timers(sk);
1915
1916 tcp_cleanup_congestion_control(sk);
1917
1918 /* Cleanup up the write buffer. */
1919 tcp_write_queue_purge(sk);
1920
1921 /* Cleans up our, hopefully empty, out_of_order_queue. */
1922 __skb_queue_purge(&tp->out_of_order_queue);
1923
1924 #ifdef CONFIG_TCP_MD5SIG
1925 /* Clean up the MD5 key list, if any */
1926 if (tp->md5sig_info) {
1927 tcp_v4_clear_md5_list(sk);
1928 kfree(tp->md5sig_info);
1929 tp->md5sig_info = NULL;
1930 }
1931 #endif
1932
1933 #ifdef CONFIG_NET_DMA
1934 /* Cleans up our sk_async_wait_queue */
1935 __skb_queue_purge(&sk->sk_async_wait_queue);
1936 #endif
1937
1938 /* Clean prequeue, it must be empty really */
1939 __skb_queue_purge(&tp->ucopy.prequeue);
1940
1941 /* Clean up a referenced TCP bind bucket. */
1942 if (inet_csk(sk)->icsk_bind_hash)
1943 inet_put_port(sk);
1944
1945 /*
1946 * If sendmsg cached page exists, toss it.
1947 */
1948 if (sk->sk_sndmsg_page) {
1949 __free_page(sk->sk_sndmsg_page);
1950 sk->sk_sndmsg_page = NULL;
1951 }
1952
1953 /* TCP Cookie Transactions */
1954 if (tp->cookie_values != NULL) {
1955 kref_put(&tp->cookie_values->kref,
1956 tcp_cookie_values_release);
1957 tp->cookie_values = NULL;
1958 }
1959
1960 percpu_counter_dec(&tcp_sockets_allocated);
1961 }
1962
1963 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1964
1965 #ifdef CONFIG_PROC_FS
1966 /* Proc filesystem TCP sock list dumping. */
1967
1968 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1969 {
1970 return hlist_nulls_empty(head) ? NULL :
1971 list_entry(head->first, struct inet_timewait_sock, tw_node);
1972 }
1973
1974 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1975 {
1976 return !is_a_nulls(tw->tw_node.next) ?
1977 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1978 }
1979
1980 static void *listening_get_next(struct seq_file *seq, void *cur)
1981 {
1982 struct inet_connection_sock *icsk;
1983 struct hlist_nulls_node *node;
1984 struct sock *sk = cur;
1985 struct inet_listen_hashbucket *ilb;
1986 struct tcp_iter_state *st = seq->private;
1987 struct net *net = seq_file_net(seq);
1988
1989 if (!sk) {
1990 st->bucket = 0;
1991 ilb = &tcp_hashinfo.listening_hash[0];
1992 spin_lock_bh(&ilb->lock);
1993 sk = sk_nulls_head(&ilb->head);
1994 goto get_sk;
1995 }
1996 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1997 ++st->num;
1998
1999 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2000 struct request_sock *req = cur;
2001
2002 icsk = inet_csk(st->syn_wait_sk);
2003 req = req->dl_next;
2004 while (1) {
2005 while (req) {
2006 if (req->rsk_ops->family == st->family) {
2007 cur = req;
2008 goto out;
2009 }
2010 req = req->dl_next;
2011 }
2012 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2013 break;
2014 get_req:
2015 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2016 }
2017 sk = sk_next(st->syn_wait_sk);
2018 st->state = TCP_SEQ_STATE_LISTENING;
2019 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2020 } else {
2021 icsk = inet_csk(sk);
2022 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2023 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2024 goto start_req;
2025 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2026 sk = sk_next(sk);
2027 }
2028 get_sk:
2029 sk_nulls_for_each_from(sk, node) {
2030 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2031 cur = sk;
2032 goto out;
2033 }
2034 icsk = inet_csk(sk);
2035 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2036 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2037 start_req:
2038 st->uid = sock_i_uid(sk);
2039 st->syn_wait_sk = sk;
2040 st->state = TCP_SEQ_STATE_OPENREQ;
2041 st->sbucket = 0;
2042 goto get_req;
2043 }
2044 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2045 }
2046 spin_unlock_bh(&ilb->lock);
2047 if (++st->bucket < INET_LHTABLE_SIZE) {
2048 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2049 spin_lock_bh(&ilb->lock);
2050 sk = sk_nulls_head(&ilb->head);
2051 goto get_sk;
2052 }
2053 cur = NULL;
2054 out:
2055 return cur;
2056 }
2057
2058 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2059 {
2060 void *rc = listening_get_next(seq, NULL);
2061
2062 while (rc && *pos) {
2063 rc = listening_get_next(seq, rc);
2064 --*pos;
2065 }
2066 return rc;
2067 }
2068
2069 static inline int empty_bucket(struct tcp_iter_state *st)
2070 {
2071 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2072 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2073 }
2074
2075 static void *established_get_first(struct seq_file *seq)
2076 {
2077 struct tcp_iter_state *st = seq->private;
2078 struct net *net = seq_file_net(seq);
2079 void *rc = NULL;
2080
2081 for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2082 struct sock *sk;
2083 struct hlist_nulls_node *node;
2084 struct inet_timewait_sock *tw;
2085 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2086
2087 /* Lockless fast path for the common case of empty buckets */
2088 if (empty_bucket(st))
2089 continue;
2090
2091 spin_lock_bh(lock);
2092 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2093 if (sk->sk_family != st->family ||
2094 !net_eq(sock_net(sk), net)) {
2095 continue;
2096 }
2097 rc = sk;
2098 goto out;
2099 }
2100 st->state = TCP_SEQ_STATE_TIME_WAIT;
2101 inet_twsk_for_each(tw, node,
2102 &tcp_hashinfo.ehash[st->bucket].twchain) {
2103 if (tw->tw_family != st->family ||
2104 !net_eq(twsk_net(tw), net)) {
2105 continue;
2106 }
2107 rc = tw;
2108 goto out;
2109 }
2110 spin_unlock_bh(lock);
2111 st->state = TCP_SEQ_STATE_ESTABLISHED;
2112 }
2113 out:
2114 return rc;
2115 }
2116
2117 static void *established_get_next(struct seq_file *seq, void *cur)
2118 {
2119 struct sock *sk = cur;
2120 struct inet_timewait_sock *tw;
2121 struct hlist_nulls_node *node;
2122 struct tcp_iter_state *st = seq->private;
2123 struct net *net = seq_file_net(seq);
2124
2125 ++st->num;
2126
2127 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2128 tw = cur;
2129 tw = tw_next(tw);
2130 get_tw:
2131 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2132 tw = tw_next(tw);
2133 }
2134 if (tw) {
2135 cur = tw;
2136 goto out;
2137 }
2138 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2139 st->state = TCP_SEQ_STATE_ESTABLISHED;
2140
2141 /* Look for next non empty bucket */
2142 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2143 empty_bucket(st))
2144 ;
2145 if (st->bucket > tcp_hashinfo.ehash_mask)
2146 return NULL;
2147
2148 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2149 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2150 } else
2151 sk = sk_nulls_next(sk);
2152
2153 sk_nulls_for_each_from(sk, node) {
2154 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2155 goto found;
2156 }
2157
2158 st->state = TCP_SEQ_STATE_TIME_WAIT;
2159 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2160 goto get_tw;
2161 found:
2162 cur = sk;
2163 out:
2164 return cur;
2165 }
2166
2167 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2168 {
2169 void *rc = established_get_first(seq);
2170
2171 while (rc && pos) {
2172 rc = established_get_next(seq, rc);
2173 --pos;
2174 }
2175 return rc;
2176 }
2177
2178 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2179 {
2180 void *rc;
2181 struct tcp_iter_state *st = seq->private;
2182
2183 st->state = TCP_SEQ_STATE_LISTENING;
2184 rc = listening_get_idx(seq, &pos);
2185
2186 if (!rc) {
2187 st->state = TCP_SEQ_STATE_ESTABLISHED;
2188 rc = established_get_idx(seq, pos);
2189 }
2190
2191 return rc;
2192 }
2193
2194 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2195 {
2196 struct tcp_iter_state *st = seq->private;
2197 st->state = TCP_SEQ_STATE_LISTENING;
2198 st->num = 0;
2199 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2200 }
2201
2202 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2203 {
2204 void *rc = NULL;
2205 struct tcp_iter_state *st;
2206
2207 if (v == SEQ_START_TOKEN) {
2208 rc = tcp_get_idx(seq, 0);
2209 goto out;
2210 }
2211 st = seq->private;
2212
2213 switch (st->state) {
2214 case TCP_SEQ_STATE_OPENREQ:
2215 case TCP_SEQ_STATE_LISTENING:
2216 rc = listening_get_next(seq, v);
2217 if (!rc) {
2218 st->state = TCP_SEQ_STATE_ESTABLISHED;
2219 rc = established_get_first(seq);
2220 }
2221 break;
2222 case TCP_SEQ_STATE_ESTABLISHED:
2223 case TCP_SEQ_STATE_TIME_WAIT:
2224 rc = established_get_next(seq, v);
2225 break;
2226 }
2227 out:
2228 ++*pos;
2229 return rc;
2230 }
2231
2232 static void tcp_seq_stop(struct seq_file *seq, void *v)
2233 {
2234 struct tcp_iter_state *st = seq->private;
2235
2236 switch (st->state) {
2237 case TCP_SEQ_STATE_OPENREQ:
2238 if (v) {
2239 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2240 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2241 }
2242 case TCP_SEQ_STATE_LISTENING:
2243 if (v != SEQ_START_TOKEN)
2244 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2245 break;
2246 case TCP_SEQ_STATE_TIME_WAIT:
2247 case TCP_SEQ_STATE_ESTABLISHED:
2248 if (v)
2249 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2250 break;
2251 }
2252 }
2253
2254 static int tcp_seq_open(struct inode *inode, struct file *file)
2255 {
2256 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2257 struct tcp_iter_state *s;
2258 int err;
2259
2260 err = seq_open_net(inode, file, &afinfo->seq_ops,
2261 sizeof(struct tcp_iter_state));
2262 if (err < 0)
2263 return err;
2264
2265 s = ((struct seq_file *)file->private_data)->private;
2266 s->family = afinfo->family;
2267 return 0;
2268 }
2269
2270 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2271 {
2272 int rc = 0;
2273 struct proc_dir_entry *p;
2274
2275 afinfo->seq_fops.open = tcp_seq_open;
2276 afinfo->seq_fops.read = seq_read;
2277 afinfo->seq_fops.llseek = seq_lseek;
2278 afinfo->seq_fops.release = seq_release_net;
2279
2280 afinfo->seq_ops.start = tcp_seq_start;
2281 afinfo->seq_ops.next = tcp_seq_next;
2282 afinfo->seq_ops.stop = tcp_seq_stop;
2283
2284 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2285 &afinfo->seq_fops, afinfo);
2286 if (!p)
2287 rc = -ENOMEM;
2288 return rc;
2289 }
2290
2291 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2292 {
2293 proc_net_remove(net, afinfo->name);
2294 }
2295
2296 static void get_openreq4(struct sock *sk, struct request_sock *req,
2297 struct seq_file *f, int i, int uid, int *len)
2298 {
2299 const struct inet_request_sock *ireq = inet_rsk(req);
2300 int ttd = req->expires - jiffies;
2301
2302 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2303 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2304 i,
2305 ireq->loc_addr,
2306 ntohs(inet_sk(sk)->inet_sport),
2307 ireq->rmt_addr,
2308 ntohs(ireq->rmt_port),
2309 TCP_SYN_RECV,
2310 0, 0, /* could print option size, but that is af dependent. */
2311 1, /* timers active (only the expire timer) */
2312 jiffies_to_clock_t(ttd),
2313 req->retrans,
2314 uid,
2315 0, /* non standard timer */
2316 0, /* open_requests have no inode */
2317 atomic_read(&sk->sk_refcnt),
2318 req,
2319 len);
2320 }
2321
2322 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2323 {
2324 int timer_active;
2325 unsigned long timer_expires;
2326 struct tcp_sock *tp = tcp_sk(sk);
2327 const struct inet_connection_sock *icsk = inet_csk(sk);
2328 struct inet_sock *inet = inet_sk(sk);
2329 __be32 dest = inet->inet_daddr;
2330 __be32 src = inet->inet_rcv_saddr;
2331 __u16 destp = ntohs(inet->inet_dport);
2332 __u16 srcp = ntohs(inet->inet_sport);
2333 int rx_queue;
2334
2335 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2336 timer_active = 1;
2337 timer_expires = icsk->icsk_timeout;
2338 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2339 timer_active = 4;
2340 timer_expires = icsk->icsk_timeout;
2341 } else if (timer_pending(&sk->sk_timer)) {
2342 timer_active = 2;
2343 timer_expires = sk->sk_timer.expires;
2344 } else {
2345 timer_active = 0;
2346 timer_expires = jiffies;
2347 }
2348
2349 if (sk->sk_state == TCP_LISTEN)
2350 rx_queue = sk->sk_ack_backlog;
2351 else
2352 /*
2353 * because we dont lock socket, we might find a transient negative value
2354 */
2355 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2356
2357 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2358 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2359 i, src, srcp, dest, destp, sk->sk_state,
2360 tp->write_seq - tp->snd_una,
2361 rx_queue,
2362 timer_active,
2363 jiffies_to_clock_t(timer_expires - jiffies),
2364 icsk->icsk_retransmits,
2365 sock_i_uid(sk),
2366 icsk->icsk_probes_out,
2367 sock_i_ino(sk),
2368 atomic_read(&sk->sk_refcnt), sk,
2369 jiffies_to_clock_t(icsk->icsk_rto),
2370 jiffies_to_clock_t(icsk->icsk_ack.ato),
2371 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2372 tp->snd_cwnd,
2373 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2374 len);
2375 }
2376
2377 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2378 struct seq_file *f, int i, int *len)
2379 {
2380 __be32 dest, src;
2381 __u16 destp, srcp;
2382 int ttd = tw->tw_ttd - jiffies;
2383
2384 if (ttd < 0)
2385 ttd = 0;
2386
2387 dest = tw->tw_daddr;
2388 src = tw->tw_rcv_saddr;
2389 destp = ntohs(tw->tw_dport);
2390 srcp = ntohs(tw->tw_sport);
2391
2392 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2393 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2394 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2395 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2396 atomic_read(&tw->tw_refcnt), tw, len);
2397 }
2398
2399 #define TMPSZ 150
2400
2401 static int tcp4_seq_show(struct seq_file *seq, void *v)
2402 {
2403 struct tcp_iter_state *st;
2404 int len;
2405
2406 if (v == SEQ_START_TOKEN) {
2407 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2408 " sl local_address rem_address st tx_queue "
2409 "rx_queue tr tm->when retrnsmt uid timeout "
2410 "inode");
2411 goto out;
2412 }
2413 st = seq->private;
2414
2415 switch (st->state) {
2416 case TCP_SEQ_STATE_LISTENING:
2417 case TCP_SEQ_STATE_ESTABLISHED:
2418 get_tcp4_sock(v, seq, st->num, &len);
2419 break;
2420 case TCP_SEQ_STATE_OPENREQ:
2421 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2422 break;
2423 case TCP_SEQ_STATE_TIME_WAIT:
2424 get_timewait4_sock(v, seq, st->num, &len);
2425 break;
2426 }
2427 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2428 out:
2429 return 0;
2430 }
2431
2432 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2433 .name = "tcp",
2434 .family = AF_INET,
2435 .seq_fops = {
2436 .owner = THIS_MODULE,
2437 },
2438 .seq_ops = {
2439 .show = tcp4_seq_show,
2440 },
2441 };
2442
2443 static int __net_init tcp4_proc_init_net(struct net *net)
2444 {
2445 return tcp_proc_register(net, &tcp4_seq_afinfo);
2446 }
2447
2448 static void __net_exit tcp4_proc_exit_net(struct net *net)
2449 {
2450 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2451 }
2452
2453 static struct pernet_operations tcp4_net_ops = {
2454 .init = tcp4_proc_init_net,
2455 .exit = tcp4_proc_exit_net,
2456 };
2457
2458 int __init tcp4_proc_init(void)
2459 {
2460 return register_pernet_subsys(&tcp4_net_ops);
2461 }
2462
2463 void tcp4_proc_exit(void)
2464 {
2465 unregister_pernet_subsys(&tcp4_net_ops);
2466 }
2467 #endif /* CONFIG_PROC_FS */
2468
2469 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2470 {
2471 struct iphdr *iph = skb_gro_network_header(skb);
2472
2473 switch (skb->ip_summed) {
2474 case CHECKSUM_COMPLETE:
2475 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2476 skb->csum)) {
2477 skb->ip_summed = CHECKSUM_UNNECESSARY;
2478 break;
2479 }
2480
2481 /* fall through */
2482 case CHECKSUM_NONE:
2483 NAPI_GRO_CB(skb)->flush = 1;
2484 return NULL;
2485 }
2486
2487 return tcp_gro_receive(head, skb);
2488 }
2489 EXPORT_SYMBOL(tcp4_gro_receive);
2490
2491 int tcp4_gro_complete(struct sk_buff *skb)
2492 {
2493 struct iphdr *iph = ip_hdr(skb);
2494 struct tcphdr *th = tcp_hdr(skb);
2495
2496 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2497 iph->saddr, iph->daddr, 0);
2498 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2499
2500 return tcp_gro_complete(skb);
2501 }
2502 EXPORT_SYMBOL(tcp4_gro_complete);
2503
2504 struct proto tcp_prot = {
2505 .name = "TCP",
2506 .owner = THIS_MODULE,
2507 .close = tcp_close,
2508 .connect = tcp_v4_connect,
2509 .disconnect = tcp_disconnect,
2510 .accept = inet_csk_accept,
2511 .ioctl = tcp_ioctl,
2512 .init = tcp_v4_init_sock,
2513 .destroy = tcp_v4_destroy_sock,
2514 .shutdown = tcp_shutdown,
2515 .setsockopt = tcp_setsockopt,
2516 .getsockopt = tcp_getsockopt,
2517 .recvmsg = tcp_recvmsg,
2518 .backlog_rcv = tcp_v4_do_rcv,
2519 .hash = inet_hash,
2520 .unhash = inet_unhash,
2521 .get_port = inet_csk_get_port,
2522 .enter_memory_pressure = tcp_enter_memory_pressure,
2523 .sockets_allocated = &tcp_sockets_allocated,
2524 .orphan_count = &tcp_orphan_count,
2525 .memory_allocated = &tcp_memory_allocated,
2526 .memory_pressure = &tcp_memory_pressure,
2527 .sysctl_mem = sysctl_tcp_mem,
2528 .sysctl_wmem = sysctl_tcp_wmem,
2529 .sysctl_rmem = sysctl_tcp_rmem,
2530 .max_header = MAX_TCP_HEADER,
2531 .obj_size = sizeof(struct tcp_sock),
2532 .slab_flags = SLAB_DESTROY_BY_RCU,
2533 .twsk_prot = &tcp_timewait_sock_ops,
2534 .rsk_prot = &tcp_request_sock_ops,
2535 .h.hashinfo = &tcp_hashinfo,
2536 #ifdef CONFIG_COMPAT
2537 .compat_setsockopt = compat_tcp_setsockopt,
2538 .compat_getsockopt = compat_tcp_getsockopt,
2539 #endif
2540 };
2541
2542
2543 static int __net_init tcp_sk_init(struct net *net)
2544 {
2545 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2546 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2547 }
2548
2549 static void __net_exit tcp_sk_exit(struct net *net)
2550 {
2551 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2552 }
2553
2554 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2555 {
2556 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2557 }
2558
2559 static struct pernet_operations __net_initdata tcp_sk_ops = {
2560 .init = tcp_sk_init,
2561 .exit = tcp_sk_exit,
2562 .exit_batch = tcp_sk_exit_batch,
2563 };
2564
2565 void __init tcp_v4_init(void)
2566 {
2567 inet_hashinfo_init(&tcp_hashinfo);
2568 if (register_pernet_subsys(&tcp_sk_ops))
2569 panic("Failed to create the TCP control socket.\n");
2570 }
2571
2572 EXPORT_SYMBOL(ipv4_specific);
2573 EXPORT_SYMBOL(tcp_hashinfo);
2574 EXPORT_SYMBOL(tcp_prot);
2575 EXPORT_SYMBOL(tcp_v4_conn_request);
2576 EXPORT_SYMBOL(tcp_v4_connect);
2577 EXPORT_SYMBOL(tcp_v4_do_rcv);
2578 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2579 EXPORT_SYMBOL(tcp_v4_send_check);
2580 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2581
2582 #ifdef CONFIG_PROC_FS
2583 EXPORT_SYMBOL(tcp_proc_register);
2584 EXPORT_SYMBOL(tcp_proc_unregister);
2585 #endif
2586 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2587
This page took 0.115439 seconds and 6 git commands to generate.