Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77 #include <net/busy_poll.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
96
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
99
100 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
101 {
102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103 ip_hdr(skb)->saddr,
104 tcp_hdr(skb)->dest,
105 tcp_hdr(skb)->source);
106 }
107
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
109 {
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112
113 /* With PAWS, it is safe from the viewpoint
114 of data integrity. Even without PAWS it is safe provided sequence
115 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
116
117 Actually, the idea is close to VJ's one, only timestamp cache is
118 held not per host, but per port pair and TW bucket is used as state
119 holder.
120
121 If TW bucket has been already destroyed we fall back to VJ's scheme
122 and use initial timestamp retrieved from peer table.
123 */
124 if (tcptw->tw_ts_recent_stamp &&
125 (!twp || (sysctl_tcp_tw_reuse &&
126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 if (tp->write_seq == 0)
129 tp->write_seq = 1;
130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132 sock_hold(sktw);
133 return 1;
134 }
135
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
139
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
142 {
143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 struct inet_sock *inet = inet_sk(sk);
145 struct tcp_sock *tp = tcp_sk(sk);
146 __be16 orig_sport, orig_dport;
147 __be32 daddr, nexthop;
148 struct flowi4 *fl4;
149 struct rtable *rt;
150 int err;
151 struct ip_options_rcu *inet_opt;
152
153 if (addr_len < sizeof(struct sockaddr_in))
154 return -EINVAL;
155
156 if (usin->sin_family != AF_INET)
157 return -EAFNOSUPPORT;
158
159 nexthop = daddr = usin->sin_addr.s_addr;
160 inet_opt = rcu_dereference_protected(inet->inet_opt,
161 sock_owned_by_user(sk));
162 if (inet_opt && inet_opt->opt.srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet_opt->opt.faddr;
166 }
167
168 orig_sport = inet->inet_sport;
169 orig_dport = usin->sin_port;
170 fl4 = &inet->cork.fl.u.ip4;
171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173 IPPROTO_TCP,
174 orig_sport, orig_dport, sk);
175 if (IS_ERR(rt)) {
176 err = PTR_ERR(rt);
177 if (err == -ENETUNREACH)
178 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 return err;
180 }
181
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 ip_rt_put(rt);
184 return -ENETUNREACH;
185 }
186
187 if (!inet_opt || !inet_opt->opt.srr)
188 daddr = fl4->daddr;
189
190 if (!inet->inet_saddr)
191 inet->inet_saddr = fl4->saddr;
192 sk_rcv_saddr_set(sk, inet->inet_saddr);
193
194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
198 if (likely(!tp->repair))
199 tp->write_seq = 0;
200 }
201
202 if (tcp_death_row.sysctl_tw_recycle &&
203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
204 tcp_fetch_timewait_stamp(sk, &rt->dst);
205
206 inet->inet_dport = usin->sin_port;
207 sk_daddr_set(sk, daddr);
208
209 inet_csk(sk)->icsk_ext_hdr_len = 0;
210 if (inet_opt)
211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212
213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214
215 /* Socket identity is still unknown (sport may be zero).
216 * However we set state to SYN-SENT and not releasing socket
217 * lock select source port, enter ourselves into the hash tables and
218 * complete initialization after this.
219 */
220 tcp_set_state(sk, TCP_SYN_SENT);
221 err = inet_hash_connect(&tcp_death_row, sk);
222 if (err)
223 goto failure;
224
225 sk_set_txhash(sk);
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254 failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272 void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302 }
303 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
304
305 static void do_redirect(struct sk_buff *skb, struct sock *sk)
306 {
307 struct dst_entry *dst = __sk_dst_check(sk, 0);
308
309 if (dst)
310 dst->ops->redirect(dst, sk, skb);
311 }
312
313
314 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
315 void tcp_req_err(struct sock *sk, u32 seq)
316 {
317 struct request_sock *req = inet_reqsk(sk);
318 struct net *net = sock_net(sk);
319
320 /* ICMPs are not backlogged, hence we cannot get
321 * an established socket here.
322 */
323 WARN_ON(req->sk);
324
325 if (seq != tcp_rsk(req)->snt_isn) {
326 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
327 } else {
328 /*
329 * Still in SYN_RECV, just remove it silently.
330 * There is no good way to pass the error to the newly
331 * created socket, and POSIX does not want network
332 * errors returned from accept().
333 */
334 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
335 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
336 }
337 reqsk_put(req);
338 }
339 EXPORT_SYMBOL(tcp_req_err);
340
341 /*
342 * This routine is called by the ICMP module when it gets some
343 * sort of error condition. If err < 0 then the socket should
344 * be closed and the error returned to the user. If err > 0
345 * it's just the icmp type << 8 | icmp code. After adjustment
346 * header points to the first 8 bytes of the tcp header. We need
347 * to find the appropriate port.
348 *
349 * The locking strategy used here is very "optimistic". When
350 * someone else accesses the socket the ICMP is just dropped
351 * and for some paths there is no check at all.
352 * A more general error queue to queue errors for later handling
353 * is probably better.
354 *
355 */
356
357 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
358 {
359 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
360 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
361 struct inet_connection_sock *icsk;
362 struct tcp_sock *tp;
363 struct inet_sock *inet;
364 const int type = icmp_hdr(icmp_skb)->type;
365 const int code = icmp_hdr(icmp_skb)->code;
366 struct sock *sk;
367 struct sk_buff *skb;
368 struct request_sock *fastopen;
369 __u32 seq, snd_una;
370 __u32 remaining;
371 int err;
372 struct net *net = dev_net(icmp_skb->dev);
373
374 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
375 th->dest, iph->saddr, ntohs(th->source),
376 inet_iif(icmp_skb));
377 if (!sk) {
378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 return;
380 }
381 if (sk->sk_state == TCP_TIME_WAIT) {
382 inet_twsk_put(inet_twsk(sk));
383 return;
384 }
385 seq = ntohl(th->seq);
386 if (sk->sk_state == TCP_NEW_SYN_RECV)
387 return tcp_req_err(sk, seq);
388
389 bh_lock_sock(sk);
390 /* If too many ICMPs get dropped on busy
391 * servers this needs to be solved differently.
392 * We do take care of PMTU discovery (RFC1191) special case :
393 * we can receive locally generated ICMP messages while socket is held.
394 */
395 if (sock_owned_by_user(sk)) {
396 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
397 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
398 }
399 if (sk->sk_state == TCP_CLOSE)
400 goto out;
401
402 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
403 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
404 goto out;
405 }
406
407 icsk = inet_csk(sk);
408 tp = tcp_sk(sk);
409 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
410 fastopen = tp->fastopen_rsk;
411 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
412 if (sk->sk_state != TCP_LISTEN &&
413 !between(seq, snd_una, tp->snd_nxt)) {
414 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
415 goto out;
416 }
417
418 switch (type) {
419 case ICMP_REDIRECT:
420 do_redirect(icmp_skb, sk);
421 goto out;
422 case ICMP_SOURCE_QUENCH:
423 /* Just silently ignore these. */
424 goto out;
425 case ICMP_PARAMETERPROB:
426 err = EPROTO;
427 break;
428 case ICMP_DEST_UNREACH:
429 if (code > NR_ICMP_UNREACH)
430 goto out;
431
432 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
433 /* We are not interested in TCP_LISTEN and open_requests
434 * (SYN-ACKs send out by Linux are always <576bytes so
435 * they should go through unfragmented).
436 */
437 if (sk->sk_state == TCP_LISTEN)
438 goto out;
439
440 tp->mtu_info = info;
441 if (!sock_owned_by_user(sk)) {
442 tcp_v4_mtu_reduced(sk);
443 } else {
444 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
445 sock_hold(sk);
446 }
447 goto out;
448 }
449
450 err = icmp_err_convert[code].errno;
451 /* check if icmp_skb allows revert of backoff
452 * (see draft-zimmermann-tcp-lcd) */
453 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
454 break;
455 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
456 !icsk->icsk_backoff || fastopen)
457 break;
458
459 if (sock_owned_by_user(sk))
460 break;
461
462 icsk->icsk_backoff--;
463 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
464 TCP_TIMEOUT_INIT;
465 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
466
467 skb = tcp_write_queue_head(sk);
468 BUG_ON(!skb);
469
470 remaining = icsk->icsk_rto -
471 min(icsk->icsk_rto,
472 tcp_time_stamp - tcp_skb_timestamp(skb));
473
474 if (remaining) {
475 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
476 remaining, TCP_RTO_MAX);
477 } else {
478 /* RTO revert clocked out retransmission.
479 * Will retransmit now */
480 tcp_retransmit_timer(sk);
481 }
482
483 break;
484 case ICMP_TIME_EXCEEDED:
485 err = EHOSTUNREACH;
486 break;
487 default:
488 goto out;
489 }
490
491 switch (sk->sk_state) {
492 case TCP_SYN_SENT:
493 case TCP_SYN_RECV:
494 /* Only in fast or simultaneous open. If a fast open socket is
495 * is already accepted it is treated as a connected one below.
496 */
497 if (fastopen && !fastopen->sk)
498 break;
499
500 if (!sock_owned_by_user(sk)) {
501 sk->sk_err = err;
502
503 sk->sk_error_report(sk);
504
505 tcp_done(sk);
506 } else {
507 sk->sk_err_soft = err;
508 }
509 goto out;
510 }
511
512 /* If we've already connected we will keep trying
513 * until we time out, or the user gives up.
514 *
515 * rfc1122 4.2.3.9 allows to consider as hard errors
516 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
517 * but it is obsoleted by pmtu discovery).
518 *
519 * Note, that in modern internet, where routing is unreliable
520 * and in each dark corner broken firewalls sit, sending random
521 * errors ordered by their masters even this two messages finally lose
522 * their original sense (even Linux sends invalid PORT_UNREACHs)
523 *
524 * Now we are in compliance with RFCs.
525 * --ANK (980905)
526 */
527
528 inet = inet_sk(sk);
529 if (!sock_owned_by_user(sk) && inet->recverr) {
530 sk->sk_err = err;
531 sk->sk_error_report(sk);
532 } else { /* Only an error on timeout */
533 sk->sk_err_soft = err;
534 }
535
536 out:
537 bh_unlock_sock(sk);
538 sock_put(sk);
539 }
540
541 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
542 {
543 struct tcphdr *th = tcp_hdr(skb);
544
545 if (skb->ip_summed == CHECKSUM_PARTIAL) {
546 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
547 skb->csum_start = skb_transport_header(skb) - skb->head;
548 skb->csum_offset = offsetof(struct tcphdr, check);
549 } else {
550 th->check = tcp_v4_check(skb->len, saddr, daddr,
551 csum_partial(th,
552 th->doff << 2,
553 skb->csum));
554 }
555 }
556
557 /* This routine computes an IPv4 TCP checksum. */
558 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
559 {
560 const struct inet_sock *inet = inet_sk(sk);
561
562 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
563 }
564 EXPORT_SYMBOL(tcp_v4_send_check);
565
566 /*
567 * This routine will send an RST to the other tcp.
568 *
569 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
570 * for reset.
571 * Answer: if a packet caused RST, it is not for a socket
572 * existing in our system, if it is matched to a socket,
573 * it is just duplicate segment or bug in other side's TCP.
574 * So that we build reply only basing on parameters
575 * arrived with segment.
576 * Exception: precedence violation. We do not implement it in any case.
577 */
578
579 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
580 {
581 const struct tcphdr *th = tcp_hdr(skb);
582 struct {
583 struct tcphdr th;
584 #ifdef CONFIG_TCP_MD5SIG
585 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
586 #endif
587 } rep;
588 struct ip_reply_arg arg;
589 #ifdef CONFIG_TCP_MD5SIG
590 struct tcp_md5sig_key *key = NULL;
591 const __u8 *hash_location = NULL;
592 unsigned char newhash[16];
593 int genhash;
594 struct sock *sk1 = NULL;
595 #endif
596 struct net *net;
597
598 /* Never send a reset in response to a reset. */
599 if (th->rst)
600 return;
601
602 /* If sk not NULL, it means we did a successful lookup and incoming
603 * route had to be correct. prequeue might have dropped our dst.
604 */
605 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
606 return;
607
608 /* Swap the send and the receive. */
609 memset(&rep, 0, sizeof(rep));
610 rep.th.dest = th->source;
611 rep.th.source = th->dest;
612 rep.th.doff = sizeof(struct tcphdr) / 4;
613 rep.th.rst = 1;
614
615 if (th->ack) {
616 rep.th.seq = th->ack_seq;
617 } else {
618 rep.th.ack = 1;
619 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
620 skb->len - (th->doff << 2));
621 }
622
623 memset(&arg, 0, sizeof(arg));
624 arg.iov[0].iov_base = (unsigned char *)&rep;
625 arg.iov[0].iov_len = sizeof(rep.th);
626
627 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
628 #ifdef CONFIG_TCP_MD5SIG
629 hash_location = tcp_parse_md5sig_option(th);
630 if (sk && sk_fullsock(sk)) {
631 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
632 &ip_hdr(skb)->saddr, AF_INET);
633 } else if (hash_location) {
634 /*
635 * active side is lost. Try to find listening socket through
636 * source port, and then find md5 key through listening socket.
637 * we are not loose security here:
638 * Incoming packet is checked with md5 hash with finding key,
639 * no RST generated if md5 hash doesn't match.
640 */
641 sk1 = __inet_lookup_listener(net,
642 &tcp_hashinfo, ip_hdr(skb)->saddr,
643 th->source, ip_hdr(skb)->daddr,
644 ntohs(th->source), inet_iif(skb));
645 /* don't send rst if it can't find key */
646 if (!sk1)
647 return;
648 rcu_read_lock();
649 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
650 &ip_hdr(skb)->saddr, AF_INET);
651 if (!key)
652 goto release_sk1;
653
654 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
655 if (genhash || memcmp(hash_location, newhash, 16) != 0)
656 goto release_sk1;
657 }
658
659 if (key) {
660 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
661 (TCPOPT_NOP << 16) |
662 (TCPOPT_MD5SIG << 8) |
663 TCPOLEN_MD5SIG);
664 /* Update length and the length the header thinks exists */
665 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
666 rep.th.doff = arg.iov[0].iov_len / 4;
667
668 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
669 key, ip_hdr(skb)->saddr,
670 ip_hdr(skb)->daddr, &rep.th);
671 }
672 #endif
673 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
674 ip_hdr(skb)->saddr, /* XXX */
675 arg.iov[0].iov_len, IPPROTO_TCP, 0);
676 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
677 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
678
679 /* When socket is gone, all binding information is lost.
680 * routing might fail in this case. No choice here, if we choose to force
681 * input interface, we will misroute in case of asymmetric route.
682 */
683 if (sk)
684 arg.bound_dev_if = sk->sk_bound_dev_if;
685
686 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
687 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
688
689 arg.tos = ip_hdr(skb)->tos;
690 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
691 skb, &TCP_SKB_CB(skb)->header.h4.opt,
692 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
693 &arg, arg.iov[0].iov_len);
694
695 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
696 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
697
698 #ifdef CONFIG_TCP_MD5SIG
699 release_sk1:
700 if (sk1) {
701 rcu_read_unlock();
702 sock_put(sk1);
703 }
704 #endif
705 }
706
707 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
708 outside socket context is ugly, certainly. What can I do?
709 */
710
711 static void tcp_v4_send_ack(struct net *net,
712 struct sk_buff *skb, u32 seq, u32 ack,
713 u32 win, u32 tsval, u32 tsecr, int oif,
714 struct tcp_md5sig_key *key,
715 int reply_flags, u8 tos)
716 {
717 const struct tcphdr *th = tcp_hdr(skb);
718 struct {
719 struct tcphdr th;
720 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
721 #ifdef CONFIG_TCP_MD5SIG
722 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
723 #endif
724 ];
725 } rep;
726 struct ip_reply_arg arg;
727
728 memset(&rep.th, 0, sizeof(struct tcphdr));
729 memset(&arg, 0, sizeof(arg));
730
731 arg.iov[0].iov_base = (unsigned char *)&rep;
732 arg.iov[0].iov_len = sizeof(rep.th);
733 if (tsecr) {
734 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
735 (TCPOPT_TIMESTAMP << 8) |
736 TCPOLEN_TIMESTAMP);
737 rep.opt[1] = htonl(tsval);
738 rep.opt[2] = htonl(tsecr);
739 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
740 }
741
742 /* Swap the send and the receive. */
743 rep.th.dest = th->source;
744 rep.th.source = th->dest;
745 rep.th.doff = arg.iov[0].iov_len / 4;
746 rep.th.seq = htonl(seq);
747 rep.th.ack_seq = htonl(ack);
748 rep.th.ack = 1;
749 rep.th.window = htons(win);
750
751 #ifdef CONFIG_TCP_MD5SIG
752 if (key) {
753 int offset = (tsecr) ? 3 : 0;
754
755 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
756 (TCPOPT_NOP << 16) |
757 (TCPOPT_MD5SIG << 8) |
758 TCPOLEN_MD5SIG);
759 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
760 rep.th.doff = arg.iov[0].iov_len/4;
761
762 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
763 key, ip_hdr(skb)->saddr,
764 ip_hdr(skb)->daddr, &rep.th);
765 }
766 #endif
767 arg.flags = reply_flags;
768 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
769 ip_hdr(skb)->saddr, /* XXX */
770 arg.iov[0].iov_len, IPPROTO_TCP, 0);
771 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
772 if (oif)
773 arg.bound_dev_if = oif;
774 arg.tos = tos;
775 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
776 skb, &TCP_SKB_CB(skb)->header.h4.opt,
777 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
778 &arg, arg.iov[0].iov_len);
779
780 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
781 }
782
783 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
784 {
785 struct inet_timewait_sock *tw = inet_twsk(sk);
786 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
787
788 tcp_v4_send_ack(sock_net(sk), skb,
789 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
790 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
791 tcp_time_stamp + tcptw->tw_ts_offset,
792 tcptw->tw_ts_recent,
793 tw->tw_bound_dev_if,
794 tcp_twsk_md5_key(tcptw),
795 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
796 tw->tw_tos
797 );
798
799 inet_twsk_put(tw);
800 }
801
802 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
803 struct request_sock *req)
804 {
805 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
806 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
807 */
808 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
809 tcp_sk(sk)->snd_nxt;
810
811 tcp_v4_send_ack(sock_net(sk), skb, seq,
812 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
813 tcp_time_stamp,
814 req->ts_recent,
815 0,
816 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
817 AF_INET),
818 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
819 ip_hdr(skb)->tos);
820 }
821
822 /*
823 * Send a SYN-ACK after having received a SYN.
824 * This still operates on a request_sock only, not on a big
825 * socket.
826 */
827 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
828 struct flowi *fl,
829 struct request_sock *req,
830 struct tcp_fastopen_cookie *foc,
831 bool attach_req)
832 {
833 const struct inet_request_sock *ireq = inet_rsk(req);
834 struct flowi4 fl4;
835 int err = -1;
836 struct sk_buff *skb;
837
838 /* First, grab a route. */
839 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
840 return -1;
841
842 skb = tcp_make_synack(sk, dst, req, foc, attach_req);
843
844 if (skb) {
845 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
846
847 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
848 ireq->ir_rmt_addr,
849 ireq->opt);
850 err = net_xmit_eval(err);
851 }
852
853 return err;
854 }
855
856 /*
857 * IPv4 request_sock destructor.
858 */
859 static void tcp_v4_reqsk_destructor(struct request_sock *req)
860 {
861 kfree(inet_rsk(req)->opt);
862 }
863
864
865 #ifdef CONFIG_TCP_MD5SIG
866 /*
867 * RFC2385 MD5 checksumming requires a mapping of
868 * IP address->MD5 Key.
869 * We need to maintain these in the sk structure.
870 */
871
872 /* Find the Key structure for an address. */
873 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
874 const union tcp_md5_addr *addr,
875 int family)
876 {
877 const struct tcp_sock *tp = tcp_sk(sk);
878 struct tcp_md5sig_key *key;
879 unsigned int size = sizeof(struct in_addr);
880 const struct tcp_md5sig_info *md5sig;
881
882 /* caller either holds rcu_read_lock() or socket lock */
883 md5sig = rcu_dereference_check(tp->md5sig_info,
884 sock_owned_by_user(sk) ||
885 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
886 if (!md5sig)
887 return NULL;
888 #if IS_ENABLED(CONFIG_IPV6)
889 if (family == AF_INET6)
890 size = sizeof(struct in6_addr);
891 #endif
892 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
893 if (key->family != family)
894 continue;
895 if (!memcmp(&key->addr, addr, size))
896 return key;
897 }
898 return NULL;
899 }
900 EXPORT_SYMBOL(tcp_md5_do_lookup);
901
902 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
903 const struct sock *addr_sk)
904 {
905 const union tcp_md5_addr *addr;
906
907 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
908 return tcp_md5_do_lookup(sk, addr, AF_INET);
909 }
910 EXPORT_SYMBOL(tcp_v4_md5_lookup);
911
912 /* This can be called on a newly created socket, from other files */
913 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
914 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
915 {
916 /* Add Key to the list */
917 struct tcp_md5sig_key *key;
918 struct tcp_sock *tp = tcp_sk(sk);
919 struct tcp_md5sig_info *md5sig;
920
921 key = tcp_md5_do_lookup(sk, addr, family);
922 if (key) {
923 /* Pre-existing entry - just update that one. */
924 memcpy(key->key, newkey, newkeylen);
925 key->keylen = newkeylen;
926 return 0;
927 }
928
929 md5sig = rcu_dereference_protected(tp->md5sig_info,
930 sock_owned_by_user(sk) ||
931 lockdep_is_held(&sk->sk_lock.slock));
932 if (!md5sig) {
933 md5sig = kmalloc(sizeof(*md5sig), gfp);
934 if (!md5sig)
935 return -ENOMEM;
936
937 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
938 INIT_HLIST_HEAD(&md5sig->head);
939 rcu_assign_pointer(tp->md5sig_info, md5sig);
940 }
941
942 key = sock_kmalloc(sk, sizeof(*key), gfp);
943 if (!key)
944 return -ENOMEM;
945 if (!tcp_alloc_md5sig_pool()) {
946 sock_kfree_s(sk, key, sizeof(*key));
947 return -ENOMEM;
948 }
949
950 memcpy(key->key, newkey, newkeylen);
951 key->keylen = newkeylen;
952 key->family = family;
953 memcpy(&key->addr, addr,
954 (family == AF_INET6) ? sizeof(struct in6_addr) :
955 sizeof(struct in_addr));
956 hlist_add_head_rcu(&key->node, &md5sig->head);
957 return 0;
958 }
959 EXPORT_SYMBOL(tcp_md5_do_add);
960
961 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
962 {
963 struct tcp_md5sig_key *key;
964
965 key = tcp_md5_do_lookup(sk, addr, family);
966 if (!key)
967 return -ENOENT;
968 hlist_del_rcu(&key->node);
969 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
970 kfree_rcu(key, rcu);
971 return 0;
972 }
973 EXPORT_SYMBOL(tcp_md5_do_del);
974
975 static void tcp_clear_md5_list(struct sock *sk)
976 {
977 struct tcp_sock *tp = tcp_sk(sk);
978 struct tcp_md5sig_key *key;
979 struct hlist_node *n;
980 struct tcp_md5sig_info *md5sig;
981
982 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
983
984 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
985 hlist_del_rcu(&key->node);
986 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
987 kfree_rcu(key, rcu);
988 }
989 }
990
991 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
992 int optlen)
993 {
994 struct tcp_md5sig cmd;
995 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
996
997 if (optlen < sizeof(cmd))
998 return -EINVAL;
999
1000 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1001 return -EFAULT;
1002
1003 if (sin->sin_family != AF_INET)
1004 return -EINVAL;
1005
1006 if (!cmd.tcpm_keylen)
1007 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1008 AF_INET);
1009
1010 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1011 return -EINVAL;
1012
1013 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1014 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1015 GFP_KERNEL);
1016 }
1017
1018 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1019 __be32 daddr, __be32 saddr, int nbytes)
1020 {
1021 struct tcp4_pseudohdr *bp;
1022 struct scatterlist sg;
1023
1024 bp = &hp->md5_blk.ip4;
1025
1026 /*
1027 * 1. the TCP pseudo-header (in the order: source IP address,
1028 * destination IP address, zero-padded protocol number, and
1029 * segment length)
1030 */
1031 bp->saddr = saddr;
1032 bp->daddr = daddr;
1033 bp->pad = 0;
1034 bp->protocol = IPPROTO_TCP;
1035 bp->len = cpu_to_be16(nbytes);
1036
1037 sg_init_one(&sg, bp, sizeof(*bp));
1038 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1039 }
1040
1041 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1042 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1043 {
1044 struct tcp_md5sig_pool *hp;
1045 struct hash_desc *desc;
1046
1047 hp = tcp_get_md5sig_pool();
1048 if (!hp)
1049 goto clear_hash_noput;
1050 desc = &hp->md5_desc;
1051
1052 if (crypto_hash_init(desc))
1053 goto clear_hash;
1054 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1055 goto clear_hash;
1056 if (tcp_md5_hash_header(hp, th))
1057 goto clear_hash;
1058 if (tcp_md5_hash_key(hp, key))
1059 goto clear_hash;
1060 if (crypto_hash_final(desc, md5_hash))
1061 goto clear_hash;
1062
1063 tcp_put_md5sig_pool();
1064 return 0;
1065
1066 clear_hash:
1067 tcp_put_md5sig_pool();
1068 clear_hash_noput:
1069 memset(md5_hash, 0, 16);
1070 return 1;
1071 }
1072
1073 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1074 const struct sock *sk,
1075 const struct sk_buff *skb)
1076 {
1077 struct tcp_md5sig_pool *hp;
1078 struct hash_desc *desc;
1079 const struct tcphdr *th = tcp_hdr(skb);
1080 __be32 saddr, daddr;
1081
1082 if (sk) { /* valid for establish/request sockets */
1083 saddr = sk->sk_rcv_saddr;
1084 daddr = sk->sk_daddr;
1085 } else {
1086 const struct iphdr *iph = ip_hdr(skb);
1087 saddr = iph->saddr;
1088 daddr = iph->daddr;
1089 }
1090
1091 hp = tcp_get_md5sig_pool();
1092 if (!hp)
1093 goto clear_hash_noput;
1094 desc = &hp->md5_desc;
1095
1096 if (crypto_hash_init(desc))
1097 goto clear_hash;
1098
1099 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1100 goto clear_hash;
1101 if (tcp_md5_hash_header(hp, th))
1102 goto clear_hash;
1103 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1104 goto clear_hash;
1105 if (tcp_md5_hash_key(hp, key))
1106 goto clear_hash;
1107 if (crypto_hash_final(desc, md5_hash))
1108 goto clear_hash;
1109
1110 tcp_put_md5sig_pool();
1111 return 0;
1112
1113 clear_hash:
1114 tcp_put_md5sig_pool();
1115 clear_hash_noput:
1116 memset(md5_hash, 0, 16);
1117 return 1;
1118 }
1119 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1120
1121 #endif
1122
1123 /* Called with rcu_read_lock() */
1124 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1125 const struct sk_buff *skb)
1126 {
1127 #ifdef CONFIG_TCP_MD5SIG
1128 /*
1129 * This gets called for each TCP segment that arrives
1130 * so we want to be efficient.
1131 * We have 3 drop cases:
1132 * o No MD5 hash and one expected.
1133 * o MD5 hash and we're not expecting one.
1134 * o MD5 hash and its wrong.
1135 */
1136 const __u8 *hash_location = NULL;
1137 struct tcp_md5sig_key *hash_expected;
1138 const struct iphdr *iph = ip_hdr(skb);
1139 const struct tcphdr *th = tcp_hdr(skb);
1140 int genhash;
1141 unsigned char newhash[16];
1142
1143 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1144 AF_INET);
1145 hash_location = tcp_parse_md5sig_option(th);
1146
1147 /* We've parsed the options - do we have a hash? */
1148 if (!hash_expected && !hash_location)
1149 return false;
1150
1151 if (hash_expected && !hash_location) {
1152 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1153 return true;
1154 }
1155
1156 if (!hash_expected && hash_location) {
1157 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1158 return true;
1159 }
1160
1161 /* Okay, so this is hash_expected and hash_location -
1162 * so we need to calculate the checksum.
1163 */
1164 genhash = tcp_v4_md5_hash_skb(newhash,
1165 hash_expected,
1166 NULL, skb);
1167
1168 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1169 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1170 &iph->saddr, ntohs(th->source),
1171 &iph->daddr, ntohs(th->dest),
1172 genhash ? " tcp_v4_calc_md5_hash failed"
1173 : "");
1174 return true;
1175 }
1176 return false;
1177 #endif
1178 return false;
1179 }
1180
1181 static void tcp_v4_init_req(struct request_sock *req,
1182 const struct sock *sk_listener,
1183 struct sk_buff *skb)
1184 {
1185 struct inet_request_sock *ireq = inet_rsk(req);
1186
1187 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1188 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1189 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1190 ireq->opt = tcp_v4_save_options(skb);
1191 }
1192
1193 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1194 struct flowi *fl,
1195 const struct request_sock *req,
1196 bool *strict)
1197 {
1198 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1199
1200 if (strict) {
1201 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1202 *strict = true;
1203 else
1204 *strict = false;
1205 }
1206
1207 return dst;
1208 }
1209
1210 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1211 .family = PF_INET,
1212 .obj_size = sizeof(struct tcp_request_sock),
1213 .rtx_syn_ack = tcp_rtx_synack,
1214 .send_ack = tcp_v4_reqsk_send_ack,
1215 .destructor = tcp_v4_reqsk_destructor,
1216 .send_reset = tcp_v4_send_reset,
1217 .syn_ack_timeout = tcp_syn_ack_timeout,
1218 };
1219
1220 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1221 .mss_clamp = TCP_MSS_DEFAULT,
1222 #ifdef CONFIG_TCP_MD5SIG
1223 .req_md5_lookup = tcp_v4_md5_lookup,
1224 .calc_md5_hash = tcp_v4_md5_hash_skb,
1225 #endif
1226 .init_req = tcp_v4_init_req,
1227 #ifdef CONFIG_SYN_COOKIES
1228 .cookie_init_seq = cookie_v4_init_sequence,
1229 #endif
1230 .route_req = tcp_v4_route_req,
1231 .init_seq = tcp_v4_init_sequence,
1232 .send_synack = tcp_v4_send_synack,
1233 };
1234
1235 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1236 {
1237 /* Never answer to SYNs send to broadcast or multicast */
1238 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1239 goto drop;
1240
1241 return tcp_conn_request(&tcp_request_sock_ops,
1242 &tcp_request_sock_ipv4_ops, sk, skb);
1243
1244 drop:
1245 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1246 return 0;
1247 }
1248 EXPORT_SYMBOL(tcp_v4_conn_request);
1249
1250
1251 /*
1252 * The three way handshake has completed - we got a valid synack -
1253 * now create the new socket.
1254 */
1255 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1256 struct request_sock *req,
1257 struct dst_entry *dst,
1258 struct request_sock *req_unhash,
1259 bool *own_req)
1260 {
1261 struct inet_request_sock *ireq;
1262 struct inet_sock *newinet;
1263 struct tcp_sock *newtp;
1264 struct sock *newsk;
1265 #ifdef CONFIG_TCP_MD5SIG
1266 struct tcp_md5sig_key *key;
1267 #endif
1268 struct ip_options_rcu *inet_opt;
1269
1270 if (sk_acceptq_is_full(sk))
1271 goto exit_overflow;
1272
1273 newsk = tcp_create_openreq_child(sk, req, skb);
1274 if (!newsk)
1275 goto exit_nonewsk;
1276
1277 newsk->sk_gso_type = SKB_GSO_TCPV4;
1278 inet_sk_rx_dst_set(newsk, skb);
1279
1280 newtp = tcp_sk(newsk);
1281 newinet = inet_sk(newsk);
1282 ireq = inet_rsk(req);
1283 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1284 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1285 newsk->sk_bound_dev_if = ireq->ir_iif;
1286 newinet->inet_saddr = ireq->ir_loc_addr;
1287 inet_opt = ireq->opt;
1288 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1289 ireq->opt = NULL;
1290 newinet->mc_index = inet_iif(skb);
1291 newinet->mc_ttl = ip_hdr(skb)->ttl;
1292 newinet->rcv_tos = ip_hdr(skb)->tos;
1293 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1294 if (inet_opt)
1295 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1296 newinet->inet_id = newtp->write_seq ^ jiffies;
1297
1298 if (!dst) {
1299 dst = inet_csk_route_child_sock(sk, newsk, req);
1300 if (!dst)
1301 goto put_and_exit;
1302 } else {
1303 /* syncookie case : see end of cookie_v4_check() */
1304 }
1305 sk_setup_caps(newsk, dst);
1306
1307 tcp_ca_openreq_child(newsk, dst);
1308
1309 tcp_sync_mss(newsk, dst_mtu(dst));
1310 newtp->advmss = dst_metric_advmss(dst);
1311 if (tcp_sk(sk)->rx_opt.user_mss &&
1312 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1313 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1314
1315 tcp_initialize_rcv_mss(newsk);
1316
1317 #ifdef CONFIG_TCP_MD5SIG
1318 /* Copy over the MD5 key from the original socket */
1319 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1320 AF_INET);
1321 if (key) {
1322 /*
1323 * We're using one, so create a matching key
1324 * on the newsk structure. If we fail to get
1325 * memory, then we end up not copying the key
1326 * across. Shucks.
1327 */
1328 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1329 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1330 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1331 }
1332 #endif
1333
1334 if (__inet_inherit_port(sk, newsk) < 0)
1335 goto put_and_exit;
1336 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1337 if (*own_req)
1338 tcp_move_syn(newtp, req);
1339
1340 return newsk;
1341
1342 exit_overflow:
1343 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1344 exit_nonewsk:
1345 dst_release(dst);
1346 exit:
1347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1348 return NULL;
1349 put_and_exit:
1350 inet_csk_prepare_forced_close(newsk);
1351 tcp_done(newsk);
1352 goto exit;
1353 }
1354 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1355
1356 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1357 {
1358 #ifdef CONFIG_SYN_COOKIES
1359 const struct tcphdr *th = tcp_hdr(skb);
1360
1361 if (!th->syn)
1362 sk = cookie_v4_check(sk, skb);
1363 #endif
1364 return sk;
1365 }
1366
1367 /* The socket must have it's spinlock held when we get
1368 * here, unless it is a TCP_LISTEN socket.
1369 *
1370 * We have a potential double-lock case here, so even when
1371 * doing backlog processing we use the BH locking scheme.
1372 * This is because we cannot sleep with the original spinlock
1373 * held.
1374 */
1375 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1376 {
1377 struct sock *rsk;
1378
1379 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1380 struct dst_entry *dst = sk->sk_rx_dst;
1381
1382 sock_rps_save_rxhash(sk, skb);
1383 sk_mark_napi_id(sk, skb);
1384 if (dst) {
1385 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1386 !dst->ops->check(dst, 0)) {
1387 dst_release(dst);
1388 sk->sk_rx_dst = NULL;
1389 }
1390 }
1391 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1392 return 0;
1393 }
1394
1395 if (tcp_checksum_complete(skb))
1396 goto csum_err;
1397
1398 if (sk->sk_state == TCP_LISTEN) {
1399 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1400
1401 if (!nsk)
1402 goto discard;
1403 if (nsk != sk) {
1404 sock_rps_save_rxhash(nsk, skb);
1405 sk_mark_napi_id(nsk, skb);
1406 if (tcp_child_process(sk, nsk, skb)) {
1407 rsk = nsk;
1408 goto reset;
1409 }
1410 return 0;
1411 }
1412 } else
1413 sock_rps_save_rxhash(sk, skb);
1414
1415 if (tcp_rcv_state_process(sk, skb)) {
1416 rsk = sk;
1417 goto reset;
1418 }
1419 return 0;
1420
1421 reset:
1422 tcp_v4_send_reset(rsk, skb);
1423 discard:
1424 kfree_skb(skb);
1425 /* Be careful here. If this function gets more complicated and
1426 * gcc suffers from register pressure on the x86, sk (in %ebx)
1427 * might be destroyed here. This current version compiles correctly,
1428 * but you have been warned.
1429 */
1430 return 0;
1431
1432 csum_err:
1433 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1434 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1435 goto discard;
1436 }
1437 EXPORT_SYMBOL(tcp_v4_do_rcv);
1438
1439 void tcp_v4_early_demux(struct sk_buff *skb)
1440 {
1441 const struct iphdr *iph;
1442 const struct tcphdr *th;
1443 struct sock *sk;
1444
1445 if (skb->pkt_type != PACKET_HOST)
1446 return;
1447
1448 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1449 return;
1450
1451 iph = ip_hdr(skb);
1452 th = tcp_hdr(skb);
1453
1454 if (th->doff < sizeof(struct tcphdr) / 4)
1455 return;
1456
1457 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1458 iph->saddr, th->source,
1459 iph->daddr, ntohs(th->dest),
1460 skb->skb_iif);
1461 if (sk) {
1462 skb->sk = sk;
1463 skb->destructor = sock_edemux;
1464 if (sk_fullsock(sk)) {
1465 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1466
1467 if (dst)
1468 dst = dst_check(dst, 0);
1469 if (dst &&
1470 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1471 skb_dst_set_noref(skb, dst);
1472 }
1473 }
1474 }
1475
1476 /* Packet is added to VJ-style prequeue for processing in process
1477 * context, if a reader task is waiting. Apparently, this exciting
1478 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1479 * failed somewhere. Latency? Burstiness? Well, at least now we will
1480 * see, why it failed. 8)8) --ANK
1481 *
1482 */
1483 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1484 {
1485 struct tcp_sock *tp = tcp_sk(sk);
1486
1487 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1488 return false;
1489
1490 if (skb->len <= tcp_hdrlen(skb) &&
1491 skb_queue_len(&tp->ucopy.prequeue) == 0)
1492 return false;
1493
1494 /* Before escaping RCU protected region, we need to take care of skb
1495 * dst. Prequeue is only enabled for established sockets.
1496 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1497 * Instead of doing full sk_rx_dst validity here, let's perform
1498 * an optimistic check.
1499 */
1500 if (likely(sk->sk_rx_dst))
1501 skb_dst_drop(skb);
1502 else
1503 skb_dst_force_safe(skb);
1504
1505 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1506 tp->ucopy.memory += skb->truesize;
1507 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1508 struct sk_buff *skb1;
1509
1510 BUG_ON(sock_owned_by_user(sk));
1511
1512 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1513 sk_backlog_rcv(sk, skb1);
1514 NET_INC_STATS_BH(sock_net(sk),
1515 LINUX_MIB_TCPPREQUEUEDROPPED);
1516 }
1517
1518 tp->ucopy.memory = 0;
1519 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1520 wake_up_interruptible_sync_poll(sk_sleep(sk),
1521 POLLIN | POLLRDNORM | POLLRDBAND);
1522 if (!inet_csk_ack_scheduled(sk))
1523 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1524 (3 * tcp_rto_min(sk)) / 4,
1525 TCP_RTO_MAX);
1526 }
1527 return true;
1528 }
1529 EXPORT_SYMBOL(tcp_prequeue);
1530
1531 /*
1532 * From tcp_input.c
1533 */
1534
1535 int tcp_v4_rcv(struct sk_buff *skb)
1536 {
1537 const struct iphdr *iph;
1538 const struct tcphdr *th;
1539 struct sock *sk;
1540 int ret;
1541 struct net *net = dev_net(skb->dev);
1542
1543 if (skb->pkt_type != PACKET_HOST)
1544 goto discard_it;
1545
1546 /* Count it even if it's bad */
1547 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1548
1549 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1550 goto discard_it;
1551
1552 th = tcp_hdr(skb);
1553
1554 if (th->doff < sizeof(struct tcphdr) / 4)
1555 goto bad_packet;
1556 if (!pskb_may_pull(skb, th->doff * 4))
1557 goto discard_it;
1558
1559 /* An explanation is required here, I think.
1560 * Packet length and doff are validated by header prediction,
1561 * provided case of th->doff==0 is eliminated.
1562 * So, we defer the checks. */
1563
1564 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1565 goto csum_error;
1566
1567 th = tcp_hdr(skb);
1568 iph = ip_hdr(skb);
1569 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1570 * barrier() makes sure compiler wont play fool^Waliasing games.
1571 */
1572 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1573 sizeof(struct inet_skb_parm));
1574 barrier();
1575
1576 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1577 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1578 skb->len - th->doff * 4);
1579 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1580 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1581 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1582 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1583 TCP_SKB_CB(skb)->sacked = 0;
1584
1585 lookup:
1586 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1587 if (!sk)
1588 goto no_tcp_socket;
1589
1590 process:
1591 if (sk->sk_state == TCP_TIME_WAIT)
1592 goto do_time_wait;
1593
1594 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1595 struct request_sock *req = inet_reqsk(sk);
1596 struct sock *nsk = NULL;
1597
1598 sk = req->rsk_listener;
1599 if (tcp_v4_inbound_md5_hash(sk, skb))
1600 goto discard_and_relse;
1601 if (likely(sk->sk_state == TCP_LISTEN)) {
1602 nsk = tcp_check_req(sk, skb, req, false);
1603 } else {
1604 inet_csk_reqsk_queue_drop_and_put(sk, req);
1605 goto lookup;
1606 }
1607 if (!nsk) {
1608 reqsk_put(req);
1609 goto discard_it;
1610 }
1611 if (nsk == sk) {
1612 sock_hold(sk);
1613 reqsk_put(req);
1614 } else if (tcp_child_process(sk, nsk, skb)) {
1615 tcp_v4_send_reset(nsk, skb);
1616 goto discard_it;
1617 } else {
1618 return 0;
1619 }
1620 }
1621 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1622 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1623 goto discard_and_relse;
1624 }
1625
1626 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1627 goto discard_and_relse;
1628
1629 if (tcp_v4_inbound_md5_hash(sk, skb))
1630 goto discard_and_relse;
1631
1632 nf_reset(skb);
1633
1634 if (sk_filter(sk, skb))
1635 goto discard_and_relse;
1636
1637 skb->dev = NULL;
1638
1639 if (sk->sk_state == TCP_LISTEN) {
1640 ret = tcp_v4_do_rcv(sk, skb);
1641 goto put_and_return;
1642 }
1643
1644 sk_incoming_cpu_update(sk);
1645
1646 bh_lock_sock_nested(sk);
1647 tcp_sk(sk)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1648 ret = 0;
1649 if (!sock_owned_by_user(sk)) {
1650 if (!tcp_prequeue(sk, skb))
1651 ret = tcp_v4_do_rcv(sk, skb);
1652 } else if (unlikely(sk_add_backlog(sk, skb,
1653 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1654 bh_unlock_sock(sk);
1655 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1656 goto discard_and_relse;
1657 }
1658 bh_unlock_sock(sk);
1659
1660 put_and_return:
1661 sock_put(sk);
1662
1663 return ret;
1664
1665 no_tcp_socket:
1666 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1667 goto discard_it;
1668
1669 if (tcp_checksum_complete(skb)) {
1670 csum_error:
1671 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1672 bad_packet:
1673 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1674 } else {
1675 tcp_v4_send_reset(NULL, skb);
1676 }
1677
1678 discard_it:
1679 /* Discard frame. */
1680 kfree_skb(skb);
1681 return 0;
1682
1683 discard_and_relse:
1684 sock_put(sk);
1685 goto discard_it;
1686
1687 do_time_wait:
1688 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1689 inet_twsk_put(inet_twsk(sk));
1690 goto discard_it;
1691 }
1692
1693 if (tcp_checksum_complete(skb)) {
1694 inet_twsk_put(inet_twsk(sk));
1695 goto csum_error;
1696 }
1697 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1698 case TCP_TW_SYN: {
1699 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1700 &tcp_hashinfo,
1701 iph->saddr, th->source,
1702 iph->daddr, th->dest,
1703 inet_iif(skb));
1704 if (sk2) {
1705 inet_twsk_deschedule_put(inet_twsk(sk));
1706 sk = sk2;
1707 goto process;
1708 }
1709 /* Fall through to ACK */
1710 }
1711 case TCP_TW_ACK:
1712 tcp_v4_timewait_ack(sk, skb);
1713 break;
1714 case TCP_TW_RST:
1715 tcp_v4_send_reset(sk, skb);
1716 inet_twsk_deschedule_put(inet_twsk(sk));
1717 goto discard_it;
1718 case TCP_TW_SUCCESS:;
1719 }
1720 goto discard_it;
1721 }
1722
1723 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1724 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1725 .twsk_unique = tcp_twsk_unique,
1726 .twsk_destructor= tcp_twsk_destructor,
1727 };
1728
1729 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1730 {
1731 struct dst_entry *dst = skb_dst(skb);
1732
1733 if (dst && dst_hold_safe(dst)) {
1734 sk->sk_rx_dst = dst;
1735 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1736 }
1737 }
1738 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1739
1740 const struct inet_connection_sock_af_ops ipv4_specific = {
1741 .queue_xmit = ip_queue_xmit,
1742 .send_check = tcp_v4_send_check,
1743 .rebuild_header = inet_sk_rebuild_header,
1744 .sk_rx_dst_set = inet_sk_rx_dst_set,
1745 .conn_request = tcp_v4_conn_request,
1746 .syn_recv_sock = tcp_v4_syn_recv_sock,
1747 .net_header_len = sizeof(struct iphdr),
1748 .setsockopt = ip_setsockopt,
1749 .getsockopt = ip_getsockopt,
1750 .addr2sockaddr = inet_csk_addr2sockaddr,
1751 .sockaddr_len = sizeof(struct sockaddr_in),
1752 .bind_conflict = inet_csk_bind_conflict,
1753 #ifdef CONFIG_COMPAT
1754 .compat_setsockopt = compat_ip_setsockopt,
1755 .compat_getsockopt = compat_ip_getsockopt,
1756 #endif
1757 .mtu_reduced = tcp_v4_mtu_reduced,
1758 };
1759 EXPORT_SYMBOL(ipv4_specific);
1760
1761 #ifdef CONFIG_TCP_MD5SIG
1762 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1763 .md5_lookup = tcp_v4_md5_lookup,
1764 .calc_md5_hash = tcp_v4_md5_hash_skb,
1765 .md5_parse = tcp_v4_parse_md5_keys,
1766 };
1767 #endif
1768
1769 /* NOTE: A lot of things set to zero explicitly by call to
1770 * sk_alloc() so need not be done here.
1771 */
1772 static int tcp_v4_init_sock(struct sock *sk)
1773 {
1774 struct inet_connection_sock *icsk = inet_csk(sk);
1775
1776 tcp_init_sock(sk);
1777
1778 icsk->icsk_af_ops = &ipv4_specific;
1779
1780 #ifdef CONFIG_TCP_MD5SIG
1781 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1782 #endif
1783
1784 return 0;
1785 }
1786
1787 void tcp_v4_destroy_sock(struct sock *sk)
1788 {
1789 struct tcp_sock *tp = tcp_sk(sk);
1790
1791 tcp_clear_xmit_timers(sk);
1792
1793 tcp_cleanup_congestion_control(sk);
1794
1795 /* Cleanup up the write buffer. */
1796 tcp_write_queue_purge(sk);
1797
1798 /* Cleans up our, hopefully empty, out_of_order_queue. */
1799 __skb_queue_purge(&tp->out_of_order_queue);
1800
1801 #ifdef CONFIG_TCP_MD5SIG
1802 /* Clean up the MD5 key list, if any */
1803 if (tp->md5sig_info) {
1804 tcp_clear_md5_list(sk);
1805 kfree_rcu(tp->md5sig_info, rcu);
1806 tp->md5sig_info = NULL;
1807 }
1808 #endif
1809
1810 /* Clean prequeue, it must be empty really */
1811 __skb_queue_purge(&tp->ucopy.prequeue);
1812
1813 /* Clean up a referenced TCP bind bucket. */
1814 if (inet_csk(sk)->icsk_bind_hash)
1815 inet_put_port(sk);
1816
1817 BUG_ON(tp->fastopen_rsk);
1818
1819 /* If socket is aborted during connect operation */
1820 tcp_free_fastopen_req(tp);
1821 tcp_saved_syn_free(tp);
1822
1823 sk_sockets_allocated_dec(sk);
1824
1825 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1826 sock_release_memcg(sk);
1827 }
1828 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1829
1830 #ifdef CONFIG_PROC_FS
1831 /* Proc filesystem TCP sock list dumping. */
1832
1833 /*
1834 * Get next listener socket follow cur. If cur is NULL, get first socket
1835 * starting from bucket given in st->bucket; when st->bucket is zero the
1836 * very first socket in the hash table is returned.
1837 */
1838 static void *listening_get_next(struct seq_file *seq, void *cur)
1839 {
1840 struct inet_connection_sock *icsk;
1841 struct hlist_nulls_node *node;
1842 struct sock *sk = cur;
1843 struct inet_listen_hashbucket *ilb;
1844 struct tcp_iter_state *st = seq->private;
1845 struct net *net = seq_file_net(seq);
1846
1847 if (!sk) {
1848 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1849 spin_lock_bh(&ilb->lock);
1850 sk = sk_nulls_head(&ilb->head);
1851 st->offset = 0;
1852 goto get_sk;
1853 }
1854 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1855 ++st->num;
1856 ++st->offset;
1857
1858 sk = sk_nulls_next(sk);
1859 get_sk:
1860 sk_nulls_for_each_from(sk, node) {
1861 if (!net_eq(sock_net(sk), net))
1862 continue;
1863 if (sk->sk_family == st->family) {
1864 cur = sk;
1865 goto out;
1866 }
1867 icsk = inet_csk(sk);
1868 }
1869 spin_unlock_bh(&ilb->lock);
1870 st->offset = 0;
1871 if (++st->bucket < INET_LHTABLE_SIZE) {
1872 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1873 spin_lock_bh(&ilb->lock);
1874 sk = sk_nulls_head(&ilb->head);
1875 goto get_sk;
1876 }
1877 cur = NULL;
1878 out:
1879 return cur;
1880 }
1881
1882 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1883 {
1884 struct tcp_iter_state *st = seq->private;
1885 void *rc;
1886
1887 st->bucket = 0;
1888 st->offset = 0;
1889 rc = listening_get_next(seq, NULL);
1890
1891 while (rc && *pos) {
1892 rc = listening_get_next(seq, rc);
1893 --*pos;
1894 }
1895 return rc;
1896 }
1897
1898 static inline bool empty_bucket(const struct tcp_iter_state *st)
1899 {
1900 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1901 }
1902
1903 /*
1904 * Get first established socket starting from bucket given in st->bucket.
1905 * If st->bucket is zero, the very first socket in the hash is returned.
1906 */
1907 static void *established_get_first(struct seq_file *seq)
1908 {
1909 struct tcp_iter_state *st = seq->private;
1910 struct net *net = seq_file_net(seq);
1911 void *rc = NULL;
1912
1913 st->offset = 0;
1914 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1915 struct sock *sk;
1916 struct hlist_nulls_node *node;
1917 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1918
1919 /* Lockless fast path for the common case of empty buckets */
1920 if (empty_bucket(st))
1921 continue;
1922
1923 spin_lock_bh(lock);
1924 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1925 if (sk->sk_family != st->family ||
1926 !net_eq(sock_net(sk), net)) {
1927 continue;
1928 }
1929 rc = sk;
1930 goto out;
1931 }
1932 spin_unlock_bh(lock);
1933 }
1934 out:
1935 return rc;
1936 }
1937
1938 static void *established_get_next(struct seq_file *seq, void *cur)
1939 {
1940 struct sock *sk = cur;
1941 struct hlist_nulls_node *node;
1942 struct tcp_iter_state *st = seq->private;
1943 struct net *net = seq_file_net(seq);
1944
1945 ++st->num;
1946 ++st->offset;
1947
1948 sk = sk_nulls_next(sk);
1949
1950 sk_nulls_for_each_from(sk, node) {
1951 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1952 return sk;
1953 }
1954
1955 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1956 ++st->bucket;
1957 return established_get_first(seq);
1958 }
1959
1960 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1961 {
1962 struct tcp_iter_state *st = seq->private;
1963 void *rc;
1964
1965 st->bucket = 0;
1966 rc = established_get_first(seq);
1967
1968 while (rc && pos) {
1969 rc = established_get_next(seq, rc);
1970 --pos;
1971 }
1972 return rc;
1973 }
1974
1975 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1976 {
1977 void *rc;
1978 struct tcp_iter_state *st = seq->private;
1979
1980 st->state = TCP_SEQ_STATE_LISTENING;
1981 rc = listening_get_idx(seq, &pos);
1982
1983 if (!rc) {
1984 st->state = TCP_SEQ_STATE_ESTABLISHED;
1985 rc = established_get_idx(seq, pos);
1986 }
1987
1988 return rc;
1989 }
1990
1991 static void *tcp_seek_last_pos(struct seq_file *seq)
1992 {
1993 struct tcp_iter_state *st = seq->private;
1994 int offset = st->offset;
1995 int orig_num = st->num;
1996 void *rc = NULL;
1997
1998 switch (st->state) {
1999 case TCP_SEQ_STATE_LISTENING:
2000 if (st->bucket >= INET_LHTABLE_SIZE)
2001 break;
2002 st->state = TCP_SEQ_STATE_LISTENING;
2003 rc = listening_get_next(seq, NULL);
2004 while (offset-- && rc)
2005 rc = listening_get_next(seq, rc);
2006 if (rc)
2007 break;
2008 st->bucket = 0;
2009 st->state = TCP_SEQ_STATE_ESTABLISHED;
2010 /* Fallthrough */
2011 case TCP_SEQ_STATE_ESTABLISHED:
2012 if (st->bucket > tcp_hashinfo.ehash_mask)
2013 break;
2014 rc = established_get_first(seq);
2015 while (offset-- && rc)
2016 rc = established_get_next(seq, rc);
2017 }
2018
2019 st->num = orig_num;
2020
2021 return rc;
2022 }
2023
2024 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2025 {
2026 struct tcp_iter_state *st = seq->private;
2027 void *rc;
2028
2029 if (*pos && *pos == st->last_pos) {
2030 rc = tcp_seek_last_pos(seq);
2031 if (rc)
2032 goto out;
2033 }
2034
2035 st->state = TCP_SEQ_STATE_LISTENING;
2036 st->num = 0;
2037 st->bucket = 0;
2038 st->offset = 0;
2039 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2040
2041 out:
2042 st->last_pos = *pos;
2043 return rc;
2044 }
2045
2046 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2047 {
2048 struct tcp_iter_state *st = seq->private;
2049 void *rc = NULL;
2050
2051 if (v == SEQ_START_TOKEN) {
2052 rc = tcp_get_idx(seq, 0);
2053 goto out;
2054 }
2055
2056 switch (st->state) {
2057 case TCP_SEQ_STATE_LISTENING:
2058 rc = listening_get_next(seq, v);
2059 if (!rc) {
2060 st->state = TCP_SEQ_STATE_ESTABLISHED;
2061 st->bucket = 0;
2062 st->offset = 0;
2063 rc = established_get_first(seq);
2064 }
2065 break;
2066 case TCP_SEQ_STATE_ESTABLISHED:
2067 rc = established_get_next(seq, v);
2068 break;
2069 }
2070 out:
2071 ++*pos;
2072 st->last_pos = *pos;
2073 return rc;
2074 }
2075
2076 static void tcp_seq_stop(struct seq_file *seq, void *v)
2077 {
2078 struct tcp_iter_state *st = seq->private;
2079
2080 switch (st->state) {
2081 case TCP_SEQ_STATE_LISTENING:
2082 if (v != SEQ_START_TOKEN)
2083 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2084 break;
2085 case TCP_SEQ_STATE_ESTABLISHED:
2086 if (v)
2087 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2088 break;
2089 }
2090 }
2091
2092 int tcp_seq_open(struct inode *inode, struct file *file)
2093 {
2094 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2095 struct tcp_iter_state *s;
2096 int err;
2097
2098 err = seq_open_net(inode, file, &afinfo->seq_ops,
2099 sizeof(struct tcp_iter_state));
2100 if (err < 0)
2101 return err;
2102
2103 s = ((struct seq_file *)file->private_data)->private;
2104 s->family = afinfo->family;
2105 s->last_pos = 0;
2106 return 0;
2107 }
2108 EXPORT_SYMBOL(tcp_seq_open);
2109
2110 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2111 {
2112 int rc = 0;
2113 struct proc_dir_entry *p;
2114
2115 afinfo->seq_ops.start = tcp_seq_start;
2116 afinfo->seq_ops.next = tcp_seq_next;
2117 afinfo->seq_ops.stop = tcp_seq_stop;
2118
2119 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2120 afinfo->seq_fops, afinfo);
2121 if (!p)
2122 rc = -ENOMEM;
2123 return rc;
2124 }
2125 EXPORT_SYMBOL(tcp_proc_register);
2126
2127 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2128 {
2129 remove_proc_entry(afinfo->name, net->proc_net);
2130 }
2131 EXPORT_SYMBOL(tcp_proc_unregister);
2132
2133 static void get_openreq4(const struct request_sock *req,
2134 struct seq_file *f, int i)
2135 {
2136 const struct inet_request_sock *ireq = inet_rsk(req);
2137 long delta = req->rsk_timer.expires - jiffies;
2138
2139 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2140 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2141 i,
2142 ireq->ir_loc_addr,
2143 ireq->ir_num,
2144 ireq->ir_rmt_addr,
2145 ntohs(ireq->ir_rmt_port),
2146 TCP_SYN_RECV,
2147 0, 0, /* could print option size, but that is af dependent. */
2148 1, /* timers active (only the expire timer) */
2149 jiffies_delta_to_clock_t(delta),
2150 req->num_timeout,
2151 from_kuid_munged(seq_user_ns(f),
2152 sock_i_uid(req->rsk_listener)),
2153 0, /* non standard timer */
2154 0, /* open_requests have no inode */
2155 0,
2156 req);
2157 }
2158
2159 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2160 {
2161 int timer_active;
2162 unsigned long timer_expires;
2163 const struct tcp_sock *tp = tcp_sk(sk);
2164 const struct inet_connection_sock *icsk = inet_csk(sk);
2165 const struct inet_sock *inet = inet_sk(sk);
2166 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2167 __be32 dest = inet->inet_daddr;
2168 __be32 src = inet->inet_rcv_saddr;
2169 __u16 destp = ntohs(inet->inet_dport);
2170 __u16 srcp = ntohs(inet->inet_sport);
2171 int rx_queue;
2172 int state;
2173
2174 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2175 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2176 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2177 timer_active = 1;
2178 timer_expires = icsk->icsk_timeout;
2179 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2180 timer_active = 4;
2181 timer_expires = icsk->icsk_timeout;
2182 } else if (timer_pending(&sk->sk_timer)) {
2183 timer_active = 2;
2184 timer_expires = sk->sk_timer.expires;
2185 } else {
2186 timer_active = 0;
2187 timer_expires = jiffies;
2188 }
2189
2190 state = sk_state_load(sk);
2191 if (state == TCP_LISTEN)
2192 rx_queue = sk->sk_ack_backlog;
2193 else
2194 /* Because we don't lock the socket,
2195 * we might find a transient negative value.
2196 */
2197 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2198
2199 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2200 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2201 i, src, srcp, dest, destp, state,
2202 tp->write_seq - tp->snd_una,
2203 rx_queue,
2204 timer_active,
2205 jiffies_delta_to_clock_t(timer_expires - jiffies),
2206 icsk->icsk_retransmits,
2207 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2208 icsk->icsk_probes_out,
2209 sock_i_ino(sk),
2210 atomic_read(&sk->sk_refcnt), sk,
2211 jiffies_to_clock_t(icsk->icsk_rto),
2212 jiffies_to_clock_t(icsk->icsk_ack.ato),
2213 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2214 tp->snd_cwnd,
2215 state == TCP_LISTEN ?
2216 fastopenq->max_qlen :
2217 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2218 }
2219
2220 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2221 struct seq_file *f, int i)
2222 {
2223 long delta = tw->tw_timer.expires - jiffies;
2224 __be32 dest, src;
2225 __u16 destp, srcp;
2226
2227 dest = tw->tw_daddr;
2228 src = tw->tw_rcv_saddr;
2229 destp = ntohs(tw->tw_dport);
2230 srcp = ntohs(tw->tw_sport);
2231
2232 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2233 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2234 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2235 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2236 atomic_read(&tw->tw_refcnt), tw);
2237 }
2238
2239 #define TMPSZ 150
2240
2241 static int tcp4_seq_show(struct seq_file *seq, void *v)
2242 {
2243 struct tcp_iter_state *st;
2244 struct sock *sk = v;
2245
2246 seq_setwidth(seq, TMPSZ - 1);
2247 if (v == SEQ_START_TOKEN) {
2248 seq_puts(seq, " sl local_address rem_address st tx_queue "
2249 "rx_queue tr tm->when retrnsmt uid timeout "
2250 "inode");
2251 goto out;
2252 }
2253 st = seq->private;
2254
2255 if (sk->sk_state == TCP_TIME_WAIT)
2256 get_timewait4_sock(v, seq, st->num);
2257 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2258 get_openreq4(v, seq, st->num);
2259 else
2260 get_tcp4_sock(v, seq, st->num);
2261 out:
2262 seq_pad(seq, '\n');
2263 return 0;
2264 }
2265
2266 static const struct file_operations tcp_afinfo_seq_fops = {
2267 .owner = THIS_MODULE,
2268 .open = tcp_seq_open,
2269 .read = seq_read,
2270 .llseek = seq_lseek,
2271 .release = seq_release_net
2272 };
2273
2274 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2275 .name = "tcp",
2276 .family = AF_INET,
2277 .seq_fops = &tcp_afinfo_seq_fops,
2278 .seq_ops = {
2279 .show = tcp4_seq_show,
2280 },
2281 };
2282
2283 static int __net_init tcp4_proc_init_net(struct net *net)
2284 {
2285 return tcp_proc_register(net, &tcp4_seq_afinfo);
2286 }
2287
2288 static void __net_exit tcp4_proc_exit_net(struct net *net)
2289 {
2290 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2291 }
2292
2293 static struct pernet_operations tcp4_net_ops = {
2294 .init = tcp4_proc_init_net,
2295 .exit = tcp4_proc_exit_net,
2296 };
2297
2298 int __init tcp4_proc_init(void)
2299 {
2300 return register_pernet_subsys(&tcp4_net_ops);
2301 }
2302
2303 void tcp4_proc_exit(void)
2304 {
2305 unregister_pernet_subsys(&tcp4_net_ops);
2306 }
2307 #endif /* CONFIG_PROC_FS */
2308
2309 struct proto tcp_prot = {
2310 .name = "TCP",
2311 .owner = THIS_MODULE,
2312 .close = tcp_close,
2313 .connect = tcp_v4_connect,
2314 .disconnect = tcp_disconnect,
2315 .accept = inet_csk_accept,
2316 .ioctl = tcp_ioctl,
2317 .init = tcp_v4_init_sock,
2318 .destroy = tcp_v4_destroy_sock,
2319 .shutdown = tcp_shutdown,
2320 .setsockopt = tcp_setsockopt,
2321 .getsockopt = tcp_getsockopt,
2322 .recvmsg = tcp_recvmsg,
2323 .sendmsg = tcp_sendmsg,
2324 .sendpage = tcp_sendpage,
2325 .backlog_rcv = tcp_v4_do_rcv,
2326 .release_cb = tcp_release_cb,
2327 .hash = inet_hash,
2328 .unhash = inet_unhash,
2329 .get_port = inet_csk_get_port,
2330 .enter_memory_pressure = tcp_enter_memory_pressure,
2331 .stream_memory_free = tcp_stream_memory_free,
2332 .sockets_allocated = &tcp_sockets_allocated,
2333 .orphan_count = &tcp_orphan_count,
2334 .memory_allocated = &tcp_memory_allocated,
2335 .memory_pressure = &tcp_memory_pressure,
2336 .sysctl_mem = sysctl_tcp_mem,
2337 .sysctl_wmem = sysctl_tcp_wmem,
2338 .sysctl_rmem = sysctl_tcp_rmem,
2339 .max_header = MAX_TCP_HEADER,
2340 .obj_size = sizeof(struct tcp_sock),
2341 .slab_flags = SLAB_DESTROY_BY_RCU,
2342 .twsk_prot = &tcp_timewait_sock_ops,
2343 .rsk_prot = &tcp_request_sock_ops,
2344 .h.hashinfo = &tcp_hashinfo,
2345 .no_autobind = true,
2346 #ifdef CONFIG_COMPAT
2347 .compat_setsockopt = compat_tcp_setsockopt,
2348 .compat_getsockopt = compat_tcp_getsockopt,
2349 #endif
2350 .diag_destroy = tcp_abort,
2351 };
2352 EXPORT_SYMBOL(tcp_prot);
2353
2354 static void __net_exit tcp_sk_exit(struct net *net)
2355 {
2356 int cpu;
2357
2358 for_each_possible_cpu(cpu)
2359 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2360 free_percpu(net->ipv4.tcp_sk);
2361 }
2362
2363 static int __net_init tcp_sk_init(struct net *net)
2364 {
2365 int res, cpu;
2366
2367 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2368 if (!net->ipv4.tcp_sk)
2369 return -ENOMEM;
2370
2371 for_each_possible_cpu(cpu) {
2372 struct sock *sk;
2373
2374 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2375 IPPROTO_TCP, net);
2376 if (res)
2377 goto fail;
2378 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2379 }
2380
2381 net->ipv4.sysctl_tcp_ecn = 2;
2382 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2383
2384 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2385 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2386 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2387
2388 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2389 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2390 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2391
2392 return 0;
2393 fail:
2394 tcp_sk_exit(net);
2395
2396 return res;
2397 }
2398
2399 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2400 {
2401 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2402 }
2403
2404 static struct pernet_operations __net_initdata tcp_sk_ops = {
2405 .init = tcp_sk_init,
2406 .exit = tcp_sk_exit,
2407 .exit_batch = tcp_sk_exit_batch,
2408 };
2409
2410 void __init tcp_v4_init(void)
2411 {
2412 inet_hashinfo_init(&tcp_hashinfo);
2413 if (register_pernet_subsys(&tcp_sk_ops))
2414 panic("Failed to create the TCP control socket.\n");
2415 }
This page took 0.113106 seconds and 6 git commands to generate.