Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83
84 #include <crypto/hash.h>
85 #include <linux/scatterlist.h>
86
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91 #ifdef CONFIG_TCP_MD5SIG
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, const struct tcphdr *th);
94 #endif
95
96 struct inet_hashinfo tcp_hashinfo;
97 EXPORT_SYMBOL(tcp_hashinfo);
98
99 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
100 {
101 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
102 ip_hdr(skb)->saddr,
103 tcp_hdr(skb)->dest,
104 tcp_hdr(skb)->source);
105 }
106
107 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108 {
109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
110 struct tcp_sock *tp = tcp_sk(sk);
111
112 /* With PAWS, it is safe from the viewpoint
113 of data integrity. Even without PAWS it is safe provided sequence
114 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
115
116 Actually, the idea is close to VJ's one, only timestamp cache is
117 held not per host, but per port pair and TW bucket is used as state
118 holder.
119
120 If TW bucket has been already destroyed we fall back to VJ's scheme
121 and use initial timestamp retrieved from peer table.
122 */
123 if (tcptw->tw_ts_recent_stamp &&
124 (!twp || (sysctl_tcp_tw_reuse &&
125 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
126 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
127 if (tp->write_seq == 0)
128 tp->write_seq = 1;
129 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
130 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
131 sock_hold(sktw);
132 return 1;
133 }
134
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
138
139 /* This will initiate an outgoing connection. */
140 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
141 {
142 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
143 struct inet_sock *inet = inet_sk(sk);
144 struct tcp_sock *tp = tcp_sk(sk);
145 __be16 orig_sport, orig_dport;
146 __be32 daddr, nexthop;
147 struct flowi4 *fl4;
148 struct rtable *rt;
149 int err;
150 struct ip_options_rcu *inet_opt;
151
152 if (addr_len < sizeof(struct sockaddr_in))
153 return -EINVAL;
154
155 if (usin->sin_family != AF_INET)
156 return -EAFNOSUPPORT;
157
158 nexthop = daddr = usin->sin_addr.s_addr;
159 inet_opt = rcu_dereference_protected(inet->inet_opt,
160 sock_owned_by_user(sk));
161 if (inet_opt && inet_opt->opt.srr) {
162 if (!daddr)
163 return -EINVAL;
164 nexthop = inet_opt->opt.faddr;
165 }
166
167 orig_sport = inet->inet_sport;
168 orig_dport = usin->sin_port;
169 fl4 = &inet->cork.fl.u.ip4;
170 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 orig_sport, orig_dport, sk);
174 if (IS_ERR(rt)) {
175 err = PTR_ERR(rt);
176 if (err == -ENETUNREACH)
177 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178 return err;
179 }
180
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182 ip_rt_put(rt);
183 return -ENETUNREACH;
184 }
185
186 if (!inet_opt || !inet_opt->opt.srr)
187 daddr = fl4->daddr;
188
189 if (!inet->inet_saddr)
190 inet->inet_saddr = fl4->saddr;
191 sk_rcv_saddr_set(sk, inet->inet_saddr);
192
193 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
197 if (likely(!tp->repair))
198 tp->write_seq = 0;
199 }
200
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
203 tcp_fetch_timewait_stamp(sk, &rt->dst);
204
205 inet->inet_dport = usin->sin_port;
206 sk_daddr_set(sk, daddr);
207
208 inet_csk(sk)->icsk_ext_hdr_len = 0;
209 if (inet_opt)
210 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
211
212 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
213
214 /* Socket identity is still unknown (sport may be zero).
215 * However we set state to SYN-SENT and not releasing socket
216 * lock select source port, enter ourselves into the hash tables and
217 * complete initialization after this.
218 */
219 tcp_set_state(sk, TCP_SYN_SENT);
220 err = inet_hash_connect(&tcp_death_row, sk);
221 if (err)
222 goto failure;
223
224 sk_set_txhash(sk);
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253 failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271 void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 ip_sk_accept_pmtu(sk) &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
293
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
298 */
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
301 }
302 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
303
304 static void do_redirect(struct sk_buff *skb, struct sock *sk)
305 {
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310 }
311
312
313 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
314 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
315 {
316 struct request_sock *req = inet_reqsk(sk);
317 struct net *net = sock_net(sk);
318
319 /* ICMPs are not backlogged, hence we cannot get
320 * an established socket here.
321 */
322 WARN_ON(req->sk);
323
324 if (seq != tcp_rsk(req)->snt_isn) {
325 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
326 } else if (abort) {
327 /*
328 * Still in SYN_RECV, just remove it silently.
329 * There is no good way to pass the error to the newly
330 * created socket, and POSIX does not want network
331 * errors returned from accept().
332 */
333 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
334 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
335 }
336 reqsk_put(req);
337 }
338 EXPORT_SYMBOL(tcp_req_err);
339
340 /*
341 * This routine is called by the ICMP module when it gets some
342 * sort of error condition. If err < 0 then the socket should
343 * be closed and the error returned to the user. If err > 0
344 * it's just the icmp type << 8 | icmp code. After adjustment
345 * header points to the first 8 bytes of the tcp header. We need
346 * to find the appropriate port.
347 *
348 * The locking strategy used here is very "optimistic". When
349 * someone else accesses the socket the ICMP is just dropped
350 * and for some paths there is no check at all.
351 * A more general error queue to queue errors for later handling
352 * is probably better.
353 *
354 */
355
356 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
357 {
358 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
359 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
360 struct inet_connection_sock *icsk;
361 struct tcp_sock *tp;
362 struct inet_sock *inet;
363 const int type = icmp_hdr(icmp_skb)->type;
364 const int code = icmp_hdr(icmp_skb)->code;
365 struct sock *sk;
366 struct sk_buff *skb;
367 struct request_sock *fastopen;
368 __u32 seq, snd_una;
369 __u32 remaining;
370 int err;
371 struct net *net = dev_net(icmp_skb->dev);
372
373 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
374 th->dest, iph->saddr, ntohs(th->source),
375 inet_iif(icmp_skb));
376 if (!sk) {
377 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
378 return;
379 }
380 if (sk->sk_state == TCP_TIME_WAIT) {
381 inet_twsk_put(inet_twsk(sk));
382 return;
383 }
384 seq = ntohl(th->seq);
385 if (sk->sk_state == TCP_NEW_SYN_RECV)
386 return tcp_req_err(sk, seq,
387 type == ICMP_PARAMETERPROB ||
388 type == ICMP_TIME_EXCEEDED ||
389 (type == ICMP_DEST_UNREACH &&
390 (code == ICMP_NET_UNREACH ||
391 code == ICMP_HOST_UNREACH)));
392
393 bh_lock_sock(sk);
394 /* If too many ICMPs get dropped on busy
395 * servers this needs to be solved differently.
396 * We do take care of PMTU discovery (RFC1191) special case :
397 * we can receive locally generated ICMP messages while socket is held.
398 */
399 if (sock_owned_by_user(sk)) {
400 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
401 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
402 }
403 if (sk->sk_state == TCP_CLOSE)
404 goto out;
405
406 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
407 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
408 goto out;
409 }
410
411 icsk = inet_csk(sk);
412 tp = tcp_sk(sk);
413 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
414 fastopen = tp->fastopen_rsk;
415 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
416 if (sk->sk_state != TCP_LISTEN &&
417 !between(seq, snd_una, tp->snd_nxt)) {
418 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
419 goto out;
420 }
421
422 switch (type) {
423 case ICMP_REDIRECT:
424 do_redirect(icmp_skb, sk);
425 goto out;
426 case ICMP_SOURCE_QUENCH:
427 /* Just silently ignore these. */
428 goto out;
429 case ICMP_PARAMETERPROB:
430 err = EPROTO;
431 break;
432 case ICMP_DEST_UNREACH:
433 if (code > NR_ICMP_UNREACH)
434 goto out;
435
436 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
437 /* We are not interested in TCP_LISTEN and open_requests
438 * (SYN-ACKs send out by Linux are always <576bytes so
439 * they should go through unfragmented).
440 */
441 if (sk->sk_state == TCP_LISTEN)
442 goto out;
443
444 tp->mtu_info = info;
445 if (!sock_owned_by_user(sk)) {
446 tcp_v4_mtu_reduced(sk);
447 } else {
448 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
449 sock_hold(sk);
450 }
451 goto out;
452 }
453
454 err = icmp_err_convert[code].errno;
455 /* check if icmp_skb allows revert of backoff
456 * (see draft-zimmermann-tcp-lcd) */
457 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
458 break;
459 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
460 !icsk->icsk_backoff || fastopen)
461 break;
462
463 if (sock_owned_by_user(sk))
464 break;
465
466 icsk->icsk_backoff--;
467 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
468 TCP_TIMEOUT_INIT;
469 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
470
471 skb = tcp_write_queue_head(sk);
472 BUG_ON(!skb);
473
474 remaining = icsk->icsk_rto -
475 min(icsk->icsk_rto,
476 tcp_time_stamp - tcp_skb_timestamp(skb));
477
478 if (remaining) {
479 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
480 remaining, TCP_RTO_MAX);
481 } else {
482 /* RTO revert clocked out retransmission.
483 * Will retransmit now */
484 tcp_retransmit_timer(sk);
485 }
486
487 break;
488 case ICMP_TIME_EXCEEDED:
489 err = EHOSTUNREACH;
490 break;
491 default:
492 goto out;
493 }
494
495 switch (sk->sk_state) {
496 case TCP_SYN_SENT:
497 case TCP_SYN_RECV:
498 /* Only in fast or simultaneous open. If a fast open socket is
499 * is already accepted it is treated as a connected one below.
500 */
501 if (fastopen && !fastopen->sk)
502 break;
503
504 if (!sock_owned_by_user(sk)) {
505 sk->sk_err = err;
506
507 sk->sk_error_report(sk);
508
509 tcp_done(sk);
510 } else {
511 sk->sk_err_soft = err;
512 }
513 goto out;
514 }
515
516 /* If we've already connected we will keep trying
517 * until we time out, or the user gives up.
518 *
519 * rfc1122 4.2.3.9 allows to consider as hard errors
520 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
521 * but it is obsoleted by pmtu discovery).
522 *
523 * Note, that in modern internet, where routing is unreliable
524 * and in each dark corner broken firewalls sit, sending random
525 * errors ordered by their masters even this two messages finally lose
526 * their original sense (even Linux sends invalid PORT_UNREACHs)
527 *
528 * Now we are in compliance with RFCs.
529 * --ANK (980905)
530 */
531
532 inet = inet_sk(sk);
533 if (!sock_owned_by_user(sk) && inet->recverr) {
534 sk->sk_err = err;
535 sk->sk_error_report(sk);
536 } else { /* Only an error on timeout */
537 sk->sk_err_soft = err;
538 }
539
540 out:
541 bh_unlock_sock(sk);
542 sock_put(sk);
543 }
544
545 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
546 {
547 struct tcphdr *th = tcp_hdr(skb);
548
549 if (skb->ip_summed == CHECKSUM_PARTIAL) {
550 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
551 skb->csum_start = skb_transport_header(skb) - skb->head;
552 skb->csum_offset = offsetof(struct tcphdr, check);
553 } else {
554 th->check = tcp_v4_check(skb->len, saddr, daddr,
555 csum_partial(th,
556 th->doff << 2,
557 skb->csum));
558 }
559 }
560
561 /* This routine computes an IPv4 TCP checksum. */
562 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
563 {
564 const struct inet_sock *inet = inet_sk(sk);
565
566 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
567 }
568 EXPORT_SYMBOL(tcp_v4_send_check);
569
570 /*
571 * This routine will send an RST to the other tcp.
572 *
573 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
574 * for reset.
575 * Answer: if a packet caused RST, it is not for a socket
576 * existing in our system, if it is matched to a socket,
577 * it is just duplicate segment or bug in other side's TCP.
578 * So that we build reply only basing on parameters
579 * arrived with segment.
580 * Exception: precedence violation. We do not implement it in any case.
581 */
582
583 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
584 {
585 const struct tcphdr *th = tcp_hdr(skb);
586 struct {
587 struct tcphdr th;
588 #ifdef CONFIG_TCP_MD5SIG
589 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
590 #endif
591 } rep;
592 struct ip_reply_arg arg;
593 #ifdef CONFIG_TCP_MD5SIG
594 struct tcp_md5sig_key *key = NULL;
595 const __u8 *hash_location = NULL;
596 unsigned char newhash[16];
597 int genhash;
598 struct sock *sk1 = NULL;
599 #endif
600 struct net *net;
601
602 /* Never send a reset in response to a reset. */
603 if (th->rst)
604 return;
605
606 /* If sk not NULL, it means we did a successful lookup and incoming
607 * route had to be correct. prequeue might have dropped our dst.
608 */
609 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
610 return;
611
612 /* Swap the send and the receive. */
613 memset(&rep, 0, sizeof(rep));
614 rep.th.dest = th->source;
615 rep.th.source = th->dest;
616 rep.th.doff = sizeof(struct tcphdr) / 4;
617 rep.th.rst = 1;
618
619 if (th->ack) {
620 rep.th.seq = th->ack_seq;
621 } else {
622 rep.th.ack = 1;
623 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
624 skb->len - (th->doff << 2));
625 }
626
627 memset(&arg, 0, sizeof(arg));
628 arg.iov[0].iov_base = (unsigned char *)&rep;
629 arg.iov[0].iov_len = sizeof(rep.th);
630
631 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
632 #ifdef CONFIG_TCP_MD5SIG
633 hash_location = tcp_parse_md5sig_option(th);
634 if (sk && sk_fullsock(sk)) {
635 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
636 &ip_hdr(skb)->saddr, AF_INET);
637 } else if (hash_location) {
638 /*
639 * active side is lost. Try to find listening socket through
640 * source port, and then find md5 key through listening socket.
641 * we are not loose security here:
642 * Incoming packet is checked with md5 hash with finding key,
643 * no RST generated if md5 hash doesn't match.
644 */
645 sk1 = __inet_lookup_listener(net,
646 &tcp_hashinfo, ip_hdr(skb)->saddr,
647 th->source, ip_hdr(skb)->daddr,
648 ntohs(th->source), inet_iif(skb));
649 /* don't send rst if it can't find key */
650 if (!sk1)
651 return;
652 rcu_read_lock();
653 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
654 &ip_hdr(skb)->saddr, AF_INET);
655 if (!key)
656 goto release_sk1;
657
658 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
659 if (genhash || memcmp(hash_location, newhash, 16) != 0)
660 goto release_sk1;
661 }
662
663 if (key) {
664 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
665 (TCPOPT_NOP << 16) |
666 (TCPOPT_MD5SIG << 8) |
667 TCPOLEN_MD5SIG);
668 /* Update length and the length the header thinks exists */
669 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
670 rep.th.doff = arg.iov[0].iov_len / 4;
671
672 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
673 key, ip_hdr(skb)->saddr,
674 ip_hdr(skb)->daddr, &rep.th);
675 }
676 #endif
677 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
678 ip_hdr(skb)->saddr, /* XXX */
679 arg.iov[0].iov_len, IPPROTO_TCP, 0);
680 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
681 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
682
683 /* When socket is gone, all binding information is lost.
684 * routing might fail in this case. No choice here, if we choose to force
685 * input interface, we will misroute in case of asymmetric route.
686 */
687 if (sk)
688 arg.bound_dev_if = sk->sk_bound_dev_if;
689
690 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
691 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
692
693 arg.tos = ip_hdr(skb)->tos;
694 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
695 skb, &TCP_SKB_CB(skb)->header.h4.opt,
696 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
697 &arg, arg.iov[0].iov_len);
698
699 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
700 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
701
702 #ifdef CONFIG_TCP_MD5SIG
703 release_sk1:
704 if (sk1) {
705 rcu_read_unlock();
706 sock_put(sk1);
707 }
708 #endif
709 }
710
711 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
712 outside socket context is ugly, certainly. What can I do?
713 */
714
715 static void tcp_v4_send_ack(struct net *net,
716 struct sk_buff *skb, u32 seq, u32 ack,
717 u32 win, u32 tsval, u32 tsecr, int oif,
718 struct tcp_md5sig_key *key,
719 int reply_flags, u8 tos)
720 {
721 const struct tcphdr *th = tcp_hdr(skb);
722 struct {
723 struct tcphdr th;
724 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
725 #ifdef CONFIG_TCP_MD5SIG
726 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
727 #endif
728 ];
729 } rep;
730 struct ip_reply_arg arg;
731
732 memset(&rep.th, 0, sizeof(struct tcphdr));
733 memset(&arg, 0, sizeof(arg));
734
735 arg.iov[0].iov_base = (unsigned char *)&rep;
736 arg.iov[0].iov_len = sizeof(rep.th);
737 if (tsecr) {
738 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
739 (TCPOPT_TIMESTAMP << 8) |
740 TCPOLEN_TIMESTAMP);
741 rep.opt[1] = htonl(tsval);
742 rep.opt[2] = htonl(tsecr);
743 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
744 }
745
746 /* Swap the send and the receive. */
747 rep.th.dest = th->source;
748 rep.th.source = th->dest;
749 rep.th.doff = arg.iov[0].iov_len / 4;
750 rep.th.seq = htonl(seq);
751 rep.th.ack_seq = htonl(ack);
752 rep.th.ack = 1;
753 rep.th.window = htons(win);
754
755 #ifdef CONFIG_TCP_MD5SIG
756 if (key) {
757 int offset = (tsecr) ? 3 : 0;
758
759 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
760 (TCPOPT_NOP << 16) |
761 (TCPOPT_MD5SIG << 8) |
762 TCPOLEN_MD5SIG);
763 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
764 rep.th.doff = arg.iov[0].iov_len/4;
765
766 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
767 key, ip_hdr(skb)->saddr,
768 ip_hdr(skb)->daddr, &rep.th);
769 }
770 #endif
771 arg.flags = reply_flags;
772 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
773 ip_hdr(skb)->saddr, /* XXX */
774 arg.iov[0].iov_len, IPPROTO_TCP, 0);
775 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
776 if (oif)
777 arg.bound_dev_if = oif;
778 arg.tos = tos;
779 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
780 skb, &TCP_SKB_CB(skb)->header.h4.opt,
781 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
782 &arg, arg.iov[0].iov_len);
783
784 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
785 }
786
787 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
788 {
789 struct inet_timewait_sock *tw = inet_twsk(sk);
790 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
791
792 tcp_v4_send_ack(sock_net(sk), skb,
793 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
794 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
795 tcp_time_stamp + tcptw->tw_ts_offset,
796 tcptw->tw_ts_recent,
797 tw->tw_bound_dev_if,
798 tcp_twsk_md5_key(tcptw),
799 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
800 tw->tw_tos
801 );
802
803 inet_twsk_put(tw);
804 }
805
806 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
807 struct request_sock *req)
808 {
809 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
810 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
811 */
812 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
813 tcp_sk(sk)->snd_nxt;
814
815 tcp_v4_send_ack(sock_net(sk), skb, seq,
816 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
817 tcp_time_stamp,
818 req->ts_recent,
819 0,
820 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
821 AF_INET),
822 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
823 ip_hdr(skb)->tos);
824 }
825
826 /*
827 * Send a SYN-ACK after having received a SYN.
828 * This still operates on a request_sock only, not on a big
829 * socket.
830 */
831 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
832 struct flowi *fl,
833 struct request_sock *req,
834 struct tcp_fastopen_cookie *foc,
835 bool attach_req)
836 {
837 const struct inet_request_sock *ireq = inet_rsk(req);
838 struct flowi4 fl4;
839 int err = -1;
840 struct sk_buff *skb;
841
842 /* First, grab a route. */
843 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
844 return -1;
845
846 skb = tcp_make_synack(sk, dst, req, foc, attach_req);
847
848 if (skb) {
849 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
850
851 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
852 ireq->ir_rmt_addr,
853 ireq->opt);
854 err = net_xmit_eval(err);
855 }
856
857 return err;
858 }
859
860 /*
861 * IPv4 request_sock destructor.
862 */
863 static void tcp_v4_reqsk_destructor(struct request_sock *req)
864 {
865 kfree(inet_rsk(req)->opt);
866 }
867
868
869 #ifdef CONFIG_TCP_MD5SIG
870 /*
871 * RFC2385 MD5 checksumming requires a mapping of
872 * IP address->MD5 Key.
873 * We need to maintain these in the sk structure.
874 */
875
876 /* Find the Key structure for an address. */
877 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
878 const union tcp_md5_addr *addr,
879 int family)
880 {
881 const struct tcp_sock *tp = tcp_sk(sk);
882 struct tcp_md5sig_key *key;
883 unsigned int size = sizeof(struct in_addr);
884 const struct tcp_md5sig_info *md5sig;
885
886 /* caller either holds rcu_read_lock() or socket lock */
887 md5sig = rcu_dereference_check(tp->md5sig_info,
888 sock_owned_by_user(sk) ||
889 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
890 if (!md5sig)
891 return NULL;
892 #if IS_ENABLED(CONFIG_IPV6)
893 if (family == AF_INET6)
894 size = sizeof(struct in6_addr);
895 #endif
896 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
897 if (key->family != family)
898 continue;
899 if (!memcmp(&key->addr, addr, size))
900 return key;
901 }
902 return NULL;
903 }
904 EXPORT_SYMBOL(tcp_md5_do_lookup);
905
906 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
907 const struct sock *addr_sk)
908 {
909 const union tcp_md5_addr *addr;
910
911 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
912 return tcp_md5_do_lookup(sk, addr, AF_INET);
913 }
914 EXPORT_SYMBOL(tcp_v4_md5_lookup);
915
916 /* This can be called on a newly created socket, from other files */
917 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
918 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
919 {
920 /* Add Key to the list */
921 struct tcp_md5sig_key *key;
922 struct tcp_sock *tp = tcp_sk(sk);
923 struct tcp_md5sig_info *md5sig;
924
925 key = tcp_md5_do_lookup(sk, addr, family);
926 if (key) {
927 /* Pre-existing entry - just update that one. */
928 memcpy(key->key, newkey, newkeylen);
929 key->keylen = newkeylen;
930 return 0;
931 }
932
933 md5sig = rcu_dereference_protected(tp->md5sig_info,
934 sock_owned_by_user(sk) ||
935 lockdep_is_held(&sk->sk_lock.slock));
936 if (!md5sig) {
937 md5sig = kmalloc(sizeof(*md5sig), gfp);
938 if (!md5sig)
939 return -ENOMEM;
940
941 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
942 INIT_HLIST_HEAD(&md5sig->head);
943 rcu_assign_pointer(tp->md5sig_info, md5sig);
944 }
945
946 key = sock_kmalloc(sk, sizeof(*key), gfp);
947 if (!key)
948 return -ENOMEM;
949 if (!tcp_alloc_md5sig_pool()) {
950 sock_kfree_s(sk, key, sizeof(*key));
951 return -ENOMEM;
952 }
953
954 memcpy(key->key, newkey, newkeylen);
955 key->keylen = newkeylen;
956 key->family = family;
957 memcpy(&key->addr, addr,
958 (family == AF_INET6) ? sizeof(struct in6_addr) :
959 sizeof(struct in_addr));
960 hlist_add_head_rcu(&key->node, &md5sig->head);
961 return 0;
962 }
963 EXPORT_SYMBOL(tcp_md5_do_add);
964
965 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
966 {
967 struct tcp_md5sig_key *key;
968
969 key = tcp_md5_do_lookup(sk, addr, family);
970 if (!key)
971 return -ENOENT;
972 hlist_del_rcu(&key->node);
973 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
974 kfree_rcu(key, rcu);
975 return 0;
976 }
977 EXPORT_SYMBOL(tcp_md5_do_del);
978
979 static void tcp_clear_md5_list(struct sock *sk)
980 {
981 struct tcp_sock *tp = tcp_sk(sk);
982 struct tcp_md5sig_key *key;
983 struct hlist_node *n;
984 struct tcp_md5sig_info *md5sig;
985
986 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
987
988 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
989 hlist_del_rcu(&key->node);
990 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
991 kfree_rcu(key, rcu);
992 }
993 }
994
995 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
996 int optlen)
997 {
998 struct tcp_md5sig cmd;
999 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1000
1001 if (optlen < sizeof(cmd))
1002 return -EINVAL;
1003
1004 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1005 return -EFAULT;
1006
1007 if (sin->sin_family != AF_INET)
1008 return -EINVAL;
1009
1010 if (!cmd.tcpm_keylen)
1011 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1012 AF_INET);
1013
1014 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1015 return -EINVAL;
1016
1017 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1018 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1019 GFP_KERNEL);
1020 }
1021
1022 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1023 __be32 daddr, __be32 saddr, int nbytes)
1024 {
1025 struct tcp4_pseudohdr *bp;
1026 struct scatterlist sg;
1027
1028 bp = &hp->md5_blk.ip4;
1029
1030 /*
1031 * 1. the TCP pseudo-header (in the order: source IP address,
1032 * destination IP address, zero-padded protocol number, and
1033 * segment length)
1034 */
1035 bp->saddr = saddr;
1036 bp->daddr = daddr;
1037 bp->pad = 0;
1038 bp->protocol = IPPROTO_TCP;
1039 bp->len = cpu_to_be16(nbytes);
1040
1041 sg_init_one(&sg, bp, sizeof(*bp));
1042 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp));
1043 return crypto_ahash_update(hp->md5_req);
1044 }
1045
1046 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1047 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1048 {
1049 struct tcp_md5sig_pool *hp;
1050 struct ahash_request *req;
1051
1052 hp = tcp_get_md5sig_pool();
1053 if (!hp)
1054 goto clear_hash_noput;
1055 req = hp->md5_req;
1056
1057 if (crypto_ahash_init(req))
1058 goto clear_hash;
1059 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1060 goto clear_hash;
1061 if (tcp_md5_hash_header(hp, th))
1062 goto clear_hash;
1063 if (tcp_md5_hash_key(hp, key))
1064 goto clear_hash;
1065 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1066 if (crypto_ahash_final(req))
1067 goto clear_hash;
1068
1069 tcp_put_md5sig_pool();
1070 return 0;
1071
1072 clear_hash:
1073 tcp_put_md5sig_pool();
1074 clear_hash_noput:
1075 memset(md5_hash, 0, 16);
1076 return 1;
1077 }
1078
1079 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1080 const struct sock *sk,
1081 const struct sk_buff *skb)
1082 {
1083 struct tcp_md5sig_pool *hp;
1084 struct ahash_request *req;
1085 const struct tcphdr *th = tcp_hdr(skb);
1086 __be32 saddr, daddr;
1087
1088 if (sk) { /* valid for establish/request sockets */
1089 saddr = sk->sk_rcv_saddr;
1090 daddr = sk->sk_daddr;
1091 } else {
1092 const struct iphdr *iph = ip_hdr(skb);
1093 saddr = iph->saddr;
1094 daddr = iph->daddr;
1095 }
1096
1097 hp = tcp_get_md5sig_pool();
1098 if (!hp)
1099 goto clear_hash_noput;
1100 req = hp->md5_req;
1101
1102 if (crypto_ahash_init(req))
1103 goto clear_hash;
1104
1105 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1106 goto clear_hash;
1107 if (tcp_md5_hash_header(hp, th))
1108 goto clear_hash;
1109 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1110 goto clear_hash;
1111 if (tcp_md5_hash_key(hp, key))
1112 goto clear_hash;
1113 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1114 if (crypto_ahash_final(req))
1115 goto clear_hash;
1116
1117 tcp_put_md5sig_pool();
1118 return 0;
1119
1120 clear_hash:
1121 tcp_put_md5sig_pool();
1122 clear_hash_noput:
1123 memset(md5_hash, 0, 16);
1124 return 1;
1125 }
1126 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1127
1128 #endif
1129
1130 /* Called with rcu_read_lock() */
1131 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1132 const struct sk_buff *skb)
1133 {
1134 #ifdef CONFIG_TCP_MD5SIG
1135 /*
1136 * This gets called for each TCP segment that arrives
1137 * so we want to be efficient.
1138 * We have 3 drop cases:
1139 * o No MD5 hash and one expected.
1140 * o MD5 hash and we're not expecting one.
1141 * o MD5 hash and its wrong.
1142 */
1143 const __u8 *hash_location = NULL;
1144 struct tcp_md5sig_key *hash_expected;
1145 const struct iphdr *iph = ip_hdr(skb);
1146 const struct tcphdr *th = tcp_hdr(skb);
1147 int genhash;
1148 unsigned char newhash[16];
1149
1150 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1151 AF_INET);
1152 hash_location = tcp_parse_md5sig_option(th);
1153
1154 /* We've parsed the options - do we have a hash? */
1155 if (!hash_expected && !hash_location)
1156 return false;
1157
1158 if (hash_expected && !hash_location) {
1159 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1160 return true;
1161 }
1162
1163 if (!hash_expected && hash_location) {
1164 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1165 return true;
1166 }
1167
1168 /* Okay, so this is hash_expected and hash_location -
1169 * so we need to calculate the checksum.
1170 */
1171 genhash = tcp_v4_md5_hash_skb(newhash,
1172 hash_expected,
1173 NULL, skb);
1174
1175 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1176 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1177 &iph->saddr, ntohs(th->source),
1178 &iph->daddr, ntohs(th->dest),
1179 genhash ? " tcp_v4_calc_md5_hash failed"
1180 : "");
1181 return true;
1182 }
1183 return false;
1184 #endif
1185 return false;
1186 }
1187
1188 static void tcp_v4_init_req(struct request_sock *req,
1189 const struct sock *sk_listener,
1190 struct sk_buff *skb)
1191 {
1192 struct inet_request_sock *ireq = inet_rsk(req);
1193
1194 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1195 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1196 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1197 ireq->opt = tcp_v4_save_options(skb);
1198 }
1199
1200 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1201 struct flowi *fl,
1202 const struct request_sock *req,
1203 bool *strict)
1204 {
1205 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1206
1207 if (strict) {
1208 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1209 *strict = true;
1210 else
1211 *strict = false;
1212 }
1213
1214 return dst;
1215 }
1216
1217 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1218 .family = PF_INET,
1219 .obj_size = sizeof(struct tcp_request_sock),
1220 .rtx_syn_ack = tcp_rtx_synack,
1221 .send_ack = tcp_v4_reqsk_send_ack,
1222 .destructor = tcp_v4_reqsk_destructor,
1223 .send_reset = tcp_v4_send_reset,
1224 .syn_ack_timeout = tcp_syn_ack_timeout,
1225 };
1226
1227 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1228 .mss_clamp = TCP_MSS_DEFAULT,
1229 #ifdef CONFIG_TCP_MD5SIG
1230 .req_md5_lookup = tcp_v4_md5_lookup,
1231 .calc_md5_hash = tcp_v4_md5_hash_skb,
1232 #endif
1233 .init_req = tcp_v4_init_req,
1234 #ifdef CONFIG_SYN_COOKIES
1235 .cookie_init_seq = cookie_v4_init_sequence,
1236 #endif
1237 .route_req = tcp_v4_route_req,
1238 .init_seq = tcp_v4_init_sequence,
1239 .send_synack = tcp_v4_send_synack,
1240 };
1241
1242 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1243 {
1244 /* Never answer to SYNs send to broadcast or multicast */
1245 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1246 goto drop;
1247
1248 return tcp_conn_request(&tcp_request_sock_ops,
1249 &tcp_request_sock_ipv4_ops, sk, skb);
1250
1251 drop:
1252 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1253 return 0;
1254 }
1255 EXPORT_SYMBOL(tcp_v4_conn_request);
1256
1257
1258 /*
1259 * The three way handshake has completed - we got a valid synack -
1260 * now create the new socket.
1261 */
1262 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1263 struct request_sock *req,
1264 struct dst_entry *dst,
1265 struct request_sock *req_unhash,
1266 bool *own_req)
1267 {
1268 struct inet_request_sock *ireq;
1269 struct inet_sock *newinet;
1270 struct tcp_sock *newtp;
1271 struct sock *newsk;
1272 #ifdef CONFIG_TCP_MD5SIG
1273 struct tcp_md5sig_key *key;
1274 #endif
1275 struct ip_options_rcu *inet_opt;
1276
1277 if (sk_acceptq_is_full(sk))
1278 goto exit_overflow;
1279
1280 newsk = tcp_create_openreq_child(sk, req, skb);
1281 if (!newsk)
1282 goto exit_nonewsk;
1283
1284 newsk->sk_gso_type = SKB_GSO_TCPV4;
1285 inet_sk_rx_dst_set(newsk, skb);
1286
1287 newtp = tcp_sk(newsk);
1288 newinet = inet_sk(newsk);
1289 ireq = inet_rsk(req);
1290 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1291 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1292 newsk->sk_bound_dev_if = ireq->ir_iif;
1293 newinet->inet_saddr = ireq->ir_loc_addr;
1294 inet_opt = ireq->opt;
1295 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1296 ireq->opt = NULL;
1297 newinet->mc_index = inet_iif(skb);
1298 newinet->mc_ttl = ip_hdr(skb)->ttl;
1299 newinet->rcv_tos = ip_hdr(skb)->tos;
1300 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1301 if (inet_opt)
1302 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1303 newinet->inet_id = newtp->write_seq ^ jiffies;
1304
1305 if (!dst) {
1306 dst = inet_csk_route_child_sock(sk, newsk, req);
1307 if (!dst)
1308 goto put_and_exit;
1309 } else {
1310 /* syncookie case : see end of cookie_v4_check() */
1311 }
1312 sk_setup_caps(newsk, dst);
1313
1314 tcp_ca_openreq_child(newsk, dst);
1315
1316 tcp_sync_mss(newsk, dst_mtu(dst));
1317 newtp->advmss = dst_metric_advmss(dst);
1318 if (tcp_sk(sk)->rx_opt.user_mss &&
1319 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1320 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1321
1322 tcp_initialize_rcv_mss(newsk);
1323
1324 #ifdef CONFIG_TCP_MD5SIG
1325 /* Copy over the MD5 key from the original socket */
1326 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1327 AF_INET);
1328 if (key) {
1329 /*
1330 * We're using one, so create a matching key
1331 * on the newsk structure. If we fail to get
1332 * memory, then we end up not copying the key
1333 * across. Shucks.
1334 */
1335 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1336 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1337 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1338 }
1339 #endif
1340
1341 if (__inet_inherit_port(sk, newsk) < 0)
1342 goto put_and_exit;
1343 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1344 if (*own_req)
1345 tcp_move_syn(newtp, req);
1346
1347 return newsk;
1348
1349 exit_overflow:
1350 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1351 exit_nonewsk:
1352 dst_release(dst);
1353 exit:
1354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1355 return NULL;
1356 put_and_exit:
1357 inet_csk_prepare_forced_close(newsk);
1358 tcp_done(newsk);
1359 goto exit;
1360 }
1361 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1362
1363 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1364 {
1365 #ifdef CONFIG_SYN_COOKIES
1366 const struct tcphdr *th = tcp_hdr(skb);
1367
1368 if (!th->syn)
1369 sk = cookie_v4_check(sk, skb);
1370 #endif
1371 return sk;
1372 }
1373
1374 /* The socket must have it's spinlock held when we get
1375 * here, unless it is a TCP_LISTEN socket.
1376 *
1377 * We have a potential double-lock case here, so even when
1378 * doing backlog processing we use the BH locking scheme.
1379 * This is because we cannot sleep with the original spinlock
1380 * held.
1381 */
1382 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1383 {
1384 struct sock *rsk;
1385
1386 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1387 struct dst_entry *dst = sk->sk_rx_dst;
1388
1389 sock_rps_save_rxhash(sk, skb);
1390 sk_mark_napi_id(sk, skb);
1391 if (dst) {
1392 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1393 !dst->ops->check(dst, 0)) {
1394 dst_release(dst);
1395 sk->sk_rx_dst = NULL;
1396 }
1397 }
1398 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1399 return 0;
1400 }
1401
1402 if (tcp_checksum_complete(skb))
1403 goto csum_err;
1404
1405 if (sk->sk_state == TCP_LISTEN) {
1406 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1407
1408 if (!nsk)
1409 goto discard;
1410 if (nsk != sk) {
1411 sock_rps_save_rxhash(nsk, skb);
1412 sk_mark_napi_id(nsk, skb);
1413 if (tcp_child_process(sk, nsk, skb)) {
1414 rsk = nsk;
1415 goto reset;
1416 }
1417 return 0;
1418 }
1419 } else
1420 sock_rps_save_rxhash(sk, skb);
1421
1422 if (tcp_rcv_state_process(sk, skb)) {
1423 rsk = sk;
1424 goto reset;
1425 }
1426 return 0;
1427
1428 reset:
1429 tcp_v4_send_reset(rsk, skb);
1430 discard:
1431 kfree_skb(skb);
1432 /* Be careful here. If this function gets more complicated and
1433 * gcc suffers from register pressure on the x86, sk (in %ebx)
1434 * might be destroyed here. This current version compiles correctly,
1435 * but you have been warned.
1436 */
1437 return 0;
1438
1439 csum_err:
1440 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1441 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1442 goto discard;
1443 }
1444 EXPORT_SYMBOL(tcp_v4_do_rcv);
1445
1446 void tcp_v4_early_demux(struct sk_buff *skb)
1447 {
1448 const struct iphdr *iph;
1449 const struct tcphdr *th;
1450 struct sock *sk;
1451
1452 if (skb->pkt_type != PACKET_HOST)
1453 return;
1454
1455 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1456 return;
1457
1458 iph = ip_hdr(skb);
1459 th = tcp_hdr(skb);
1460
1461 if (th->doff < sizeof(struct tcphdr) / 4)
1462 return;
1463
1464 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1465 iph->saddr, th->source,
1466 iph->daddr, ntohs(th->dest),
1467 skb->skb_iif);
1468 if (sk) {
1469 skb->sk = sk;
1470 skb->destructor = sock_edemux;
1471 if (sk_fullsock(sk)) {
1472 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1473
1474 if (dst)
1475 dst = dst_check(dst, 0);
1476 if (dst &&
1477 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1478 skb_dst_set_noref(skb, dst);
1479 }
1480 }
1481 }
1482
1483 /* Packet is added to VJ-style prequeue for processing in process
1484 * context, if a reader task is waiting. Apparently, this exciting
1485 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1486 * failed somewhere. Latency? Burstiness? Well, at least now we will
1487 * see, why it failed. 8)8) --ANK
1488 *
1489 */
1490 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1491 {
1492 struct tcp_sock *tp = tcp_sk(sk);
1493
1494 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1495 return false;
1496
1497 if (skb->len <= tcp_hdrlen(skb) &&
1498 skb_queue_len(&tp->ucopy.prequeue) == 0)
1499 return false;
1500
1501 /* Before escaping RCU protected region, we need to take care of skb
1502 * dst. Prequeue is only enabled for established sockets.
1503 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1504 * Instead of doing full sk_rx_dst validity here, let's perform
1505 * an optimistic check.
1506 */
1507 if (likely(sk->sk_rx_dst))
1508 skb_dst_drop(skb);
1509 else
1510 skb_dst_force_safe(skb);
1511
1512 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1513 tp->ucopy.memory += skb->truesize;
1514 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1515 struct sk_buff *skb1;
1516
1517 BUG_ON(sock_owned_by_user(sk));
1518
1519 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1520 sk_backlog_rcv(sk, skb1);
1521 NET_INC_STATS_BH(sock_net(sk),
1522 LINUX_MIB_TCPPREQUEUEDROPPED);
1523 }
1524
1525 tp->ucopy.memory = 0;
1526 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1527 wake_up_interruptible_sync_poll(sk_sleep(sk),
1528 POLLIN | POLLRDNORM | POLLRDBAND);
1529 if (!inet_csk_ack_scheduled(sk))
1530 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1531 (3 * tcp_rto_min(sk)) / 4,
1532 TCP_RTO_MAX);
1533 }
1534 return true;
1535 }
1536 EXPORT_SYMBOL(tcp_prequeue);
1537
1538 /*
1539 * From tcp_input.c
1540 */
1541
1542 int tcp_v4_rcv(struct sk_buff *skb)
1543 {
1544 const struct iphdr *iph;
1545 const struct tcphdr *th;
1546 struct sock *sk;
1547 int ret;
1548 struct net *net = dev_net(skb->dev);
1549
1550 if (skb->pkt_type != PACKET_HOST)
1551 goto discard_it;
1552
1553 /* Count it even if it's bad */
1554 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1555
1556 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1557 goto discard_it;
1558
1559 th = tcp_hdr(skb);
1560
1561 if (th->doff < sizeof(struct tcphdr) / 4)
1562 goto bad_packet;
1563 if (!pskb_may_pull(skb, th->doff * 4))
1564 goto discard_it;
1565
1566 /* An explanation is required here, I think.
1567 * Packet length and doff are validated by header prediction,
1568 * provided case of th->doff==0 is eliminated.
1569 * So, we defer the checks. */
1570
1571 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1572 goto csum_error;
1573
1574 th = tcp_hdr(skb);
1575 iph = ip_hdr(skb);
1576 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1577 * barrier() makes sure compiler wont play fool^Waliasing games.
1578 */
1579 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1580 sizeof(struct inet_skb_parm));
1581 barrier();
1582
1583 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1584 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1585 skb->len - th->doff * 4);
1586 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1587 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1588 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1589 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1590 TCP_SKB_CB(skb)->sacked = 0;
1591
1592 lookup:
1593 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1594 if (!sk)
1595 goto no_tcp_socket;
1596
1597 process:
1598 if (sk->sk_state == TCP_TIME_WAIT)
1599 goto do_time_wait;
1600
1601 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1602 struct request_sock *req = inet_reqsk(sk);
1603 struct sock *nsk;
1604
1605 sk = req->rsk_listener;
1606 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1607 reqsk_put(req);
1608 goto discard_it;
1609 }
1610 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1611 inet_csk_reqsk_queue_drop_and_put(sk, req);
1612 goto lookup;
1613 }
1614 sock_hold(sk);
1615 nsk = tcp_check_req(sk, skb, req, false);
1616 if (!nsk) {
1617 reqsk_put(req);
1618 goto discard_and_relse;
1619 }
1620 if (nsk == sk) {
1621 reqsk_put(req);
1622 } else if (tcp_child_process(sk, nsk, skb)) {
1623 tcp_v4_send_reset(nsk, skb);
1624 goto discard_and_relse;
1625 } else {
1626 sock_put(sk);
1627 return 0;
1628 }
1629 }
1630 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1631 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1632 goto discard_and_relse;
1633 }
1634
1635 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1636 goto discard_and_relse;
1637
1638 if (tcp_v4_inbound_md5_hash(sk, skb))
1639 goto discard_and_relse;
1640
1641 nf_reset(skb);
1642
1643 if (sk_filter(sk, skb))
1644 goto discard_and_relse;
1645
1646 skb->dev = NULL;
1647
1648 if (sk->sk_state == TCP_LISTEN) {
1649 ret = tcp_v4_do_rcv(sk, skb);
1650 goto put_and_return;
1651 }
1652
1653 sk_incoming_cpu_update(sk);
1654
1655 bh_lock_sock_nested(sk);
1656 tcp_sk(sk)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1657 ret = 0;
1658 if (!sock_owned_by_user(sk)) {
1659 if (!tcp_prequeue(sk, skb))
1660 ret = tcp_v4_do_rcv(sk, skb);
1661 } else if (unlikely(sk_add_backlog(sk, skb,
1662 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1663 bh_unlock_sock(sk);
1664 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1665 goto discard_and_relse;
1666 }
1667 bh_unlock_sock(sk);
1668
1669 put_and_return:
1670 sock_put(sk);
1671
1672 return ret;
1673
1674 no_tcp_socket:
1675 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1676 goto discard_it;
1677
1678 if (tcp_checksum_complete(skb)) {
1679 csum_error:
1680 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1681 bad_packet:
1682 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1683 } else {
1684 tcp_v4_send_reset(NULL, skb);
1685 }
1686
1687 discard_it:
1688 /* Discard frame. */
1689 kfree_skb(skb);
1690 return 0;
1691
1692 discard_and_relse:
1693 sock_put(sk);
1694 goto discard_it;
1695
1696 do_time_wait:
1697 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1698 inet_twsk_put(inet_twsk(sk));
1699 goto discard_it;
1700 }
1701
1702 if (tcp_checksum_complete(skb)) {
1703 inet_twsk_put(inet_twsk(sk));
1704 goto csum_error;
1705 }
1706 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1707 case TCP_TW_SYN: {
1708 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1709 &tcp_hashinfo,
1710 iph->saddr, th->source,
1711 iph->daddr, th->dest,
1712 inet_iif(skb));
1713 if (sk2) {
1714 inet_twsk_deschedule_put(inet_twsk(sk));
1715 sk = sk2;
1716 goto process;
1717 }
1718 /* Fall through to ACK */
1719 }
1720 case TCP_TW_ACK:
1721 tcp_v4_timewait_ack(sk, skb);
1722 break;
1723 case TCP_TW_RST:
1724 tcp_v4_send_reset(sk, skb);
1725 inet_twsk_deschedule_put(inet_twsk(sk));
1726 goto discard_it;
1727 case TCP_TW_SUCCESS:;
1728 }
1729 goto discard_it;
1730 }
1731
1732 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1733 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1734 .twsk_unique = tcp_twsk_unique,
1735 .twsk_destructor= tcp_twsk_destructor,
1736 };
1737
1738 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1739 {
1740 struct dst_entry *dst = skb_dst(skb);
1741
1742 if (dst && dst_hold_safe(dst)) {
1743 sk->sk_rx_dst = dst;
1744 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1745 }
1746 }
1747 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1748
1749 const struct inet_connection_sock_af_ops ipv4_specific = {
1750 .queue_xmit = ip_queue_xmit,
1751 .send_check = tcp_v4_send_check,
1752 .rebuild_header = inet_sk_rebuild_header,
1753 .sk_rx_dst_set = inet_sk_rx_dst_set,
1754 .conn_request = tcp_v4_conn_request,
1755 .syn_recv_sock = tcp_v4_syn_recv_sock,
1756 .net_header_len = sizeof(struct iphdr),
1757 .setsockopt = ip_setsockopt,
1758 .getsockopt = ip_getsockopt,
1759 .addr2sockaddr = inet_csk_addr2sockaddr,
1760 .sockaddr_len = sizeof(struct sockaddr_in),
1761 .bind_conflict = inet_csk_bind_conflict,
1762 #ifdef CONFIG_COMPAT
1763 .compat_setsockopt = compat_ip_setsockopt,
1764 .compat_getsockopt = compat_ip_getsockopt,
1765 #endif
1766 .mtu_reduced = tcp_v4_mtu_reduced,
1767 };
1768 EXPORT_SYMBOL(ipv4_specific);
1769
1770 #ifdef CONFIG_TCP_MD5SIG
1771 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1772 .md5_lookup = tcp_v4_md5_lookup,
1773 .calc_md5_hash = tcp_v4_md5_hash_skb,
1774 .md5_parse = tcp_v4_parse_md5_keys,
1775 };
1776 #endif
1777
1778 /* NOTE: A lot of things set to zero explicitly by call to
1779 * sk_alloc() so need not be done here.
1780 */
1781 static int tcp_v4_init_sock(struct sock *sk)
1782 {
1783 struct inet_connection_sock *icsk = inet_csk(sk);
1784
1785 tcp_init_sock(sk);
1786
1787 icsk->icsk_af_ops = &ipv4_specific;
1788
1789 #ifdef CONFIG_TCP_MD5SIG
1790 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1791 #endif
1792
1793 return 0;
1794 }
1795
1796 void tcp_v4_destroy_sock(struct sock *sk)
1797 {
1798 struct tcp_sock *tp = tcp_sk(sk);
1799
1800 tcp_clear_xmit_timers(sk);
1801
1802 tcp_cleanup_congestion_control(sk);
1803
1804 /* Cleanup up the write buffer. */
1805 tcp_write_queue_purge(sk);
1806
1807 /* Cleans up our, hopefully empty, out_of_order_queue. */
1808 __skb_queue_purge(&tp->out_of_order_queue);
1809
1810 #ifdef CONFIG_TCP_MD5SIG
1811 /* Clean up the MD5 key list, if any */
1812 if (tp->md5sig_info) {
1813 tcp_clear_md5_list(sk);
1814 kfree_rcu(tp->md5sig_info, rcu);
1815 tp->md5sig_info = NULL;
1816 }
1817 #endif
1818
1819 /* Clean prequeue, it must be empty really */
1820 __skb_queue_purge(&tp->ucopy.prequeue);
1821
1822 /* Clean up a referenced TCP bind bucket. */
1823 if (inet_csk(sk)->icsk_bind_hash)
1824 inet_put_port(sk);
1825
1826 BUG_ON(tp->fastopen_rsk);
1827
1828 /* If socket is aborted during connect operation */
1829 tcp_free_fastopen_req(tp);
1830 tcp_saved_syn_free(tp);
1831
1832 sk_sockets_allocated_dec(sk);
1833
1834 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1835 sock_release_memcg(sk);
1836 }
1837 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1838
1839 #ifdef CONFIG_PROC_FS
1840 /* Proc filesystem TCP sock list dumping. */
1841
1842 /*
1843 * Get next listener socket follow cur. If cur is NULL, get first socket
1844 * starting from bucket given in st->bucket; when st->bucket is zero the
1845 * very first socket in the hash table is returned.
1846 */
1847 static void *listening_get_next(struct seq_file *seq, void *cur)
1848 {
1849 struct inet_connection_sock *icsk;
1850 struct hlist_nulls_node *node;
1851 struct sock *sk = cur;
1852 struct inet_listen_hashbucket *ilb;
1853 struct tcp_iter_state *st = seq->private;
1854 struct net *net = seq_file_net(seq);
1855
1856 if (!sk) {
1857 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1858 spin_lock_bh(&ilb->lock);
1859 sk = sk_nulls_head(&ilb->head);
1860 st->offset = 0;
1861 goto get_sk;
1862 }
1863 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1864 ++st->num;
1865 ++st->offset;
1866
1867 sk = sk_nulls_next(sk);
1868 get_sk:
1869 sk_nulls_for_each_from(sk, node) {
1870 if (!net_eq(sock_net(sk), net))
1871 continue;
1872 if (sk->sk_family == st->family) {
1873 cur = sk;
1874 goto out;
1875 }
1876 icsk = inet_csk(sk);
1877 }
1878 spin_unlock_bh(&ilb->lock);
1879 st->offset = 0;
1880 if (++st->bucket < INET_LHTABLE_SIZE) {
1881 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1882 spin_lock_bh(&ilb->lock);
1883 sk = sk_nulls_head(&ilb->head);
1884 goto get_sk;
1885 }
1886 cur = NULL;
1887 out:
1888 return cur;
1889 }
1890
1891 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1892 {
1893 struct tcp_iter_state *st = seq->private;
1894 void *rc;
1895
1896 st->bucket = 0;
1897 st->offset = 0;
1898 rc = listening_get_next(seq, NULL);
1899
1900 while (rc && *pos) {
1901 rc = listening_get_next(seq, rc);
1902 --*pos;
1903 }
1904 return rc;
1905 }
1906
1907 static inline bool empty_bucket(const struct tcp_iter_state *st)
1908 {
1909 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1910 }
1911
1912 /*
1913 * Get first established socket starting from bucket given in st->bucket.
1914 * If st->bucket is zero, the very first socket in the hash is returned.
1915 */
1916 static void *established_get_first(struct seq_file *seq)
1917 {
1918 struct tcp_iter_state *st = seq->private;
1919 struct net *net = seq_file_net(seq);
1920 void *rc = NULL;
1921
1922 st->offset = 0;
1923 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1924 struct sock *sk;
1925 struct hlist_nulls_node *node;
1926 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1927
1928 /* Lockless fast path for the common case of empty buckets */
1929 if (empty_bucket(st))
1930 continue;
1931
1932 spin_lock_bh(lock);
1933 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1934 if (sk->sk_family != st->family ||
1935 !net_eq(sock_net(sk), net)) {
1936 continue;
1937 }
1938 rc = sk;
1939 goto out;
1940 }
1941 spin_unlock_bh(lock);
1942 }
1943 out:
1944 return rc;
1945 }
1946
1947 static void *established_get_next(struct seq_file *seq, void *cur)
1948 {
1949 struct sock *sk = cur;
1950 struct hlist_nulls_node *node;
1951 struct tcp_iter_state *st = seq->private;
1952 struct net *net = seq_file_net(seq);
1953
1954 ++st->num;
1955 ++st->offset;
1956
1957 sk = sk_nulls_next(sk);
1958
1959 sk_nulls_for_each_from(sk, node) {
1960 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1961 return sk;
1962 }
1963
1964 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1965 ++st->bucket;
1966 return established_get_first(seq);
1967 }
1968
1969 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1970 {
1971 struct tcp_iter_state *st = seq->private;
1972 void *rc;
1973
1974 st->bucket = 0;
1975 rc = established_get_first(seq);
1976
1977 while (rc && pos) {
1978 rc = established_get_next(seq, rc);
1979 --pos;
1980 }
1981 return rc;
1982 }
1983
1984 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1985 {
1986 void *rc;
1987 struct tcp_iter_state *st = seq->private;
1988
1989 st->state = TCP_SEQ_STATE_LISTENING;
1990 rc = listening_get_idx(seq, &pos);
1991
1992 if (!rc) {
1993 st->state = TCP_SEQ_STATE_ESTABLISHED;
1994 rc = established_get_idx(seq, pos);
1995 }
1996
1997 return rc;
1998 }
1999
2000 static void *tcp_seek_last_pos(struct seq_file *seq)
2001 {
2002 struct tcp_iter_state *st = seq->private;
2003 int offset = st->offset;
2004 int orig_num = st->num;
2005 void *rc = NULL;
2006
2007 switch (st->state) {
2008 case TCP_SEQ_STATE_LISTENING:
2009 if (st->bucket >= INET_LHTABLE_SIZE)
2010 break;
2011 st->state = TCP_SEQ_STATE_LISTENING;
2012 rc = listening_get_next(seq, NULL);
2013 while (offset-- && rc)
2014 rc = listening_get_next(seq, rc);
2015 if (rc)
2016 break;
2017 st->bucket = 0;
2018 st->state = TCP_SEQ_STATE_ESTABLISHED;
2019 /* Fallthrough */
2020 case TCP_SEQ_STATE_ESTABLISHED:
2021 if (st->bucket > tcp_hashinfo.ehash_mask)
2022 break;
2023 rc = established_get_first(seq);
2024 while (offset-- && rc)
2025 rc = established_get_next(seq, rc);
2026 }
2027
2028 st->num = orig_num;
2029
2030 return rc;
2031 }
2032
2033 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2034 {
2035 struct tcp_iter_state *st = seq->private;
2036 void *rc;
2037
2038 if (*pos && *pos == st->last_pos) {
2039 rc = tcp_seek_last_pos(seq);
2040 if (rc)
2041 goto out;
2042 }
2043
2044 st->state = TCP_SEQ_STATE_LISTENING;
2045 st->num = 0;
2046 st->bucket = 0;
2047 st->offset = 0;
2048 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2049
2050 out:
2051 st->last_pos = *pos;
2052 return rc;
2053 }
2054
2055 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2056 {
2057 struct tcp_iter_state *st = seq->private;
2058 void *rc = NULL;
2059
2060 if (v == SEQ_START_TOKEN) {
2061 rc = tcp_get_idx(seq, 0);
2062 goto out;
2063 }
2064
2065 switch (st->state) {
2066 case TCP_SEQ_STATE_LISTENING:
2067 rc = listening_get_next(seq, v);
2068 if (!rc) {
2069 st->state = TCP_SEQ_STATE_ESTABLISHED;
2070 st->bucket = 0;
2071 st->offset = 0;
2072 rc = established_get_first(seq);
2073 }
2074 break;
2075 case TCP_SEQ_STATE_ESTABLISHED:
2076 rc = established_get_next(seq, v);
2077 break;
2078 }
2079 out:
2080 ++*pos;
2081 st->last_pos = *pos;
2082 return rc;
2083 }
2084
2085 static void tcp_seq_stop(struct seq_file *seq, void *v)
2086 {
2087 struct tcp_iter_state *st = seq->private;
2088
2089 switch (st->state) {
2090 case TCP_SEQ_STATE_LISTENING:
2091 if (v != SEQ_START_TOKEN)
2092 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2093 break;
2094 case TCP_SEQ_STATE_ESTABLISHED:
2095 if (v)
2096 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2097 break;
2098 }
2099 }
2100
2101 int tcp_seq_open(struct inode *inode, struct file *file)
2102 {
2103 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2104 struct tcp_iter_state *s;
2105 int err;
2106
2107 err = seq_open_net(inode, file, &afinfo->seq_ops,
2108 sizeof(struct tcp_iter_state));
2109 if (err < 0)
2110 return err;
2111
2112 s = ((struct seq_file *)file->private_data)->private;
2113 s->family = afinfo->family;
2114 s->last_pos = 0;
2115 return 0;
2116 }
2117 EXPORT_SYMBOL(tcp_seq_open);
2118
2119 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2120 {
2121 int rc = 0;
2122 struct proc_dir_entry *p;
2123
2124 afinfo->seq_ops.start = tcp_seq_start;
2125 afinfo->seq_ops.next = tcp_seq_next;
2126 afinfo->seq_ops.stop = tcp_seq_stop;
2127
2128 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2129 afinfo->seq_fops, afinfo);
2130 if (!p)
2131 rc = -ENOMEM;
2132 return rc;
2133 }
2134 EXPORT_SYMBOL(tcp_proc_register);
2135
2136 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2137 {
2138 remove_proc_entry(afinfo->name, net->proc_net);
2139 }
2140 EXPORT_SYMBOL(tcp_proc_unregister);
2141
2142 static void get_openreq4(const struct request_sock *req,
2143 struct seq_file *f, int i)
2144 {
2145 const struct inet_request_sock *ireq = inet_rsk(req);
2146 long delta = req->rsk_timer.expires - jiffies;
2147
2148 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2149 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2150 i,
2151 ireq->ir_loc_addr,
2152 ireq->ir_num,
2153 ireq->ir_rmt_addr,
2154 ntohs(ireq->ir_rmt_port),
2155 TCP_SYN_RECV,
2156 0, 0, /* could print option size, but that is af dependent. */
2157 1, /* timers active (only the expire timer) */
2158 jiffies_delta_to_clock_t(delta),
2159 req->num_timeout,
2160 from_kuid_munged(seq_user_ns(f),
2161 sock_i_uid(req->rsk_listener)),
2162 0, /* non standard timer */
2163 0, /* open_requests have no inode */
2164 0,
2165 req);
2166 }
2167
2168 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2169 {
2170 int timer_active;
2171 unsigned long timer_expires;
2172 const struct tcp_sock *tp = tcp_sk(sk);
2173 const struct inet_connection_sock *icsk = inet_csk(sk);
2174 const struct inet_sock *inet = inet_sk(sk);
2175 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2176 __be32 dest = inet->inet_daddr;
2177 __be32 src = inet->inet_rcv_saddr;
2178 __u16 destp = ntohs(inet->inet_dport);
2179 __u16 srcp = ntohs(inet->inet_sport);
2180 int rx_queue;
2181 int state;
2182
2183 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2184 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2185 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2186 timer_active = 1;
2187 timer_expires = icsk->icsk_timeout;
2188 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2189 timer_active = 4;
2190 timer_expires = icsk->icsk_timeout;
2191 } else if (timer_pending(&sk->sk_timer)) {
2192 timer_active = 2;
2193 timer_expires = sk->sk_timer.expires;
2194 } else {
2195 timer_active = 0;
2196 timer_expires = jiffies;
2197 }
2198
2199 state = sk_state_load(sk);
2200 if (state == TCP_LISTEN)
2201 rx_queue = sk->sk_ack_backlog;
2202 else
2203 /* Because we don't lock the socket,
2204 * we might find a transient negative value.
2205 */
2206 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2207
2208 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2209 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2210 i, src, srcp, dest, destp, state,
2211 tp->write_seq - tp->snd_una,
2212 rx_queue,
2213 timer_active,
2214 jiffies_delta_to_clock_t(timer_expires - jiffies),
2215 icsk->icsk_retransmits,
2216 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2217 icsk->icsk_probes_out,
2218 sock_i_ino(sk),
2219 atomic_read(&sk->sk_refcnt), sk,
2220 jiffies_to_clock_t(icsk->icsk_rto),
2221 jiffies_to_clock_t(icsk->icsk_ack.ato),
2222 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2223 tp->snd_cwnd,
2224 state == TCP_LISTEN ?
2225 fastopenq->max_qlen :
2226 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2227 }
2228
2229 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2230 struct seq_file *f, int i)
2231 {
2232 long delta = tw->tw_timer.expires - jiffies;
2233 __be32 dest, src;
2234 __u16 destp, srcp;
2235
2236 dest = tw->tw_daddr;
2237 src = tw->tw_rcv_saddr;
2238 destp = ntohs(tw->tw_dport);
2239 srcp = ntohs(tw->tw_sport);
2240
2241 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2242 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2243 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2244 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2245 atomic_read(&tw->tw_refcnt), tw);
2246 }
2247
2248 #define TMPSZ 150
2249
2250 static int tcp4_seq_show(struct seq_file *seq, void *v)
2251 {
2252 struct tcp_iter_state *st;
2253 struct sock *sk = v;
2254
2255 seq_setwidth(seq, TMPSZ - 1);
2256 if (v == SEQ_START_TOKEN) {
2257 seq_puts(seq, " sl local_address rem_address st tx_queue "
2258 "rx_queue tr tm->when retrnsmt uid timeout "
2259 "inode");
2260 goto out;
2261 }
2262 st = seq->private;
2263
2264 if (sk->sk_state == TCP_TIME_WAIT)
2265 get_timewait4_sock(v, seq, st->num);
2266 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2267 get_openreq4(v, seq, st->num);
2268 else
2269 get_tcp4_sock(v, seq, st->num);
2270 out:
2271 seq_pad(seq, '\n');
2272 return 0;
2273 }
2274
2275 static const struct file_operations tcp_afinfo_seq_fops = {
2276 .owner = THIS_MODULE,
2277 .open = tcp_seq_open,
2278 .read = seq_read,
2279 .llseek = seq_lseek,
2280 .release = seq_release_net
2281 };
2282
2283 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2284 .name = "tcp",
2285 .family = AF_INET,
2286 .seq_fops = &tcp_afinfo_seq_fops,
2287 .seq_ops = {
2288 .show = tcp4_seq_show,
2289 },
2290 };
2291
2292 static int __net_init tcp4_proc_init_net(struct net *net)
2293 {
2294 return tcp_proc_register(net, &tcp4_seq_afinfo);
2295 }
2296
2297 static void __net_exit tcp4_proc_exit_net(struct net *net)
2298 {
2299 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2300 }
2301
2302 static struct pernet_operations tcp4_net_ops = {
2303 .init = tcp4_proc_init_net,
2304 .exit = tcp4_proc_exit_net,
2305 };
2306
2307 int __init tcp4_proc_init(void)
2308 {
2309 return register_pernet_subsys(&tcp4_net_ops);
2310 }
2311
2312 void tcp4_proc_exit(void)
2313 {
2314 unregister_pernet_subsys(&tcp4_net_ops);
2315 }
2316 #endif /* CONFIG_PROC_FS */
2317
2318 struct proto tcp_prot = {
2319 .name = "TCP",
2320 .owner = THIS_MODULE,
2321 .close = tcp_close,
2322 .connect = tcp_v4_connect,
2323 .disconnect = tcp_disconnect,
2324 .accept = inet_csk_accept,
2325 .ioctl = tcp_ioctl,
2326 .init = tcp_v4_init_sock,
2327 .destroy = tcp_v4_destroy_sock,
2328 .shutdown = tcp_shutdown,
2329 .setsockopt = tcp_setsockopt,
2330 .getsockopt = tcp_getsockopt,
2331 .recvmsg = tcp_recvmsg,
2332 .sendmsg = tcp_sendmsg,
2333 .sendpage = tcp_sendpage,
2334 .backlog_rcv = tcp_v4_do_rcv,
2335 .release_cb = tcp_release_cb,
2336 .hash = inet_hash,
2337 .unhash = inet_unhash,
2338 .get_port = inet_csk_get_port,
2339 .enter_memory_pressure = tcp_enter_memory_pressure,
2340 .stream_memory_free = tcp_stream_memory_free,
2341 .sockets_allocated = &tcp_sockets_allocated,
2342 .orphan_count = &tcp_orphan_count,
2343 .memory_allocated = &tcp_memory_allocated,
2344 .memory_pressure = &tcp_memory_pressure,
2345 .sysctl_mem = sysctl_tcp_mem,
2346 .sysctl_wmem = sysctl_tcp_wmem,
2347 .sysctl_rmem = sysctl_tcp_rmem,
2348 .max_header = MAX_TCP_HEADER,
2349 .obj_size = sizeof(struct tcp_sock),
2350 .slab_flags = SLAB_DESTROY_BY_RCU,
2351 .twsk_prot = &tcp_timewait_sock_ops,
2352 .rsk_prot = &tcp_request_sock_ops,
2353 .h.hashinfo = &tcp_hashinfo,
2354 .no_autobind = true,
2355 #ifdef CONFIG_COMPAT
2356 .compat_setsockopt = compat_tcp_setsockopt,
2357 .compat_getsockopt = compat_tcp_getsockopt,
2358 #endif
2359 .diag_destroy = tcp_abort,
2360 };
2361 EXPORT_SYMBOL(tcp_prot);
2362
2363 static void __net_exit tcp_sk_exit(struct net *net)
2364 {
2365 int cpu;
2366
2367 for_each_possible_cpu(cpu)
2368 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2369 free_percpu(net->ipv4.tcp_sk);
2370 }
2371
2372 static int __net_init tcp_sk_init(struct net *net)
2373 {
2374 int res, cpu;
2375
2376 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2377 if (!net->ipv4.tcp_sk)
2378 return -ENOMEM;
2379
2380 for_each_possible_cpu(cpu) {
2381 struct sock *sk;
2382
2383 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2384 IPPROTO_TCP, net);
2385 if (res)
2386 goto fail;
2387 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2388 }
2389
2390 net->ipv4.sysctl_tcp_ecn = 2;
2391 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2392
2393 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2394 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2395 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2396
2397 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2398 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2399 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2400
2401 return 0;
2402 fail:
2403 tcp_sk_exit(net);
2404
2405 return res;
2406 }
2407
2408 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2409 {
2410 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2411 }
2412
2413 static struct pernet_operations __net_initdata tcp_sk_ops = {
2414 .init = tcp_sk_init,
2415 .exit = tcp_sk_exit,
2416 .exit_batch = tcp_sk_exit_batch,
2417 };
2418
2419 void __init tcp_v4_init(void)
2420 {
2421 inet_hashinfo_init(&tcp_hashinfo);
2422 if (register_pernet_subsys(&tcp_sk_ops))
2423 panic("Failed to create the TCP control socket.\n");
2424 }
This page took 0.096774 seconds and 6 git commands to generate.