Merge branches 'battery', 'bugzilla-14667', 'bugzilla-15096', 'bugzilla-15480', ...
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87
88
89 #ifdef CONFIG_TCP_MD5SIG
90 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91 __be32 addr);
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, struct tcphdr *th);
94 #else
95 static inline
96 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 {
98 return NULL;
99 }
100 #endif
101
102 struct inet_hashinfo tcp_hashinfo;
103
104 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 {
106 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
107 ip_hdr(skb)->saddr,
108 tcp_hdr(skb)->dest,
109 tcp_hdr(skb)->source);
110 }
111
112 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 {
114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 struct tcp_sock *tp = tcp_sk(sk);
116
117 /* With PAWS, it is safe from the viewpoint
118 of data integrity. Even without PAWS it is safe provided sequence
119 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120
121 Actually, the idea is close to VJ's one, only timestamp cache is
122 held not per host, but per port pair and TW bucket is used as state
123 holder.
124
125 If TW bucket has been already destroyed we fall back to VJ's scheme
126 and use initial timestamp retrieved from peer table.
127 */
128 if (tcptw->tw_ts_recent_stamp &&
129 (twp == NULL || (sysctl_tcp_tw_reuse &&
130 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
131 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
132 if (tp->write_seq == 0)
133 tp->write_seq = 1;
134 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
135 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
136 sock_hold(sktw);
137 return 1;
138 }
139
140 return 0;
141 }
142
143 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144
145 /* This will initiate an outgoing connection. */
146 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 {
148 struct inet_sock *inet = inet_sk(sk);
149 struct tcp_sock *tp = tcp_sk(sk);
150 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 struct rtable *rt;
152 __be32 daddr, nexthop;
153 int tmp;
154 int err;
155
156 if (addr_len < sizeof(struct sockaddr_in))
157 return -EINVAL;
158
159 if (usin->sin_family != AF_INET)
160 return -EAFNOSUPPORT;
161
162 nexthop = daddr = usin->sin_addr.s_addr;
163 if (inet->opt && inet->opt->srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet->opt->faddr;
167 }
168
169 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
170 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171 IPPROTO_TCP,
172 inet->inet_sport, usin->sin_port, sk, 1);
173 if (tmp < 0) {
174 if (tmp == -ENETUNREACH)
175 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
176 return tmp;
177 }
178
179 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
180 ip_rt_put(rt);
181 return -ENETUNREACH;
182 }
183
184 if (!inet->opt || !inet->opt->srr)
185 daddr = rt->rt_dst;
186
187 if (!inet->inet_saddr)
188 inet->inet_saddr = rt->rt_src;
189 inet->inet_rcv_saddr = inet->inet_saddr;
190
191 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
192 /* Reset inherited state */
193 tp->rx_opt.ts_recent = 0;
194 tp->rx_opt.ts_recent_stamp = 0;
195 tp->write_seq = 0;
196 }
197
198 if (tcp_death_row.sysctl_tw_recycle &&
199 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
200 struct inet_peer *peer = rt_get_peer(rt);
201 /*
202 * VJ's idea. We save last timestamp seen from
203 * the destination in peer table, when entering state
204 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
205 * when trying new connection.
206 */
207 if (peer != NULL &&
208 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
209 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
210 tp->rx_opt.ts_recent = peer->tcp_ts;
211 }
212 }
213
214 inet->inet_dport = usin->sin_port;
215 inet->inet_daddr = daddr;
216
217 inet_csk(sk)->icsk_ext_hdr_len = 0;
218 if (inet->opt)
219 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220
221 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222
223 /* Socket identity is still unknown (sport may be zero).
224 * However we set state to SYN-SENT and not releasing socket
225 * lock select source port, enter ourselves into the hash tables and
226 * complete initialization after this.
227 */
228 tcp_set_state(sk, TCP_SYN_SENT);
229 err = inet_hash_connect(&tcp_death_row, sk);
230 if (err)
231 goto failure;
232
233 err = ip_route_newports(&rt, IPPROTO_TCP,
234 inet->inet_sport, inet->inet_dport, sk);
235 if (err)
236 goto failure;
237
238 /* OK, now commit destination to socket. */
239 sk->sk_gso_type = SKB_GSO_TCPV4;
240 sk_setup_caps(sk, &rt->u.dst);
241
242 if (!tp->write_seq)
243 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
244 inet->inet_daddr,
245 inet->inet_sport,
246 usin->sin_port);
247
248 inet->inet_id = tp->write_seq ^ jiffies;
249
250 err = tcp_connect(sk);
251 rt = NULL;
252 if (err)
253 goto failure;
254
255 return 0;
256
257 failure:
258 /*
259 * This unhashes the socket and releases the local port,
260 * if necessary.
261 */
262 tcp_set_state(sk, TCP_CLOSE);
263 ip_rt_put(rt);
264 sk->sk_route_caps = 0;
265 inet->inet_dport = 0;
266 return err;
267 }
268
269 /*
270 * This routine does path mtu discovery as defined in RFC1191.
271 */
272 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 {
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
280 */
281 if (sk->sk_state == TCP_LISTEN)
282 return;
283
284 /* We don't check in the destentry if pmtu discovery is forbidden
285 * on this route. We just assume that no packet_to_big packets
286 * are send back when pmtu discovery is not active.
287 * There is a small race when the user changes this flag in the
288 * route, but I think that's acceptable.
289 */
290 if ((dst = __sk_dst_check(sk, 0)) == NULL)
291 return;
292
293 dst->ops->update_pmtu(dst, mtu);
294
295 /* Something is about to be wrong... Remember soft error
296 * for the case, if this connection will not able to recover.
297 */
298 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299 sk->sk_err_soft = EMSGSIZE;
300
301 mtu = dst_mtu(dst);
302
303 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305 tcp_sync_mss(sk, mtu);
306
307 /* Resend the TCP packet because it's
308 * clear that the old packet has been
309 * dropped. This is the new "fast" path mtu
310 * discovery.
311 */
312 tcp_simple_retransmit(sk);
313 } /* else let the usual retransmit timer handle it */
314 }
315
316 /*
317 * This routine is called by the ICMP module when it gets some
318 * sort of error condition. If err < 0 then the socket should
319 * be closed and the error returned to the user. If err > 0
320 * it's just the icmp type << 8 | icmp code. After adjustment
321 * header points to the first 8 bytes of the tcp header. We need
322 * to find the appropriate port.
323 *
324 * The locking strategy used here is very "optimistic". When
325 * someone else accesses the socket the ICMP is just dropped
326 * and for some paths there is no check at all.
327 * A more general error queue to queue errors for later handling
328 * is probably better.
329 *
330 */
331
332 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 {
334 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
335 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
336 struct inet_connection_sock *icsk;
337 struct tcp_sock *tp;
338 struct inet_sock *inet;
339 const int type = icmp_hdr(icmp_skb)->type;
340 const int code = icmp_hdr(icmp_skb)->code;
341 struct sock *sk;
342 struct sk_buff *skb;
343 __u32 seq;
344 __u32 remaining;
345 int err;
346 struct net *net = dev_net(icmp_skb->dev);
347
348 if (icmp_skb->len < (iph->ihl << 2) + 8) {
349 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350 return;
351 }
352
353 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354 iph->saddr, th->source, inet_iif(icmp_skb));
355 if (!sk) {
356 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
357 return;
358 }
359 if (sk->sk_state == TCP_TIME_WAIT) {
360 inet_twsk_put(inet_twsk(sk));
361 return;
362 }
363
364 bh_lock_sock(sk);
365 /* If too many ICMPs get dropped on busy
366 * servers this needs to be solved differently.
367 */
368 if (sock_owned_by_user(sk))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
373
374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376 goto out;
377 }
378
379 icsk = inet_csk(sk);
380 tp = tcp_sk(sk);
381 seq = ntohl(th->seq);
382 if (sk->sk_state != TCP_LISTEN &&
383 !between(seq, tp->snd_una, tp->snd_nxt)) {
384 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385 goto out;
386 }
387
388 switch (type) {
389 case ICMP_SOURCE_QUENCH:
390 /* Just silently ignore these. */
391 goto out;
392 case ICMP_PARAMETERPROB:
393 err = EPROTO;
394 break;
395 case ICMP_DEST_UNREACH:
396 if (code > NR_ICMP_UNREACH)
397 goto out;
398
399 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
400 if (!sock_owned_by_user(sk))
401 do_pmtu_discovery(sk, iph, info);
402 goto out;
403 }
404
405 err = icmp_err_convert[code].errno;
406 /* check if icmp_skb allows revert of backoff
407 * (see draft-zimmermann-tcp-lcd) */
408 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
409 break;
410 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
411 !icsk->icsk_backoff)
412 break;
413
414 icsk->icsk_backoff--;
415 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
416 icsk->icsk_backoff;
417 tcp_bound_rto(sk);
418
419 skb = tcp_write_queue_head(sk);
420 BUG_ON(!skb);
421
422 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
423 tcp_time_stamp - TCP_SKB_CB(skb)->when);
424
425 if (remaining) {
426 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
427 remaining, TCP_RTO_MAX);
428 } else if (sock_owned_by_user(sk)) {
429 /* RTO revert clocked out retransmission,
430 * but socket is locked. Will defer. */
431 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
432 HZ/20, TCP_RTO_MAX);
433 } else {
434 /* RTO revert clocked out retransmission.
435 * Will retransmit now */
436 tcp_retransmit_timer(sk);
437 }
438
439 break;
440 case ICMP_TIME_EXCEEDED:
441 err = EHOSTUNREACH;
442 break;
443 default:
444 goto out;
445 }
446
447 switch (sk->sk_state) {
448 struct request_sock *req, **prev;
449 case TCP_LISTEN:
450 if (sock_owned_by_user(sk))
451 goto out;
452
453 req = inet_csk_search_req(sk, &prev, th->dest,
454 iph->daddr, iph->saddr);
455 if (!req)
456 goto out;
457
458 /* ICMPs are not backlogged, hence we cannot get
459 an established socket here.
460 */
461 WARN_ON(req->sk);
462
463 if (seq != tcp_rsk(req)->snt_isn) {
464 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
465 goto out;
466 }
467
468 /*
469 * Still in SYN_RECV, just remove it silently.
470 * There is no good way to pass the error to the newly
471 * created socket, and POSIX does not want network
472 * errors returned from accept().
473 */
474 inet_csk_reqsk_queue_drop(sk, req, prev);
475 goto out;
476
477 case TCP_SYN_SENT:
478 case TCP_SYN_RECV: /* Cannot happen.
479 It can f.e. if SYNs crossed.
480 */
481 if (!sock_owned_by_user(sk)) {
482 sk->sk_err = err;
483
484 sk->sk_error_report(sk);
485
486 tcp_done(sk);
487 } else {
488 sk->sk_err_soft = err;
489 }
490 goto out;
491 }
492
493 /* If we've already connected we will keep trying
494 * until we time out, or the user gives up.
495 *
496 * rfc1122 4.2.3.9 allows to consider as hard errors
497 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
498 * but it is obsoleted by pmtu discovery).
499 *
500 * Note, that in modern internet, where routing is unreliable
501 * and in each dark corner broken firewalls sit, sending random
502 * errors ordered by their masters even this two messages finally lose
503 * their original sense (even Linux sends invalid PORT_UNREACHs)
504 *
505 * Now we are in compliance with RFCs.
506 * --ANK (980905)
507 */
508
509 inet = inet_sk(sk);
510 if (!sock_owned_by_user(sk) && inet->recverr) {
511 sk->sk_err = err;
512 sk->sk_error_report(sk);
513 } else { /* Only an error on timeout */
514 sk->sk_err_soft = err;
515 }
516
517 out:
518 bh_unlock_sock(sk);
519 sock_put(sk);
520 }
521
522 /* This routine computes an IPv4 TCP checksum. */
523 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
524 {
525 struct inet_sock *inet = inet_sk(sk);
526 struct tcphdr *th = tcp_hdr(skb);
527
528 if (skb->ip_summed == CHECKSUM_PARTIAL) {
529 th->check = ~tcp_v4_check(len, inet->inet_saddr,
530 inet->inet_daddr, 0);
531 skb->csum_start = skb_transport_header(skb) - skb->head;
532 skb->csum_offset = offsetof(struct tcphdr, check);
533 } else {
534 th->check = tcp_v4_check(len, inet->inet_saddr,
535 inet->inet_daddr,
536 csum_partial(th,
537 th->doff << 2,
538 skb->csum));
539 }
540 }
541
542 int tcp_v4_gso_send_check(struct sk_buff *skb)
543 {
544 const struct iphdr *iph;
545 struct tcphdr *th;
546
547 if (!pskb_may_pull(skb, sizeof(*th)))
548 return -EINVAL;
549
550 iph = ip_hdr(skb);
551 th = tcp_hdr(skb);
552
553 th->check = 0;
554 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
555 skb->csum_start = skb_transport_header(skb) - skb->head;
556 skb->csum_offset = offsetof(struct tcphdr, check);
557 skb->ip_summed = CHECKSUM_PARTIAL;
558 return 0;
559 }
560
561 /*
562 * This routine will send an RST to the other tcp.
563 *
564 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
565 * for reset.
566 * Answer: if a packet caused RST, it is not for a socket
567 * existing in our system, if it is matched to a socket,
568 * it is just duplicate segment or bug in other side's TCP.
569 * So that we build reply only basing on parameters
570 * arrived with segment.
571 * Exception: precedence violation. We do not implement it in any case.
572 */
573
574 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
575 {
576 struct tcphdr *th = tcp_hdr(skb);
577 struct {
578 struct tcphdr th;
579 #ifdef CONFIG_TCP_MD5SIG
580 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
581 #endif
582 } rep;
583 struct ip_reply_arg arg;
584 #ifdef CONFIG_TCP_MD5SIG
585 struct tcp_md5sig_key *key;
586 #endif
587 struct net *net;
588
589 /* Never send a reset in response to a reset. */
590 if (th->rst)
591 return;
592
593 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
594 return;
595
596 /* Swap the send and the receive. */
597 memset(&rep, 0, sizeof(rep));
598 rep.th.dest = th->source;
599 rep.th.source = th->dest;
600 rep.th.doff = sizeof(struct tcphdr) / 4;
601 rep.th.rst = 1;
602
603 if (th->ack) {
604 rep.th.seq = th->ack_seq;
605 } else {
606 rep.th.ack = 1;
607 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
608 skb->len - (th->doff << 2));
609 }
610
611 memset(&arg, 0, sizeof(arg));
612 arg.iov[0].iov_base = (unsigned char *)&rep;
613 arg.iov[0].iov_len = sizeof(rep.th);
614
615 #ifdef CONFIG_TCP_MD5SIG
616 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
617 if (key) {
618 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
619 (TCPOPT_NOP << 16) |
620 (TCPOPT_MD5SIG << 8) |
621 TCPOLEN_MD5SIG);
622 /* Update length and the length the header thinks exists */
623 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
624 rep.th.doff = arg.iov[0].iov_len / 4;
625
626 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
627 key, ip_hdr(skb)->saddr,
628 ip_hdr(skb)->daddr, &rep.th);
629 }
630 #endif
631 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
632 ip_hdr(skb)->saddr, /* XXX */
633 arg.iov[0].iov_len, IPPROTO_TCP, 0);
634 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
635 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
636
637 net = dev_net(skb_dst(skb)->dev);
638 ip_send_reply(net->ipv4.tcp_sock, skb,
639 &arg, arg.iov[0].iov_len);
640
641 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
642 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
643 }
644
645 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
646 outside socket context is ugly, certainly. What can I do?
647 */
648
649 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
650 u32 win, u32 ts, int oif,
651 struct tcp_md5sig_key *key,
652 int reply_flags)
653 {
654 struct tcphdr *th = tcp_hdr(skb);
655 struct {
656 struct tcphdr th;
657 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
658 #ifdef CONFIG_TCP_MD5SIG
659 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
660 #endif
661 ];
662 } rep;
663 struct ip_reply_arg arg;
664 struct net *net = dev_net(skb_dst(skb)->dev);
665
666 memset(&rep.th, 0, sizeof(struct tcphdr));
667 memset(&arg, 0, sizeof(arg));
668
669 arg.iov[0].iov_base = (unsigned char *)&rep;
670 arg.iov[0].iov_len = sizeof(rep.th);
671 if (ts) {
672 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
673 (TCPOPT_TIMESTAMP << 8) |
674 TCPOLEN_TIMESTAMP);
675 rep.opt[1] = htonl(tcp_time_stamp);
676 rep.opt[2] = htonl(ts);
677 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
678 }
679
680 /* Swap the send and the receive. */
681 rep.th.dest = th->source;
682 rep.th.source = th->dest;
683 rep.th.doff = arg.iov[0].iov_len / 4;
684 rep.th.seq = htonl(seq);
685 rep.th.ack_seq = htonl(ack);
686 rep.th.ack = 1;
687 rep.th.window = htons(win);
688
689 #ifdef CONFIG_TCP_MD5SIG
690 if (key) {
691 int offset = (ts) ? 3 : 0;
692
693 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
694 (TCPOPT_NOP << 16) |
695 (TCPOPT_MD5SIG << 8) |
696 TCPOLEN_MD5SIG);
697 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
698 rep.th.doff = arg.iov[0].iov_len/4;
699
700 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
701 key, ip_hdr(skb)->saddr,
702 ip_hdr(skb)->daddr, &rep.th);
703 }
704 #endif
705 arg.flags = reply_flags;
706 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
707 ip_hdr(skb)->saddr, /* XXX */
708 arg.iov[0].iov_len, IPPROTO_TCP, 0);
709 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
710 if (oif)
711 arg.bound_dev_if = oif;
712
713 ip_send_reply(net->ipv4.tcp_sock, skb,
714 &arg, arg.iov[0].iov_len);
715
716 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
717 }
718
719 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
720 {
721 struct inet_timewait_sock *tw = inet_twsk(sk);
722 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
723
724 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
725 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
726 tcptw->tw_ts_recent,
727 tw->tw_bound_dev_if,
728 tcp_twsk_md5_key(tcptw),
729 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
730 );
731
732 inet_twsk_put(tw);
733 }
734
735 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
736 struct request_sock *req)
737 {
738 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
739 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
740 req->ts_recent,
741 0,
742 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
743 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
744 }
745
746 /*
747 * Send a SYN-ACK after having received a SYN.
748 * This still operates on a request_sock only, not on a big
749 * socket.
750 */
751 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
752 struct request_sock *req,
753 struct request_values *rvp)
754 {
755 const struct inet_request_sock *ireq = inet_rsk(req);
756 int err = -1;
757 struct sk_buff * skb;
758
759 /* First, grab a route. */
760 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
761 return -1;
762
763 skb = tcp_make_synack(sk, dst, req, rvp);
764
765 if (skb) {
766 struct tcphdr *th = tcp_hdr(skb);
767
768 th->check = tcp_v4_check(skb->len,
769 ireq->loc_addr,
770 ireq->rmt_addr,
771 csum_partial(th, skb->len,
772 skb->csum));
773
774 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
775 ireq->rmt_addr,
776 ireq->opt);
777 err = net_xmit_eval(err);
778 }
779
780 dst_release(dst);
781 return err;
782 }
783
784 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
785 struct request_values *rvp)
786 {
787 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
788 return tcp_v4_send_synack(sk, NULL, req, rvp);
789 }
790
791 /*
792 * IPv4 request_sock destructor.
793 */
794 static void tcp_v4_reqsk_destructor(struct request_sock *req)
795 {
796 kfree(inet_rsk(req)->opt);
797 }
798
799 #ifdef CONFIG_SYN_COOKIES
800 static void syn_flood_warning(struct sk_buff *skb)
801 {
802 static unsigned long warntime;
803
804 if (time_after(jiffies, (warntime + HZ * 60))) {
805 warntime = jiffies;
806 printk(KERN_INFO
807 "possible SYN flooding on port %d. Sending cookies.\n",
808 ntohs(tcp_hdr(skb)->dest));
809 }
810 }
811 #endif
812
813 /*
814 * Save and compile IPv4 options into the request_sock if needed.
815 */
816 static struct ip_options *tcp_v4_save_options(struct sock *sk,
817 struct sk_buff *skb)
818 {
819 struct ip_options *opt = &(IPCB(skb)->opt);
820 struct ip_options *dopt = NULL;
821
822 if (opt && opt->optlen) {
823 int opt_size = optlength(opt);
824 dopt = kmalloc(opt_size, GFP_ATOMIC);
825 if (dopt) {
826 if (ip_options_echo(dopt, skb)) {
827 kfree(dopt);
828 dopt = NULL;
829 }
830 }
831 }
832 return dopt;
833 }
834
835 #ifdef CONFIG_TCP_MD5SIG
836 /*
837 * RFC2385 MD5 checksumming requires a mapping of
838 * IP address->MD5 Key.
839 * We need to maintain these in the sk structure.
840 */
841
842 /* Find the Key structure for an address. */
843 static struct tcp_md5sig_key *
844 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
845 {
846 struct tcp_sock *tp = tcp_sk(sk);
847 int i;
848
849 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
850 return NULL;
851 for (i = 0; i < tp->md5sig_info->entries4; i++) {
852 if (tp->md5sig_info->keys4[i].addr == addr)
853 return &tp->md5sig_info->keys4[i].base;
854 }
855 return NULL;
856 }
857
858 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
859 struct sock *addr_sk)
860 {
861 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
862 }
863
864 EXPORT_SYMBOL(tcp_v4_md5_lookup);
865
866 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
867 struct request_sock *req)
868 {
869 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
870 }
871
872 /* This can be called on a newly created socket, from other files */
873 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
874 u8 *newkey, u8 newkeylen)
875 {
876 /* Add Key to the list */
877 struct tcp_md5sig_key *key;
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp4_md5sig_key *keys;
880
881 key = tcp_v4_md5_do_lookup(sk, addr);
882 if (key) {
883 /* Pre-existing entry - just update that one. */
884 kfree(key->key);
885 key->key = newkey;
886 key->keylen = newkeylen;
887 } else {
888 struct tcp_md5sig_info *md5sig;
889
890 if (!tp->md5sig_info) {
891 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
892 GFP_ATOMIC);
893 if (!tp->md5sig_info) {
894 kfree(newkey);
895 return -ENOMEM;
896 }
897 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
898 }
899 if (tcp_alloc_md5sig_pool(sk) == NULL) {
900 kfree(newkey);
901 return -ENOMEM;
902 }
903 md5sig = tp->md5sig_info;
904
905 if (md5sig->alloced4 == md5sig->entries4) {
906 keys = kmalloc((sizeof(*keys) *
907 (md5sig->entries4 + 1)), GFP_ATOMIC);
908 if (!keys) {
909 kfree(newkey);
910 tcp_free_md5sig_pool();
911 return -ENOMEM;
912 }
913
914 if (md5sig->entries4)
915 memcpy(keys, md5sig->keys4,
916 sizeof(*keys) * md5sig->entries4);
917
918 /* Free old key list, and reference new one */
919 kfree(md5sig->keys4);
920 md5sig->keys4 = keys;
921 md5sig->alloced4++;
922 }
923 md5sig->entries4++;
924 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
925 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
926 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
927 }
928 return 0;
929 }
930
931 EXPORT_SYMBOL(tcp_v4_md5_do_add);
932
933 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
934 u8 *newkey, u8 newkeylen)
935 {
936 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
937 newkey, newkeylen);
938 }
939
940 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
941 {
942 struct tcp_sock *tp = tcp_sk(sk);
943 int i;
944
945 for (i = 0; i < tp->md5sig_info->entries4; i++) {
946 if (tp->md5sig_info->keys4[i].addr == addr) {
947 /* Free the key */
948 kfree(tp->md5sig_info->keys4[i].base.key);
949 tp->md5sig_info->entries4--;
950
951 if (tp->md5sig_info->entries4 == 0) {
952 kfree(tp->md5sig_info->keys4);
953 tp->md5sig_info->keys4 = NULL;
954 tp->md5sig_info->alloced4 = 0;
955 } else if (tp->md5sig_info->entries4 != i) {
956 /* Need to do some manipulation */
957 memmove(&tp->md5sig_info->keys4[i],
958 &tp->md5sig_info->keys4[i+1],
959 (tp->md5sig_info->entries4 - i) *
960 sizeof(struct tcp4_md5sig_key));
961 }
962 tcp_free_md5sig_pool();
963 return 0;
964 }
965 }
966 return -ENOENT;
967 }
968
969 EXPORT_SYMBOL(tcp_v4_md5_do_del);
970
971 static void tcp_v4_clear_md5_list(struct sock *sk)
972 {
973 struct tcp_sock *tp = tcp_sk(sk);
974
975 /* Free each key, then the set of key keys,
976 * the crypto element, and then decrement our
977 * hold on the last resort crypto.
978 */
979 if (tp->md5sig_info->entries4) {
980 int i;
981 for (i = 0; i < tp->md5sig_info->entries4; i++)
982 kfree(tp->md5sig_info->keys4[i].base.key);
983 tp->md5sig_info->entries4 = 0;
984 tcp_free_md5sig_pool();
985 }
986 if (tp->md5sig_info->keys4) {
987 kfree(tp->md5sig_info->keys4);
988 tp->md5sig_info->keys4 = NULL;
989 tp->md5sig_info->alloced4 = 0;
990 }
991 }
992
993 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
994 int optlen)
995 {
996 struct tcp_md5sig cmd;
997 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
998 u8 *newkey;
999
1000 if (optlen < sizeof(cmd))
1001 return -EINVAL;
1002
1003 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1004 return -EFAULT;
1005
1006 if (sin->sin_family != AF_INET)
1007 return -EINVAL;
1008
1009 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1010 if (!tcp_sk(sk)->md5sig_info)
1011 return -ENOENT;
1012 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1013 }
1014
1015 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1016 return -EINVAL;
1017
1018 if (!tcp_sk(sk)->md5sig_info) {
1019 struct tcp_sock *tp = tcp_sk(sk);
1020 struct tcp_md5sig_info *p;
1021
1022 p = kzalloc(sizeof(*p), sk->sk_allocation);
1023 if (!p)
1024 return -EINVAL;
1025
1026 tp->md5sig_info = p;
1027 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1028 }
1029
1030 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1031 if (!newkey)
1032 return -ENOMEM;
1033 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1034 newkey, cmd.tcpm_keylen);
1035 }
1036
1037 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1038 __be32 daddr, __be32 saddr, int nbytes)
1039 {
1040 struct tcp4_pseudohdr *bp;
1041 struct scatterlist sg;
1042
1043 bp = &hp->md5_blk.ip4;
1044
1045 /*
1046 * 1. the TCP pseudo-header (in the order: source IP address,
1047 * destination IP address, zero-padded protocol number, and
1048 * segment length)
1049 */
1050 bp->saddr = saddr;
1051 bp->daddr = daddr;
1052 bp->pad = 0;
1053 bp->protocol = IPPROTO_TCP;
1054 bp->len = cpu_to_be16(nbytes);
1055
1056 sg_init_one(&sg, bp, sizeof(*bp));
1057 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1058 }
1059
1060 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1061 __be32 daddr, __be32 saddr, struct tcphdr *th)
1062 {
1063 struct tcp_md5sig_pool *hp;
1064 struct hash_desc *desc;
1065
1066 hp = tcp_get_md5sig_pool();
1067 if (!hp)
1068 goto clear_hash_noput;
1069 desc = &hp->md5_desc;
1070
1071 if (crypto_hash_init(desc))
1072 goto clear_hash;
1073 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1074 goto clear_hash;
1075 if (tcp_md5_hash_header(hp, th))
1076 goto clear_hash;
1077 if (tcp_md5_hash_key(hp, key))
1078 goto clear_hash;
1079 if (crypto_hash_final(desc, md5_hash))
1080 goto clear_hash;
1081
1082 tcp_put_md5sig_pool();
1083 return 0;
1084
1085 clear_hash:
1086 tcp_put_md5sig_pool();
1087 clear_hash_noput:
1088 memset(md5_hash, 0, 16);
1089 return 1;
1090 }
1091
1092 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1093 struct sock *sk, struct request_sock *req,
1094 struct sk_buff *skb)
1095 {
1096 struct tcp_md5sig_pool *hp;
1097 struct hash_desc *desc;
1098 struct tcphdr *th = tcp_hdr(skb);
1099 __be32 saddr, daddr;
1100
1101 if (sk) {
1102 saddr = inet_sk(sk)->inet_saddr;
1103 daddr = inet_sk(sk)->inet_daddr;
1104 } else if (req) {
1105 saddr = inet_rsk(req)->loc_addr;
1106 daddr = inet_rsk(req)->rmt_addr;
1107 } else {
1108 const struct iphdr *iph = ip_hdr(skb);
1109 saddr = iph->saddr;
1110 daddr = iph->daddr;
1111 }
1112
1113 hp = tcp_get_md5sig_pool();
1114 if (!hp)
1115 goto clear_hash_noput;
1116 desc = &hp->md5_desc;
1117
1118 if (crypto_hash_init(desc))
1119 goto clear_hash;
1120
1121 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1122 goto clear_hash;
1123 if (tcp_md5_hash_header(hp, th))
1124 goto clear_hash;
1125 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1126 goto clear_hash;
1127 if (tcp_md5_hash_key(hp, key))
1128 goto clear_hash;
1129 if (crypto_hash_final(desc, md5_hash))
1130 goto clear_hash;
1131
1132 tcp_put_md5sig_pool();
1133 return 0;
1134
1135 clear_hash:
1136 tcp_put_md5sig_pool();
1137 clear_hash_noput:
1138 memset(md5_hash, 0, 16);
1139 return 1;
1140 }
1141
1142 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1143
1144 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1145 {
1146 /*
1147 * This gets called for each TCP segment that arrives
1148 * so we want to be efficient.
1149 * We have 3 drop cases:
1150 * o No MD5 hash and one expected.
1151 * o MD5 hash and we're not expecting one.
1152 * o MD5 hash and its wrong.
1153 */
1154 __u8 *hash_location = NULL;
1155 struct tcp_md5sig_key *hash_expected;
1156 const struct iphdr *iph = ip_hdr(skb);
1157 struct tcphdr *th = tcp_hdr(skb);
1158 int genhash;
1159 unsigned char newhash[16];
1160
1161 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1162 hash_location = tcp_parse_md5sig_option(th);
1163
1164 /* We've parsed the options - do we have a hash? */
1165 if (!hash_expected && !hash_location)
1166 return 0;
1167
1168 if (hash_expected && !hash_location) {
1169 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1170 return 1;
1171 }
1172
1173 if (!hash_expected && hash_location) {
1174 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1175 return 1;
1176 }
1177
1178 /* Okay, so this is hash_expected and hash_location -
1179 * so we need to calculate the checksum.
1180 */
1181 genhash = tcp_v4_md5_hash_skb(newhash,
1182 hash_expected,
1183 NULL, NULL, skb);
1184
1185 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1186 if (net_ratelimit()) {
1187 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1188 &iph->saddr, ntohs(th->source),
1189 &iph->daddr, ntohs(th->dest),
1190 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1191 }
1192 return 1;
1193 }
1194 return 0;
1195 }
1196
1197 #endif
1198
1199 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1200 .family = PF_INET,
1201 .obj_size = sizeof(struct tcp_request_sock),
1202 .rtx_syn_ack = tcp_v4_rtx_synack,
1203 .send_ack = tcp_v4_reqsk_send_ack,
1204 .destructor = tcp_v4_reqsk_destructor,
1205 .send_reset = tcp_v4_send_reset,
1206 .syn_ack_timeout = tcp_syn_ack_timeout,
1207 };
1208
1209 #ifdef CONFIG_TCP_MD5SIG
1210 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1211 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1212 .calc_md5_hash = tcp_v4_md5_hash_skb,
1213 };
1214 #endif
1215
1216 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1217 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1218 .twsk_unique = tcp_twsk_unique,
1219 .twsk_destructor= tcp_twsk_destructor,
1220 };
1221
1222 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1223 {
1224 struct tcp_extend_values tmp_ext;
1225 struct tcp_options_received tmp_opt;
1226 u8 *hash_location;
1227 struct request_sock *req;
1228 struct inet_request_sock *ireq;
1229 struct tcp_sock *tp = tcp_sk(sk);
1230 struct dst_entry *dst = NULL;
1231 __be32 saddr = ip_hdr(skb)->saddr;
1232 __be32 daddr = ip_hdr(skb)->daddr;
1233 __u32 isn = TCP_SKB_CB(skb)->when;
1234 #ifdef CONFIG_SYN_COOKIES
1235 int want_cookie = 0;
1236 #else
1237 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1238 #endif
1239
1240 /* Never answer to SYNs send to broadcast or multicast */
1241 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1242 goto drop;
1243
1244 /* TW buckets are converted to open requests without
1245 * limitations, they conserve resources and peer is
1246 * evidently real one.
1247 */
1248 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1249 #ifdef CONFIG_SYN_COOKIES
1250 if (sysctl_tcp_syncookies) {
1251 want_cookie = 1;
1252 } else
1253 #endif
1254 goto drop;
1255 }
1256
1257 /* Accept backlog is full. If we have already queued enough
1258 * of warm entries in syn queue, drop request. It is better than
1259 * clogging syn queue with openreqs with exponentially increasing
1260 * timeout.
1261 */
1262 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1263 goto drop;
1264
1265 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1266 if (!req)
1267 goto drop;
1268
1269 #ifdef CONFIG_TCP_MD5SIG
1270 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1271 #endif
1272
1273 tcp_clear_options(&tmp_opt);
1274 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1275 tmp_opt.user_mss = tp->rx_opt.user_mss;
1276 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1277
1278 if (tmp_opt.cookie_plus > 0 &&
1279 tmp_opt.saw_tstamp &&
1280 !tp->rx_opt.cookie_out_never &&
1281 (sysctl_tcp_cookie_size > 0 ||
1282 (tp->cookie_values != NULL &&
1283 tp->cookie_values->cookie_desired > 0))) {
1284 u8 *c;
1285 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1286 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1287
1288 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1289 goto drop_and_release;
1290
1291 /* Secret recipe starts with IP addresses */
1292 *mess++ ^= daddr;
1293 *mess++ ^= saddr;
1294
1295 /* plus variable length Initiator Cookie */
1296 c = (u8 *)mess;
1297 while (l-- > 0)
1298 *c++ ^= *hash_location++;
1299
1300 #ifdef CONFIG_SYN_COOKIES
1301 want_cookie = 0; /* not our kind of cookie */
1302 #endif
1303 tmp_ext.cookie_out_never = 0; /* false */
1304 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1305 } else if (!tp->rx_opt.cookie_in_always) {
1306 /* redundant indications, but ensure initialization. */
1307 tmp_ext.cookie_out_never = 1; /* true */
1308 tmp_ext.cookie_plus = 0;
1309 } else {
1310 goto drop_and_release;
1311 }
1312 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1313
1314 if (want_cookie && !tmp_opt.saw_tstamp)
1315 tcp_clear_options(&tmp_opt);
1316
1317 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1318 tcp_openreq_init(req, &tmp_opt, skb);
1319
1320 ireq = inet_rsk(req);
1321 ireq->loc_addr = daddr;
1322 ireq->rmt_addr = saddr;
1323 ireq->no_srccheck = inet_sk(sk)->transparent;
1324 ireq->opt = tcp_v4_save_options(sk, skb);
1325
1326 if (security_inet_conn_request(sk, skb, req))
1327 goto drop_and_free;
1328
1329 if (!want_cookie)
1330 TCP_ECN_create_request(req, tcp_hdr(skb));
1331
1332 if (want_cookie) {
1333 #ifdef CONFIG_SYN_COOKIES
1334 syn_flood_warning(skb);
1335 req->cookie_ts = tmp_opt.tstamp_ok;
1336 #endif
1337 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1338 } else if (!isn) {
1339 struct inet_peer *peer = NULL;
1340
1341 /* VJ's idea. We save last timestamp seen
1342 * from the destination in peer table, when entering
1343 * state TIME-WAIT, and check against it before
1344 * accepting new connection request.
1345 *
1346 * If "isn" is not zero, this request hit alive
1347 * timewait bucket, so that all the necessary checks
1348 * are made in the function processing timewait state.
1349 */
1350 if (tmp_opt.saw_tstamp &&
1351 tcp_death_row.sysctl_tw_recycle &&
1352 (dst = inet_csk_route_req(sk, req)) != NULL &&
1353 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1354 peer->v4daddr == saddr) {
1355 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1356 (s32)(peer->tcp_ts - req->ts_recent) >
1357 TCP_PAWS_WINDOW) {
1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1359 goto drop_and_release;
1360 }
1361 }
1362 /* Kill the following clause, if you dislike this way. */
1363 else if (!sysctl_tcp_syncookies &&
1364 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1365 (sysctl_max_syn_backlog >> 2)) &&
1366 (!peer || !peer->tcp_ts_stamp) &&
1367 (!dst || !dst_metric(dst, RTAX_RTT))) {
1368 /* Without syncookies last quarter of
1369 * backlog is filled with destinations,
1370 * proven to be alive.
1371 * It means that we continue to communicate
1372 * to destinations, already remembered
1373 * to the moment of synflood.
1374 */
1375 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1376 &saddr, ntohs(tcp_hdr(skb)->source));
1377 goto drop_and_release;
1378 }
1379
1380 isn = tcp_v4_init_sequence(skb);
1381 }
1382 tcp_rsk(req)->snt_isn = isn;
1383
1384 if (tcp_v4_send_synack(sk, dst, req,
1385 (struct request_values *)&tmp_ext) ||
1386 want_cookie)
1387 goto drop_and_free;
1388
1389 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1390 return 0;
1391
1392 drop_and_release:
1393 dst_release(dst);
1394 drop_and_free:
1395 reqsk_free(req);
1396 drop:
1397 return 0;
1398 }
1399
1400
1401 /*
1402 * The three way handshake has completed - we got a valid synack -
1403 * now create the new socket.
1404 */
1405 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1406 struct request_sock *req,
1407 struct dst_entry *dst)
1408 {
1409 struct inet_request_sock *ireq;
1410 struct inet_sock *newinet;
1411 struct tcp_sock *newtp;
1412 struct sock *newsk;
1413 #ifdef CONFIG_TCP_MD5SIG
1414 struct tcp_md5sig_key *key;
1415 #endif
1416
1417 if (sk_acceptq_is_full(sk))
1418 goto exit_overflow;
1419
1420 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1421 goto exit;
1422
1423 newsk = tcp_create_openreq_child(sk, req, skb);
1424 if (!newsk)
1425 goto exit;
1426
1427 newsk->sk_gso_type = SKB_GSO_TCPV4;
1428 sk_setup_caps(newsk, dst);
1429
1430 newtp = tcp_sk(newsk);
1431 newinet = inet_sk(newsk);
1432 ireq = inet_rsk(req);
1433 newinet->inet_daddr = ireq->rmt_addr;
1434 newinet->inet_rcv_saddr = ireq->loc_addr;
1435 newinet->inet_saddr = ireq->loc_addr;
1436 newinet->opt = ireq->opt;
1437 ireq->opt = NULL;
1438 newinet->mc_index = inet_iif(skb);
1439 newinet->mc_ttl = ip_hdr(skb)->ttl;
1440 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1441 if (newinet->opt)
1442 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1443 newinet->inet_id = newtp->write_seq ^ jiffies;
1444
1445 tcp_mtup_init(newsk);
1446 tcp_sync_mss(newsk, dst_mtu(dst));
1447 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1448 if (tcp_sk(sk)->rx_opt.user_mss &&
1449 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1450 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1451
1452 tcp_initialize_rcv_mss(newsk);
1453
1454 #ifdef CONFIG_TCP_MD5SIG
1455 /* Copy over the MD5 key from the original socket */
1456 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1457 if (key != NULL) {
1458 /*
1459 * We're using one, so create a matching key
1460 * on the newsk structure. If we fail to get
1461 * memory, then we end up not copying the key
1462 * across. Shucks.
1463 */
1464 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1465 if (newkey != NULL)
1466 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1467 newkey, key->keylen);
1468 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1469 }
1470 #endif
1471
1472 __inet_hash_nolisten(newsk, NULL);
1473 __inet_inherit_port(sk, newsk);
1474
1475 return newsk;
1476
1477 exit_overflow:
1478 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1479 exit:
1480 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1481 dst_release(dst);
1482 return NULL;
1483 }
1484
1485 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1486 {
1487 struct tcphdr *th = tcp_hdr(skb);
1488 const struct iphdr *iph = ip_hdr(skb);
1489 struct sock *nsk;
1490 struct request_sock **prev;
1491 /* Find possible connection requests. */
1492 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1493 iph->saddr, iph->daddr);
1494 if (req)
1495 return tcp_check_req(sk, skb, req, prev);
1496
1497 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1498 th->source, iph->daddr, th->dest, inet_iif(skb));
1499
1500 if (nsk) {
1501 if (nsk->sk_state != TCP_TIME_WAIT) {
1502 bh_lock_sock(nsk);
1503 return nsk;
1504 }
1505 inet_twsk_put(inet_twsk(nsk));
1506 return NULL;
1507 }
1508
1509 #ifdef CONFIG_SYN_COOKIES
1510 if (!th->rst && !th->syn && th->ack)
1511 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1512 #endif
1513 return sk;
1514 }
1515
1516 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1517 {
1518 const struct iphdr *iph = ip_hdr(skb);
1519
1520 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1521 if (!tcp_v4_check(skb->len, iph->saddr,
1522 iph->daddr, skb->csum)) {
1523 skb->ip_summed = CHECKSUM_UNNECESSARY;
1524 return 0;
1525 }
1526 }
1527
1528 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1529 skb->len, IPPROTO_TCP, 0);
1530
1531 if (skb->len <= 76) {
1532 return __skb_checksum_complete(skb);
1533 }
1534 return 0;
1535 }
1536
1537
1538 /* The socket must have it's spinlock held when we get
1539 * here.
1540 *
1541 * We have a potential double-lock case here, so even when
1542 * doing backlog processing we use the BH locking scheme.
1543 * This is because we cannot sleep with the original spinlock
1544 * held.
1545 */
1546 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1547 {
1548 struct sock *rsk;
1549 #ifdef CONFIG_TCP_MD5SIG
1550 /*
1551 * We really want to reject the packet as early as possible
1552 * if:
1553 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1554 * o There is an MD5 option and we're not expecting one
1555 */
1556 if (tcp_v4_inbound_md5_hash(sk, skb))
1557 goto discard;
1558 #endif
1559
1560 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1561 TCP_CHECK_TIMER(sk);
1562 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1563 rsk = sk;
1564 goto reset;
1565 }
1566 TCP_CHECK_TIMER(sk);
1567 return 0;
1568 }
1569
1570 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1571 goto csum_err;
1572
1573 if (sk->sk_state == TCP_LISTEN) {
1574 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1575 if (!nsk)
1576 goto discard;
1577
1578 if (nsk != sk) {
1579 if (tcp_child_process(sk, nsk, skb)) {
1580 rsk = nsk;
1581 goto reset;
1582 }
1583 return 0;
1584 }
1585 }
1586
1587 TCP_CHECK_TIMER(sk);
1588 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1589 rsk = sk;
1590 goto reset;
1591 }
1592 TCP_CHECK_TIMER(sk);
1593 return 0;
1594
1595 reset:
1596 tcp_v4_send_reset(rsk, skb);
1597 discard:
1598 kfree_skb(skb);
1599 /* Be careful here. If this function gets more complicated and
1600 * gcc suffers from register pressure on the x86, sk (in %ebx)
1601 * might be destroyed here. This current version compiles correctly,
1602 * but you have been warned.
1603 */
1604 return 0;
1605
1606 csum_err:
1607 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1608 goto discard;
1609 }
1610
1611 /*
1612 * From tcp_input.c
1613 */
1614
1615 int tcp_v4_rcv(struct sk_buff *skb)
1616 {
1617 const struct iphdr *iph;
1618 struct tcphdr *th;
1619 struct sock *sk;
1620 int ret;
1621 struct net *net = dev_net(skb->dev);
1622
1623 if (skb->pkt_type != PACKET_HOST)
1624 goto discard_it;
1625
1626 /* Count it even if it's bad */
1627 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1628
1629 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1630 goto discard_it;
1631
1632 th = tcp_hdr(skb);
1633
1634 if (th->doff < sizeof(struct tcphdr) / 4)
1635 goto bad_packet;
1636 if (!pskb_may_pull(skb, th->doff * 4))
1637 goto discard_it;
1638
1639 /* An explanation is required here, I think.
1640 * Packet length and doff are validated by header prediction,
1641 * provided case of th->doff==0 is eliminated.
1642 * So, we defer the checks. */
1643 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1644 goto bad_packet;
1645
1646 th = tcp_hdr(skb);
1647 iph = ip_hdr(skb);
1648 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1649 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1650 skb->len - th->doff * 4);
1651 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1652 TCP_SKB_CB(skb)->when = 0;
1653 TCP_SKB_CB(skb)->flags = iph->tos;
1654 TCP_SKB_CB(skb)->sacked = 0;
1655
1656 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1657 if (!sk)
1658 goto no_tcp_socket;
1659
1660 process:
1661 if (sk->sk_state == TCP_TIME_WAIT)
1662 goto do_time_wait;
1663
1664 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1665 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1666 goto discard_and_relse;
1667 }
1668
1669 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1670 goto discard_and_relse;
1671 nf_reset(skb);
1672
1673 if (sk_filter(sk, skb))
1674 goto discard_and_relse;
1675
1676 skb->dev = NULL;
1677
1678 bh_lock_sock_nested(sk);
1679 ret = 0;
1680 if (!sock_owned_by_user(sk)) {
1681 #ifdef CONFIG_NET_DMA
1682 struct tcp_sock *tp = tcp_sk(sk);
1683 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1684 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1685 if (tp->ucopy.dma_chan)
1686 ret = tcp_v4_do_rcv(sk, skb);
1687 else
1688 #endif
1689 {
1690 if (!tcp_prequeue(sk, skb))
1691 ret = tcp_v4_do_rcv(sk, skb);
1692 }
1693 } else if (unlikely(sk_add_backlog(sk, skb))) {
1694 bh_unlock_sock(sk);
1695 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1696 goto discard_and_relse;
1697 }
1698 bh_unlock_sock(sk);
1699
1700 sock_put(sk);
1701
1702 return ret;
1703
1704 no_tcp_socket:
1705 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1706 goto discard_it;
1707
1708 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1709 bad_packet:
1710 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1711 } else {
1712 tcp_v4_send_reset(NULL, skb);
1713 }
1714
1715 discard_it:
1716 /* Discard frame. */
1717 kfree_skb(skb);
1718 return 0;
1719
1720 discard_and_relse:
1721 sock_put(sk);
1722 goto discard_it;
1723
1724 do_time_wait:
1725 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1726 inet_twsk_put(inet_twsk(sk));
1727 goto discard_it;
1728 }
1729
1730 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1731 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1732 inet_twsk_put(inet_twsk(sk));
1733 goto discard_it;
1734 }
1735 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1736 case TCP_TW_SYN: {
1737 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1738 &tcp_hashinfo,
1739 iph->daddr, th->dest,
1740 inet_iif(skb));
1741 if (sk2) {
1742 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1743 inet_twsk_put(inet_twsk(sk));
1744 sk = sk2;
1745 goto process;
1746 }
1747 /* Fall through to ACK */
1748 }
1749 case TCP_TW_ACK:
1750 tcp_v4_timewait_ack(sk, skb);
1751 break;
1752 case TCP_TW_RST:
1753 goto no_tcp_socket;
1754 case TCP_TW_SUCCESS:;
1755 }
1756 goto discard_it;
1757 }
1758
1759 /* VJ's idea. Save last timestamp seen from this destination
1760 * and hold it at least for normal timewait interval to use for duplicate
1761 * segment detection in subsequent connections, before they enter synchronized
1762 * state.
1763 */
1764
1765 int tcp_v4_remember_stamp(struct sock *sk)
1766 {
1767 struct inet_sock *inet = inet_sk(sk);
1768 struct tcp_sock *tp = tcp_sk(sk);
1769 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1770 struct inet_peer *peer = NULL;
1771 int release_it = 0;
1772
1773 if (!rt || rt->rt_dst != inet->inet_daddr) {
1774 peer = inet_getpeer(inet->inet_daddr, 1);
1775 release_it = 1;
1776 } else {
1777 if (!rt->peer)
1778 rt_bind_peer(rt, 1);
1779 peer = rt->peer;
1780 }
1781
1782 if (peer) {
1783 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1784 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1785 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1786 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1787 peer->tcp_ts = tp->rx_opt.ts_recent;
1788 }
1789 if (release_it)
1790 inet_putpeer(peer);
1791 return 1;
1792 }
1793
1794 return 0;
1795 }
1796
1797 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1798 {
1799 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1800
1801 if (peer) {
1802 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1803
1804 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1805 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1806 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1807 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1808 peer->tcp_ts = tcptw->tw_ts_recent;
1809 }
1810 inet_putpeer(peer);
1811 return 1;
1812 }
1813
1814 return 0;
1815 }
1816
1817 const struct inet_connection_sock_af_ops ipv4_specific = {
1818 .queue_xmit = ip_queue_xmit,
1819 .send_check = tcp_v4_send_check,
1820 .rebuild_header = inet_sk_rebuild_header,
1821 .conn_request = tcp_v4_conn_request,
1822 .syn_recv_sock = tcp_v4_syn_recv_sock,
1823 .remember_stamp = tcp_v4_remember_stamp,
1824 .net_header_len = sizeof(struct iphdr),
1825 .setsockopt = ip_setsockopt,
1826 .getsockopt = ip_getsockopt,
1827 .addr2sockaddr = inet_csk_addr2sockaddr,
1828 .sockaddr_len = sizeof(struct sockaddr_in),
1829 .bind_conflict = inet_csk_bind_conflict,
1830 #ifdef CONFIG_COMPAT
1831 .compat_setsockopt = compat_ip_setsockopt,
1832 .compat_getsockopt = compat_ip_getsockopt,
1833 #endif
1834 };
1835
1836 #ifdef CONFIG_TCP_MD5SIG
1837 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1838 .md5_lookup = tcp_v4_md5_lookup,
1839 .calc_md5_hash = tcp_v4_md5_hash_skb,
1840 .md5_add = tcp_v4_md5_add_func,
1841 .md5_parse = tcp_v4_parse_md5_keys,
1842 };
1843 #endif
1844
1845 /* NOTE: A lot of things set to zero explicitly by call to
1846 * sk_alloc() so need not be done here.
1847 */
1848 static int tcp_v4_init_sock(struct sock *sk)
1849 {
1850 struct inet_connection_sock *icsk = inet_csk(sk);
1851 struct tcp_sock *tp = tcp_sk(sk);
1852
1853 skb_queue_head_init(&tp->out_of_order_queue);
1854 tcp_init_xmit_timers(sk);
1855 tcp_prequeue_init(tp);
1856
1857 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1858 tp->mdev = TCP_TIMEOUT_INIT;
1859
1860 /* So many TCP implementations out there (incorrectly) count the
1861 * initial SYN frame in their delayed-ACK and congestion control
1862 * algorithms that we must have the following bandaid to talk
1863 * efficiently to them. -DaveM
1864 */
1865 tp->snd_cwnd = 2;
1866
1867 /* See draft-stevens-tcpca-spec-01 for discussion of the
1868 * initialization of these values.
1869 */
1870 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1871 tp->snd_cwnd_clamp = ~0;
1872 tp->mss_cache = TCP_MSS_DEFAULT;
1873
1874 tp->reordering = sysctl_tcp_reordering;
1875 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1876
1877 sk->sk_state = TCP_CLOSE;
1878
1879 sk->sk_write_space = sk_stream_write_space;
1880 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1881
1882 icsk->icsk_af_ops = &ipv4_specific;
1883 icsk->icsk_sync_mss = tcp_sync_mss;
1884 #ifdef CONFIG_TCP_MD5SIG
1885 tp->af_specific = &tcp_sock_ipv4_specific;
1886 #endif
1887
1888 /* TCP Cookie Transactions */
1889 if (sysctl_tcp_cookie_size > 0) {
1890 /* Default, cookies without s_data_payload. */
1891 tp->cookie_values =
1892 kzalloc(sizeof(*tp->cookie_values),
1893 sk->sk_allocation);
1894 if (tp->cookie_values != NULL)
1895 kref_init(&tp->cookie_values->kref);
1896 }
1897 /* Presumed zeroed, in order of appearance:
1898 * cookie_in_always, cookie_out_never,
1899 * s_data_constant, s_data_in, s_data_out
1900 */
1901 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1902 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1903
1904 local_bh_disable();
1905 percpu_counter_inc(&tcp_sockets_allocated);
1906 local_bh_enable();
1907
1908 return 0;
1909 }
1910
1911 void tcp_v4_destroy_sock(struct sock *sk)
1912 {
1913 struct tcp_sock *tp = tcp_sk(sk);
1914
1915 tcp_clear_xmit_timers(sk);
1916
1917 tcp_cleanup_congestion_control(sk);
1918
1919 /* Cleanup up the write buffer. */
1920 tcp_write_queue_purge(sk);
1921
1922 /* Cleans up our, hopefully empty, out_of_order_queue. */
1923 __skb_queue_purge(&tp->out_of_order_queue);
1924
1925 #ifdef CONFIG_TCP_MD5SIG
1926 /* Clean up the MD5 key list, if any */
1927 if (tp->md5sig_info) {
1928 tcp_v4_clear_md5_list(sk);
1929 kfree(tp->md5sig_info);
1930 tp->md5sig_info = NULL;
1931 }
1932 #endif
1933
1934 #ifdef CONFIG_NET_DMA
1935 /* Cleans up our sk_async_wait_queue */
1936 __skb_queue_purge(&sk->sk_async_wait_queue);
1937 #endif
1938
1939 /* Clean prequeue, it must be empty really */
1940 __skb_queue_purge(&tp->ucopy.prequeue);
1941
1942 /* Clean up a referenced TCP bind bucket. */
1943 if (inet_csk(sk)->icsk_bind_hash)
1944 inet_put_port(sk);
1945
1946 /*
1947 * If sendmsg cached page exists, toss it.
1948 */
1949 if (sk->sk_sndmsg_page) {
1950 __free_page(sk->sk_sndmsg_page);
1951 sk->sk_sndmsg_page = NULL;
1952 }
1953
1954 /* TCP Cookie Transactions */
1955 if (tp->cookie_values != NULL) {
1956 kref_put(&tp->cookie_values->kref,
1957 tcp_cookie_values_release);
1958 tp->cookie_values = NULL;
1959 }
1960
1961 percpu_counter_dec(&tcp_sockets_allocated);
1962 }
1963
1964 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1965
1966 #ifdef CONFIG_PROC_FS
1967 /* Proc filesystem TCP sock list dumping. */
1968
1969 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1970 {
1971 return hlist_nulls_empty(head) ? NULL :
1972 list_entry(head->first, struct inet_timewait_sock, tw_node);
1973 }
1974
1975 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1976 {
1977 return !is_a_nulls(tw->tw_node.next) ?
1978 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1979 }
1980
1981 static void *listening_get_next(struct seq_file *seq, void *cur)
1982 {
1983 struct inet_connection_sock *icsk;
1984 struct hlist_nulls_node *node;
1985 struct sock *sk = cur;
1986 struct inet_listen_hashbucket *ilb;
1987 struct tcp_iter_state *st = seq->private;
1988 struct net *net = seq_file_net(seq);
1989
1990 if (!sk) {
1991 st->bucket = 0;
1992 ilb = &tcp_hashinfo.listening_hash[0];
1993 spin_lock_bh(&ilb->lock);
1994 sk = sk_nulls_head(&ilb->head);
1995 goto get_sk;
1996 }
1997 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998 ++st->num;
1999
2000 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2001 struct request_sock *req = cur;
2002
2003 icsk = inet_csk(st->syn_wait_sk);
2004 req = req->dl_next;
2005 while (1) {
2006 while (req) {
2007 if (req->rsk_ops->family == st->family) {
2008 cur = req;
2009 goto out;
2010 }
2011 req = req->dl_next;
2012 }
2013 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2014 break;
2015 get_req:
2016 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2017 }
2018 sk = sk_next(st->syn_wait_sk);
2019 st->state = TCP_SEQ_STATE_LISTENING;
2020 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2021 } else {
2022 icsk = inet_csk(sk);
2023 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2025 goto start_req;
2026 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2027 sk = sk_next(sk);
2028 }
2029 get_sk:
2030 sk_nulls_for_each_from(sk, node) {
2031 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2032 cur = sk;
2033 goto out;
2034 }
2035 icsk = inet_csk(sk);
2036 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2037 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2038 start_req:
2039 st->uid = sock_i_uid(sk);
2040 st->syn_wait_sk = sk;
2041 st->state = TCP_SEQ_STATE_OPENREQ;
2042 st->sbucket = 0;
2043 goto get_req;
2044 }
2045 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2046 }
2047 spin_unlock_bh(&ilb->lock);
2048 if (++st->bucket < INET_LHTABLE_SIZE) {
2049 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2050 spin_lock_bh(&ilb->lock);
2051 sk = sk_nulls_head(&ilb->head);
2052 goto get_sk;
2053 }
2054 cur = NULL;
2055 out:
2056 return cur;
2057 }
2058
2059 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2060 {
2061 void *rc = listening_get_next(seq, NULL);
2062
2063 while (rc && *pos) {
2064 rc = listening_get_next(seq, rc);
2065 --*pos;
2066 }
2067 return rc;
2068 }
2069
2070 static inline int empty_bucket(struct tcp_iter_state *st)
2071 {
2072 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2073 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2074 }
2075
2076 static void *established_get_first(struct seq_file *seq)
2077 {
2078 struct tcp_iter_state *st = seq->private;
2079 struct net *net = seq_file_net(seq);
2080 void *rc = NULL;
2081
2082 for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2083 struct sock *sk;
2084 struct hlist_nulls_node *node;
2085 struct inet_timewait_sock *tw;
2086 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2087
2088 /* Lockless fast path for the common case of empty buckets */
2089 if (empty_bucket(st))
2090 continue;
2091
2092 spin_lock_bh(lock);
2093 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2094 if (sk->sk_family != st->family ||
2095 !net_eq(sock_net(sk), net)) {
2096 continue;
2097 }
2098 rc = sk;
2099 goto out;
2100 }
2101 st->state = TCP_SEQ_STATE_TIME_WAIT;
2102 inet_twsk_for_each(tw, node,
2103 &tcp_hashinfo.ehash[st->bucket].twchain) {
2104 if (tw->tw_family != st->family ||
2105 !net_eq(twsk_net(tw), net)) {
2106 continue;
2107 }
2108 rc = tw;
2109 goto out;
2110 }
2111 spin_unlock_bh(lock);
2112 st->state = TCP_SEQ_STATE_ESTABLISHED;
2113 }
2114 out:
2115 return rc;
2116 }
2117
2118 static void *established_get_next(struct seq_file *seq, void *cur)
2119 {
2120 struct sock *sk = cur;
2121 struct inet_timewait_sock *tw;
2122 struct hlist_nulls_node *node;
2123 struct tcp_iter_state *st = seq->private;
2124 struct net *net = seq_file_net(seq);
2125
2126 ++st->num;
2127
2128 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2129 tw = cur;
2130 tw = tw_next(tw);
2131 get_tw:
2132 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2133 tw = tw_next(tw);
2134 }
2135 if (tw) {
2136 cur = tw;
2137 goto out;
2138 }
2139 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2140 st->state = TCP_SEQ_STATE_ESTABLISHED;
2141
2142 /* Look for next non empty bucket */
2143 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2144 empty_bucket(st))
2145 ;
2146 if (st->bucket > tcp_hashinfo.ehash_mask)
2147 return NULL;
2148
2149 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2150 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2151 } else
2152 sk = sk_nulls_next(sk);
2153
2154 sk_nulls_for_each_from(sk, node) {
2155 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2156 goto found;
2157 }
2158
2159 st->state = TCP_SEQ_STATE_TIME_WAIT;
2160 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2161 goto get_tw;
2162 found:
2163 cur = sk;
2164 out:
2165 return cur;
2166 }
2167
2168 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2169 {
2170 void *rc = established_get_first(seq);
2171
2172 while (rc && pos) {
2173 rc = established_get_next(seq, rc);
2174 --pos;
2175 }
2176 return rc;
2177 }
2178
2179 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2180 {
2181 void *rc;
2182 struct tcp_iter_state *st = seq->private;
2183
2184 st->state = TCP_SEQ_STATE_LISTENING;
2185 rc = listening_get_idx(seq, &pos);
2186
2187 if (!rc) {
2188 st->state = TCP_SEQ_STATE_ESTABLISHED;
2189 rc = established_get_idx(seq, pos);
2190 }
2191
2192 return rc;
2193 }
2194
2195 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2196 {
2197 struct tcp_iter_state *st = seq->private;
2198 st->state = TCP_SEQ_STATE_LISTENING;
2199 st->num = 0;
2200 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2201 }
2202
2203 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2204 {
2205 void *rc = NULL;
2206 struct tcp_iter_state *st;
2207
2208 if (v == SEQ_START_TOKEN) {
2209 rc = tcp_get_idx(seq, 0);
2210 goto out;
2211 }
2212 st = seq->private;
2213
2214 switch (st->state) {
2215 case TCP_SEQ_STATE_OPENREQ:
2216 case TCP_SEQ_STATE_LISTENING:
2217 rc = listening_get_next(seq, v);
2218 if (!rc) {
2219 st->state = TCP_SEQ_STATE_ESTABLISHED;
2220 rc = established_get_first(seq);
2221 }
2222 break;
2223 case TCP_SEQ_STATE_ESTABLISHED:
2224 case TCP_SEQ_STATE_TIME_WAIT:
2225 rc = established_get_next(seq, v);
2226 break;
2227 }
2228 out:
2229 ++*pos;
2230 return rc;
2231 }
2232
2233 static void tcp_seq_stop(struct seq_file *seq, void *v)
2234 {
2235 struct tcp_iter_state *st = seq->private;
2236
2237 switch (st->state) {
2238 case TCP_SEQ_STATE_OPENREQ:
2239 if (v) {
2240 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2241 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2242 }
2243 case TCP_SEQ_STATE_LISTENING:
2244 if (v != SEQ_START_TOKEN)
2245 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2246 break;
2247 case TCP_SEQ_STATE_TIME_WAIT:
2248 case TCP_SEQ_STATE_ESTABLISHED:
2249 if (v)
2250 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2251 break;
2252 }
2253 }
2254
2255 static int tcp_seq_open(struct inode *inode, struct file *file)
2256 {
2257 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2258 struct tcp_iter_state *s;
2259 int err;
2260
2261 err = seq_open_net(inode, file, &afinfo->seq_ops,
2262 sizeof(struct tcp_iter_state));
2263 if (err < 0)
2264 return err;
2265
2266 s = ((struct seq_file *)file->private_data)->private;
2267 s->family = afinfo->family;
2268 return 0;
2269 }
2270
2271 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2272 {
2273 int rc = 0;
2274 struct proc_dir_entry *p;
2275
2276 afinfo->seq_fops.open = tcp_seq_open;
2277 afinfo->seq_fops.read = seq_read;
2278 afinfo->seq_fops.llseek = seq_lseek;
2279 afinfo->seq_fops.release = seq_release_net;
2280
2281 afinfo->seq_ops.start = tcp_seq_start;
2282 afinfo->seq_ops.next = tcp_seq_next;
2283 afinfo->seq_ops.stop = tcp_seq_stop;
2284
2285 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2286 &afinfo->seq_fops, afinfo);
2287 if (!p)
2288 rc = -ENOMEM;
2289 return rc;
2290 }
2291
2292 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2293 {
2294 proc_net_remove(net, afinfo->name);
2295 }
2296
2297 static void get_openreq4(struct sock *sk, struct request_sock *req,
2298 struct seq_file *f, int i, int uid, int *len)
2299 {
2300 const struct inet_request_sock *ireq = inet_rsk(req);
2301 int ttd = req->expires - jiffies;
2302
2303 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2304 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2305 i,
2306 ireq->loc_addr,
2307 ntohs(inet_sk(sk)->inet_sport),
2308 ireq->rmt_addr,
2309 ntohs(ireq->rmt_port),
2310 TCP_SYN_RECV,
2311 0, 0, /* could print option size, but that is af dependent. */
2312 1, /* timers active (only the expire timer) */
2313 jiffies_to_clock_t(ttd),
2314 req->retrans,
2315 uid,
2316 0, /* non standard timer */
2317 0, /* open_requests have no inode */
2318 atomic_read(&sk->sk_refcnt),
2319 req,
2320 len);
2321 }
2322
2323 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2324 {
2325 int timer_active;
2326 unsigned long timer_expires;
2327 struct tcp_sock *tp = tcp_sk(sk);
2328 const struct inet_connection_sock *icsk = inet_csk(sk);
2329 struct inet_sock *inet = inet_sk(sk);
2330 __be32 dest = inet->inet_daddr;
2331 __be32 src = inet->inet_rcv_saddr;
2332 __u16 destp = ntohs(inet->inet_dport);
2333 __u16 srcp = ntohs(inet->inet_sport);
2334 int rx_queue;
2335
2336 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2337 timer_active = 1;
2338 timer_expires = icsk->icsk_timeout;
2339 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2340 timer_active = 4;
2341 timer_expires = icsk->icsk_timeout;
2342 } else if (timer_pending(&sk->sk_timer)) {
2343 timer_active = 2;
2344 timer_expires = sk->sk_timer.expires;
2345 } else {
2346 timer_active = 0;
2347 timer_expires = jiffies;
2348 }
2349
2350 if (sk->sk_state == TCP_LISTEN)
2351 rx_queue = sk->sk_ack_backlog;
2352 else
2353 /*
2354 * because we dont lock socket, we might find a transient negative value
2355 */
2356 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2357
2358 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2359 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2360 i, src, srcp, dest, destp, sk->sk_state,
2361 tp->write_seq - tp->snd_una,
2362 rx_queue,
2363 timer_active,
2364 jiffies_to_clock_t(timer_expires - jiffies),
2365 icsk->icsk_retransmits,
2366 sock_i_uid(sk),
2367 icsk->icsk_probes_out,
2368 sock_i_ino(sk),
2369 atomic_read(&sk->sk_refcnt), sk,
2370 jiffies_to_clock_t(icsk->icsk_rto),
2371 jiffies_to_clock_t(icsk->icsk_ack.ato),
2372 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2373 tp->snd_cwnd,
2374 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2375 len);
2376 }
2377
2378 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2379 struct seq_file *f, int i, int *len)
2380 {
2381 __be32 dest, src;
2382 __u16 destp, srcp;
2383 int ttd = tw->tw_ttd - jiffies;
2384
2385 if (ttd < 0)
2386 ttd = 0;
2387
2388 dest = tw->tw_daddr;
2389 src = tw->tw_rcv_saddr;
2390 destp = ntohs(tw->tw_dport);
2391 srcp = ntohs(tw->tw_sport);
2392
2393 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2394 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2395 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2396 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2397 atomic_read(&tw->tw_refcnt), tw, len);
2398 }
2399
2400 #define TMPSZ 150
2401
2402 static int tcp4_seq_show(struct seq_file *seq, void *v)
2403 {
2404 struct tcp_iter_state *st;
2405 int len;
2406
2407 if (v == SEQ_START_TOKEN) {
2408 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2409 " sl local_address rem_address st tx_queue "
2410 "rx_queue tr tm->when retrnsmt uid timeout "
2411 "inode");
2412 goto out;
2413 }
2414 st = seq->private;
2415
2416 switch (st->state) {
2417 case TCP_SEQ_STATE_LISTENING:
2418 case TCP_SEQ_STATE_ESTABLISHED:
2419 get_tcp4_sock(v, seq, st->num, &len);
2420 break;
2421 case TCP_SEQ_STATE_OPENREQ:
2422 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2423 break;
2424 case TCP_SEQ_STATE_TIME_WAIT:
2425 get_timewait4_sock(v, seq, st->num, &len);
2426 break;
2427 }
2428 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2429 out:
2430 return 0;
2431 }
2432
2433 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2434 .name = "tcp",
2435 .family = AF_INET,
2436 .seq_fops = {
2437 .owner = THIS_MODULE,
2438 },
2439 .seq_ops = {
2440 .show = tcp4_seq_show,
2441 },
2442 };
2443
2444 static int __net_init tcp4_proc_init_net(struct net *net)
2445 {
2446 return tcp_proc_register(net, &tcp4_seq_afinfo);
2447 }
2448
2449 static void __net_exit tcp4_proc_exit_net(struct net *net)
2450 {
2451 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2452 }
2453
2454 static struct pernet_operations tcp4_net_ops = {
2455 .init = tcp4_proc_init_net,
2456 .exit = tcp4_proc_exit_net,
2457 };
2458
2459 int __init tcp4_proc_init(void)
2460 {
2461 return register_pernet_subsys(&tcp4_net_ops);
2462 }
2463
2464 void tcp4_proc_exit(void)
2465 {
2466 unregister_pernet_subsys(&tcp4_net_ops);
2467 }
2468 #endif /* CONFIG_PROC_FS */
2469
2470 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2471 {
2472 struct iphdr *iph = skb_gro_network_header(skb);
2473
2474 switch (skb->ip_summed) {
2475 case CHECKSUM_COMPLETE:
2476 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2477 skb->csum)) {
2478 skb->ip_summed = CHECKSUM_UNNECESSARY;
2479 break;
2480 }
2481
2482 /* fall through */
2483 case CHECKSUM_NONE:
2484 NAPI_GRO_CB(skb)->flush = 1;
2485 return NULL;
2486 }
2487
2488 return tcp_gro_receive(head, skb);
2489 }
2490 EXPORT_SYMBOL(tcp4_gro_receive);
2491
2492 int tcp4_gro_complete(struct sk_buff *skb)
2493 {
2494 struct iphdr *iph = ip_hdr(skb);
2495 struct tcphdr *th = tcp_hdr(skb);
2496
2497 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2498 iph->saddr, iph->daddr, 0);
2499 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2500
2501 return tcp_gro_complete(skb);
2502 }
2503 EXPORT_SYMBOL(tcp4_gro_complete);
2504
2505 struct proto tcp_prot = {
2506 .name = "TCP",
2507 .owner = THIS_MODULE,
2508 .close = tcp_close,
2509 .connect = tcp_v4_connect,
2510 .disconnect = tcp_disconnect,
2511 .accept = inet_csk_accept,
2512 .ioctl = tcp_ioctl,
2513 .init = tcp_v4_init_sock,
2514 .destroy = tcp_v4_destroy_sock,
2515 .shutdown = tcp_shutdown,
2516 .setsockopt = tcp_setsockopt,
2517 .getsockopt = tcp_getsockopt,
2518 .recvmsg = tcp_recvmsg,
2519 .backlog_rcv = tcp_v4_do_rcv,
2520 .hash = inet_hash,
2521 .unhash = inet_unhash,
2522 .get_port = inet_csk_get_port,
2523 .enter_memory_pressure = tcp_enter_memory_pressure,
2524 .sockets_allocated = &tcp_sockets_allocated,
2525 .orphan_count = &tcp_orphan_count,
2526 .memory_allocated = &tcp_memory_allocated,
2527 .memory_pressure = &tcp_memory_pressure,
2528 .sysctl_mem = sysctl_tcp_mem,
2529 .sysctl_wmem = sysctl_tcp_wmem,
2530 .sysctl_rmem = sysctl_tcp_rmem,
2531 .max_header = MAX_TCP_HEADER,
2532 .obj_size = sizeof(struct tcp_sock),
2533 .slab_flags = SLAB_DESTROY_BY_RCU,
2534 .twsk_prot = &tcp_timewait_sock_ops,
2535 .rsk_prot = &tcp_request_sock_ops,
2536 .h.hashinfo = &tcp_hashinfo,
2537 #ifdef CONFIG_COMPAT
2538 .compat_setsockopt = compat_tcp_setsockopt,
2539 .compat_getsockopt = compat_tcp_getsockopt,
2540 #endif
2541 };
2542
2543
2544 static int __net_init tcp_sk_init(struct net *net)
2545 {
2546 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2547 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2548 }
2549
2550 static void __net_exit tcp_sk_exit(struct net *net)
2551 {
2552 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2553 }
2554
2555 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2556 {
2557 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2558 }
2559
2560 static struct pernet_operations __net_initdata tcp_sk_ops = {
2561 .init = tcp_sk_init,
2562 .exit = tcp_sk_exit,
2563 .exit_batch = tcp_sk_exit_batch,
2564 };
2565
2566 void __init tcp_v4_init(void)
2567 {
2568 inet_hashinfo_init(&tcp_hashinfo);
2569 if (register_pernet_subsys(&tcp_sk_ops))
2570 panic("Failed to create the TCP control socket.\n");
2571 }
2572
2573 EXPORT_SYMBOL(ipv4_specific);
2574 EXPORT_SYMBOL(tcp_hashinfo);
2575 EXPORT_SYMBOL(tcp_prot);
2576 EXPORT_SYMBOL(tcp_v4_conn_request);
2577 EXPORT_SYMBOL(tcp_v4_connect);
2578 EXPORT_SYMBOL(tcp_v4_do_rcv);
2579 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2580 EXPORT_SYMBOL(tcp_v4_send_check);
2581 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2582
2583 #ifdef CONFIG_PROC_FS
2584 EXPORT_SYMBOL(tcp_proc_register);
2585 EXPORT_SYMBOL(tcp_proc_unregister);
2586 #endif
2587 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2588
This page took 0.177985 seconds and 6 git commands to generate.