Merge tag 'asoc-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound...
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
213 tcp_fetch_timewait_stamp(sk, &rt->dst);
214
215 inet->inet_dport = usin->sin_port;
216 inet->inet_daddr = daddr;
217
218 inet_csk(sk)->icsk_ext_hdr_len = 0;
219 if (inet_opt)
220 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
221
222 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
223
224 /* Socket identity is still unknown (sport may be zero).
225 * However we set state to SYN-SENT and not releasing socket
226 * lock select source port, enter ourselves into the hash tables and
227 * complete initialization after this.
228 */
229 tcp_set_state(sk, TCP_SYN_SENT);
230 err = inet_hash_connect(&tcp_death_row, sk);
231 if (err)
232 goto failure;
233
234 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
235 inet->inet_sport, inet->inet_dport, sk);
236 if (IS_ERR(rt)) {
237 err = PTR_ERR(rt);
238 rt = NULL;
239 goto failure;
240 }
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->dst);
244
245 if (!tp->write_seq && likely(!tp->repair))
246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 inet->inet_daddr,
248 inet->inet_sport,
249 usin->sin_port);
250
251 inet->inet_id = tp->write_seq ^ jiffies;
252
253 if (likely(!tp->repair))
254 err = tcp_connect(sk);
255 else
256 err = tcp_repair_connect(sk);
257
258 rt = NULL;
259 if (err)
260 goto failure;
261
262 return 0;
263
264 failure:
265 /*
266 * This unhashes the socket and releases the local port,
267 * if necessary.
268 */
269 tcp_set_state(sk, TCP_CLOSE);
270 ip_rt_put(rt);
271 sk->sk_route_caps = 0;
272 inet->inet_dport = 0;
273 return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
279 * It can be called through tcp_release_cb() if socket was owned by user
280 * at the time tcp_v4_err() was called to handle ICMP message.
281 */
282 static void tcp_v4_mtu_reduced(struct sock *sk)
283 {
284 struct dst_entry *dst;
285 struct inet_sock *inet = inet_sk(sk);
286 u32 mtu = tcp_sk(sk)->mtu_info;
287
288 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
289 * send out by Linux are always <576bytes so they should go through
290 * unfragmented).
291 */
292 if (sk->sk_state == TCP_LISTEN)
293 return;
294
295 dst = inet_csk_update_pmtu(sk, mtu);
296 if (!dst)
297 return;
298
299 /* Something is about to be wrong... Remember soft error
300 * for the case, if this connection will not able to recover.
301 */
302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303 sk->sk_err_soft = EMSGSIZE;
304
305 mtu = dst_mtu(dst);
306
307 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309 tcp_sync_mss(sk, mtu);
310
311 /* Resend the TCP packet because it's
312 * clear that the old packet has been
313 * dropped. This is the new "fast" path mtu
314 * discovery.
315 */
316 tcp_simple_retransmit(sk);
317 } /* else let the usual retransmit timer handle it */
318 }
319
320 static void do_redirect(struct sk_buff *skb, struct sock *sk)
321 {
322 struct dst_entry *dst = __sk_dst_check(sk, 0);
323
324 if (dst)
325 dst->ops->redirect(dst, sk, skb);
326 }
327
328 /*
329 * This routine is called by the ICMP module when it gets some
330 * sort of error condition. If err < 0 then the socket should
331 * be closed and the error returned to the user. If err > 0
332 * it's just the icmp type << 8 | icmp code. After adjustment
333 * header points to the first 8 bytes of the tcp header. We need
334 * to find the appropriate port.
335 *
336 * The locking strategy used here is very "optimistic". When
337 * someone else accesses the socket the ICMP is just dropped
338 * and for some paths there is no check at all.
339 * A more general error queue to queue errors for later handling
340 * is probably better.
341 *
342 */
343
344 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
345 {
346 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
347 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
348 struct inet_connection_sock *icsk;
349 struct tcp_sock *tp;
350 struct inet_sock *inet;
351 const int type = icmp_hdr(icmp_skb)->type;
352 const int code = icmp_hdr(icmp_skb)->code;
353 struct sock *sk;
354 struct sk_buff *skb;
355 __u32 seq;
356 __u32 remaining;
357 int err;
358 struct net *net = dev_net(icmp_skb->dev);
359
360 if (icmp_skb->len < (iph->ihl << 2) + 8) {
361 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
362 return;
363 }
364
365 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
366 iph->saddr, th->source, inet_iif(icmp_skb));
367 if (!sk) {
368 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
369 return;
370 }
371 if (sk->sk_state == TCP_TIME_WAIT) {
372 inet_twsk_put(inet_twsk(sk));
373 return;
374 }
375
376 bh_lock_sock(sk);
377 /* If too many ICMPs get dropped on busy
378 * servers this needs to be solved differently.
379 * We do take care of PMTU discovery (RFC1191) special case :
380 * we can receive locally generated ICMP messages while socket is held.
381 */
382 if (sock_owned_by_user(sk) &&
383 type != ICMP_DEST_UNREACH &&
384 code != ICMP_FRAG_NEEDED)
385 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
386
387 if (sk->sk_state == TCP_CLOSE)
388 goto out;
389
390 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
391 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
392 goto out;
393 }
394
395 icsk = inet_csk(sk);
396 tp = tcp_sk(sk);
397 seq = ntohl(th->seq);
398 if (sk->sk_state != TCP_LISTEN &&
399 !between(seq, tp->snd_una, tp->snd_nxt)) {
400 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
401 goto out;
402 }
403
404 switch (type) {
405 case ICMP_REDIRECT:
406 do_redirect(icmp_skb, sk);
407 goto out;
408 case ICMP_SOURCE_QUENCH:
409 /* Just silently ignore these. */
410 goto out;
411 case ICMP_PARAMETERPROB:
412 err = EPROTO;
413 break;
414 case ICMP_DEST_UNREACH:
415 if (code > NR_ICMP_UNREACH)
416 goto out;
417
418 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
419 tp->mtu_info = info;
420 if (!sock_owned_by_user(sk))
421 tcp_v4_mtu_reduced(sk);
422 else
423 set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags);
424 goto out;
425 }
426
427 err = icmp_err_convert[code].errno;
428 /* check if icmp_skb allows revert of backoff
429 * (see draft-zimmermann-tcp-lcd) */
430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431 break;
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 break;
435
436 if (sock_owned_by_user(sk))
437 break;
438
439 icsk->icsk_backoff--;
440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442 tcp_bound_rto(sk);
443
444 skb = tcp_write_queue_head(sk);
445 BUG_ON(!skb);
446
447 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450 if (remaining) {
451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452 remaining, TCP_RTO_MAX);
453 } else {
454 /* RTO revert clocked out retransmission.
455 * Will retransmit now */
456 tcp_retransmit_timer(sk);
457 }
458
459 break;
460 case ICMP_TIME_EXCEEDED:
461 err = EHOSTUNREACH;
462 break;
463 default:
464 goto out;
465 }
466
467 switch (sk->sk_state) {
468 struct request_sock *req, **prev;
469 case TCP_LISTEN:
470 if (sock_owned_by_user(sk))
471 goto out;
472
473 req = inet_csk_search_req(sk, &prev, th->dest,
474 iph->daddr, iph->saddr);
475 if (!req)
476 goto out;
477
478 /* ICMPs are not backlogged, hence we cannot get
479 an established socket here.
480 */
481 WARN_ON(req->sk);
482
483 if (seq != tcp_rsk(req)->snt_isn) {
484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485 goto out;
486 }
487
488 /*
489 * Still in SYN_RECV, just remove it silently.
490 * There is no good way to pass the error to the newly
491 * created socket, and POSIX does not want network
492 * errors returned from accept().
493 */
494 inet_csk_reqsk_queue_drop(sk, req, prev);
495 goto out;
496
497 case TCP_SYN_SENT:
498 case TCP_SYN_RECV: /* Cannot happen.
499 It can f.e. if SYNs crossed.
500 */
501 if (!sock_owned_by_user(sk)) {
502 sk->sk_err = err;
503
504 sk->sk_error_report(sk);
505
506 tcp_done(sk);
507 } else {
508 sk->sk_err_soft = err;
509 }
510 goto out;
511 }
512
513 /* If we've already connected we will keep trying
514 * until we time out, or the user gives up.
515 *
516 * rfc1122 4.2.3.9 allows to consider as hard errors
517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518 * but it is obsoleted by pmtu discovery).
519 *
520 * Note, that in modern internet, where routing is unreliable
521 * and in each dark corner broken firewalls sit, sending random
522 * errors ordered by their masters even this two messages finally lose
523 * their original sense (even Linux sends invalid PORT_UNREACHs)
524 *
525 * Now we are in compliance with RFCs.
526 * --ANK (980905)
527 */
528
529 inet = inet_sk(sk);
530 if (!sock_owned_by_user(sk) && inet->recverr) {
531 sk->sk_err = err;
532 sk->sk_error_report(sk);
533 } else { /* Only an error on timeout */
534 sk->sk_err_soft = err;
535 }
536
537 out:
538 bh_unlock_sock(sk);
539 sock_put(sk);
540 }
541
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543 __be32 saddr, __be32 daddr)
544 {
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
569 {
570 const struct iphdr *iph;
571 struct tcphdr *th;
572
573 if (!pskb_may_pull(skb, sizeof(*th)))
574 return -EINVAL;
575
576 iph = ip_hdr(skb);
577 th = tcp_hdr(skb);
578
579 th->check = 0;
580 skb->ip_summed = CHECKSUM_PARTIAL;
581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582 return 0;
583 }
584
585 /*
586 * This routine will send an RST to the other tcp.
587 *
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
596 */
597
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599 {
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606 } rep;
607 struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614 #endif
615 struct net *net;
616
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
620
621 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622 return;
623
624 /* Swap the send and the receive. */
625 memset(&rep, 0, sizeof(rep));
626 rep.th.dest = th->source;
627 rep.th.source = th->dest;
628 rep.th.doff = sizeof(struct tcphdr) / 4;
629 rep.th.rst = 1;
630
631 if (th->ack) {
632 rep.th.seq = th->ack_seq;
633 } else {
634 rep.th.ack = 1;
635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 skb->len - (th->doff << 2));
637 }
638
639 memset(&arg, 0, sizeof(arg));
640 arg.iov[0].iov_base = (unsigned char *)&rep;
641 arg.iov[0].iov_len = sizeof(rep.th);
642
643 #ifdef CONFIG_TCP_MD5SIG
644 hash_location = tcp_parse_md5sig_option(th);
645 if (!sk && hash_location) {
646 /*
647 * active side is lost. Try to find listening socket through
648 * source port, and then find md5 key through listening socket.
649 * we are not loose security here:
650 * Incoming packet is checked with md5 hash with finding key,
651 * no RST generated if md5 hash doesn't match.
652 */
653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654 &tcp_hashinfo, ip_hdr(skb)->daddr,
655 ntohs(th->source), inet_iif(skb));
656 /* don't send rst if it can't find key */
657 if (!sk1)
658 return;
659 rcu_read_lock();
660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr, AF_INET);
662 if (!key)
663 goto release_sk1;
664
665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667 goto release_sk1;
668 } else {
669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670 &ip_hdr(skb)->saddr,
671 AF_INET) : NULL;
672 }
673
674 if (key) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676 (TCPOPT_NOP << 16) |
677 (TCPOPT_MD5SIG << 8) |
678 TCPOLEN_MD5SIG);
679 /* Update length and the length the header thinks exists */
680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681 rep.th.doff = arg.iov[0].iov_len / 4;
682
683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684 key, ip_hdr(skb)->saddr,
685 ip_hdr(skb)->daddr, &rep.th);
686 }
687 #endif
688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689 ip_hdr(skb)->saddr, /* XXX */
690 arg.iov[0].iov_len, IPPROTO_TCP, 0);
691 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693 /* When socket is gone, all binding information is lost.
694 * routing might fail in this case. using iif for oif to
695 * make sure we can deliver it
696 */
697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699 net = dev_net(skb_dst(skb)->dev);
700 arg.tos = ip_hdr(skb)->tos;
701 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
702 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
703
704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709 if (sk1) {
710 rcu_read_unlock();
711 sock_put(sk1);
712 }
713 #endif
714 }
715
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717 outside socket context is ugly, certainly. What can I do?
718 */
719
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721 u32 win, u32 ts, int oif,
722 struct tcp_md5sig_key *key,
723 int reply_flags, u8 tos)
724 {
725 const struct tcphdr *th = tcp_hdr(skb);
726 struct {
727 struct tcphdr th;
728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
732 ];
733 } rep;
734 struct ip_reply_arg arg;
735 struct net *net = dev_net(skb_dst(skb)->dev);
736
737 memset(&rep.th, 0, sizeof(struct tcphdr));
738 memset(&arg, 0, sizeof(arg));
739
740 arg.iov[0].iov_base = (unsigned char *)&rep;
741 arg.iov[0].iov_len = sizeof(rep.th);
742 if (ts) {
743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744 (TCPOPT_TIMESTAMP << 8) |
745 TCPOLEN_TIMESTAMP);
746 rep.opt[1] = htonl(tcp_time_stamp);
747 rep.opt[2] = htonl(ts);
748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749 }
750
751 /* Swap the send and the receive. */
752 rep.th.dest = th->source;
753 rep.th.source = th->dest;
754 rep.th.doff = arg.iov[0].iov_len / 4;
755 rep.th.seq = htonl(seq);
756 rep.th.ack_seq = htonl(ack);
757 rep.th.ack = 1;
758 rep.th.window = htons(win);
759
760 #ifdef CONFIG_TCP_MD5SIG
761 if (key) {
762 int offset = (ts) ? 3 : 0;
763
764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769 rep.th.doff = arg.iov[0].iov_len/4;
770
771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772 key, ip_hdr(skb)->saddr,
773 ip_hdr(skb)->daddr, &rep.th);
774 }
775 #endif
776 arg.flags = reply_flags;
777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778 ip_hdr(skb)->saddr, /* XXX */
779 arg.iov[0].iov_len, IPPROTO_TCP, 0);
780 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781 if (oif)
782 arg.bound_dev_if = oif;
783 arg.tos = tos;
784 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
785 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
786
787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788 }
789
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791 {
792 struct inet_timewait_sock *tw = inet_twsk(sk);
793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcptw->tw_ts_recent,
798 tw->tw_bound_dev_if,
799 tcp_twsk_md5_key(tcptw),
800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801 tw->tw_tos
802 );
803
804 inet_twsk_put(tw);
805 }
806
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808 struct request_sock *req)
809 {
810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812 req->ts_recent,
813 0,
814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815 AF_INET),
816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817 ip_hdr(skb)->tos);
818 }
819
820 /*
821 * Send a SYN-ACK after having received a SYN.
822 * This still operates on a request_sock only, not on a big
823 * socket.
824 */
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826 struct request_sock *req,
827 struct request_values *rvp,
828 u16 queue_mapping,
829 bool nocache)
830 {
831 const struct inet_request_sock *ireq = inet_rsk(req);
832 struct flowi4 fl4;
833 int err = -1;
834 struct sk_buff * skb;
835
836 /* First, grab a route. */
837 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
838 return -1;
839
840 skb = tcp_make_synack(sk, dst, req, rvp);
841
842 if (skb) {
843 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
844
845 skb_set_queue_mapping(skb, queue_mapping);
846 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
847 ireq->rmt_addr,
848 ireq->opt);
849 err = net_xmit_eval(err);
850 }
851
852 return err;
853 }
854
855 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
856 struct request_values *rvp)
857 {
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
860 }
861
862 /*
863 * IPv4 request_sock destructor.
864 */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867 kfree(inet_rsk(req)->opt);
868 }
869
870 /*
871 * Return true if a syncookie should be sent
872 */
873 bool tcp_syn_flood_action(struct sock *sk,
874 const struct sk_buff *skb,
875 const char *proto)
876 {
877 const char *msg = "Dropping request";
878 bool want_cookie = false;
879 struct listen_sock *lopt;
880
881
882
883 #ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889 #endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901
902 /*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
906 struct sk_buff *skb)
907 {
908 const struct ip_options *opt = &(IPCB(skb)->opt);
909 struct ip_options_rcu *dopt = NULL;
910
911 if (opt && opt->optlen) {
912 int opt_size = sizeof(*dopt) + opt->optlen;
913
914 dopt = kmalloc(opt_size, GFP_ATOMIC);
915 if (dopt) {
916 if (ip_options_echo(&dopt->opt, skb)) {
917 kfree(dopt);
918 dopt = NULL;
919 }
920 }
921 }
922 return dopt;
923 }
924
925 #ifdef CONFIG_TCP_MD5SIG
926 /*
927 * RFC2385 MD5 checksumming requires a mapping of
928 * IP address->MD5 Key.
929 * We need to maintain these in the sk structure.
930 */
931
932 /* Find the Key structure for an address. */
933 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
934 const union tcp_md5_addr *addr,
935 int family)
936 {
937 struct tcp_sock *tp = tcp_sk(sk);
938 struct tcp_md5sig_key *key;
939 struct hlist_node *pos;
940 unsigned int size = sizeof(struct in_addr);
941 struct tcp_md5sig_info *md5sig;
942
943 /* caller either holds rcu_read_lock() or socket lock */
944 md5sig = rcu_dereference_check(tp->md5sig_info,
945 sock_owned_by_user(sk) ||
946 lockdep_is_held(&sk->sk_lock.slock));
947 if (!md5sig)
948 return NULL;
949 #if IS_ENABLED(CONFIG_IPV6)
950 if (family == AF_INET6)
951 size = sizeof(struct in6_addr);
952 #endif
953 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
954 if (key->family != family)
955 continue;
956 if (!memcmp(&key->addr, addr, size))
957 return key;
958 }
959 return NULL;
960 }
961 EXPORT_SYMBOL(tcp_md5_do_lookup);
962
963 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
964 struct sock *addr_sk)
965 {
966 union tcp_md5_addr *addr;
967
968 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
969 return tcp_md5_do_lookup(sk, addr, AF_INET);
970 }
971 EXPORT_SYMBOL(tcp_v4_md5_lookup);
972
973 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
974 struct request_sock *req)
975 {
976 union tcp_md5_addr *addr;
977
978 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
979 return tcp_md5_do_lookup(sk, addr, AF_INET);
980 }
981
982 /* This can be called on a newly created socket, from other files */
983 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
984 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
985 {
986 /* Add Key to the list */
987 struct tcp_md5sig_key *key;
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct tcp_md5sig_info *md5sig;
990
991 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
992 if (key) {
993 /* Pre-existing entry - just update that one. */
994 memcpy(key->key, newkey, newkeylen);
995 key->keylen = newkeylen;
996 return 0;
997 }
998
999 md5sig = rcu_dereference_protected(tp->md5sig_info,
1000 sock_owned_by_user(sk));
1001 if (!md5sig) {
1002 md5sig = kmalloc(sizeof(*md5sig), gfp);
1003 if (!md5sig)
1004 return -ENOMEM;
1005
1006 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007 INIT_HLIST_HEAD(&md5sig->head);
1008 rcu_assign_pointer(tp->md5sig_info, md5sig);
1009 }
1010
1011 key = sock_kmalloc(sk, sizeof(*key), gfp);
1012 if (!key)
1013 return -ENOMEM;
1014 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015 sock_kfree_s(sk, key, sizeof(*key));
1016 return -ENOMEM;
1017 }
1018
1019 memcpy(key->key, newkey, newkeylen);
1020 key->keylen = newkeylen;
1021 key->family = family;
1022 memcpy(&key->addr, addr,
1023 (family == AF_INET6) ? sizeof(struct in6_addr) :
1024 sizeof(struct in_addr));
1025 hlist_add_head_rcu(&key->node, &md5sig->head);
1026 return 0;
1027 }
1028 EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031 {
1032 struct tcp_sock *tp = tcp_sk(sk);
1033 struct tcp_md5sig_key *key;
1034 struct tcp_md5sig_info *md5sig;
1035
1036 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037 if (!key)
1038 return -ENOENT;
1039 hlist_del_rcu(&key->node);
1040 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041 kfree_rcu(key, rcu);
1042 md5sig = rcu_dereference_protected(tp->md5sig_info,
1043 sock_owned_by_user(sk));
1044 if (hlist_empty(&md5sig->head))
1045 tcp_free_md5sig_pool();
1046 return 0;
1047 }
1048 EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050 void tcp_clear_md5_list(struct sock *sk)
1051 {
1052 struct tcp_sock *tp = tcp_sk(sk);
1053 struct tcp_md5sig_key *key;
1054 struct hlist_node *pos, *n;
1055 struct tcp_md5sig_info *md5sig;
1056
1057 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059 if (!hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062 hlist_del_rcu(&key->node);
1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 kfree_rcu(key, rcu);
1065 }
1066 }
1067
1068 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069 int optlen)
1070 {
1071 struct tcp_md5sig cmd;
1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073
1074 if (optlen < sizeof(cmd))
1075 return -EINVAL;
1076
1077 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078 return -EFAULT;
1079
1080 if (sin->sin_family != AF_INET)
1081 return -EINVAL;
1082
1083 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085 AF_INET);
1086
1087 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088 return -EINVAL;
1089
1090 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092 GFP_KERNEL);
1093 }
1094
1095 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096 __be32 daddr, __be32 saddr, int nbytes)
1097 {
1098 struct tcp4_pseudohdr *bp;
1099 struct scatterlist sg;
1100
1101 bp = &hp->md5_blk.ip4;
1102
1103 /*
1104 * 1. the TCP pseudo-header (in the order: source IP address,
1105 * destination IP address, zero-padded protocol number, and
1106 * segment length)
1107 */
1108 bp->saddr = saddr;
1109 bp->daddr = daddr;
1110 bp->pad = 0;
1111 bp->protocol = IPPROTO_TCP;
1112 bp->len = cpu_to_be16(nbytes);
1113
1114 sg_init_one(&sg, bp, sizeof(*bp));
1115 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116 }
1117
1118 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120 {
1121 struct tcp_md5sig_pool *hp;
1122 struct hash_desc *desc;
1123
1124 hp = tcp_get_md5sig_pool();
1125 if (!hp)
1126 goto clear_hash_noput;
1127 desc = &hp->md5_desc;
1128
1129 if (crypto_hash_init(desc))
1130 goto clear_hash;
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_key(hp, key))
1136 goto clear_hash;
1137 if (crypto_hash_final(desc, md5_hash))
1138 goto clear_hash;
1139
1140 tcp_put_md5sig_pool();
1141 return 0;
1142
1143 clear_hash:
1144 tcp_put_md5sig_pool();
1145 clear_hash_noput:
1146 memset(md5_hash, 0, 16);
1147 return 1;
1148 }
1149
1150 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151 const struct sock *sk, const struct request_sock *req,
1152 const struct sk_buff *skb)
1153 {
1154 struct tcp_md5sig_pool *hp;
1155 struct hash_desc *desc;
1156 const struct tcphdr *th = tcp_hdr(skb);
1157 __be32 saddr, daddr;
1158
1159 if (sk) {
1160 saddr = inet_sk(sk)->inet_saddr;
1161 daddr = inet_sk(sk)->inet_daddr;
1162 } else if (req) {
1163 saddr = inet_rsk(req)->loc_addr;
1164 daddr = inet_rsk(req)->rmt_addr;
1165 } else {
1166 const struct iphdr *iph = ip_hdr(skb);
1167 saddr = iph->saddr;
1168 daddr = iph->daddr;
1169 }
1170
1171 hp = tcp_get_md5sig_pool();
1172 if (!hp)
1173 goto clear_hash_noput;
1174 desc = &hp->md5_desc;
1175
1176 if (crypto_hash_init(desc))
1177 goto clear_hash;
1178
1179 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180 goto clear_hash;
1181 if (tcp_md5_hash_header(hp, th))
1182 goto clear_hash;
1183 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184 goto clear_hash;
1185 if (tcp_md5_hash_key(hp, key))
1186 goto clear_hash;
1187 if (crypto_hash_final(desc, md5_hash))
1188 goto clear_hash;
1189
1190 tcp_put_md5sig_pool();
1191 return 0;
1192
1193 clear_hash:
1194 tcp_put_md5sig_pool();
1195 clear_hash_noput:
1196 memset(md5_hash, 0, 16);
1197 return 1;
1198 }
1199 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202 {
1203 /*
1204 * This gets called for each TCP segment that arrives
1205 * so we want to be efficient.
1206 * We have 3 drop cases:
1207 * o No MD5 hash and one expected.
1208 * o MD5 hash and we're not expecting one.
1209 * o MD5 hash and its wrong.
1210 */
1211 const __u8 *hash_location = NULL;
1212 struct tcp_md5sig_key *hash_expected;
1213 const struct iphdr *iph = ip_hdr(skb);
1214 const struct tcphdr *th = tcp_hdr(skb);
1215 int genhash;
1216 unsigned char newhash[16];
1217
1218 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219 AF_INET);
1220 hash_location = tcp_parse_md5sig_option(th);
1221
1222 /* We've parsed the options - do we have a hash? */
1223 if (!hash_expected && !hash_location)
1224 return false;
1225
1226 if (hash_expected && !hash_location) {
1227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228 return true;
1229 }
1230
1231 if (!hash_expected && hash_location) {
1232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233 return true;
1234 }
1235
1236 /* Okay, so this is hash_expected and hash_location -
1237 * so we need to calculate the checksum.
1238 */
1239 genhash = tcp_v4_md5_hash_skb(newhash,
1240 hash_expected,
1241 NULL, NULL, skb);
1242
1243 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245 &iph->saddr, ntohs(th->source),
1246 &iph->daddr, ntohs(th->dest),
1247 genhash ? " tcp_v4_calc_md5_hash failed"
1248 : "");
1249 return true;
1250 }
1251 return false;
1252 }
1253
1254 #endif
1255
1256 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257 .family = PF_INET,
1258 .obj_size = sizeof(struct tcp_request_sock),
1259 .rtx_syn_ack = tcp_v4_rtx_synack,
1260 .send_ack = tcp_v4_reqsk_send_ack,
1261 .destructor = tcp_v4_reqsk_destructor,
1262 .send_reset = tcp_v4_send_reset,
1263 .syn_ack_timeout = tcp_syn_ack_timeout,
1264 };
1265
1266 #ifdef CONFIG_TCP_MD5SIG
1267 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1269 .calc_md5_hash = tcp_v4_md5_hash_skb,
1270 };
1271 #endif
1272
1273 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274 {
1275 struct tcp_extend_values tmp_ext;
1276 struct tcp_options_received tmp_opt;
1277 const u8 *hash_location;
1278 struct request_sock *req;
1279 struct inet_request_sock *ireq;
1280 struct tcp_sock *tp = tcp_sk(sk);
1281 struct dst_entry *dst = NULL;
1282 __be32 saddr = ip_hdr(skb)->saddr;
1283 __be32 daddr = ip_hdr(skb)->daddr;
1284 __u32 isn = TCP_SKB_CB(skb)->when;
1285 bool want_cookie = false;
1286
1287 /* Never answer to SYNs send to broadcast or multicast */
1288 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289 goto drop;
1290
1291 /* TW buckets are converted to open requests without
1292 * limitations, they conserve resources and peer is
1293 * evidently real one.
1294 */
1295 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297 if (!want_cookie)
1298 goto drop;
1299 }
1300
1301 /* Accept backlog is full. If we have already queued enough
1302 * of warm entries in syn queue, drop request. It is better than
1303 * clogging syn queue with openreqs with exponentially increasing
1304 * timeout.
1305 */
1306 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307 goto drop;
1308
1309 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310 if (!req)
1311 goto drop;
1312
1313 #ifdef CONFIG_TCP_MD5SIG
1314 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315 #endif
1316
1317 tcp_clear_options(&tmp_opt);
1318 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319 tmp_opt.user_mss = tp->rx_opt.user_mss;
1320 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
1321
1322 if (tmp_opt.cookie_plus > 0 &&
1323 tmp_opt.saw_tstamp &&
1324 !tp->rx_opt.cookie_out_never &&
1325 (sysctl_tcp_cookie_size > 0 ||
1326 (tp->cookie_values != NULL &&
1327 tp->cookie_values->cookie_desired > 0))) {
1328 u8 *c;
1329 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333 goto drop_and_release;
1334
1335 /* Secret recipe starts with IP addresses */
1336 *mess++ ^= (__force u32)daddr;
1337 *mess++ ^= (__force u32)saddr;
1338
1339 /* plus variable length Initiator Cookie */
1340 c = (u8 *)mess;
1341 while (l-- > 0)
1342 *c++ ^= *hash_location++;
1343
1344 want_cookie = false; /* not our kind of cookie */
1345 tmp_ext.cookie_out_never = 0; /* false */
1346 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347 } else if (!tp->rx_opt.cookie_in_always) {
1348 /* redundant indications, but ensure initialization. */
1349 tmp_ext.cookie_out_never = 1; /* true */
1350 tmp_ext.cookie_plus = 0;
1351 } else {
1352 goto drop_and_release;
1353 }
1354 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356 if (want_cookie && !tmp_opt.saw_tstamp)
1357 tcp_clear_options(&tmp_opt);
1358
1359 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360 tcp_openreq_init(req, &tmp_opt, skb);
1361
1362 ireq = inet_rsk(req);
1363 ireq->loc_addr = daddr;
1364 ireq->rmt_addr = saddr;
1365 ireq->no_srccheck = inet_sk(sk)->transparent;
1366 ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368 if (security_inet_conn_request(sk, skb, req))
1369 goto drop_and_free;
1370
1371 if (!want_cookie || tmp_opt.tstamp_ok)
1372 TCP_ECN_create_request(req, skb);
1373
1374 if (want_cookie) {
1375 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376 req->cookie_ts = tmp_opt.tstamp_ok;
1377 } else if (!isn) {
1378 struct flowi4 fl4;
1379
1380 /* VJ's idea. We save last timestamp seen
1381 * from the destination in peer table, when entering
1382 * state TIME-WAIT, and check against it before
1383 * accepting new connection request.
1384 *
1385 * If "isn" is not zero, this request hit alive
1386 * timewait bucket, so that all the necessary checks
1387 * are made in the function processing timewait state.
1388 */
1389 if (tmp_opt.saw_tstamp &&
1390 tcp_death_row.sysctl_tw_recycle &&
1391 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1392 fl4.daddr == saddr) {
1393 if (!tcp_peer_is_proven(req, dst, true)) {
1394 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1395 goto drop_and_release;
1396 }
1397 }
1398 /* Kill the following clause, if you dislike this way. */
1399 else if (!sysctl_tcp_syncookies &&
1400 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1401 (sysctl_max_syn_backlog >> 2)) &&
1402 !tcp_peer_is_proven(req, dst, false)) {
1403 /* Without syncookies last quarter of
1404 * backlog is filled with destinations,
1405 * proven to be alive.
1406 * It means that we continue to communicate
1407 * to destinations, already remembered
1408 * to the moment of synflood.
1409 */
1410 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1411 &saddr, ntohs(tcp_hdr(skb)->source));
1412 goto drop_and_release;
1413 }
1414
1415 isn = tcp_v4_init_sequence(skb);
1416 }
1417 tcp_rsk(req)->snt_isn = isn;
1418 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1419
1420 if (tcp_v4_send_synack(sk, dst, req,
1421 (struct request_values *)&tmp_ext,
1422 skb_get_queue_mapping(skb),
1423 want_cookie) ||
1424 want_cookie)
1425 goto drop_and_free;
1426
1427 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1428 return 0;
1429
1430 drop_and_release:
1431 dst_release(dst);
1432 drop_and_free:
1433 reqsk_free(req);
1434 drop:
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(tcp_v4_conn_request);
1438
1439
1440 /*
1441 * The three way handshake has completed - we got a valid synack -
1442 * now create the new socket.
1443 */
1444 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1445 struct request_sock *req,
1446 struct dst_entry *dst)
1447 {
1448 struct inet_request_sock *ireq;
1449 struct inet_sock *newinet;
1450 struct tcp_sock *newtp;
1451 struct sock *newsk;
1452 #ifdef CONFIG_TCP_MD5SIG
1453 struct tcp_md5sig_key *key;
1454 #endif
1455 struct ip_options_rcu *inet_opt;
1456
1457 if (sk_acceptq_is_full(sk))
1458 goto exit_overflow;
1459
1460 newsk = tcp_create_openreq_child(sk, req, skb);
1461 if (!newsk)
1462 goto exit_nonewsk;
1463
1464 newsk->sk_gso_type = SKB_GSO_TCPV4;
1465
1466 newtp = tcp_sk(newsk);
1467 newinet = inet_sk(newsk);
1468 ireq = inet_rsk(req);
1469 newinet->inet_daddr = ireq->rmt_addr;
1470 newinet->inet_rcv_saddr = ireq->loc_addr;
1471 newinet->inet_saddr = ireq->loc_addr;
1472 inet_opt = ireq->opt;
1473 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1474 ireq->opt = NULL;
1475 newinet->mc_index = inet_iif(skb);
1476 newinet->mc_ttl = ip_hdr(skb)->ttl;
1477 newinet->rcv_tos = ip_hdr(skb)->tos;
1478 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1479 if (inet_opt)
1480 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1481 newinet->inet_id = newtp->write_seq ^ jiffies;
1482
1483 if (!dst) {
1484 dst = inet_csk_route_child_sock(sk, newsk, req);
1485 if (!dst)
1486 goto put_and_exit;
1487 } else {
1488 /* syncookie case : see end of cookie_v4_check() */
1489 }
1490 sk_setup_caps(newsk, dst);
1491
1492 tcp_mtup_init(newsk);
1493 tcp_sync_mss(newsk, dst_mtu(dst));
1494 newtp->advmss = dst_metric_advmss(dst);
1495 if (tcp_sk(sk)->rx_opt.user_mss &&
1496 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1497 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1498
1499 tcp_initialize_rcv_mss(newsk);
1500 if (tcp_rsk(req)->snt_synack)
1501 tcp_valid_rtt_meas(newsk,
1502 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1503 newtp->total_retrans = req->retrans;
1504
1505 #ifdef CONFIG_TCP_MD5SIG
1506 /* Copy over the MD5 key from the original socket */
1507 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1508 AF_INET);
1509 if (key != NULL) {
1510 /*
1511 * We're using one, so create a matching key
1512 * on the newsk structure. If we fail to get
1513 * memory, then we end up not copying the key
1514 * across. Shucks.
1515 */
1516 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1517 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1518 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1519 }
1520 #endif
1521
1522 if (__inet_inherit_port(sk, newsk) < 0)
1523 goto put_and_exit;
1524 __inet_hash_nolisten(newsk, NULL);
1525
1526 return newsk;
1527
1528 exit_overflow:
1529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1530 exit_nonewsk:
1531 dst_release(dst);
1532 exit:
1533 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1534 return NULL;
1535 put_and_exit:
1536 tcp_clear_xmit_timers(newsk);
1537 tcp_cleanup_congestion_control(newsk);
1538 bh_unlock_sock(newsk);
1539 sock_put(newsk);
1540 goto exit;
1541 }
1542 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1543
1544 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1545 {
1546 struct tcphdr *th = tcp_hdr(skb);
1547 const struct iphdr *iph = ip_hdr(skb);
1548 struct sock *nsk;
1549 struct request_sock **prev;
1550 /* Find possible connection requests. */
1551 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1552 iph->saddr, iph->daddr);
1553 if (req)
1554 return tcp_check_req(sk, skb, req, prev);
1555
1556 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1557 th->source, iph->daddr, th->dest, inet_iif(skb));
1558
1559 if (nsk) {
1560 if (nsk->sk_state != TCP_TIME_WAIT) {
1561 bh_lock_sock(nsk);
1562 return nsk;
1563 }
1564 inet_twsk_put(inet_twsk(nsk));
1565 return NULL;
1566 }
1567
1568 #ifdef CONFIG_SYN_COOKIES
1569 if (!th->syn)
1570 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1571 #endif
1572 return sk;
1573 }
1574
1575 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1576 {
1577 const struct iphdr *iph = ip_hdr(skb);
1578
1579 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1580 if (!tcp_v4_check(skb->len, iph->saddr,
1581 iph->daddr, skb->csum)) {
1582 skb->ip_summed = CHECKSUM_UNNECESSARY;
1583 return 0;
1584 }
1585 }
1586
1587 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1588 skb->len, IPPROTO_TCP, 0);
1589
1590 if (skb->len <= 76) {
1591 return __skb_checksum_complete(skb);
1592 }
1593 return 0;
1594 }
1595
1596
1597 /* The socket must have it's spinlock held when we get
1598 * here.
1599 *
1600 * We have a potential double-lock case here, so even when
1601 * doing backlog processing we use the BH locking scheme.
1602 * This is because we cannot sleep with the original spinlock
1603 * held.
1604 */
1605 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1606 {
1607 struct sock *rsk;
1608 #ifdef CONFIG_TCP_MD5SIG
1609 /*
1610 * We really want to reject the packet as early as possible
1611 * if:
1612 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1613 * o There is an MD5 option and we're not expecting one
1614 */
1615 if (tcp_v4_inbound_md5_hash(sk, skb))
1616 goto discard;
1617 #endif
1618
1619 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1620 struct dst_entry *dst = sk->sk_rx_dst;
1621
1622 sock_rps_save_rxhash(sk, skb);
1623 if (dst) {
1624 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1625 dst->ops->check(dst, 0) == NULL) {
1626 dst_release(dst);
1627 sk->sk_rx_dst = NULL;
1628 }
1629 }
1630 if (unlikely(sk->sk_rx_dst == NULL))
1631 inet_sk_rx_dst_set(sk, skb);
1632
1633 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1634 rsk = sk;
1635 goto reset;
1636 }
1637 return 0;
1638 }
1639
1640 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1641 goto csum_err;
1642
1643 if (sk->sk_state == TCP_LISTEN) {
1644 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1645 if (!nsk)
1646 goto discard;
1647
1648 if (nsk != sk) {
1649 sock_rps_save_rxhash(nsk, skb);
1650 if (tcp_child_process(sk, nsk, skb)) {
1651 rsk = nsk;
1652 goto reset;
1653 }
1654 return 0;
1655 }
1656 } else
1657 sock_rps_save_rxhash(sk, skb);
1658
1659 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1660 rsk = sk;
1661 goto reset;
1662 }
1663 return 0;
1664
1665 reset:
1666 tcp_v4_send_reset(rsk, skb);
1667 discard:
1668 kfree_skb(skb);
1669 /* Be careful here. If this function gets more complicated and
1670 * gcc suffers from register pressure on the x86, sk (in %ebx)
1671 * might be destroyed here. This current version compiles correctly,
1672 * but you have been warned.
1673 */
1674 return 0;
1675
1676 csum_err:
1677 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1678 goto discard;
1679 }
1680 EXPORT_SYMBOL(tcp_v4_do_rcv);
1681
1682 void tcp_v4_early_demux(struct sk_buff *skb)
1683 {
1684 struct net *net = dev_net(skb->dev);
1685 const struct iphdr *iph;
1686 const struct tcphdr *th;
1687 struct sock *sk;
1688
1689 if (skb->pkt_type != PACKET_HOST)
1690 return;
1691
1692 if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr)))
1693 return;
1694
1695 iph = ip_hdr(skb);
1696 th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb));
1697
1698 if (th->doff < sizeof(struct tcphdr) / 4)
1699 return;
1700
1701 sk = __inet_lookup_established(net, &tcp_hashinfo,
1702 iph->saddr, th->source,
1703 iph->daddr, ntohs(th->dest),
1704 skb->skb_iif);
1705 if (sk) {
1706 skb->sk = sk;
1707 skb->destructor = sock_edemux;
1708 if (sk->sk_state != TCP_TIME_WAIT) {
1709 struct dst_entry *dst = sk->sk_rx_dst;
1710
1711 if (dst)
1712 dst = dst_check(dst, 0);
1713 if (dst &&
1714 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1715 skb_dst_set_noref(skb, dst);
1716 }
1717 }
1718 }
1719
1720 /*
1721 * From tcp_input.c
1722 */
1723
1724 int tcp_v4_rcv(struct sk_buff *skb)
1725 {
1726 const struct iphdr *iph;
1727 const struct tcphdr *th;
1728 struct sock *sk;
1729 int ret;
1730 struct net *net = dev_net(skb->dev);
1731
1732 if (skb->pkt_type != PACKET_HOST)
1733 goto discard_it;
1734
1735 /* Count it even if it's bad */
1736 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1737
1738 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1739 goto discard_it;
1740
1741 th = tcp_hdr(skb);
1742
1743 if (th->doff < sizeof(struct tcphdr) / 4)
1744 goto bad_packet;
1745 if (!pskb_may_pull(skb, th->doff * 4))
1746 goto discard_it;
1747
1748 /* An explanation is required here, I think.
1749 * Packet length and doff are validated by header prediction,
1750 * provided case of th->doff==0 is eliminated.
1751 * So, we defer the checks. */
1752 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1753 goto bad_packet;
1754
1755 th = tcp_hdr(skb);
1756 iph = ip_hdr(skb);
1757 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1758 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1759 skb->len - th->doff * 4);
1760 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1761 TCP_SKB_CB(skb)->when = 0;
1762 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1763 TCP_SKB_CB(skb)->sacked = 0;
1764
1765 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1766 if (!sk)
1767 goto no_tcp_socket;
1768
1769 process:
1770 if (sk->sk_state == TCP_TIME_WAIT)
1771 goto do_time_wait;
1772
1773 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1774 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1775 goto discard_and_relse;
1776 }
1777
1778 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1779 goto discard_and_relse;
1780 nf_reset(skb);
1781
1782 if (sk_filter(sk, skb))
1783 goto discard_and_relse;
1784
1785 skb->dev = NULL;
1786
1787 bh_lock_sock_nested(sk);
1788 ret = 0;
1789 if (!sock_owned_by_user(sk)) {
1790 #ifdef CONFIG_NET_DMA
1791 struct tcp_sock *tp = tcp_sk(sk);
1792 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1793 tp->ucopy.dma_chan = net_dma_find_channel();
1794 if (tp->ucopy.dma_chan)
1795 ret = tcp_v4_do_rcv(sk, skb);
1796 else
1797 #endif
1798 {
1799 if (!tcp_prequeue(sk, skb))
1800 ret = tcp_v4_do_rcv(sk, skb);
1801 }
1802 } else if (unlikely(sk_add_backlog(sk, skb,
1803 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1804 bh_unlock_sock(sk);
1805 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1806 goto discard_and_relse;
1807 }
1808 bh_unlock_sock(sk);
1809
1810 sock_put(sk);
1811
1812 return ret;
1813
1814 no_tcp_socket:
1815 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1816 goto discard_it;
1817
1818 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1819 bad_packet:
1820 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1821 } else {
1822 tcp_v4_send_reset(NULL, skb);
1823 }
1824
1825 discard_it:
1826 /* Discard frame. */
1827 kfree_skb(skb);
1828 return 0;
1829
1830 discard_and_relse:
1831 sock_put(sk);
1832 goto discard_it;
1833
1834 do_time_wait:
1835 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1836 inet_twsk_put(inet_twsk(sk));
1837 goto discard_it;
1838 }
1839
1840 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1841 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1842 inet_twsk_put(inet_twsk(sk));
1843 goto discard_it;
1844 }
1845 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1846 case TCP_TW_SYN: {
1847 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1848 &tcp_hashinfo,
1849 iph->daddr, th->dest,
1850 inet_iif(skb));
1851 if (sk2) {
1852 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1853 inet_twsk_put(inet_twsk(sk));
1854 sk = sk2;
1855 goto process;
1856 }
1857 /* Fall through to ACK */
1858 }
1859 case TCP_TW_ACK:
1860 tcp_v4_timewait_ack(sk, skb);
1861 break;
1862 case TCP_TW_RST:
1863 goto no_tcp_socket;
1864 case TCP_TW_SUCCESS:;
1865 }
1866 goto discard_it;
1867 }
1868
1869 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1870 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1871 .twsk_unique = tcp_twsk_unique,
1872 .twsk_destructor= tcp_twsk_destructor,
1873 };
1874
1875 const struct inet_connection_sock_af_ops ipv4_specific = {
1876 .queue_xmit = ip_queue_xmit,
1877 .send_check = tcp_v4_send_check,
1878 .rebuild_header = inet_sk_rebuild_header,
1879 .conn_request = tcp_v4_conn_request,
1880 .syn_recv_sock = tcp_v4_syn_recv_sock,
1881 .net_header_len = sizeof(struct iphdr),
1882 .setsockopt = ip_setsockopt,
1883 .getsockopt = ip_getsockopt,
1884 .addr2sockaddr = inet_csk_addr2sockaddr,
1885 .sockaddr_len = sizeof(struct sockaddr_in),
1886 .bind_conflict = inet_csk_bind_conflict,
1887 #ifdef CONFIG_COMPAT
1888 .compat_setsockopt = compat_ip_setsockopt,
1889 .compat_getsockopt = compat_ip_getsockopt,
1890 #endif
1891 };
1892 EXPORT_SYMBOL(ipv4_specific);
1893
1894 #ifdef CONFIG_TCP_MD5SIG
1895 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1896 .md5_lookup = tcp_v4_md5_lookup,
1897 .calc_md5_hash = tcp_v4_md5_hash_skb,
1898 .md5_parse = tcp_v4_parse_md5_keys,
1899 };
1900 #endif
1901
1902 /* NOTE: A lot of things set to zero explicitly by call to
1903 * sk_alloc() so need not be done here.
1904 */
1905 static int tcp_v4_init_sock(struct sock *sk)
1906 {
1907 struct inet_connection_sock *icsk = inet_csk(sk);
1908
1909 tcp_init_sock(sk);
1910
1911 icsk->icsk_af_ops = &ipv4_specific;
1912
1913 #ifdef CONFIG_TCP_MD5SIG
1914 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1915 #endif
1916
1917 return 0;
1918 }
1919
1920 void tcp_v4_destroy_sock(struct sock *sk)
1921 {
1922 struct tcp_sock *tp = tcp_sk(sk);
1923
1924 tcp_clear_xmit_timers(sk);
1925
1926 tcp_cleanup_congestion_control(sk);
1927
1928 /* Cleanup up the write buffer. */
1929 tcp_write_queue_purge(sk);
1930
1931 /* Cleans up our, hopefully empty, out_of_order_queue. */
1932 __skb_queue_purge(&tp->out_of_order_queue);
1933
1934 #ifdef CONFIG_TCP_MD5SIG
1935 /* Clean up the MD5 key list, if any */
1936 if (tp->md5sig_info) {
1937 tcp_clear_md5_list(sk);
1938 kfree_rcu(tp->md5sig_info, rcu);
1939 tp->md5sig_info = NULL;
1940 }
1941 #endif
1942
1943 #ifdef CONFIG_NET_DMA
1944 /* Cleans up our sk_async_wait_queue */
1945 __skb_queue_purge(&sk->sk_async_wait_queue);
1946 #endif
1947
1948 /* Clean prequeue, it must be empty really */
1949 __skb_queue_purge(&tp->ucopy.prequeue);
1950
1951 /* Clean up a referenced TCP bind bucket. */
1952 if (inet_csk(sk)->icsk_bind_hash)
1953 inet_put_port(sk);
1954
1955 /*
1956 * If sendmsg cached page exists, toss it.
1957 */
1958 if (sk->sk_sndmsg_page) {
1959 __free_page(sk->sk_sndmsg_page);
1960 sk->sk_sndmsg_page = NULL;
1961 }
1962
1963 /* TCP Cookie Transactions */
1964 if (tp->cookie_values != NULL) {
1965 kref_put(&tp->cookie_values->kref,
1966 tcp_cookie_values_release);
1967 tp->cookie_values = NULL;
1968 }
1969
1970 /* If socket is aborted during connect operation */
1971 tcp_free_fastopen_req(tp);
1972
1973 sk_sockets_allocated_dec(sk);
1974 sock_release_memcg(sk);
1975 }
1976 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1977
1978 #ifdef CONFIG_PROC_FS
1979 /* Proc filesystem TCP sock list dumping. */
1980
1981 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1982 {
1983 return hlist_nulls_empty(head) ? NULL :
1984 list_entry(head->first, struct inet_timewait_sock, tw_node);
1985 }
1986
1987 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1988 {
1989 return !is_a_nulls(tw->tw_node.next) ?
1990 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1991 }
1992
1993 /*
1994 * Get next listener socket follow cur. If cur is NULL, get first socket
1995 * starting from bucket given in st->bucket; when st->bucket is zero the
1996 * very first socket in the hash table is returned.
1997 */
1998 static void *listening_get_next(struct seq_file *seq, void *cur)
1999 {
2000 struct inet_connection_sock *icsk;
2001 struct hlist_nulls_node *node;
2002 struct sock *sk = cur;
2003 struct inet_listen_hashbucket *ilb;
2004 struct tcp_iter_state *st = seq->private;
2005 struct net *net = seq_file_net(seq);
2006
2007 if (!sk) {
2008 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2009 spin_lock_bh(&ilb->lock);
2010 sk = sk_nulls_head(&ilb->head);
2011 st->offset = 0;
2012 goto get_sk;
2013 }
2014 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2015 ++st->num;
2016 ++st->offset;
2017
2018 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2019 struct request_sock *req = cur;
2020
2021 icsk = inet_csk(st->syn_wait_sk);
2022 req = req->dl_next;
2023 while (1) {
2024 while (req) {
2025 if (req->rsk_ops->family == st->family) {
2026 cur = req;
2027 goto out;
2028 }
2029 req = req->dl_next;
2030 }
2031 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2032 break;
2033 get_req:
2034 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2035 }
2036 sk = sk_nulls_next(st->syn_wait_sk);
2037 st->state = TCP_SEQ_STATE_LISTENING;
2038 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2039 } else {
2040 icsk = inet_csk(sk);
2041 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2042 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2043 goto start_req;
2044 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2045 sk = sk_nulls_next(sk);
2046 }
2047 get_sk:
2048 sk_nulls_for_each_from(sk, node) {
2049 if (!net_eq(sock_net(sk), net))
2050 continue;
2051 if (sk->sk_family == st->family) {
2052 cur = sk;
2053 goto out;
2054 }
2055 icsk = inet_csk(sk);
2056 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2057 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2058 start_req:
2059 st->uid = sock_i_uid(sk);
2060 st->syn_wait_sk = sk;
2061 st->state = TCP_SEQ_STATE_OPENREQ;
2062 st->sbucket = 0;
2063 goto get_req;
2064 }
2065 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2066 }
2067 spin_unlock_bh(&ilb->lock);
2068 st->offset = 0;
2069 if (++st->bucket < INET_LHTABLE_SIZE) {
2070 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2071 spin_lock_bh(&ilb->lock);
2072 sk = sk_nulls_head(&ilb->head);
2073 goto get_sk;
2074 }
2075 cur = NULL;
2076 out:
2077 return cur;
2078 }
2079
2080 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2081 {
2082 struct tcp_iter_state *st = seq->private;
2083 void *rc;
2084
2085 st->bucket = 0;
2086 st->offset = 0;
2087 rc = listening_get_next(seq, NULL);
2088
2089 while (rc && *pos) {
2090 rc = listening_get_next(seq, rc);
2091 --*pos;
2092 }
2093 return rc;
2094 }
2095
2096 static inline bool empty_bucket(struct tcp_iter_state *st)
2097 {
2098 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2099 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2100 }
2101
2102 /*
2103 * Get first established socket starting from bucket given in st->bucket.
2104 * If st->bucket is zero, the very first socket in the hash is returned.
2105 */
2106 static void *established_get_first(struct seq_file *seq)
2107 {
2108 struct tcp_iter_state *st = seq->private;
2109 struct net *net = seq_file_net(seq);
2110 void *rc = NULL;
2111
2112 st->offset = 0;
2113 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2114 struct sock *sk;
2115 struct hlist_nulls_node *node;
2116 struct inet_timewait_sock *tw;
2117 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2118
2119 /* Lockless fast path for the common case of empty buckets */
2120 if (empty_bucket(st))
2121 continue;
2122
2123 spin_lock_bh(lock);
2124 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2125 if (sk->sk_family != st->family ||
2126 !net_eq(sock_net(sk), net)) {
2127 continue;
2128 }
2129 rc = sk;
2130 goto out;
2131 }
2132 st->state = TCP_SEQ_STATE_TIME_WAIT;
2133 inet_twsk_for_each(tw, node,
2134 &tcp_hashinfo.ehash[st->bucket].twchain) {
2135 if (tw->tw_family != st->family ||
2136 !net_eq(twsk_net(tw), net)) {
2137 continue;
2138 }
2139 rc = tw;
2140 goto out;
2141 }
2142 spin_unlock_bh(lock);
2143 st->state = TCP_SEQ_STATE_ESTABLISHED;
2144 }
2145 out:
2146 return rc;
2147 }
2148
2149 static void *established_get_next(struct seq_file *seq, void *cur)
2150 {
2151 struct sock *sk = cur;
2152 struct inet_timewait_sock *tw;
2153 struct hlist_nulls_node *node;
2154 struct tcp_iter_state *st = seq->private;
2155 struct net *net = seq_file_net(seq);
2156
2157 ++st->num;
2158 ++st->offset;
2159
2160 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2161 tw = cur;
2162 tw = tw_next(tw);
2163 get_tw:
2164 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2165 tw = tw_next(tw);
2166 }
2167 if (tw) {
2168 cur = tw;
2169 goto out;
2170 }
2171 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2172 st->state = TCP_SEQ_STATE_ESTABLISHED;
2173
2174 /* Look for next non empty bucket */
2175 st->offset = 0;
2176 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2177 empty_bucket(st))
2178 ;
2179 if (st->bucket > tcp_hashinfo.ehash_mask)
2180 return NULL;
2181
2182 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2183 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2184 } else
2185 sk = sk_nulls_next(sk);
2186
2187 sk_nulls_for_each_from(sk, node) {
2188 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2189 goto found;
2190 }
2191
2192 st->state = TCP_SEQ_STATE_TIME_WAIT;
2193 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2194 goto get_tw;
2195 found:
2196 cur = sk;
2197 out:
2198 return cur;
2199 }
2200
2201 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2202 {
2203 struct tcp_iter_state *st = seq->private;
2204 void *rc;
2205
2206 st->bucket = 0;
2207 rc = established_get_first(seq);
2208
2209 while (rc && pos) {
2210 rc = established_get_next(seq, rc);
2211 --pos;
2212 }
2213 return rc;
2214 }
2215
2216 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2217 {
2218 void *rc;
2219 struct tcp_iter_state *st = seq->private;
2220
2221 st->state = TCP_SEQ_STATE_LISTENING;
2222 rc = listening_get_idx(seq, &pos);
2223
2224 if (!rc) {
2225 st->state = TCP_SEQ_STATE_ESTABLISHED;
2226 rc = established_get_idx(seq, pos);
2227 }
2228
2229 return rc;
2230 }
2231
2232 static void *tcp_seek_last_pos(struct seq_file *seq)
2233 {
2234 struct tcp_iter_state *st = seq->private;
2235 int offset = st->offset;
2236 int orig_num = st->num;
2237 void *rc = NULL;
2238
2239 switch (st->state) {
2240 case TCP_SEQ_STATE_OPENREQ:
2241 case TCP_SEQ_STATE_LISTENING:
2242 if (st->bucket >= INET_LHTABLE_SIZE)
2243 break;
2244 st->state = TCP_SEQ_STATE_LISTENING;
2245 rc = listening_get_next(seq, NULL);
2246 while (offset-- && rc)
2247 rc = listening_get_next(seq, rc);
2248 if (rc)
2249 break;
2250 st->bucket = 0;
2251 /* Fallthrough */
2252 case TCP_SEQ_STATE_ESTABLISHED:
2253 case TCP_SEQ_STATE_TIME_WAIT:
2254 st->state = TCP_SEQ_STATE_ESTABLISHED;
2255 if (st->bucket > tcp_hashinfo.ehash_mask)
2256 break;
2257 rc = established_get_first(seq);
2258 while (offset-- && rc)
2259 rc = established_get_next(seq, rc);
2260 }
2261
2262 st->num = orig_num;
2263
2264 return rc;
2265 }
2266
2267 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2268 {
2269 struct tcp_iter_state *st = seq->private;
2270 void *rc;
2271
2272 if (*pos && *pos == st->last_pos) {
2273 rc = tcp_seek_last_pos(seq);
2274 if (rc)
2275 goto out;
2276 }
2277
2278 st->state = TCP_SEQ_STATE_LISTENING;
2279 st->num = 0;
2280 st->bucket = 0;
2281 st->offset = 0;
2282 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2283
2284 out:
2285 st->last_pos = *pos;
2286 return rc;
2287 }
2288
2289 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2290 {
2291 struct tcp_iter_state *st = seq->private;
2292 void *rc = NULL;
2293
2294 if (v == SEQ_START_TOKEN) {
2295 rc = tcp_get_idx(seq, 0);
2296 goto out;
2297 }
2298
2299 switch (st->state) {
2300 case TCP_SEQ_STATE_OPENREQ:
2301 case TCP_SEQ_STATE_LISTENING:
2302 rc = listening_get_next(seq, v);
2303 if (!rc) {
2304 st->state = TCP_SEQ_STATE_ESTABLISHED;
2305 st->bucket = 0;
2306 st->offset = 0;
2307 rc = established_get_first(seq);
2308 }
2309 break;
2310 case TCP_SEQ_STATE_ESTABLISHED:
2311 case TCP_SEQ_STATE_TIME_WAIT:
2312 rc = established_get_next(seq, v);
2313 break;
2314 }
2315 out:
2316 ++*pos;
2317 st->last_pos = *pos;
2318 return rc;
2319 }
2320
2321 static void tcp_seq_stop(struct seq_file *seq, void *v)
2322 {
2323 struct tcp_iter_state *st = seq->private;
2324
2325 switch (st->state) {
2326 case TCP_SEQ_STATE_OPENREQ:
2327 if (v) {
2328 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2329 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2330 }
2331 case TCP_SEQ_STATE_LISTENING:
2332 if (v != SEQ_START_TOKEN)
2333 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2334 break;
2335 case TCP_SEQ_STATE_TIME_WAIT:
2336 case TCP_SEQ_STATE_ESTABLISHED:
2337 if (v)
2338 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2339 break;
2340 }
2341 }
2342
2343 int tcp_seq_open(struct inode *inode, struct file *file)
2344 {
2345 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2346 struct tcp_iter_state *s;
2347 int err;
2348
2349 err = seq_open_net(inode, file, &afinfo->seq_ops,
2350 sizeof(struct tcp_iter_state));
2351 if (err < 0)
2352 return err;
2353
2354 s = ((struct seq_file *)file->private_data)->private;
2355 s->family = afinfo->family;
2356 s->last_pos = 0;
2357 return 0;
2358 }
2359 EXPORT_SYMBOL(tcp_seq_open);
2360
2361 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2362 {
2363 int rc = 0;
2364 struct proc_dir_entry *p;
2365
2366 afinfo->seq_ops.start = tcp_seq_start;
2367 afinfo->seq_ops.next = tcp_seq_next;
2368 afinfo->seq_ops.stop = tcp_seq_stop;
2369
2370 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371 afinfo->seq_fops, afinfo);
2372 if (!p)
2373 rc = -ENOMEM;
2374 return rc;
2375 }
2376 EXPORT_SYMBOL(tcp_proc_register);
2377
2378 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379 {
2380 proc_net_remove(net, afinfo->name);
2381 }
2382 EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2385 struct seq_file *f, int i, int uid, int *len)
2386 {
2387 const struct inet_request_sock *ireq = inet_rsk(req);
2388 int ttd = req->expires - jiffies;
2389
2390 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392 i,
2393 ireq->loc_addr,
2394 ntohs(inet_sk(sk)->inet_sport),
2395 ireq->rmt_addr,
2396 ntohs(ireq->rmt_port),
2397 TCP_SYN_RECV,
2398 0, 0, /* could print option size, but that is af dependent. */
2399 1, /* timers active (only the expire timer) */
2400 jiffies_to_clock_t(ttd),
2401 req->retrans,
2402 uid,
2403 0, /* non standard timer */
2404 0, /* open_requests have no inode */
2405 atomic_read(&sk->sk_refcnt),
2406 req,
2407 len);
2408 }
2409
2410 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411 {
2412 int timer_active;
2413 unsigned long timer_expires;
2414 const struct tcp_sock *tp = tcp_sk(sk);
2415 const struct inet_connection_sock *icsk = inet_csk(sk);
2416 const struct inet_sock *inet = inet_sk(sk);
2417 __be32 dest = inet->inet_daddr;
2418 __be32 src = inet->inet_rcv_saddr;
2419 __u16 destp = ntohs(inet->inet_dport);
2420 __u16 srcp = ntohs(inet->inet_sport);
2421 int rx_queue;
2422
2423 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2424 timer_active = 1;
2425 timer_expires = icsk->icsk_timeout;
2426 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427 timer_active = 4;
2428 timer_expires = icsk->icsk_timeout;
2429 } else if (timer_pending(&sk->sk_timer)) {
2430 timer_active = 2;
2431 timer_expires = sk->sk_timer.expires;
2432 } else {
2433 timer_active = 0;
2434 timer_expires = jiffies;
2435 }
2436
2437 if (sk->sk_state == TCP_LISTEN)
2438 rx_queue = sk->sk_ack_backlog;
2439 else
2440 /*
2441 * because we dont lock socket, we might find a transient negative value
2442 */
2443 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2444
2445 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447 i, src, srcp, dest, destp, sk->sk_state,
2448 tp->write_seq - tp->snd_una,
2449 rx_queue,
2450 timer_active,
2451 jiffies_to_clock_t(timer_expires - jiffies),
2452 icsk->icsk_retransmits,
2453 sock_i_uid(sk),
2454 icsk->icsk_probes_out,
2455 sock_i_ino(sk),
2456 atomic_read(&sk->sk_refcnt), sk,
2457 jiffies_to_clock_t(icsk->icsk_rto),
2458 jiffies_to_clock_t(icsk->icsk_ack.ato),
2459 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460 tp->snd_cwnd,
2461 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462 len);
2463 }
2464
2465 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2466 struct seq_file *f, int i, int *len)
2467 {
2468 __be32 dest, src;
2469 __u16 destp, srcp;
2470 int ttd = tw->tw_ttd - jiffies;
2471
2472 if (ttd < 0)
2473 ttd = 0;
2474
2475 dest = tw->tw_daddr;
2476 src = tw->tw_rcv_saddr;
2477 destp = ntohs(tw->tw_dport);
2478 srcp = ntohs(tw->tw_sport);
2479
2480 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484 atomic_read(&tw->tw_refcnt), tw, len);
2485 }
2486
2487 #define TMPSZ 150
2488
2489 static int tcp4_seq_show(struct seq_file *seq, void *v)
2490 {
2491 struct tcp_iter_state *st;
2492 int len;
2493
2494 if (v == SEQ_START_TOKEN) {
2495 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496 " sl local_address rem_address st tx_queue "
2497 "rx_queue tr tm->when retrnsmt uid timeout "
2498 "inode");
2499 goto out;
2500 }
2501 st = seq->private;
2502
2503 switch (st->state) {
2504 case TCP_SEQ_STATE_LISTENING:
2505 case TCP_SEQ_STATE_ESTABLISHED:
2506 get_tcp4_sock(v, seq, st->num, &len);
2507 break;
2508 case TCP_SEQ_STATE_OPENREQ:
2509 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510 break;
2511 case TCP_SEQ_STATE_TIME_WAIT:
2512 get_timewait4_sock(v, seq, st->num, &len);
2513 break;
2514 }
2515 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516 out:
2517 return 0;
2518 }
2519
2520 static const struct file_operations tcp_afinfo_seq_fops = {
2521 .owner = THIS_MODULE,
2522 .open = tcp_seq_open,
2523 .read = seq_read,
2524 .llseek = seq_lseek,
2525 .release = seq_release_net
2526 };
2527
2528 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2529 .name = "tcp",
2530 .family = AF_INET,
2531 .seq_fops = &tcp_afinfo_seq_fops,
2532 .seq_ops = {
2533 .show = tcp4_seq_show,
2534 },
2535 };
2536
2537 static int __net_init tcp4_proc_init_net(struct net *net)
2538 {
2539 return tcp_proc_register(net, &tcp4_seq_afinfo);
2540 }
2541
2542 static void __net_exit tcp4_proc_exit_net(struct net *net)
2543 {
2544 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2545 }
2546
2547 static struct pernet_operations tcp4_net_ops = {
2548 .init = tcp4_proc_init_net,
2549 .exit = tcp4_proc_exit_net,
2550 };
2551
2552 int __init tcp4_proc_init(void)
2553 {
2554 return register_pernet_subsys(&tcp4_net_ops);
2555 }
2556
2557 void tcp4_proc_exit(void)
2558 {
2559 unregister_pernet_subsys(&tcp4_net_ops);
2560 }
2561 #endif /* CONFIG_PROC_FS */
2562
2563 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2564 {
2565 const struct iphdr *iph = skb_gro_network_header(skb);
2566
2567 switch (skb->ip_summed) {
2568 case CHECKSUM_COMPLETE:
2569 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2570 skb->csum)) {
2571 skb->ip_summed = CHECKSUM_UNNECESSARY;
2572 break;
2573 }
2574
2575 /* fall through */
2576 case CHECKSUM_NONE:
2577 NAPI_GRO_CB(skb)->flush = 1;
2578 return NULL;
2579 }
2580
2581 return tcp_gro_receive(head, skb);
2582 }
2583
2584 int tcp4_gro_complete(struct sk_buff *skb)
2585 {
2586 const struct iphdr *iph = ip_hdr(skb);
2587 struct tcphdr *th = tcp_hdr(skb);
2588
2589 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2590 iph->saddr, iph->daddr, 0);
2591 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2592
2593 return tcp_gro_complete(skb);
2594 }
2595
2596 struct proto tcp_prot = {
2597 .name = "TCP",
2598 .owner = THIS_MODULE,
2599 .close = tcp_close,
2600 .connect = tcp_v4_connect,
2601 .disconnect = tcp_disconnect,
2602 .accept = inet_csk_accept,
2603 .ioctl = tcp_ioctl,
2604 .init = tcp_v4_init_sock,
2605 .destroy = tcp_v4_destroy_sock,
2606 .shutdown = tcp_shutdown,
2607 .setsockopt = tcp_setsockopt,
2608 .getsockopt = tcp_getsockopt,
2609 .recvmsg = tcp_recvmsg,
2610 .sendmsg = tcp_sendmsg,
2611 .sendpage = tcp_sendpage,
2612 .backlog_rcv = tcp_v4_do_rcv,
2613 .release_cb = tcp_release_cb,
2614 .mtu_reduced = tcp_v4_mtu_reduced,
2615 .hash = inet_hash,
2616 .unhash = inet_unhash,
2617 .get_port = inet_csk_get_port,
2618 .enter_memory_pressure = tcp_enter_memory_pressure,
2619 .sockets_allocated = &tcp_sockets_allocated,
2620 .orphan_count = &tcp_orphan_count,
2621 .memory_allocated = &tcp_memory_allocated,
2622 .memory_pressure = &tcp_memory_pressure,
2623 .sysctl_wmem = sysctl_tcp_wmem,
2624 .sysctl_rmem = sysctl_tcp_rmem,
2625 .max_header = MAX_TCP_HEADER,
2626 .obj_size = sizeof(struct tcp_sock),
2627 .slab_flags = SLAB_DESTROY_BY_RCU,
2628 .twsk_prot = &tcp_timewait_sock_ops,
2629 .rsk_prot = &tcp_request_sock_ops,
2630 .h.hashinfo = &tcp_hashinfo,
2631 .no_autobind = true,
2632 #ifdef CONFIG_COMPAT
2633 .compat_setsockopt = compat_tcp_setsockopt,
2634 .compat_getsockopt = compat_tcp_getsockopt,
2635 #endif
2636 #ifdef CONFIG_MEMCG_KMEM
2637 .init_cgroup = tcp_init_cgroup,
2638 .destroy_cgroup = tcp_destroy_cgroup,
2639 .proto_cgroup = tcp_proto_cgroup,
2640 #endif
2641 };
2642 EXPORT_SYMBOL(tcp_prot);
2643
2644 static int __net_init tcp_sk_init(struct net *net)
2645 {
2646 return 0;
2647 }
2648
2649 static void __net_exit tcp_sk_exit(struct net *net)
2650 {
2651 }
2652
2653 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2654 {
2655 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2656 }
2657
2658 static struct pernet_operations __net_initdata tcp_sk_ops = {
2659 .init = tcp_sk_init,
2660 .exit = tcp_sk_exit,
2661 .exit_batch = tcp_sk_exit_batch,
2662 };
2663
2664 void __init tcp_v4_init(void)
2665 {
2666 inet_hashinfo_init(&tcp_hashinfo);
2667 if (register_pernet_subsys(&tcp_sk_ops))
2668 panic("Failed to create the TCP control socket.\n");
2669 }
This page took 0.128416 seconds and 6 git commands to generate.