net: tcp: move sk_rx_dst_set call after tcp_create_openreq_child()
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
213 tcp_fetch_timewait_stamp(sk, &rt->dst);
214
215 inet->inet_dport = usin->sin_port;
216 inet->inet_daddr = daddr;
217
218 inet_csk(sk)->icsk_ext_hdr_len = 0;
219 if (inet_opt)
220 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
221
222 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
223
224 /* Socket identity is still unknown (sport may be zero).
225 * However we set state to SYN-SENT and not releasing socket
226 * lock select source port, enter ourselves into the hash tables and
227 * complete initialization after this.
228 */
229 tcp_set_state(sk, TCP_SYN_SENT);
230 err = inet_hash_connect(&tcp_death_row, sk);
231 if (err)
232 goto failure;
233
234 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
235 inet->inet_sport, inet->inet_dport, sk);
236 if (IS_ERR(rt)) {
237 err = PTR_ERR(rt);
238 rt = NULL;
239 goto failure;
240 }
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->dst);
244
245 if (!tp->write_seq && likely(!tp->repair))
246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 inet->inet_daddr,
248 inet->inet_sport,
249 usin->sin_port);
250
251 inet->inet_id = tp->write_seq ^ jiffies;
252
253 if (likely(!tp->repair))
254 err = tcp_connect(sk);
255 else
256 err = tcp_repair_connect(sk);
257
258 rt = NULL;
259 if (err)
260 goto failure;
261
262 return 0;
263
264 failure:
265 /*
266 * This unhashes the socket and releases the local port,
267 * if necessary.
268 */
269 tcp_set_state(sk, TCP_CLOSE);
270 ip_rt_put(rt);
271 sk->sk_route_caps = 0;
272 inet->inet_dport = 0;
273 return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
279 * It can be called through tcp_release_cb() if socket was owned by user
280 * at the time tcp_v4_err() was called to handle ICMP message.
281 */
282 static void tcp_v4_mtu_reduced(struct sock *sk)
283 {
284 struct dst_entry *dst;
285 struct inet_sock *inet = inet_sk(sk);
286 u32 mtu = tcp_sk(sk)->mtu_info;
287
288 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
289 * send out by Linux are always <576bytes so they should go through
290 * unfragmented).
291 */
292 if (sk->sk_state == TCP_LISTEN)
293 return;
294
295 dst = inet_csk_update_pmtu(sk, mtu);
296 if (!dst)
297 return;
298
299 /* Something is about to be wrong... Remember soft error
300 * for the case, if this connection will not able to recover.
301 */
302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303 sk->sk_err_soft = EMSGSIZE;
304
305 mtu = dst_mtu(dst);
306
307 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309 tcp_sync_mss(sk, mtu);
310
311 /* Resend the TCP packet because it's
312 * clear that the old packet has been
313 * dropped. This is the new "fast" path mtu
314 * discovery.
315 */
316 tcp_simple_retransmit(sk);
317 } /* else let the usual retransmit timer handle it */
318 }
319
320 static void do_redirect(struct sk_buff *skb, struct sock *sk)
321 {
322 struct dst_entry *dst = __sk_dst_check(sk, 0);
323
324 if (dst)
325 dst->ops->redirect(dst, sk, skb);
326 }
327
328 /*
329 * This routine is called by the ICMP module when it gets some
330 * sort of error condition. If err < 0 then the socket should
331 * be closed and the error returned to the user. If err > 0
332 * it's just the icmp type << 8 | icmp code. After adjustment
333 * header points to the first 8 bytes of the tcp header. We need
334 * to find the appropriate port.
335 *
336 * The locking strategy used here is very "optimistic". When
337 * someone else accesses the socket the ICMP is just dropped
338 * and for some paths there is no check at all.
339 * A more general error queue to queue errors for later handling
340 * is probably better.
341 *
342 */
343
344 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
345 {
346 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
347 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
348 struct inet_connection_sock *icsk;
349 struct tcp_sock *tp;
350 struct inet_sock *inet;
351 const int type = icmp_hdr(icmp_skb)->type;
352 const int code = icmp_hdr(icmp_skb)->code;
353 struct sock *sk;
354 struct sk_buff *skb;
355 __u32 seq;
356 __u32 remaining;
357 int err;
358 struct net *net = dev_net(icmp_skb->dev);
359
360 if (icmp_skb->len < (iph->ihl << 2) + 8) {
361 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
362 return;
363 }
364
365 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
366 iph->saddr, th->source, inet_iif(icmp_skb));
367 if (!sk) {
368 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
369 return;
370 }
371 if (sk->sk_state == TCP_TIME_WAIT) {
372 inet_twsk_put(inet_twsk(sk));
373 return;
374 }
375
376 bh_lock_sock(sk);
377 /* If too many ICMPs get dropped on busy
378 * servers this needs to be solved differently.
379 * We do take care of PMTU discovery (RFC1191) special case :
380 * we can receive locally generated ICMP messages while socket is held.
381 */
382 if (sock_owned_by_user(sk) &&
383 type != ICMP_DEST_UNREACH &&
384 code != ICMP_FRAG_NEEDED)
385 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
386
387 if (sk->sk_state == TCP_CLOSE)
388 goto out;
389
390 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
391 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
392 goto out;
393 }
394
395 icsk = inet_csk(sk);
396 tp = tcp_sk(sk);
397 seq = ntohl(th->seq);
398 if (sk->sk_state != TCP_LISTEN &&
399 !between(seq, tp->snd_una, tp->snd_nxt)) {
400 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
401 goto out;
402 }
403
404 switch (type) {
405 case ICMP_REDIRECT:
406 do_redirect(icmp_skb, sk);
407 goto out;
408 case ICMP_SOURCE_QUENCH:
409 /* Just silently ignore these. */
410 goto out;
411 case ICMP_PARAMETERPROB:
412 err = EPROTO;
413 break;
414 case ICMP_DEST_UNREACH:
415 if (code > NR_ICMP_UNREACH)
416 goto out;
417
418 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
419 tp->mtu_info = info;
420 if (!sock_owned_by_user(sk))
421 tcp_v4_mtu_reduced(sk);
422 else
423 set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags);
424 goto out;
425 }
426
427 err = icmp_err_convert[code].errno;
428 /* check if icmp_skb allows revert of backoff
429 * (see draft-zimmermann-tcp-lcd) */
430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431 break;
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 break;
435
436 if (sock_owned_by_user(sk))
437 break;
438
439 icsk->icsk_backoff--;
440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442 tcp_bound_rto(sk);
443
444 skb = tcp_write_queue_head(sk);
445 BUG_ON(!skb);
446
447 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450 if (remaining) {
451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452 remaining, TCP_RTO_MAX);
453 } else {
454 /* RTO revert clocked out retransmission.
455 * Will retransmit now */
456 tcp_retransmit_timer(sk);
457 }
458
459 break;
460 case ICMP_TIME_EXCEEDED:
461 err = EHOSTUNREACH;
462 break;
463 default:
464 goto out;
465 }
466
467 switch (sk->sk_state) {
468 struct request_sock *req, **prev;
469 case TCP_LISTEN:
470 if (sock_owned_by_user(sk))
471 goto out;
472
473 req = inet_csk_search_req(sk, &prev, th->dest,
474 iph->daddr, iph->saddr);
475 if (!req)
476 goto out;
477
478 /* ICMPs are not backlogged, hence we cannot get
479 an established socket here.
480 */
481 WARN_ON(req->sk);
482
483 if (seq != tcp_rsk(req)->snt_isn) {
484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485 goto out;
486 }
487
488 /*
489 * Still in SYN_RECV, just remove it silently.
490 * There is no good way to pass the error to the newly
491 * created socket, and POSIX does not want network
492 * errors returned from accept().
493 */
494 inet_csk_reqsk_queue_drop(sk, req, prev);
495 goto out;
496
497 case TCP_SYN_SENT:
498 case TCP_SYN_RECV: /* Cannot happen.
499 It can f.e. if SYNs crossed.
500 */
501 if (!sock_owned_by_user(sk)) {
502 sk->sk_err = err;
503
504 sk->sk_error_report(sk);
505
506 tcp_done(sk);
507 } else {
508 sk->sk_err_soft = err;
509 }
510 goto out;
511 }
512
513 /* If we've already connected we will keep trying
514 * until we time out, or the user gives up.
515 *
516 * rfc1122 4.2.3.9 allows to consider as hard errors
517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518 * but it is obsoleted by pmtu discovery).
519 *
520 * Note, that in modern internet, where routing is unreliable
521 * and in each dark corner broken firewalls sit, sending random
522 * errors ordered by their masters even this two messages finally lose
523 * their original sense (even Linux sends invalid PORT_UNREACHs)
524 *
525 * Now we are in compliance with RFCs.
526 * --ANK (980905)
527 */
528
529 inet = inet_sk(sk);
530 if (!sock_owned_by_user(sk) && inet->recverr) {
531 sk->sk_err = err;
532 sk->sk_error_report(sk);
533 } else { /* Only an error on timeout */
534 sk->sk_err_soft = err;
535 }
536
537 out:
538 bh_unlock_sock(sk);
539 sock_put(sk);
540 }
541
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543 __be32 saddr, __be32 daddr)
544 {
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
569 {
570 const struct iphdr *iph;
571 struct tcphdr *th;
572
573 if (!pskb_may_pull(skb, sizeof(*th)))
574 return -EINVAL;
575
576 iph = ip_hdr(skb);
577 th = tcp_hdr(skb);
578
579 th->check = 0;
580 skb->ip_summed = CHECKSUM_PARTIAL;
581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582 return 0;
583 }
584
585 /*
586 * This routine will send an RST to the other tcp.
587 *
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
596 */
597
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599 {
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606 } rep;
607 struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614 #endif
615 struct net *net;
616
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
620
621 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622 return;
623
624 /* Swap the send and the receive. */
625 memset(&rep, 0, sizeof(rep));
626 rep.th.dest = th->source;
627 rep.th.source = th->dest;
628 rep.th.doff = sizeof(struct tcphdr) / 4;
629 rep.th.rst = 1;
630
631 if (th->ack) {
632 rep.th.seq = th->ack_seq;
633 } else {
634 rep.th.ack = 1;
635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 skb->len - (th->doff << 2));
637 }
638
639 memset(&arg, 0, sizeof(arg));
640 arg.iov[0].iov_base = (unsigned char *)&rep;
641 arg.iov[0].iov_len = sizeof(rep.th);
642
643 #ifdef CONFIG_TCP_MD5SIG
644 hash_location = tcp_parse_md5sig_option(th);
645 if (!sk && hash_location) {
646 /*
647 * active side is lost. Try to find listening socket through
648 * source port, and then find md5 key through listening socket.
649 * we are not loose security here:
650 * Incoming packet is checked with md5 hash with finding key,
651 * no RST generated if md5 hash doesn't match.
652 */
653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654 &tcp_hashinfo, ip_hdr(skb)->daddr,
655 ntohs(th->source), inet_iif(skb));
656 /* don't send rst if it can't find key */
657 if (!sk1)
658 return;
659 rcu_read_lock();
660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr, AF_INET);
662 if (!key)
663 goto release_sk1;
664
665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667 goto release_sk1;
668 } else {
669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670 &ip_hdr(skb)->saddr,
671 AF_INET) : NULL;
672 }
673
674 if (key) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676 (TCPOPT_NOP << 16) |
677 (TCPOPT_MD5SIG << 8) |
678 TCPOLEN_MD5SIG);
679 /* Update length and the length the header thinks exists */
680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681 rep.th.doff = arg.iov[0].iov_len / 4;
682
683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684 key, ip_hdr(skb)->saddr,
685 ip_hdr(skb)->daddr, &rep.th);
686 }
687 #endif
688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689 ip_hdr(skb)->saddr, /* XXX */
690 arg.iov[0].iov_len, IPPROTO_TCP, 0);
691 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693 /* When socket is gone, all binding information is lost.
694 * routing might fail in this case. using iif for oif to
695 * make sure we can deliver it
696 */
697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699 net = dev_net(skb_dst(skb)->dev);
700 arg.tos = ip_hdr(skb)->tos;
701 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
702 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
703
704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709 if (sk1) {
710 rcu_read_unlock();
711 sock_put(sk1);
712 }
713 #endif
714 }
715
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717 outside socket context is ugly, certainly. What can I do?
718 */
719
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721 u32 win, u32 ts, int oif,
722 struct tcp_md5sig_key *key,
723 int reply_flags, u8 tos)
724 {
725 const struct tcphdr *th = tcp_hdr(skb);
726 struct {
727 struct tcphdr th;
728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
732 ];
733 } rep;
734 struct ip_reply_arg arg;
735 struct net *net = dev_net(skb_dst(skb)->dev);
736
737 memset(&rep.th, 0, sizeof(struct tcphdr));
738 memset(&arg, 0, sizeof(arg));
739
740 arg.iov[0].iov_base = (unsigned char *)&rep;
741 arg.iov[0].iov_len = sizeof(rep.th);
742 if (ts) {
743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744 (TCPOPT_TIMESTAMP << 8) |
745 TCPOLEN_TIMESTAMP);
746 rep.opt[1] = htonl(tcp_time_stamp);
747 rep.opt[2] = htonl(ts);
748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749 }
750
751 /* Swap the send and the receive. */
752 rep.th.dest = th->source;
753 rep.th.source = th->dest;
754 rep.th.doff = arg.iov[0].iov_len / 4;
755 rep.th.seq = htonl(seq);
756 rep.th.ack_seq = htonl(ack);
757 rep.th.ack = 1;
758 rep.th.window = htons(win);
759
760 #ifdef CONFIG_TCP_MD5SIG
761 if (key) {
762 int offset = (ts) ? 3 : 0;
763
764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769 rep.th.doff = arg.iov[0].iov_len/4;
770
771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772 key, ip_hdr(skb)->saddr,
773 ip_hdr(skb)->daddr, &rep.th);
774 }
775 #endif
776 arg.flags = reply_flags;
777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778 ip_hdr(skb)->saddr, /* XXX */
779 arg.iov[0].iov_len, IPPROTO_TCP, 0);
780 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781 if (oif)
782 arg.bound_dev_if = oif;
783 arg.tos = tos;
784 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
785 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
786
787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788 }
789
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791 {
792 struct inet_timewait_sock *tw = inet_twsk(sk);
793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcptw->tw_ts_recent,
798 tw->tw_bound_dev_if,
799 tcp_twsk_md5_key(tcptw),
800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801 tw->tw_tos
802 );
803
804 inet_twsk_put(tw);
805 }
806
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808 struct request_sock *req)
809 {
810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812 req->ts_recent,
813 0,
814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815 AF_INET),
816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817 ip_hdr(skb)->tos);
818 }
819
820 /*
821 * Send a SYN-ACK after having received a SYN.
822 * This still operates on a request_sock only, not on a big
823 * socket.
824 */
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826 struct request_sock *req,
827 struct request_values *rvp,
828 u16 queue_mapping,
829 bool nocache)
830 {
831 const struct inet_request_sock *ireq = inet_rsk(req);
832 struct flowi4 fl4;
833 int err = -1;
834 struct sk_buff * skb;
835
836 /* First, grab a route. */
837 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
838 return -1;
839
840 skb = tcp_make_synack(sk, dst, req, rvp);
841
842 if (skb) {
843 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
844
845 skb_set_queue_mapping(skb, queue_mapping);
846 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
847 ireq->rmt_addr,
848 ireq->opt);
849 err = net_xmit_eval(err);
850 }
851
852 return err;
853 }
854
855 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
856 struct request_values *rvp)
857 {
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
860 }
861
862 /*
863 * IPv4 request_sock destructor.
864 */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867 kfree(inet_rsk(req)->opt);
868 }
869
870 /*
871 * Return true if a syncookie should be sent
872 */
873 bool tcp_syn_flood_action(struct sock *sk,
874 const struct sk_buff *skb,
875 const char *proto)
876 {
877 const char *msg = "Dropping request";
878 bool want_cookie = false;
879 struct listen_sock *lopt;
880
881
882
883 #ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889 #endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901
902 /*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
906 struct sk_buff *skb)
907 {
908 const struct ip_options *opt = &(IPCB(skb)->opt);
909 struct ip_options_rcu *dopt = NULL;
910
911 if (opt && opt->optlen) {
912 int opt_size = sizeof(*dopt) + opt->optlen;
913
914 dopt = kmalloc(opt_size, GFP_ATOMIC);
915 if (dopt) {
916 if (ip_options_echo(&dopt->opt, skb)) {
917 kfree(dopt);
918 dopt = NULL;
919 }
920 }
921 }
922 return dopt;
923 }
924
925 #ifdef CONFIG_TCP_MD5SIG
926 /*
927 * RFC2385 MD5 checksumming requires a mapping of
928 * IP address->MD5 Key.
929 * We need to maintain these in the sk structure.
930 */
931
932 /* Find the Key structure for an address. */
933 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
934 const union tcp_md5_addr *addr,
935 int family)
936 {
937 struct tcp_sock *tp = tcp_sk(sk);
938 struct tcp_md5sig_key *key;
939 struct hlist_node *pos;
940 unsigned int size = sizeof(struct in_addr);
941 struct tcp_md5sig_info *md5sig;
942
943 /* caller either holds rcu_read_lock() or socket lock */
944 md5sig = rcu_dereference_check(tp->md5sig_info,
945 sock_owned_by_user(sk) ||
946 lockdep_is_held(&sk->sk_lock.slock));
947 if (!md5sig)
948 return NULL;
949 #if IS_ENABLED(CONFIG_IPV6)
950 if (family == AF_INET6)
951 size = sizeof(struct in6_addr);
952 #endif
953 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
954 if (key->family != family)
955 continue;
956 if (!memcmp(&key->addr, addr, size))
957 return key;
958 }
959 return NULL;
960 }
961 EXPORT_SYMBOL(tcp_md5_do_lookup);
962
963 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
964 struct sock *addr_sk)
965 {
966 union tcp_md5_addr *addr;
967
968 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
969 return tcp_md5_do_lookup(sk, addr, AF_INET);
970 }
971 EXPORT_SYMBOL(tcp_v4_md5_lookup);
972
973 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
974 struct request_sock *req)
975 {
976 union tcp_md5_addr *addr;
977
978 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
979 return tcp_md5_do_lookup(sk, addr, AF_INET);
980 }
981
982 /* This can be called on a newly created socket, from other files */
983 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
984 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
985 {
986 /* Add Key to the list */
987 struct tcp_md5sig_key *key;
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct tcp_md5sig_info *md5sig;
990
991 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
992 if (key) {
993 /* Pre-existing entry - just update that one. */
994 memcpy(key->key, newkey, newkeylen);
995 key->keylen = newkeylen;
996 return 0;
997 }
998
999 md5sig = rcu_dereference_protected(tp->md5sig_info,
1000 sock_owned_by_user(sk));
1001 if (!md5sig) {
1002 md5sig = kmalloc(sizeof(*md5sig), gfp);
1003 if (!md5sig)
1004 return -ENOMEM;
1005
1006 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007 INIT_HLIST_HEAD(&md5sig->head);
1008 rcu_assign_pointer(tp->md5sig_info, md5sig);
1009 }
1010
1011 key = sock_kmalloc(sk, sizeof(*key), gfp);
1012 if (!key)
1013 return -ENOMEM;
1014 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015 sock_kfree_s(sk, key, sizeof(*key));
1016 return -ENOMEM;
1017 }
1018
1019 memcpy(key->key, newkey, newkeylen);
1020 key->keylen = newkeylen;
1021 key->family = family;
1022 memcpy(&key->addr, addr,
1023 (family == AF_INET6) ? sizeof(struct in6_addr) :
1024 sizeof(struct in_addr));
1025 hlist_add_head_rcu(&key->node, &md5sig->head);
1026 return 0;
1027 }
1028 EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031 {
1032 struct tcp_sock *tp = tcp_sk(sk);
1033 struct tcp_md5sig_key *key;
1034 struct tcp_md5sig_info *md5sig;
1035
1036 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037 if (!key)
1038 return -ENOENT;
1039 hlist_del_rcu(&key->node);
1040 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041 kfree_rcu(key, rcu);
1042 md5sig = rcu_dereference_protected(tp->md5sig_info,
1043 sock_owned_by_user(sk));
1044 if (hlist_empty(&md5sig->head))
1045 tcp_free_md5sig_pool();
1046 return 0;
1047 }
1048 EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050 void tcp_clear_md5_list(struct sock *sk)
1051 {
1052 struct tcp_sock *tp = tcp_sk(sk);
1053 struct tcp_md5sig_key *key;
1054 struct hlist_node *pos, *n;
1055 struct tcp_md5sig_info *md5sig;
1056
1057 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059 if (!hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062 hlist_del_rcu(&key->node);
1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 kfree_rcu(key, rcu);
1065 }
1066 }
1067
1068 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069 int optlen)
1070 {
1071 struct tcp_md5sig cmd;
1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073
1074 if (optlen < sizeof(cmd))
1075 return -EINVAL;
1076
1077 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078 return -EFAULT;
1079
1080 if (sin->sin_family != AF_INET)
1081 return -EINVAL;
1082
1083 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085 AF_INET);
1086
1087 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088 return -EINVAL;
1089
1090 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092 GFP_KERNEL);
1093 }
1094
1095 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096 __be32 daddr, __be32 saddr, int nbytes)
1097 {
1098 struct tcp4_pseudohdr *bp;
1099 struct scatterlist sg;
1100
1101 bp = &hp->md5_blk.ip4;
1102
1103 /*
1104 * 1. the TCP pseudo-header (in the order: source IP address,
1105 * destination IP address, zero-padded protocol number, and
1106 * segment length)
1107 */
1108 bp->saddr = saddr;
1109 bp->daddr = daddr;
1110 bp->pad = 0;
1111 bp->protocol = IPPROTO_TCP;
1112 bp->len = cpu_to_be16(nbytes);
1113
1114 sg_init_one(&sg, bp, sizeof(*bp));
1115 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116 }
1117
1118 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120 {
1121 struct tcp_md5sig_pool *hp;
1122 struct hash_desc *desc;
1123
1124 hp = tcp_get_md5sig_pool();
1125 if (!hp)
1126 goto clear_hash_noput;
1127 desc = &hp->md5_desc;
1128
1129 if (crypto_hash_init(desc))
1130 goto clear_hash;
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_key(hp, key))
1136 goto clear_hash;
1137 if (crypto_hash_final(desc, md5_hash))
1138 goto clear_hash;
1139
1140 tcp_put_md5sig_pool();
1141 return 0;
1142
1143 clear_hash:
1144 tcp_put_md5sig_pool();
1145 clear_hash_noput:
1146 memset(md5_hash, 0, 16);
1147 return 1;
1148 }
1149
1150 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151 const struct sock *sk, const struct request_sock *req,
1152 const struct sk_buff *skb)
1153 {
1154 struct tcp_md5sig_pool *hp;
1155 struct hash_desc *desc;
1156 const struct tcphdr *th = tcp_hdr(skb);
1157 __be32 saddr, daddr;
1158
1159 if (sk) {
1160 saddr = inet_sk(sk)->inet_saddr;
1161 daddr = inet_sk(sk)->inet_daddr;
1162 } else if (req) {
1163 saddr = inet_rsk(req)->loc_addr;
1164 daddr = inet_rsk(req)->rmt_addr;
1165 } else {
1166 const struct iphdr *iph = ip_hdr(skb);
1167 saddr = iph->saddr;
1168 daddr = iph->daddr;
1169 }
1170
1171 hp = tcp_get_md5sig_pool();
1172 if (!hp)
1173 goto clear_hash_noput;
1174 desc = &hp->md5_desc;
1175
1176 if (crypto_hash_init(desc))
1177 goto clear_hash;
1178
1179 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180 goto clear_hash;
1181 if (tcp_md5_hash_header(hp, th))
1182 goto clear_hash;
1183 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184 goto clear_hash;
1185 if (tcp_md5_hash_key(hp, key))
1186 goto clear_hash;
1187 if (crypto_hash_final(desc, md5_hash))
1188 goto clear_hash;
1189
1190 tcp_put_md5sig_pool();
1191 return 0;
1192
1193 clear_hash:
1194 tcp_put_md5sig_pool();
1195 clear_hash_noput:
1196 memset(md5_hash, 0, 16);
1197 return 1;
1198 }
1199 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202 {
1203 /*
1204 * This gets called for each TCP segment that arrives
1205 * so we want to be efficient.
1206 * We have 3 drop cases:
1207 * o No MD5 hash and one expected.
1208 * o MD5 hash and we're not expecting one.
1209 * o MD5 hash and its wrong.
1210 */
1211 const __u8 *hash_location = NULL;
1212 struct tcp_md5sig_key *hash_expected;
1213 const struct iphdr *iph = ip_hdr(skb);
1214 const struct tcphdr *th = tcp_hdr(skb);
1215 int genhash;
1216 unsigned char newhash[16];
1217
1218 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219 AF_INET);
1220 hash_location = tcp_parse_md5sig_option(th);
1221
1222 /* We've parsed the options - do we have a hash? */
1223 if (!hash_expected && !hash_location)
1224 return false;
1225
1226 if (hash_expected && !hash_location) {
1227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228 return true;
1229 }
1230
1231 if (!hash_expected && hash_location) {
1232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233 return true;
1234 }
1235
1236 /* Okay, so this is hash_expected and hash_location -
1237 * so we need to calculate the checksum.
1238 */
1239 genhash = tcp_v4_md5_hash_skb(newhash,
1240 hash_expected,
1241 NULL, NULL, skb);
1242
1243 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245 &iph->saddr, ntohs(th->source),
1246 &iph->daddr, ntohs(th->dest),
1247 genhash ? " tcp_v4_calc_md5_hash failed"
1248 : "");
1249 return true;
1250 }
1251 return false;
1252 }
1253
1254 #endif
1255
1256 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257 .family = PF_INET,
1258 .obj_size = sizeof(struct tcp_request_sock),
1259 .rtx_syn_ack = tcp_v4_rtx_synack,
1260 .send_ack = tcp_v4_reqsk_send_ack,
1261 .destructor = tcp_v4_reqsk_destructor,
1262 .send_reset = tcp_v4_send_reset,
1263 .syn_ack_timeout = tcp_syn_ack_timeout,
1264 };
1265
1266 #ifdef CONFIG_TCP_MD5SIG
1267 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1269 .calc_md5_hash = tcp_v4_md5_hash_skb,
1270 };
1271 #endif
1272
1273 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274 {
1275 struct tcp_extend_values tmp_ext;
1276 struct tcp_options_received tmp_opt;
1277 const u8 *hash_location;
1278 struct request_sock *req;
1279 struct inet_request_sock *ireq;
1280 struct tcp_sock *tp = tcp_sk(sk);
1281 struct dst_entry *dst = NULL;
1282 __be32 saddr = ip_hdr(skb)->saddr;
1283 __be32 daddr = ip_hdr(skb)->daddr;
1284 __u32 isn = TCP_SKB_CB(skb)->when;
1285 bool want_cookie = false;
1286
1287 /* Never answer to SYNs send to broadcast or multicast */
1288 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289 goto drop;
1290
1291 /* TW buckets are converted to open requests without
1292 * limitations, they conserve resources and peer is
1293 * evidently real one.
1294 */
1295 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297 if (!want_cookie)
1298 goto drop;
1299 }
1300
1301 /* Accept backlog is full. If we have already queued enough
1302 * of warm entries in syn queue, drop request. It is better than
1303 * clogging syn queue with openreqs with exponentially increasing
1304 * timeout.
1305 */
1306 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307 goto drop;
1308
1309 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310 if (!req)
1311 goto drop;
1312
1313 #ifdef CONFIG_TCP_MD5SIG
1314 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315 #endif
1316
1317 tcp_clear_options(&tmp_opt);
1318 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319 tmp_opt.user_mss = tp->rx_opt.user_mss;
1320 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
1321
1322 if (tmp_opt.cookie_plus > 0 &&
1323 tmp_opt.saw_tstamp &&
1324 !tp->rx_opt.cookie_out_never &&
1325 (sysctl_tcp_cookie_size > 0 ||
1326 (tp->cookie_values != NULL &&
1327 tp->cookie_values->cookie_desired > 0))) {
1328 u8 *c;
1329 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333 goto drop_and_release;
1334
1335 /* Secret recipe starts with IP addresses */
1336 *mess++ ^= (__force u32)daddr;
1337 *mess++ ^= (__force u32)saddr;
1338
1339 /* plus variable length Initiator Cookie */
1340 c = (u8 *)mess;
1341 while (l-- > 0)
1342 *c++ ^= *hash_location++;
1343
1344 want_cookie = false; /* not our kind of cookie */
1345 tmp_ext.cookie_out_never = 0; /* false */
1346 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347 } else if (!tp->rx_opt.cookie_in_always) {
1348 /* redundant indications, but ensure initialization. */
1349 tmp_ext.cookie_out_never = 1; /* true */
1350 tmp_ext.cookie_plus = 0;
1351 } else {
1352 goto drop_and_release;
1353 }
1354 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356 if (want_cookie && !tmp_opt.saw_tstamp)
1357 tcp_clear_options(&tmp_opt);
1358
1359 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360 tcp_openreq_init(req, &tmp_opt, skb);
1361
1362 ireq = inet_rsk(req);
1363 ireq->loc_addr = daddr;
1364 ireq->rmt_addr = saddr;
1365 ireq->no_srccheck = inet_sk(sk)->transparent;
1366 ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368 if (security_inet_conn_request(sk, skb, req))
1369 goto drop_and_free;
1370
1371 if (!want_cookie || tmp_opt.tstamp_ok)
1372 TCP_ECN_create_request(req, skb);
1373
1374 if (want_cookie) {
1375 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376 req->cookie_ts = tmp_opt.tstamp_ok;
1377 } else if (!isn) {
1378 struct flowi4 fl4;
1379
1380 /* VJ's idea. We save last timestamp seen
1381 * from the destination in peer table, when entering
1382 * state TIME-WAIT, and check against it before
1383 * accepting new connection request.
1384 *
1385 * If "isn" is not zero, this request hit alive
1386 * timewait bucket, so that all the necessary checks
1387 * are made in the function processing timewait state.
1388 */
1389 if (tmp_opt.saw_tstamp &&
1390 tcp_death_row.sysctl_tw_recycle &&
1391 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1392 fl4.daddr == saddr) {
1393 if (!tcp_peer_is_proven(req, dst, true)) {
1394 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1395 goto drop_and_release;
1396 }
1397 }
1398 /* Kill the following clause, if you dislike this way. */
1399 else if (!sysctl_tcp_syncookies &&
1400 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1401 (sysctl_max_syn_backlog >> 2)) &&
1402 !tcp_peer_is_proven(req, dst, false)) {
1403 /* Without syncookies last quarter of
1404 * backlog is filled with destinations,
1405 * proven to be alive.
1406 * It means that we continue to communicate
1407 * to destinations, already remembered
1408 * to the moment of synflood.
1409 */
1410 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1411 &saddr, ntohs(tcp_hdr(skb)->source));
1412 goto drop_and_release;
1413 }
1414
1415 isn = tcp_v4_init_sequence(skb);
1416 }
1417 tcp_rsk(req)->snt_isn = isn;
1418 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1419
1420 if (tcp_v4_send_synack(sk, dst, req,
1421 (struct request_values *)&tmp_ext,
1422 skb_get_queue_mapping(skb),
1423 want_cookie) ||
1424 want_cookie)
1425 goto drop_and_free;
1426
1427 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1428 return 0;
1429
1430 drop_and_release:
1431 dst_release(dst);
1432 drop_and_free:
1433 reqsk_free(req);
1434 drop:
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(tcp_v4_conn_request);
1438
1439
1440 /*
1441 * The three way handshake has completed - we got a valid synack -
1442 * now create the new socket.
1443 */
1444 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1445 struct request_sock *req,
1446 struct dst_entry *dst)
1447 {
1448 struct inet_request_sock *ireq;
1449 struct inet_sock *newinet;
1450 struct tcp_sock *newtp;
1451 struct sock *newsk;
1452 #ifdef CONFIG_TCP_MD5SIG
1453 struct tcp_md5sig_key *key;
1454 #endif
1455 struct ip_options_rcu *inet_opt;
1456
1457 if (sk_acceptq_is_full(sk))
1458 goto exit_overflow;
1459
1460 newsk = tcp_create_openreq_child(sk, req, skb);
1461 if (!newsk)
1462 goto exit_nonewsk;
1463
1464 newsk->sk_gso_type = SKB_GSO_TCPV4;
1465 inet_sk_rx_dst_set(newsk, skb);
1466
1467 newtp = tcp_sk(newsk);
1468 newinet = inet_sk(newsk);
1469 ireq = inet_rsk(req);
1470 newinet->inet_daddr = ireq->rmt_addr;
1471 newinet->inet_rcv_saddr = ireq->loc_addr;
1472 newinet->inet_saddr = ireq->loc_addr;
1473 inet_opt = ireq->opt;
1474 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1475 ireq->opt = NULL;
1476 newinet->mc_index = inet_iif(skb);
1477 newinet->mc_ttl = ip_hdr(skb)->ttl;
1478 newinet->rcv_tos = ip_hdr(skb)->tos;
1479 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1480 if (inet_opt)
1481 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1482 newinet->inet_id = newtp->write_seq ^ jiffies;
1483
1484 if (!dst) {
1485 dst = inet_csk_route_child_sock(sk, newsk, req);
1486 if (!dst)
1487 goto put_and_exit;
1488 } else {
1489 /* syncookie case : see end of cookie_v4_check() */
1490 }
1491 sk_setup_caps(newsk, dst);
1492
1493 tcp_mtup_init(newsk);
1494 tcp_sync_mss(newsk, dst_mtu(dst));
1495 newtp->advmss = dst_metric_advmss(dst);
1496 if (tcp_sk(sk)->rx_opt.user_mss &&
1497 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1498 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1499
1500 tcp_initialize_rcv_mss(newsk);
1501 if (tcp_rsk(req)->snt_synack)
1502 tcp_valid_rtt_meas(newsk,
1503 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1504 newtp->total_retrans = req->retrans;
1505
1506 #ifdef CONFIG_TCP_MD5SIG
1507 /* Copy over the MD5 key from the original socket */
1508 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1509 AF_INET);
1510 if (key != NULL) {
1511 /*
1512 * We're using one, so create a matching key
1513 * on the newsk structure. If we fail to get
1514 * memory, then we end up not copying the key
1515 * across. Shucks.
1516 */
1517 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1518 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1519 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1520 }
1521 #endif
1522
1523 if (__inet_inherit_port(sk, newsk) < 0)
1524 goto put_and_exit;
1525 __inet_hash_nolisten(newsk, NULL);
1526
1527 return newsk;
1528
1529 exit_overflow:
1530 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1531 exit_nonewsk:
1532 dst_release(dst);
1533 exit:
1534 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1535 return NULL;
1536 put_and_exit:
1537 tcp_clear_xmit_timers(newsk);
1538 tcp_cleanup_congestion_control(newsk);
1539 bh_unlock_sock(newsk);
1540 sock_put(newsk);
1541 goto exit;
1542 }
1543 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1544
1545 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1546 {
1547 struct tcphdr *th = tcp_hdr(skb);
1548 const struct iphdr *iph = ip_hdr(skb);
1549 struct sock *nsk;
1550 struct request_sock **prev;
1551 /* Find possible connection requests. */
1552 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1553 iph->saddr, iph->daddr);
1554 if (req)
1555 return tcp_check_req(sk, skb, req, prev);
1556
1557 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1558 th->source, iph->daddr, th->dest, inet_iif(skb));
1559
1560 if (nsk) {
1561 if (nsk->sk_state != TCP_TIME_WAIT) {
1562 bh_lock_sock(nsk);
1563 return nsk;
1564 }
1565 inet_twsk_put(inet_twsk(nsk));
1566 return NULL;
1567 }
1568
1569 #ifdef CONFIG_SYN_COOKIES
1570 if (!th->syn)
1571 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1572 #endif
1573 return sk;
1574 }
1575
1576 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1577 {
1578 const struct iphdr *iph = ip_hdr(skb);
1579
1580 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1581 if (!tcp_v4_check(skb->len, iph->saddr,
1582 iph->daddr, skb->csum)) {
1583 skb->ip_summed = CHECKSUM_UNNECESSARY;
1584 return 0;
1585 }
1586 }
1587
1588 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1589 skb->len, IPPROTO_TCP, 0);
1590
1591 if (skb->len <= 76) {
1592 return __skb_checksum_complete(skb);
1593 }
1594 return 0;
1595 }
1596
1597
1598 /* The socket must have it's spinlock held when we get
1599 * here.
1600 *
1601 * We have a potential double-lock case here, so even when
1602 * doing backlog processing we use the BH locking scheme.
1603 * This is because we cannot sleep with the original spinlock
1604 * held.
1605 */
1606 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1607 {
1608 struct sock *rsk;
1609 #ifdef CONFIG_TCP_MD5SIG
1610 /*
1611 * We really want to reject the packet as early as possible
1612 * if:
1613 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1614 * o There is an MD5 option and we're not expecting one
1615 */
1616 if (tcp_v4_inbound_md5_hash(sk, skb))
1617 goto discard;
1618 #endif
1619
1620 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1621 struct dst_entry *dst = sk->sk_rx_dst;
1622
1623 sock_rps_save_rxhash(sk, skb);
1624 if (dst) {
1625 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1626 dst->ops->check(dst, 0) == NULL) {
1627 dst_release(dst);
1628 sk->sk_rx_dst = NULL;
1629 }
1630 }
1631 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1632 rsk = sk;
1633 goto reset;
1634 }
1635 return 0;
1636 }
1637
1638 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1639 goto csum_err;
1640
1641 if (sk->sk_state == TCP_LISTEN) {
1642 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1643 if (!nsk)
1644 goto discard;
1645
1646 if (nsk != sk) {
1647 sock_rps_save_rxhash(nsk, skb);
1648 if (tcp_child_process(sk, nsk, skb)) {
1649 rsk = nsk;
1650 goto reset;
1651 }
1652 return 0;
1653 }
1654 } else
1655 sock_rps_save_rxhash(sk, skb);
1656
1657 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1658 rsk = sk;
1659 goto reset;
1660 }
1661 return 0;
1662
1663 reset:
1664 tcp_v4_send_reset(rsk, skb);
1665 discard:
1666 kfree_skb(skb);
1667 /* Be careful here. If this function gets more complicated and
1668 * gcc suffers from register pressure on the x86, sk (in %ebx)
1669 * might be destroyed here. This current version compiles correctly,
1670 * but you have been warned.
1671 */
1672 return 0;
1673
1674 csum_err:
1675 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1676 goto discard;
1677 }
1678 EXPORT_SYMBOL(tcp_v4_do_rcv);
1679
1680 void tcp_v4_early_demux(struct sk_buff *skb)
1681 {
1682 struct net *net = dev_net(skb->dev);
1683 const struct iphdr *iph;
1684 const struct tcphdr *th;
1685 struct sock *sk;
1686
1687 if (skb->pkt_type != PACKET_HOST)
1688 return;
1689
1690 if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr)))
1691 return;
1692
1693 iph = ip_hdr(skb);
1694 th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb));
1695
1696 if (th->doff < sizeof(struct tcphdr) / 4)
1697 return;
1698
1699 sk = __inet_lookup_established(net, &tcp_hashinfo,
1700 iph->saddr, th->source,
1701 iph->daddr, ntohs(th->dest),
1702 skb->skb_iif);
1703 if (sk) {
1704 skb->sk = sk;
1705 skb->destructor = sock_edemux;
1706 if (sk->sk_state != TCP_TIME_WAIT) {
1707 struct dst_entry *dst = sk->sk_rx_dst;
1708
1709 if (dst)
1710 dst = dst_check(dst, 0);
1711 if (dst &&
1712 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1713 skb_dst_set_noref(skb, dst);
1714 }
1715 }
1716 }
1717
1718 /*
1719 * From tcp_input.c
1720 */
1721
1722 int tcp_v4_rcv(struct sk_buff *skb)
1723 {
1724 const struct iphdr *iph;
1725 const struct tcphdr *th;
1726 struct sock *sk;
1727 int ret;
1728 struct net *net = dev_net(skb->dev);
1729
1730 if (skb->pkt_type != PACKET_HOST)
1731 goto discard_it;
1732
1733 /* Count it even if it's bad */
1734 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1735
1736 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1737 goto discard_it;
1738
1739 th = tcp_hdr(skb);
1740
1741 if (th->doff < sizeof(struct tcphdr) / 4)
1742 goto bad_packet;
1743 if (!pskb_may_pull(skb, th->doff * 4))
1744 goto discard_it;
1745
1746 /* An explanation is required here, I think.
1747 * Packet length and doff are validated by header prediction,
1748 * provided case of th->doff==0 is eliminated.
1749 * So, we defer the checks. */
1750 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1751 goto bad_packet;
1752
1753 th = tcp_hdr(skb);
1754 iph = ip_hdr(skb);
1755 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1756 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1757 skb->len - th->doff * 4);
1758 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1759 TCP_SKB_CB(skb)->when = 0;
1760 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1761 TCP_SKB_CB(skb)->sacked = 0;
1762
1763 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1764 if (!sk)
1765 goto no_tcp_socket;
1766
1767 process:
1768 if (sk->sk_state == TCP_TIME_WAIT)
1769 goto do_time_wait;
1770
1771 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1772 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1773 goto discard_and_relse;
1774 }
1775
1776 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1777 goto discard_and_relse;
1778 nf_reset(skb);
1779
1780 if (sk_filter(sk, skb))
1781 goto discard_and_relse;
1782
1783 skb->dev = NULL;
1784
1785 bh_lock_sock_nested(sk);
1786 ret = 0;
1787 if (!sock_owned_by_user(sk)) {
1788 #ifdef CONFIG_NET_DMA
1789 struct tcp_sock *tp = tcp_sk(sk);
1790 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1791 tp->ucopy.dma_chan = net_dma_find_channel();
1792 if (tp->ucopy.dma_chan)
1793 ret = tcp_v4_do_rcv(sk, skb);
1794 else
1795 #endif
1796 {
1797 if (!tcp_prequeue(sk, skb))
1798 ret = tcp_v4_do_rcv(sk, skb);
1799 }
1800 } else if (unlikely(sk_add_backlog(sk, skb,
1801 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1802 bh_unlock_sock(sk);
1803 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1804 goto discard_and_relse;
1805 }
1806 bh_unlock_sock(sk);
1807
1808 sock_put(sk);
1809
1810 return ret;
1811
1812 no_tcp_socket:
1813 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1814 goto discard_it;
1815
1816 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1817 bad_packet:
1818 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1819 } else {
1820 tcp_v4_send_reset(NULL, skb);
1821 }
1822
1823 discard_it:
1824 /* Discard frame. */
1825 kfree_skb(skb);
1826 return 0;
1827
1828 discard_and_relse:
1829 sock_put(sk);
1830 goto discard_it;
1831
1832 do_time_wait:
1833 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1834 inet_twsk_put(inet_twsk(sk));
1835 goto discard_it;
1836 }
1837
1838 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1839 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1840 inet_twsk_put(inet_twsk(sk));
1841 goto discard_it;
1842 }
1843 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1844 case TCP_TW_SYN: {
1845 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1846 &tcp_hashinfo,
1847 iph->daddr, th->dest,
1848 inet_iif(skb));
1849 if (sk2) {
1850 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1851 inet_twsk_put(inet_twsk(sk));
1852 sk = sk2;
1853 goto process;
1854 }
1855 /* Fall through to ACK */
1856 }
1857 case TCP_TW_ACK:
1858 tcp_v4_timewait_ack(sk, skb);
1859 break;
1860 case TCP_TW_RST:
1861 goto no_tcp_socket;
1862 case TCP_TW_SUCCESS:;
1863 }
1864 goto discard_it;
1865 }
1866
1867 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1868 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1869 .twsk_unique = tcp_twsk_unique,
1870 .twsk_destructor= tcp_twsk_destructor,
1871 };
1872
1873 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1874 {
1875 struct dst_entry *dst = skb_dst(skb);
1876
1877 dst_hold(dst);
1878 sk->sk_rx_dst = dst;
1879 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1880 }
1881 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1882
1883 const struct inet_connection_sock_af_ops ipv4_specific = {
1884 .queue_xmit = ip_queue_xmit,
1885 .send_check = tcp_v4_send_check,
1886 .rebuild_header = inet_sk_rebuild_header,
1887 .sk_rx_dst_set = inet_sk_rx_dst_set,
1888 .conn_request = tcp_v4_conn_request,
1889 .syn_recv_sock = tcp_v4_syn_recv_sock,
1890 .net_header_len = sizeof(struct iphdr),
1891 .setsockopt = ip_setsockopt,
1892 .getsockopt = ip_getsockopt,
1893 .addr2sockaddr = inet_csk_addr2sockaddr,
1894 .sockaddr_len = sizeof(struct sockaddr_in),
1895 .bind_conflict = inet_csk_bind_conflict,
1896 #ifdef CONFIG_COMPAT
1897 .compat_setsockopt = compat_ip_setsockopt,
1898 .compat_getsockopt = compat_ip_getsockopt,
1899 #endif
1900 };
1901 EXPORT_SYMBOL(ipv4_specific);
1902
1903 #ifdef CONFIG_TCP_MD5SIG
1904 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1905 .md5_lookup = tcp_v4_md5_lookup,
1906 .calc_md5_hash = tcp_v4_md5_hash_skb,
1907 .md5_parse = tcp_v4_parse_md5_keys,
1908 };
1909 #endif
1910
1911 /* NOTE: A lot of things set to zero explicitly by call to
1912 * sk_alloc() so need not be done here.
1913 */
1914 static int tcp_v4_init_sock(struct sock *sk)
1915 {
1916 struct inet_connection_sock *icsk = inet_csk(sk);
1917
1918 tcp_init_sock(sk);
1919
1920 icsk->icsk_af_ops = &ipv4_specific;
1921
1922 #ifdef CONFIG_TCP_MD5SIG
1923 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1924 #endif
1925
1926 return 0;
1927 }
1928
1929 void tcp_v4_destroy_sock(struct sock *sk)
1930 {
1931 struct tcp_sock *tp = tcp_sk(sk);
1932
1933 tcp_clear_xmit_timers(sk);
1934
1935 tcp_cleanup_congestion_control(sk);
1936
1937 /* Cleanup up the write buffer. */
1938 tcp_write_queue_purge(sk);
1939
1940 /* Cleans up our, hopefully empty, out_of_order_queue. */
1941 __skb_queue_purge(&tp->out_of_order_queue);
1942
1943 #ifdef CONFIG_TCP_MD5SIG
1944 /* Clean up the MD5 key list, if any */
1945 if (tp->md5sig_info) {
1946 tcp_clear_md5_list(sk);
1947 kfree_rcu(tp->md5sig_info, rcu);
1948 tp->md5sig_info = NULL;
1949 }
1950 #endif
1951
1952 #ifdef CONFIG_NET_DMA
1953 /* Cleans up our sk_async_wait_queue */
1954 __skb_queue_purge(&sk->sk_async_wait_queue);
1955 #endif
1956
1957 /* Clean prequeue, it must be empty really */
1958 __skb_queue_purge(&tp->ucopy.prequeue);
1959
1960 /* Clean up a referenced TCP bind bucket. */
1961 if (inet_csk(sk)->icsk_bind_hash)
1962 inet_put_port(sk);
1963
1964 /*
1965 * If sendmsg cached page exists, toss it.
1966 */
1967 if (sk->sk_sndmsg_page) {
1968 __free_page(sk->sk_sndmsg_page);
1969 sk->sk_sndmsg_page = NULL;
1970 }
1971
1972 /* TCP Cookie Transactions */
1973 if (tp->cookie_values != NULL) {
1974 kref_put(&tp->cookie_values->kref,
1975 tcp_cookie_values_release);
1976 tp->cookie_values = NULL;
1977 }
1978
1979 /* If socket is aborted during connect operation */
1980 tcp_free_fastopen_req(tp);
1981
1982 sk_sockets_allocated_dec(sk);
1983 sock_release_memcg(sk);
1984 }
1985 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1986
1987 #ifdef CONFIG_PROC_FS
1988 /* Proc filesystem TCP sock list dumping. */
1989
1990 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1991 {
1992 return hlist_nulls_empty(head) ? NULL :
1993 list_entry(head->first, struct inet_timewait_sock, tw_node);
1994 }
1995
1996 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1997 {
1998 return !is_a_nulls(tw->tw_node.next) ?
1999 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2000 }
2001
2002 /*
2003 * Get next listener socket follow cur. If cur is NULL, get first socket
2004 * starting from bucket given in st->bucket; when st->bucket is zero the
2005 * very first socket in the hash table is returned.
2006 */
2007 static void *listening_get_next(struct seq_file *seq, void *cur)
2008 {
2009 struct inet_connection_sock *icsk;
2010 struct hlist_nulls_node *node;
2011 struct sock *sk = cur;
2012 struct inet_listen_hashbucket *ilb;
2013 struct tcp_iter_state *st = seq->private;
2014 struct net *net = seq_file_net(seq);
2015
2016 if (!sk) {
2017 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2018 spin_lock_bh(&ilb->lock);
2019 sk = sk_nulls_head(&ilb->head);
2020 st->offset = 0;
2021 goto get_sk;
2022 }
2023 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2024 ++st->num;
2025 ++st->offset;
2026
2027 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2028 struct request_sock *req = cur;
2029
2030 icsk = inet_csk(st->syn_wait_sk);
2031 req = req->dl_next;
2032 while (1) {
2033 while (req) {
2034 if (req->rsk_ops->family == st->family) {
2035 cur = req;
2036 goto out;
2037 }
2038 req = req->dl_next;
2039 }
2040 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2041 break;
2042 get_req:
2043 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2044 }
2045 sk = sk_nulls_next(st->syn_wait_sk);
2046 st->state = TCP_SEQ_STATE_LISTENING;
2047 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2048 } else {
2049 icsk = inet_csk(sk);
2050 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2051 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2052 goto start_req;
2053 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2054 sk = sk_nulls_next(sk);
2055 }
2056 get_sk:
2057 sk_nulls_for_each_from(sk, node) {
2058 if (!net_eq(sock_net(sk), net))
2059 continue;
2060 if (sk->sk_family == st->family) {
2061 cur = sk;
2062 goto out;
2063 }
2064 icsk = inet_csk(sk);
2065 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2066 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2067 start_req:
2068 st->uid = sock_i_uid(sk);
2069 st->syn_wait_sk = sk;
2070 st->state = TCP_SEQ_STATE_OPENREQ;
2071 st->sbucket = 0;
2072 goto get_req;
2073 }
2074 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2075 }
2076 spin_unlock_bh(&ilb->lock);
2077 st->offset = 0;
2078 if (++st->bucket < INET_LHTABLE_SIZE) {
2079 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2080 spin_lock_bh(&ilb->lock);
2081 sk = sk_nulls_head(&ilb->head);
2082 goto get_sk;
2083 }
2084 cur = NULL;
2085 out:
2086 return cur;
2087 }
2088
2089 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2090 {
2091 struct tcp_iter_state *st = seq->private;
2092 void *rc;
2093
2094 st->bucket = 0;
2095 st->offset = 0;
2096 rc = listening_get_next(seq, NULL);
2097
2098 while (rc && *pos) {
2099 rc = listening_get_next(seq, rc);
2100 --*pos;
2101 }
2102 return rc;
2103 }
2104
2105 static inline bool empty_bucket(struct tcp_iter_state *st)
2106 {
2107 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2108 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2109 }
2110
2111 /*
2112 * Get first established socket starting from bucket given in st->bucket.
2113 * If st->bucket is zero, the very first socket in the hash is returned.
2114 */
2115 static void *established_get_first(struct seq_file *seq)
2116 {
2117 struct tcp_iter_state *st = seq->private;
2118 struct net *net = seq_file_net(seq);
2119 void *rc = NULL;
2120
2121 st->offset = 0;
2122 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2123 struct sock *sk;
2124 struct hlist_nulls_node *node;
2125 struct inet_timewait_sock *tw;
2126 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2127
2128 /* Lockless fast path for the common case of empty buckets */
2129 if (empty_bucket(st))
2130 continue;
2131
2132 spin_lock_bh(lock);
2133 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2134 if (sk->sk_family != st->family ||
2135 !net_eq(sock_net(sk), net)) {
2136 continue;
2137 }
2138 rc = sk;
2139 goto out;
2140 }
2141 st->state = TCP_SEQ_STATE_TIME_WAIT;
2142 inet_twsk_for_each(tw, node,
2143 &tcp_hashinfo.ehash[st->bucket].twchain) {
2144 if (tw->tw_family != st->family ||
2145 !net_eq(twsk_net(tw), net)) {
2146 continue;
2147 }
2148 rc = tw;
2149 goto out;
2150 }
2151 spin_unlock_bh(lock);
2152 st->state = TCP_SEQ_STATE_ESTABLISHED;
2153 }
2154 out:
2155 return rc;
2156 }
2157
2158 static void *established_get_next(struct seq_file *seq, void *cur)
2159 {
2160 struct sock *sk = cur;
2161 struct inet_timewait_sock *tw;
2162 struct hlist_nulls_node *node;
2163 struct tcp_iter_state *st = seq->private;
2164 struct net *net = seq_file_net(seq);
2165
2166 ++st->num;
2167 ++st->offset;
2168
2169 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2170 tw = cur;
2171 tw = tw_next(tw);
2172 get_tw:
2173 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2174 tw = tw_next(tw);
2175 }
2176 if (tw) {
2177 cur = tw;
2178 goto out;
2179 }
2180 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2181 st->state = TCP_SEQ_STATE_ESTABLISHED;
2182
2183 /* Look for next non empty bucket */
2184 st->offset = 0;
2185 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2186 empty_bucket(st))
2187 ;
2188 if (st->bucket > tcp_hashinfo.ehash_mask)
2189 return NULL;
2190
2191 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2192 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2193 } else
2194 sk = sk_nulls_next(sk);
2195
2196 sk_nulls_for_each_from(sk, node) {
2197 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2198 goto found;
2199 }
2200
2201 st->state = TCP_SEQ_STATE_TIME_WAIT;
2202 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2203 goto get_tw;
2204 found:
2205 cur = sk;
2206 out:
2207 return cur;
2208 }
2209
2210 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2211 {
2212 struct tcp_iter_state *st = seq->private;
2213 void *rc;
2214
2215 st->bucket = 0;
2216 rc = established_get_first(seq);
2217
2218 while (rc && pos) {
2219 rc = established_get_next(seq, rc);
2220 --pos;
2221 }
2222 return rc;
2223 }
2224
2225 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2226 {
2227 void *rc;
2228 struct tcp_iter_state *st = seq->private;
2229
2230 st->state = TCP_SEQ_STATE_LISTENING;
2231 rc = listening_get_idx(seq, &pos);
2232
2233 if (!rc) {
2234 st->state = TCP_SEQ_STATE_ESTABLISHED;
2235 rc = established_get_idx(seq, pos);
2236 }
2237
2238 return rc;
2239 }
2240
2241 static void *tcp_seek_last_pos(struct seq_file *seq)
2242 {
2243 struct tcp_iter_state *st = seq->private;
2244 int offset = st->offset;
2245 int orig_num = st->num;
2246 void *rc = NULL;
2247
2248 switch (st->state) {
2249 case TCP_SEQ_STATE_OPENREQ:
2250 case TCP_SEQ_STATE_LISTENING:
2251 if (st->bucket >= INET_LHTABLE_SIZE)
2252 break;
2253 st->state = TCP_SEQ_STATE_LISTENING;
2254 rc = listening_get_next(seq, NULL);
2255 while (offset-- && rc)
2256 rc = listening_get_next(seq, rc);
2257 if (rc)
2258 break;
2259 st->bucket = 0;
2260 /* Fallthrough */
2261 case TCP_SEQ_STATE_ESTABLISHED:
2262 case TCP_SEQ_STATE_TIME_WAIT:
2263 st->state = TCP_SEQ_STATE_ESTABLISHED;
2264 if (st->bucket > tcp_hashinfo.ehash_mask)
2265 break;
2266 rc = established_get_first(seq);
2267 while (offset-- && rc)
2268 rc = established_get_next(seq, rc);
2269 }
2270
2271 st->num = orig_num;
2272
2273 return rc;
2274 }
2275
2276 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2277 {
2278 struct tcp_iter_state *st = seq->private;
2279 void *rc;
2280
2281 if (*pos && *pos == st->last_pos) {
2282 rc = tcp_seek_last_pos(seq);
2283 if (rc)
2284 goto out;
2285 }
2286
2287 st->state = TCP_SEQ_STATE_LISTENING;
2288 st->num = 0;
2289 st->bucket = 0;
2290 st->offset = 0;
2291 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2292
2293 out:
2294 st->last_pos = *pos;
2295 return rc;
2296 }
2297
2298 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2299 {
2300 struct tcp_iter_state *st = seq->private;
2301 void *rc = NULL;
2302
2303 if (v == SEQ_START_TOKEN) {
2304 rc = tcp_get_idx(seq, 0);
2305 goto out;
2306 }
2307
2308 switch (st->state) {
2309 case TCP_SEQ_STATE_OPENREQ:
2310 case TCP_SEQ_STATE_LISTENING:
2311 rc = listening_get_next(seq, v);
2312 if (!rc) {
2313 st->state = TCP_SEQ_STATE_ESTABLISHED;
2314 st->bucket = 0;
2315 st->offset = 0;
2316 rc = established_get_first(seq);
2317 }
2318 break;
2319 case TCP_SEQ_STATE_ESTABLISHED:
2320 case TCP_SEQ_STATE_TIME_WAIT:
2321 rc = established_get_next(seq, v);
2322 break;
2323 }
2324 out:
2325 ++*pos;
2326 st->last_pos = *pos;
2327 return rc;
2328 }
2329
2330 static void tcp_seq_stop(struct seq_file *seq, void *v)
2331 {
2332 struct tcp_iter_state *st = seq->private;
2333
2334 switch (st->state) {
2335 case TCP_SEQ_STATE_OPENREQ:
2336 if (v) {
2337 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2338 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2339 }
2340 case TCP_SEQ_STATE_LISTENING:
2341 if (v != SEQ_START_TOKEN)
2342 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2343 break;
2344 case TCP_SEQ_STATE_TIME_WAIT:
2345 case TCP_SEQ_STATE_ESTABLISHED:
2346 if (v)
2347 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2348 break;
2349 }
2350 }
2351
2352 int tcp_seq_open(struct inode *inode, struct file *file)
2353 {
2354 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2355 struct tcp_iter_state *s;
2356 int err;
2357
2358 err = seq_open_net(inode, file, &afinfo->seq_ops,
2359 sizeof(struct tcp_iter_state));
2360 if (err < 0)
2361 return err;
2362
2363 s = ((struct seq_file *)file->private_data)->private;
2364 s->family = afinfo->family;
2365 s->last_pos = 0;
2366 return 0;
2367 }
2368 EXPORT_SYMBOL(tcp_seq_open);
2369
2370 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2371 {
2372 int rc = 0;
2373 struct proc_dir_entry *p;
2374
2375 afinfo->seq_ops.start = tcp_seq_start;
2376 afinfo->seq_ops.next = tcp_seq_next;
2377 afinfo->seq_ops.stop = tcp_seq_stop;
2378
2379 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2380 afinfo->seq_fops, afinfo);
2381 if (!p)
2382 rc = -ENOMEM;
2383 return rc;
2384 }
2385 EXPORT_SYMBOL(tcp_proc_register);
2386
2387 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2388 {
2389 proc_net_remove(net, afinfo->name);
2390 }
2391 EXPORT_SYMBOL(tcp_proc_unregister);
2392
2393 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2394 struct seq_file *f, int i, int uid, int *len)
2395 {
2396 const struct inet_request_sock *ireq = inet_rsk(req);
2397 int ttd = req->expires - jiffies;
2398
2399 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2400 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2401 i,
2402 ireq->loc_addr,
2403 ntohs(inet_sk(sk)->inet_sport),
2404 ireq->rmt_addr,
2405 ntohs(ireq->rmt_port),
2406 TCP_SYN_RECV,
2407 0, 0, /* could print option size, but that is af dependent. */
2408 1, /* timers active (only the expire timer) */
2409 jiffies_to_clock_t(ttd),
2410 req->retrans,
2411 uid,
2412 0, /* non standard timer */
2413 0, /* open_requests have no inode */
2414 atomic_read(&sk->sk_refcnt),
2415 req,
2416 len);
2417 }
2418
2419 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2420 {
2421 int timer_active;
2422 unsigned long timer_expires;
2423 const struct tcp_sock *tp = tcp_sk(sk);
2424 const struct inet_connection_sock *icsk = inet_csk(sk);
2425 const struct inet_sock *inet = inet_sk(sk);
2426 __be32 dest = inet->inet_daddr;
2427 __be32 src = inet->inet_rcv_saddr;
2428 __u16 destp = ntohs(inet->inet_dport);
2429 __u16 srcp = ntohs(inet->inet_sport);
2430 int rx_queue;
2431
2432 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2433 timer_active = 1;
2434 timer_expires = icsk->icsk_timeout;
2435 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2436 timer_active = 4;
2437 timer_expires = icsk->icsk_timeout;
2438 } else if (timer_pending(&sk->sk_timer)) {
2439 timer_active = 2;
2440 timer_expires = sk->sk_timer.expires;
2441 } else {
2442 timer_active = 0;
2443 timer_expires = jiffies;
2444 }
2445
2446 if (sk->sk_state == TCP_LISTEN)
2447 rx_queue = sk->sk_ack_backlog;
2448 else
2449 /*
2450 * because we dont lock socket, we might find a transient negative value
2451 */
2452 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2453
2454 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2455 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2456 i, src, srcp, dest, destp, sk->sk_state,
2457 tp->write_seq - tp->snd_una,
2458 rx_queue,
2459 timer_active,
2460 jiffies_to_clock_t(timer_expires - jiffies),
2461 icsk->icsk_retransmits,
2462 sock_i_uid(sk),
2463 icsk->icsk_probes_out,
2464 sock_i_ino(sk),
2465 atomic_read(&sk->sk_refcnt), sk,
2466 jiffies_to_clock_t(icsk->icsk_rto),
2467 jiffies_to_clock_t(icsk->icsk_ack.ato),
2468 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2469 tp->snd_cwnd,
2470 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2471 len);
2472 }
2473
2474 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2475 struct seq_file *f, int i, int *len)
2476 {
2477 __be32 dest, src;
2478 __u16 destp, srcp;
2479 int ttd = tw->tw_ttd - jiffies;
2480
2481 if (ttd < 0)
2482 ttd = 0;
2483
2484 dest = tw->tw_daddr;
2485 src = tw->tw_rcv_saddr;
2486 destp = ntohs(tw->tw_dport);
2487 srcp = ntohs(tw->tw_sport);
2488
2489 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2490 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2491 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2492 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2493 atomic_read(&tw->tw_refcnt), tw, len);
2494 }
2495
2496 #define TMPSZ 150
2497
2498 static int tcp4_seq_show(struct seq_file *seq, void *v)
2499 {
2500 struct tcp_iter_state *st;
2501 int len;
2502
2503 if (v == SEQ_START_TOKEN) {
2504 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2505 " sl local_address rem_address st tx_queue "
2506 "rx_queue tr tm->when retrnsmt uid timeout "
2507 "inode");
2508 goto out;
2509 }
2510 st = seq->private;
2511
2512 switch (st->state) {
2513 case TCP_SEQ_STATE_LISTENING:
2514 case TCP_SEQ_STATE_ESTABLISHED:
2515 get_tcp4_sock(v, seq, st->num, &len);
2516 break;
2517 case TCP_SEQ_STATE_OPENREQ:
2518 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2519 break;
2520 case TCP_SEQ_STATE_TIME_WAIT:
2521 get_timewait4_sock(v, seq, st->num, &len);
2522 break;
2523 }
2524 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2525 out:
2526 return 0;
2527 }
2528
2529 static const struct file_operations tcp_afinfo_seq_fops = {
2530 .owner = THIS_MODULE,
2531 .open = tcp_seq_open,
2532 .read = seq_read,
2533 .llseek = seq_lseek,
2534 .release = seq_release_net
2535 };
2536
2537 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2538 .name = "tcp",
2539 .family = AF_INET,
2540 .seq_fops = &tcp_afinfo_seq_fops,
2541 .seq_ops = {
2542 .show = tcp4_seq_show,
2543 },
2544 };
2545
2546 static int __net_init tcp4_proc_init_net(struct net *net)
2547 {
2548 return tcp_proc_register(net, &tcp4_seq_afinfo);
2549 }
2550
2551 static void __net_exit tcp4_proc_exit_net(struct net *net)
2552 {
2553 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2554 }
2555
2556 static struct pernet_operations tcp4_net_ops = {
2557 .init = tcp4_proc_init_net,
2558 .exit = tcp4_proc_exit_net,
2559 };
2560
2561 int __init tcp4_proc_init(void)
2562 {
2563 return register_pernet_subsys(&tcp4_net_ops);
2564 }
2565
2566 void tcp4_proc_exit(void)
2567 {
2568 unregister_pernet_subsys(&tcp4_net_ops);
2569 }
2570 #endif /* CONFIG_PROC_FS */
2571
2572 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2573 {
2574 const struct iphdr *iph = skb_gro_network_header(skb);
2575
2576 switch (skb->ip_summed) {
2577 case CHECKSUM_COMPLETE:
2578 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2579 skb->csum)) {
2580 skb->ip_summed = CHECKSUM_UNNECESSARY;
2581 break;
2582 }
2583
2584 /* fall through */
2585 case CHECKSUM_NONE:
2586 NAPI_GRO_CB(skb)->flush = 1;
2587 return NULL;
2588 }
2589
2590 return tcp_gro_receive(head, skb);
2591 }
2592
2593 int tcp4_gro_complete(struct sk_buff *skb)
2594 {
2595 const struct iphdr *iph = ip_hdr(skb);
2596 struct tcphdr *th = tcp_hdr(skb);
2597
2598 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2599 iph->saddr, iph->daddr, 0);
2600 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2601
2602 return tcp_gro_complete(skb);
2603 }
2604
2605 struct proto tcp_prot = {
2606 .name = "TCP",
2607 .owner = THIS_MODULE,
2608 .close = tcp_close,
2609 .connect = tcp_v4_connect,
2610 .disconnect = tcp_disconnect,
2611 .accept = inet_csk_accept,
2612 .ioctl = tcp_ioctl,
2613 .init = tcp_v4_init_sock,
2614 .destroy = tcp_v4_destroy_sock,
2615 .shutdown = tcp_shutdown,
2616 .setsockopt = tcp_setsockopt,
2617 .getsockopt = tcp_getsockopt,
2618 .recvmsg = tcp_recvmsg,
2619 .sendmsg = tcp_sendmsg,
2620 .sendpage = tcp_sendpage,
2621 .backlog_rcv = tcp_v4_do_rcv,
2622 .release_cb = tcp_release_cb,
2623 .mtu_reduced = tcp_v4_mtu_reduced,
2624 .hash = inet_hash,
2625 .unhash = inet_unhash,
2626 .get_port = inet_csk_get_port,
2627 .enter_memory_pressure = tcp_enter_memory_pressure,
2628 .sockets_allocated = &tcp_sockets_allocated,
2629 .orphan_count = &tcp_orphan_count,
2630 .memory_allocated = &tcp_memory_allocated,
2631 .memory_pressure = &tcp_memory_pressure,
2632 .sysctl_wmem = sysctl_tcp_wmem,
2633 .sysctl_rmem = sysctl_tcp_rmem,
2634 .max_header = MAX_TCP_HEADER,
2635 .obj_size = sizeof(struct tcp_sock),
2636 .slab_flags = SLAB_DESTROY_BY_RCU,
2637 .twsk_prot = &tcp_timewait_sock_ops,
2638 .rsk_prot = &tcp_request_sock_ops,
2639 .h.hashinfo = &tcp_hashinfo,
2640 .no_autobind = true,
2641 #ifdef CONFIG_COMPAT
2642 .compat_setsockopt = compat_tcp_setsockopt,
2643 .compat_getsockopt = compat_tcp_getsockopt,
2644 #endif
2645 #ifdef CONFIG_MEMCG_KMEM
2646 .init_cgroup = tcp_init_cgroup,
2647 .destroy_cgroup = tcp_destroy_cgroup,
2648 .proto_cgroup = tcp_proto_cgroup,
2649 #endif
2650 };
2651 EXPORT_SYMBOL(tcp_prot);
2652
2653 static int __net_init tcp_sk_init(struct net *net)
2654 {
2655 return 0;
2656 }
2657
2658 static void __net_exit tcp_sk_exit(struct net *net)
2659 {
2660 }
2661
2662 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2663 {
2664 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2665 }
2666
2667 static struct pernet_operations __net_initdata tcp_sk_ops = {
2668 .init = tcp_sk_init,
2669 .exit = tcp_sk_exit,
2670 .exit_batch = tcp_sk_exit_batch,
2671 };
2672
2673 void __init tcp_v4_init(void)
2674 {
2675 inet_hashinfo_init(&tcp_hashinfo);
2676 if (register_pernet_subsys(&tcp_sk_ops))
2677 panic("Failed to create the TCP control socket.\n");
2678 }
This page took 0.313336 seconds and 6 git commands to generate.