SUNRPC: drop stale comment in svc_setup_socket()
[deliverable/linux.git] / net / ipv4 / tcp_minisocks.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34
35 struct inet_timewait_death_row tcp_death_row = {
36 .sysctl_max_tw_buckets = NR_FILE * 2,
37 .hashinfo = &tcp_hashinfo,
38 };
39 EXPORT_SYMBOL_GPL(tcp_death_row);
40
41 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
42 {
43 if (seq == s_win)
44 return true;
45 if (after(end_seq, s_win) && before(seq, e_win))
46 return true;
47 return seq == e_win && seq == end_seq;
48 }
49
50 static enum tcp_tw_status
51 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
52 const struct sk_buff *skb, int mib_idx)
53 {
54 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
55
56 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
57 &tcptw->tw_last_oow_ack_time)) {
58 /* Send ACK. Note, we do not put the bucket,
59 * it will be released by caller.
60 */
61 return TCP_TW_ACK;
62 }
63
64 /* We are rate-limiting, so just release the tw sock and drop skb. */
65 inet_twsk_put(tw);
66 return TCP_TW_SUCCESS;
67 }
68
69 /*
70 * * Main purpose of TIME-WAIT state is to close connection gracefully,
71 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72 * (and, probably, tail of data) and one or more our ACKs are lost.
73 * * What is TIME-WAIT timeout? It is associated with maximal packet
74 * lifetime in the internet, which results in wrong conclusion, that
75 * it is set to catch "old duplicate segments" wandering out of their path.
76 * It is not quite correct. This timeout is calculated so that it exceeds
77 * maximal retransmission timeout enough to allow to lose one (or more)
78 * segments sent by peer and our ACKs. This time may be calculated from RTO.
79 * * When TIME-WAIT socket receives RST, it means that another end
80 * finally closed and we are allowed to kill TIME-WAIT too.
81 * * Second purpose of TIME-WAIT is catching old duplicate segments.
82 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
83 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84 * * If we invented some more clever way to catch duplicates
85 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86 *
87 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89 * from the very beginning.
90 *
91 * NOTE. With recycling (and later with fin-wait-2) TW bucket
92 * is _not_ stateless. It means, that strictly speaking we must
93 * spinlock it. I do not want! Well, probability of misbehaviour
94 * is ridiculously low and, seems, we could use some mb() tricks
95 * to avoid misread sequence numbers, states etc. --ANK
96 *
97 * We don't need to initialize tmp_out.sack_ok as we don't use the results
98 */
99 enum tcp_tw_status
100 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
101 const struct tcphdr *th)
102 {
103 struct tcp_options_received tmp_opt;
104 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
105 bool paws_reject = false;
106
107 tmp_opt.saw_tstamp = 0;
108 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
109 tcp_parse_options(skb, &tmp_opt, 0, NULL);
110
111 if (tmp_opt.saw_tstamp) {
112 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
113 tmp_opt.ts_recent = tcptw->tw_ts_recent;
114 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
115 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
116 }
117 }
118
119 if (tw->tw_substate == TCP_FIN_WAIT2) {
120 /* Just repeat all the checks of tcp_rcv_state_process() */
121
122 /* Out of window, send ACK */
123 if (paws_reject ||
124 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
125 tcptw->tw_rcv_nxt,
126 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
127 return tcp_timewait_check_oow_rate_limit(
128 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
129
130 if (th->rst)
131 goto kill;
132
133 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
134 goto kill_with_rst;
135
136 /* Dup ACK? */
137 if (!th->ack ||
138 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
139 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
140 inet_twsk_put(tw);
141 return TCP_TW_SUCCESS;
142 }
143
144 /* New data or FIN. If new data arrive after half-duplex close,
145 * reset.
146 */
147 if (!th->fin ||
148 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
149 kill_with_rst:
150 inet_twsk_deschedule_put(tw);
151 return TCP_TW_RST;
152 }
153
154 /* FIN arrived, enter true time-wait state. */
155 tw->tw_substate = TCP_TIME_WAIT;
156 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
157 if (tmp_opt.saw_tstamp) {
158 tcptw->tw_ts_recent_stamp = get_seconds();
159 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
160 }
161
162 if (tcp_death_row.sysctl_tw_recycle &&
163 tcptw->tw_ts_recent_stamp &&
164 tcp_tw_remember_stamp(tw))
165 inet_twsk_reschedule(tw, tw->tw_timeout);
166 else
167 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
168 return TCP_TW_ACK;
169 }
170
171 /*
172 * Now real TIME-WAIT state.
173 *
174 * RFC 1122:
175 * "When a connection is [...] on TIME-WAIT state [...]
176 * [a TCP] MAY accept a new SYN from the remote TCP to
177 * reopen the connection directly, if it:
178 *
179 * (1) assigns its initial sequence number for the new
180 * connection to be larger than the largest sequence
181 * number it used on the previous connection incarnation,
182 * and
183 *
184 * (2) returns to TIME-WAIT state if the SYN turns out
185 * to be an old duplicate".
186 */
187
188 if (!paws_reject &&
189 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
190 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
191 /* In window segment, it may be only reset or bare ack. */
192
193 if (th->rst) {
194 /* This is TIME_WAIT assassination, in two flavors.
195 * Oh well... nobody has a sufficient solution to this
196 * protocol bug yet.
197 */
198 if (sysctl_tcp_rfc1337 == 0) {
199 kill:
200 inet_twsk_deschedule_put(tw);
201 return TCP_TW_SUCCESS;
202 }
203 }
204 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
205
206 if (tmp_opt.saw_tstamp) {
207 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
208 tcptw->tw_ts_recent_stamp = get_seconds();
209 }
210
211 inet_twsk_put(tw);
212 return TCP_TW_SUCCESS;
213 }
214
215 /* Out of window segment.
216
217 All the segments are ACKed immediately.
218
219 The only exception is new SYN. We accept it, if it is
220 not old duplicate and we are not in danger to be killed
221 by delayed old duplicates. RFC check is that it has
222 newer sequence number works at rates <40Mbit/sec.
223 However, if paws works, it is reliable AND even more,
224 we even may relax silly seq space cutoff.
225
226 RED-PEN: we violate main RFC requirement, if this SYN will appear
227 old duplicate (i.e. we receive RST in reply to SYN-ACK),
228 we must return socket to time-wait state. It is not good,
229 but not fatal yet.
230 */
231
232 if (th->syn && !th->rst && !th->ack && !paws_reject &&
233 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
234 (tmp_opt.saw_tstamp &&
235 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
236 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
237 if (isn == 0)
238 isn++;
239 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
240 return TCP_TW_SYN;
241 }
242
243 if (paws_reject)
244 NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
245
246 if (!th->rst) {
247 /* In this case we must reset the TIMEWAIT timer.
248 *
249 * If it is ACKless SYN it may be both old duplicate
250 * and new good SYN with random sequence number <rcv_nxt.
251 * Do not reschedule in the last case.
252 */
253 if (paws_reject || th->ack)
254 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
255
256 return tcp_timewait_check_oow_rate_limit(
257 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
258 }
259 inet_twsk_put(tw);
260 return TCP_TW_SUCCESS;
261 }
262 EXPORT_SYMBOL(tcp_timewait_state_process);
263
264 /*
265 * Move a socket to time-wait or dead fin-wait-2 state.
266 */
267 void tcp_time_wait(struct sock *sk, int state, int timeo)
268 {
269 const struct inet_connection_sock *icsk = inet_csk(sk);
270 const struct tcp_sock *tp = tcp_sk(sk);
271 struct inet_timewait_sock *tw;
272 bool recycle_ok = false;
273
274 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
275 recycle_ok = tcp_remember_stamp(sk);
276
277 tw = inet_twsk_alloc(sk, &tcp_death_row, state);
278
279 if (tw) {
280 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 struct inet_sock *inet = inet_sk(sk);
283
284 tw->tw_transparent = inet->transparent;
285 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
286 tcptw->tw_rcv_nxt = tp->rcv_nxt;
287 tcptw->tw_snd_nxt = tp->snd_nxt;
288 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
289 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
290 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 tcptw->tw_ts_offset = tp->tsoffset;
292 tcptw->tw_last_oow_ack_time = 0;
293
294 #if IS_ENABLED(CONFIG_IPV6)
295 if (tw->tw_family == PF_INET6) {
296 struct ipv6_pinfo *np = inet6_sk(sk);
297
298 tw->tw_v6_daddr = sk->sk_v6_daddr;
299 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
300 tw->tw_tclass = np->tclass;
301 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
302 tw->tw_ipv6only = sk->sk_ipv6only;
303 }
304 #endif
305
306 #ifdef CONFIG_TCP_MD5SIG
307 /*
308 * The timewait bucket does not have the key DB from the
309 * sock structure. We just make a quick copy of the
310 * md5 key being used (if indeed we are using one)
311 * so the timewait ack generating code has the key.
312 */
313 do {
314 struct tcp_md5sig_key *key;
315 tcptw->tw_md5_key = NULL;
316 key = tp->af_specific->md5_lookup(sk, sk);
317 if (key) {
318 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
319 if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
320 BUG();
321 }
322 } while (0);
323 #endif
324
325 /* Get the TIME_WAIT timeout firing. */
326 if (timeo < rto)
327 timeo = rto;
328
329 if (recycle_ok) {
330 tw->tw_timeout = rto;
331 } else {
332 tw->tw_timeout = TCP_TIMEWAIT_LEN;
333 if (state == TCP_TIME_WAIT)
334 timeo = TCP_TIMEWAIT_LEN;
335 }
336
337 inet_twsk_schedule(tw, timeo);
338 /* Linkage updates. */
339 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
340 inet_twsk_put(tw);
341 } else {
342 /* Sorry, if we're out of memory, just CLOSE this
343 * socket up. We've got bigger problems than
344 * non-graceful socket closings.
345 */
346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347 }
348
349 tcp_update_metrics(sk);
350 tcp_done(sk);
351 }
352
353 void tcp_twsk_destructor(struct sock *sk)
354 {
355 #ifdef CONFIG_TCP_MD5SIG
356 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358 if (twsk->tw_md5_key)
359 kfree_rcu(twsk->tw_md5_key, rcu);
360 #endif
361 }
362 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
363
364 void tcp_openreq_init_rwin(struct request_sock *req,
365 struct sock *sk, struct dst_entry *dst)
366 {
367 struct inet_request_sock *ireq = inet_rsk(req);
368 struct tcp_sock *tp = tcp_sk(sk);
369 __u8 rcv_wscale;
370 int mss = dst_metric_advmss(dst);
371
372 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
373 mss = tp->rx_opt.user_mss;
374
375 /* Set this up on the first call only */
376 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
377
378 /* limit the window selection if the user enforce a smaller rx buffer */
379 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
380 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
381 req->window_clamp = tcp_full_space(sk);
382
383 /* tcp_full_space because it is guaranteed to be the first packet */
384 tcp_select_initial_window(tcp_full_space(sk),
385 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
386 &req->rcv_wnd,
387 &req->window_clamp,
388 ireq->wscale_ok,
389 &rcv_wscale,
390 dst_metric(dst, RTAX_INITRWND));
391 ireq->rcv_wscale = rcv_wscale;
392 }
393 EXPORT_SYMBOL(tcp_openreq_init_rwin);
394
395 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
396 const struct request_sock *req)
397 {
398 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
399 }
400
401 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
402 {
403 struct inet_connection_sock *icsk = inet_csk(sk);
404 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
405 bool ca_got_dst = false;
406
407 if (ca_key != TCP_CA_UNSPEC) {
408 const struct tcp_congestion_ops *ca;
409
410 rcu_read_lock();
411 ca = tcp_ca_find_key(ca_key);
412 if (likely(ca && try_module_get(ca->owner))) {
413 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
414 icsk->icsk_ca_ops = ca;
415 ca_got_dst = true;
416 }
417 rcu_read_unlock();
418 }
419
420 /* If no valid choice made yet, assign current system default ca. */
421 if (!ca_got_dst &&
422 (!icsk->icsk_ca_setsockopt ||
423 !try_module_get(icsk->icsk_ca_ops->owner)))
424 tcp_assign_congestion_control(sk);
425
426 tcp_set_ca_state(sk, TCP_CA_Open);
427 }
428 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
429
430 /* This is not only more efficient than what we used to do, it eliminates
431 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
432 *
433 * Actually, we could lots of memory writes here. tp of listening
434 * socket contains all necessary default parameters.
435 */
436 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
437 {
438 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
439
440 if (newsk) {
441 const struct inet_request_sock *ireq = inet_rsk(req);
442 struct tcp_request_sock *treq = tcp_rsk(req);
443 struct inet_connection_sock *newicsk = inet_csk(newsk);
444 struct tcp_sock *newtp = tcp_sk(newsk);
445
446 /* Now setup tcp_sock */
447 newtp->pred_flags = 0;
448
449 newtp->rcv_wup = newtp->copied_seq =
450 newtp->rcv_nxt = treq->rcv_isn + 1;
451 newtp->segs_in = 0;
452
453 newtp->snd_sml = newtp->snd_una =
454 newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
455
456 tcp_prequeue_init(newtp);
457 INIT_LIST_HEAD(&newtp->tsq_node);
458
459 tcp_init_wl(newtp, treq->rcv_isn);
460
461 newtp->srtt_us = 0;
462 newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
463 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
464
465 newtp->packets_out = 0;
466 newtp->retrans_out = 0;
467 newtp->sacked_out = 0;
468 newtp->fackets_out = 0;
469 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
470 tcp_enable_early_retrans(newtp);
471 newtp->tlp_high_seq = 0;
472 newtp->lsndtime = treq->snt_synack;
473 newtp->last_oow_ack_time = 0;
474 newtp->total_retrans = req->num_retrans;
475
476 /* So many TCP implementations out there (incorrectly) count the
477 * initial SYN frame in their delayed-ACK and congestion control
478 * algorithms that we must have the following bandaid to talk
479 * efficiently to them. -DaveM
480 */
481 newtp->snd_cwnd = TCP_INIT_CWND;
482 newtp->snd_cwnd_cnt = 0;
483
484 tcp_init_xmit_timers(newsk);
485 __skb_queue_head_init(&newtp->out_of_order_queue);
486 newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
487
488 newtp->rx_opt.saw_tstamp = 0;
489
490 newtp->rx_opt.dsack = 0;
491 newtp->rx_opt.num_sacks = 0;
492
493 newtp->urg_data = 0;
494
495 if (sock_flag(newsk, SOCK_KEEPOPEN))
496 inet_csk_reset_keepalive_timer(newsk,
497 keepalive_time_when(newtp));
498
499 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
500 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
501 if (sysctl_tcp_fack)
502 tcp_enable_fack(newtp);
503 }
504 newtp->window_clamp = req->window_clamp;
505 newtp->rcv_ssthresh = req->rcv_wnd;
506 newtp->rcv_wnd = req->rcv_wnd;
507 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
508 if (newtp->rx_opt.wscale_ok) {
509 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
510 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
511 } else {
512 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
513 newtp->window_clamp = min(newtp->window_clamp, 65535U);
514 }
515 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
516 newtp->rx_opt.snd_wscale);
517 newtp->max_window = newtp->snd_wnd;
518
519 if (newtp->rx_opt.tstamp_ok) {
520 newtp->rx_opt.ts_recent = req->ts_recent;
521 newtp->rx_opt.ts_recent_stamp = get_seconds();
522 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
523 } else {
524 newtp->rx_opt.ts_recent_stamp = 0;
525 newtp->tcp_header_len = sizeof(struct tcphdr);
526 }
527 newtp->tsoffset = 0;
528 #ifdef CONFIG_TCP_MD5SIG
529 newtp->md5sig_info = NULL; /*XXX*/
530 if (newtp->af_specific->md5_lookup(sk, newsk))
531 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
532 #endif
533 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
534 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
535 newtp->rx_opt.mss_clamp = req->mss;
536 tcp_ecn_openreq_child(newtp, req);
537 newtp->fastopen_rsk = NULL;
538 newtp->syn_data_acked = 0;
539
540 newtp->saved_syn = req->saved_syn;
541 req->saved_syn = NULL;
542
543 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
544 }
545 return newsk;
546 }
547 EXPORT_SYMBOL(tcp_create_openreq_child);
548
549 /*
550 * Process an incoming packet for SYN_RECV sockets represented as a
551 * request_sock. Normally sk is the listener socket but for TFO it
552 * points to the child socket.
553 *
554 * XXX (TFO) - The current impl contains a special check for ack
555 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
556 *
557 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
558 */
559
560 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
561 struct request_sock *req,
562 bool fastopen)
563 {
564 struct tcp_options_received tmp_opt;
565 struct sock *child;
566 const struct tcphdr *th = tcp_hdr(skb);
567 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
568 bool paws_reject = false;
569
570 BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
571
572 tmp_opt.saw_tstamp = 0;
573 if (th->doff > (sizeof(struct tcphdr)>>2)) {
574 tcp_parse_options(skb, &tmp_opt, 0, NULL);
575
576 if (tmp_opt.saw_tstamp) {
577 tmp_opt.ts_recent = req->ts_recent;
578 /* We do not store true stamp, but it is not required,
579 * it can be estimated (approximately)
580 * from another data.
581 */
582 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
583 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
584 }
585 }
586
587 /* Check for pure retransmitted SYN. */
588 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
589 flg == TCP_FLAG_SYN &&
590 !paws_reject) {
591 /*
592 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
593 * this case on figure 6 and figure 8, but formal
594 * protocol description says NOTHING.
595 * To be more exact, it says that we should send ACK,
596 * because this segment (at least, if it has no data)
597 * is out of window.
598 *
599 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
600 * describe SYN-RECV state. All the description
601 * is wrong, we cannot believe to it and should
602 * rely only on common sense and implementation
603 * experience.
604 *
605 * Enforce "SYN-ACK" according to figure 8, figure 6
606 * of RFC793, fixed by RFC1122.
607 *
608 * Note that even if there is new data in the SYN packet
609 * they will be thrown away too.
610 *
611 * Reset timer after retransmitting SYNACK, similar to
612 * the idea of fast retransmit in recovery.
613 */
614 if (!tcp_oow_rate_limited(sock_net(sk), skb,
615 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
616 &tcp_rsk(req)->last_oow_ack_time) &&
617
618 !inet_rtx_syn_ack(sk, req)) {
619 unsigned long expires = jiffies;
620
621 expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
622 TCP_RTO_MAX);
623 if (!fastopen)
624 mod_timer_pending(&req->rsk_timer, expires);
625 else
626 req->rsk_timer.expires = expires;
627 }
628 return NULL;
629 }
630
631 /* Further reproduces section "SEGMENT ARRIVES"
632 for state SYN-RECEIVED of RFC793.
633 It is broken, however, it does not work only
634 when SYNs are crossed.
635
636 You would think that SYN crossing is impossible here, since
637 we should have a SYN_SENT socket (from connect()) on our end,
638 but this is not true if the crossed SYNs were sent to both
639 ends by a malicious third party. We must defend against this,
640 and to do that we first verify the ACK (as per RFC793, page
641 36) and reset if it is invalid. Is this a true full defense?
642 To convince ourselves, let us consider a way in which the ACK
643 test can still pass in this 'malicious crossed SYNs' case.
644 Malicious sender sends identical SYNs (and thus identical sequence
645 numbers) to both A and B:
646
647 A: gets SYN, seq=7
648 B: gets SYN, seq=7
649
650 By our good fortune, both A and B select the same initial
651 send sequence number of seven :-)
652
653 A: sends SYN|ACK, seq=7, ack_seq=8
654 B: sends SYN|ACK, seq=7, ack_seq=8
655
656 So we are now A eating this SYN|ACK, ACK test passes. So
657 does sequence test, SYN is truncated, and thus we consider
658 it a bare ACK.
659
660 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
661 bare ACK. Otherwise, we create an established connection. Both
662 ends (listening sockets) accept the new incoming connection and try
663 to talk to each other. 8-)
664
665 Note: This case is both harmless, and rare. Possibility is about the
666 same as us discovering intelligent life on another plant tomorrow.
667
668 But generally, we should (RFC lies!) to accept ACK
669 from SYNACK both here and in tcp_rcv_state_process().
670 tcp_rcv_state_process() does not, hence, we do not too.
671
672 Note that the case is absolutely generic:
673 we cannot optimize anything here without
674 violating protocol. All the checks must be made
675 before attempt to create socket.
676 */
677
678 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
679 * and the incoming segment acknowledges something not yet
680 * sent (the segment carries an unacceptable ACK) ...
681 * a reset is sent."
682 *
683 * Invalid ACK: reset will be sent by listening socket.
684 * Note that the ACK validity check for a Fast Open socket is done
685 * elsewhere and is checked directly against the child socket rather
686 * than req because user data may have been sent out.
687 */
688 if ((flg & TCP_FLAG_ACK) && !fastopen &&
689 (TCP_SKB_CB(skb)->ack_seq !=
690 tcp_rsk(req)->snt_isn + 1))
691 return sk;
692
693 /* Also, it would be not so bad idea to check rcv_tsecr, which
694 * is essentially ACK extension and too early or too late values
695 * should cause reset in unsynchronized states.
696 */
697
698 /* RFC793: "first check sequence number". */
699
700 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
701 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
702 /* Out of window: send ACK and drop. */
703 if (!(flg & TCP_FLAG_RST))
704 req->rsk_ops->send_ack(sk, skb, req);
705 if (paws_reject)
706 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
707 return NULL;
708 }
709
710 /* In sequence, PAWS is OK. */
711
712 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
713 req->ts_recent = tmp_opt.rcv_tsval;
714
715 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
716 /* Truncate SYN, it is out of window starting
717 at tcp_rsk(req)->rcv_isn + 1. */
718 flg &= ~TCP_FLAG_SYN;
719 }
720
721 /* RFC793: "second check the RST bit" and
722 * "fourth, check the SYN bit"
723 */
724 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
725 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
726 goto embryonic_reset;
727 }
728
729 /* ACK sequence verified above, just make sure ACK is
730 * set. If ACK not set, just silently drop the packet.
731 *
732 * XXX (TFO) - if we ever allow "data after SYN", the
733 * following check needs to be removed.
734 */
735 if (!(flg & TCP_FLAG_ACK))
736 return NULL;
737
738 /* For Fast Open no more processing is needed (sk is the
739 * child socket).
740 */
741 if (fastopen)
742 return sk;
743
744 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
745 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
746 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
747 inet_rsk(req)->acked = 1;
748 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
749 return NULL;
750 }
751
752 /* OK, ACK is valid, create big socket and
753 * feed this segment to it. It will repeat all
754 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
755 * ESTABLISHED STATE. If it will be dropped after
756 * socket is created, wait for troubles.
757 */
758 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
759 if (!child)
760 goto listen_overflow;
761
762 inet_csk_reqsk_queue_drop(sk, req);
763 inet_csk_reqsk_queue_add(sk, req, child);
764 /* Warning: caller must not call reqsk_put(req);
765 * child stole last reference on it.
766 */
767 return child;
768
769 listen_overflow:
770 if (!sysctl_tcp_abort_on_overflow) {
771 inet_rsk(req)->acked = 1;
772 return NULL;
773 }
774
775 embryonic_reset:
776 if (!(flg & TCP_FLAG_RST)) {
777 /* Received a bad SYN pkt - for TFO We try not to reset
778 * the local connection unless it's really necessary to
779 * avoid becoming vulnerable to outside attack aiming at
780 * resetting legit local connections.
781 */
782 req->rsk_ops->send_reset(sk, skb);
783 } else if (fastopen) { /* received a valid RST pkt */
784 reqsk_fastopen_remove(sk, req, true);
785 tcp_reset(sk);
786 }
787 if (!fastopen) {
788 inet_csk_reqsk_queue_drop(sk, req);
789 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
790 }
791 return NULL;
792 }
793 EXPORT_SYMBOL(tcp_check_req);
794
795 /*
796 * Queue segment on the new socket if the new socket is active,
797 * otherwise we just shortcircuit this and continue with
798 * the new socket.
799 *
800 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
801 * when entering. But other states are possible due to a race condition
802 * where after __inet_lookup_established() fails but before the listener
803 * locked is obtained, other packets cause the same connection to
804 * be created.
805 */
806
807 int tcp_child_process(struct sock *parent, struct sock *child,
808 struct sk_buff *skb)
809 {
810 int ret = 0;
811 int state = child->sk_state;
812
813 if (!sock_owned_by_user(child)) {
814 ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
815 skb->len);
816 /* Wakeup parent, send SIGIO */
817 if (state == TCP_SYN_RECV && child->sk_state != state)
818 parent->sk_data_ready(parent);
819 } else {
820 /* Alas, it is possible again, because we do lookup
821 * in main socket hash table and lock on listening
822 * socket does not protect us more.
823 */
824 __sk_add_backlog(child, skb);
825 }
826
827 bh_unlock_sock(child);
828 sock_put(child);
829 return ret;
830 }
831 EXPORT_SYMBOL(tcp_child_process);
This page took 0.049226 seconds and 5 git commands to generate.