sg_start_req(): use import_iovec()
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86
87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 tcp_skb_pcount(skb));
89 }
90
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 struct tcp_sock *tp = tcp_sk(sk);
144 s32 delta = tcp_time_stamp - tp->lsndtime;
145 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166 const struct dst_entry *dst = __sk_dst_get(sk);
167
168 if (sysctl_tcp_slow_start_after_idle &&
169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 tcp_cwnd_restart(sk, __sk_dst_get(sk));
171
172 tp->lsndtime = now;
173
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
176 */
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 icsk->icsk_ack.pingpong = 1;
180 }
181
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 tcp_dec_quickack_mode(sk, pkts);
186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188
189
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
196 */
197 u32 init_rwnd = TCP_INIT_CWND * 2;
198
199 if (mss > 1460)
200 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 return init_rwnd;
202 }
203
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
210 */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 __u32 *rcv_wnd, __u32 *window_clamp,
213 int wscale_ok, __u8 *rcv_wscale,
214 __u32 init_rcv_wnd)
215 {
216 unsigned int space = (__space < 0 ? 0 : __space);
217
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp == 0)
220 (*window_clamp) = (65535 << 14);
221 space = min(*window_clamp, space);
222
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = (space / mss) * mss;
226
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
234 */
235 if (sysctl_tcp_workaround_signed_windows)
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
239
240 (*rcv_wscale) = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window
243 * See RFC1323 for an explanation of the limit to 14
244 */
245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 space = min_t(u32, space, *window_clamp);
247 while (space > 65535 && (*rcv_wscale) < 14) {
248 space >>= 1;
249 (*rcv_wscale)++;
250 }
251 }
252
253 if (mss > (1 << *rcv_wscale)) {
254 if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 init_rcv_wnd = tcp_default_init_rwnd(mss);
256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 }
258
259 /* Set the clamp no higher than max representable value */
260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263
264 /* Chose a new window to advertise, update state in tcp_sock for the
265 * socket, and return result with RFC1323 scaling applied. The return
266 * value can be stuffed directly into th->window for an outgoing
267 * frame.
268 */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 struct tcp_sock *tp = tcp_sk(sk);
272 u32 old_win = tp->rcv_wnd;
273 u32 cur_win = tcp_receive_window(tp);
274 u32 new_win = __tcp_select_window(sk);
275
276 /* Never shrink the offered window */
277 if (new_win < cur_win) {
278 /* Danger Will Robinson!
279 * Don't update rcv_wup/rcv_wnd here or else
280 * we will not be able to advertise a zero
281 * window in time. --DaveM
282 *
283 * Relax Will Robinson.
284 */
285 if (new_win == 0)
286 NET_INC_STATS(sock_net(sk),
287 LINUX_MIB_TCPWANTZEROWINDOWADV);
288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289 }
290 tp->rcv_wnd = new_win;
291 tp->rcv_wup = tp->rcv_nxt;
292
293 /* Make sure we do not exceed the maximum possible
294 * scaled window.
295 */
296 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
297 new_win = min(new_win, MAX_TCP_WINDOW);
298 else
299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300
301 /* RFC1323 scaling applied */
302 new_win >>= tp->rx_opt.rcv_wscale;
303
304 /* If we advertise zero window, disable fast path. */
305 if (new_win == 0) {
306 tp->pred_flags = 0;
307 if (old_win)
308 NET_INC_STATS(sock_net(sk),
309 LINUX_MIB_TCPTOZEROWINDOWADV);
310 } else if (old_win == 0) {
311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
312 }
313
314 return new_win;
315 }
316
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 const struct tcp_sock *tp = tcp_sk(sk);
321
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 if (!(tp->ecn_flags & TCP_ECN_OK))
324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 else if (tcp_ca_needs_ecn(sk))
326 INET_ECN_xmit(sk);
327 }
328
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334 tcp_ca_needs_ecn(sk);
335
336 if (!use_ecn) {
337 const struct dst_entry *dst = __sk_dst_get(sk);
338
339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 use_ecn = true;
341 }
342
343 tp->ecn_flags = 0;
344
345 if (use_ecn) {
346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 tp->ecn_flags = TCP_ECN_OK;
348 if (tcp_ca_needs_ecn(sk))
349 INET_ECN_xmit(sk);
350 }
351 }
352
353 static void
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
355 struct sock *sk)
356 {
357 if (inet_rsk(req)->ecn_ok) {
358 th->ece = 1;
359 if (tcp_ca_needs_ecn(sk))
360 INET_ECN_xmit(sk);
361 }
362 }
363
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 * be sent.
366 */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 int tcp_header_len)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371
372 if (tp->ecn_flags & TCP_ECN_OK) {
373 /* Not-retransmitted data segment: set ECT and inject CWR. */
374 if (skb->len != tcp_header_len &&
375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 INET_ECN_xmit(sk);
377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 tcp_hdr(skb)->cwr = 1;
380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 }
382 } else if (!tcp_ca_needs_ecn(sk)) {
383 /* ACK or retransmitted segment: clear ECT|CE */
384 INET_ECN_dontxmit(sk);
385 }
386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 tcp_hdr(skb)->ece = 1;
388 }
389 }
390
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
393 */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 struct skb_shared_info *shinfo = skb_shinfo(skb);
397
398 skb->ip_summed = CHECKSUM_PARTIAL;
399 skb->csum = 0;
400
401 TCP_SKB_CB(skb)->tcp_flags = flags;
402 TCP_SKB_CB(skb)->sacked = 0;
403
404 tcp_skb_pcount_set(skb, 1);
405 shinfo->gso_size = 0;
406 shinfo->gso_type = 0;
407
408 TCP_SKB_CB(skb)->seq = seq;
409 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
410 seq++;
411 TCP_SKB_CB(skb)->end_seq = seq;
412 }
413
414 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
415 {
416 return tp->snd_una != tp->snd_up;
417 }
418
419 #define OPTION_SACK_ADVERTISE (1 << 0)
420 #define OPTION_TS (1 << 1)
421 #define OPTION_MD5 (1 << 2)
422 #define OPTION_WSCALE (1 << 3)
423 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
424
425 struct tcp_out_options {
426 u16 options; /* bit field of OPTION_* */
427 u16 mss; /* 0 to disable */
428 u8 ws; /* window scale, 0 to disable */
429 u8 num_sack_blocks; /* number of SACK blocks to include */
430 u8 hash_size; /* bytes in hash_location */
431 __u8 *hash_location; /* temporary pointer, overloaded */
432 __u32 tsval, tsecr; /* need to include OPTION_TS */
433 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
434 };
435
436 /* Write previously computed TCP options to the packet.
437 *
438 * Beware: Something in the Internet is very sensitive to the ordering of
439 * TCP options, we learned this through the hard way, so be careful here.
440 * Luckily we can at least blame others for their non-compliance but from
441 * inter-operability perspective it seems that we're somewhat stuck with
442 * the ordering which we have been using if we want to keep working with
443 * those broken things (not that it currently hurts anybody as there isn't
444 * particular reason why the ordering would need to be changed).
445 *
446 * At least SACK_PERM as the first option is known to lead to a disaster
447 * (but it may well be that other scenarios fail similarly).
448 */
449 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
450 struct tcp_out_options *opts)
451 {
452 u16 options = opts->options; /* mungable copy */
453
454 if (unlikely(OPTION_MD5 & options)) {
455 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
456 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
457 /* overload cookie hash location */
458 opts->hash_location = (__u8 *)ptr;
459 ptr += 4;
460 }
461
462 if (unlikely(opts->mss)) {
463 *ptr++ = htonl((TCPOPT_MSS << 24) |
464 (TCPOLEN_MSS << 16) |
465 opts->mss);
466 }
467
468 if (likely(OPTION_TS & options)) {
469 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
470 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
471 (TCPOLEN_SACK_PERM << 16) |
472 (TCPOPT_TIMESTAMP << 8) |
473 TCPOLEN_TIMESTAMP);
474 options &= ~OPTION_SACK_ADVERTISE;
475 } else {
476 *ptr++ = htonl((TCPOPT_NOP << 24) |
477 (TCPOPT_NOP << 16) |
478 (TCPOPT_TIMESTAMP << 8) |
479 TCPOLEN_TIMESTAMP);
480 }
481 *ptr++ = htonl(opts->tsval);
482 *ptr++ = htonl(opts->tsecr);
483 }
484
485 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
486 *ptr++ = htonl((TCPOPT_NOP << 24) |
487 (TCPOPT_NOP << 16) |
488 (TCPOPT_SACK_PERM << 8) |
489 TCPOLEN_SACK_PERM);
490 }
491
492 if (unlikely(OPTION_WSCALE & options)) {
493 *ptr++ = htonl((TCPOPT_NOP << 24) |
494 (TCPOPT_WINDOW << 16) |
495 (TCPOLEN_WINDOW << 8) |
496 opts->ws);
497 }
498
499 if (unlikely(opts->num_sack_blocks)) {
500 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
501 tp->duplicate_sack : tp->selective_acks;
502 int this_sack;
503
504 *ptr++ = htonl((TCPOPT_NOP << 24) |
505 (TCPOPT_NOP << 16) |
506 (TCPOPT_SACK << 8) |
507 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
508 TCPOLEN_SACK_PERBLOCK)));
509
510 for (this_sack = 0; this_sack < opts->num_sack_blocks;
511 ++this_sack) {
512 *ptr++ = htonl(sp[this_sack].start_seq);
513 *ptr++ = htonl(sp[this_sack].end_seq);
514 }
515
516 tp->rx_opt.dsack = 0;
517 }
518
519 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
520 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
521
522 *ptr++ = htonl((TCPOPT_EXP << 24) |
523 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
524 TCPOPT_FASTOPEN_MAGIC);
525
526 memcpy(ptr, foc->val, foc->len);
527 if ((foc->len & 3) == 2) {
528 u8 *align = ((u8 *)ptr) + foc->len;
529 align[0] = align[1] = TCPOPT_NOP;
530 }
531 ptr += (foc->len + 3) >> 2;
532 }
533 }
534
535 /* Compute TCP options for SYN packets. This is not the final
536 * network wire format yet.
537 */
538 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
539 struct tcp_out_options *opts,
540 struct tcp_md5sig_key **md5)
541 {
542 struct tcp_sock *tp = tcp_sk(sk);
543 unsigned int remaining = MAX_TCP_OPTION_SPACE;
544 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
545
546 #ifdef CONFIG_TCP_MD5SIG
547 *md5 = tp->af_specific->md5_lookup(sk, sk);
548 if (*md5) {
549 opts->options |= OPTION_MD5;
550 remaining -= TCPOLEN_MD5SIG_ALIGNED;
551 }
552 #else
553 *md5 = NULL;
554 #endif
555
556 /* We always get an MSS option. The option bytes which will be seen in
557 * normal data packets should timestamps be used, must be in the MSS
558 * advertised. But we subtract them from tp->mss_cache so that
559 * calculations in tcp_sendmsg are simpler etc. So account for this
560 * fact here if necessary. If we don't do this correctly, as a
561 * receiver we won't recognize data packets as being full sized when we
562 * should, and thus we won't abide by the delayed ACK rules correctly.
563 * SACKs don't matter, we never delay an ACK when we have any of those
564 * going out. */
565 opts->mss = tcp_advertise_mss(sk);
566 remaining -= TCPOLEN_MSS_ALIGNED;
567
568 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
569 opts->options |= OPTION_TS;
570 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
571 opts->tsecr = tp->rx_opt.ts_recent;
572 remaining -= TCPOLEN_TSTAMP_ALIGNED;
573 }
574 if (likely(sysctl_tcp_window_scaling)) {
575 opts->ws = tp->rx_opt.rcv_wscale;
576 opts->options |= OPTION_WSCALE;
577 remaining -= TCPOLEN_WSCALE_ALIGNED;
578 }
579 if (likely(sysctl_tcp_sack)) {
580 opts->options |= OPTION_SACK_ADVERTISE;
581 if (unlikely(!(OPTION_TS & opts->options)))
582 remaining -= TCPOLEN_SACKPERM_ALIGNED;
583 }
584
585 if (fastopen && fastopen->cookie.len >= 0) {
586 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
587 need = (need + 3) & ~3U; /* Align to 32 bits */
588 if (remaining >= need) {
589 opts->options |= OPTION_FAST_OPEN_COOKIE;
590 opts->fastopen_cookie = &fastopen->cookie;
591 remaining -= need;
592 tp->syn_fastopen = 1;
593 }
594 }
595
596 return MAX_TCP_OPTION_SPACE - remaining;
597 }
598
599 /* Set up TCP options for SYN-ACKs. */
600 static unsigned int tcp_synack_options(struct sock *sk,
601 struct request_sock *req,
602 unsigned int mss, struct sk_buff *skb,
603 struct tcp_out_options *opts,
604 struct tcp_md5sig_key **md5,
605 struct tcp_fastopen_cookie *foc)
606 {
607 struct inet_request_sock *ireq = inet_rsk(req);
608 unsigned int remaining = MAX_TCP_OPTION_SPACE;
609
610 #ifdef CONFIG_TCP_MD5SIG
611 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
612 if (*md5) {
613 opts->options |= OPTION_MD5;
614 remaining -= TCPOLEN_MD5SIG_ALIGNED;
615
616 /* We can't fit any SACK blocks in a packet with MD5 + TS
617 * options. There was discussion about disabling SACK
618 * rather than TS in order to fit in better with old,
619 * buggy kernels, but that was deemed to be unnecessary.
620 */
621 ireq->tstamp_ok &= !ireq->sack_ok;
622 }
623 #else
624 *md5 = NULL;
625 #endif
626
627 /* We always send an MSS option. */
628 opts->mss = mss;
629 remaining -= TCPOLEN_MSS_ALIGNED;
630
631 if (likely(ireq->wscale_ok)) {
632 opts->ws = ireq->rcv_wscale;
633 opts->options |= OPTION_WSCALE;
634 remaining -= TCPOLEN_WSCALE_ALIGNED;
635 }
636 if (likely(ireq->tstamp_ok)) {
637 opts->options |= OPTION_TS;
638 opts->tsval = tcp_skb_timestamp(skb);
639 opts->tsecr = req->ts_recent;
640 remaining -= TCPOLEN_TSTAMP_ALIGNED;
641 }
642 if (likely(ireq->sack_ok)) {
643 opts->options |= OPTION_SACK_ADVERTISE;
644 if (unlikely(!ireq->tstamp_ok))
645 remaining -= TCPOLEN_SACKPERM_ALIGNED;
646 }
647 if (foc != NULL && foc->len >= 0) {
648 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
649 need = (need + 3) & ~3U; /* Align to 32 bits */
650 if (remaining >= need) {
651 opts->options |= OPTION_FAST_OPEN_COOKIE;
652 opts->fastopen_cookie = foc;
653 remaining -= need;
654 }
655 }
656
657 return MAX_TCP_OPTION_SPACE - remaining;
658 }
659
660 /* Compute TCP options for ESTABLISHED sockets. This is not the
661 * final wire format yet.
662 */
663 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
664 struct tcp_out_options *opts,
665 struct tcp_md5sig_key **md5)
666 {
667 struct tcp_sock *tp = tcp_sk(sk);
668 unsigned int size = 0;
669 unsigned int eff_sacks;
670
671 opts->options = 0;
672
673 #ifdef CONFIG_TCP_MD5SIG
674 *md5 = tp->af_specific->md5_lookup(sk, sk);
675 if (unlikely(*md5)) {
676 opts->options |= OPTION_MD5;
677 size += TCPOLEN_MD5SIG_ALIGNED;
678 }
679 #else
680 *md5 = NULL;
681 #endif
682
683 if (likely(tp->rx_opt.tstamp_ok)) {
684 opts->options |= OPTION_TS;
685 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
686 opts->tsecr = tp->rx_opt.ts_recent;
687 size += TCPOLEN_TSTAMP_ALIGNED;
688 }
689
690 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
691 if (unlikely(eff_sacks)) {
692 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
693 opts->num_sack_blocks =
694 min_t(unsigned int, eff_sacks,
695 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
696 TCPOLEN_SACK_PERBLOCK);
697 size += TCPOLEN_SACK_BASE_ALIGNED +
698 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
699 }
700
701 return size;
702 }
703
704
705 /* TCP SMALL QUEUES (TSQ)
706 *
707 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
708 * to reduce RTT and bufferbloat.
709 * We do this using a special skb destructor (tcp_wfree).
710 *
711 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
712 * needs to be reallocated in a driver.
713 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
714 *
715 * Since transmit from skb destructor is forbidden, we use a tasklet
716 * to process all sockets that eventually need to send more skbs.
717 * We use one tasklet per cpu, with its own queue of sockets.
718 */
719 struct tsq_tasklet {
720 struct tasklet_struct tasklet;
721 struct list_head head; /* queue of tcp sockets */
722 };
723 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
724
725 static void tcp_tsq_handler(struct sock *sk)
726 {
727 if ((1 << sk->sk_state) &
728 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
729 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
730 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
731 0, GFP_ATOMIC);
732 }
733 /*
734 * One tasklet per cpu tries to send more skbs.
735 * We run in tasklet context but need to disable irqs when
736 * transferring tsq->head because tcp_wfree() might
737 * interrupt us (non NAPI drivers)
738 */
739 static void tcp_tasklet_func(unsigned long data)
740 {
741 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
742 LIST_HEAD(list);
743 unsigned long flags;
744 struct list_head *q, *n;
745 struct tcp_sock *tp;
746 struct sock *sk;
747
748 local_irq_save(flags);
749 list_splice_init(&tsq->head, &list);
750 local_irq_restore(flags);
751
752 list_for_each_safe(q, n, &list) {
753 tp = list_entry(q, struct tcp_sock, tsq_node);
754 list_del(&tp->tsq_node);
755
756 sk = (struct sock *)tp;
757 bh_lock_sock(sk);
758
759 if (!sock_owned_by_user(sk)) {
760 tcp_tsq_handler(sk);
761 } else {
762 /* defer the work to tcp_release_cb() */
763 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
764 }
765 bh_unlock_sock(sk);
766
767 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
768 sk_free(sk);
769 }
770 }
771
772 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
773 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
774 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
775 (1UL << TCP_MTU_REDUCED_DEFERRED))
776 /**
777 * tcp_release_cb - tcp release_sock() callback
778 * @sk: socket
779 *
780 * called from release_sock() to perform protocol dependent
781 * actions before socket release.
782 */
783 void tcp_release_cb(struct sock *sk)
784 {
785 struct tcp_sock *tp = tcp_sk(sk);
786 unsigned long flags, nflags;
787
788 /* perform an atomic operation only if at least one flag is set */
789 do {
790 flags = tp->tsq_flags;
791 if (!(flags & TCP_DEFERRED_ALL))
792 return;
793 nflags = flags & ~TCP_DEFERRED_ALL;
794 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
795
796 if (flags & (1UL << TCP_TSQ_DEFERRED))
797 tcp_tsq_handler(sk);
798
799 /* Here begins the tricky part :
800 * We are called from release_sock() with :
801 * 1) BH disabled
802 * 2) sk_lock.slock spinlock held
803 * 3) socket owned by us (sk->sk_lock.owned == 1)
804 *
805 * But following code is meant to be called from BH handlers,
806 * so we should keep BH disabled, but early release socket ownership
807 */
808 sock_release_ownership(sk);
809
810 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
811 tcp_write_timer_handler(sk);
812 __sock_put(sk);
813 }
814 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
815 tcp_delack_timer_handler(sk);
816 __sock_put(sk);
817 }
818 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
819 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
820 __sock_put(sk);
821 }
822 }
823 EXPORT_SYMBOL(tcp_release_cb);
824
825 void __init tcp_tasklet_init(void)
826 {
827 int i;
828
829 for_each_possible_cpu(i) {
830 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
831
832 INIT_LIST_HEAD(&tsq->head);
833 tasklet_init(&tsq->tasklet,
834 tcp_tasklet_func,
835 (unsigned long)tsq);
836 }
837 }
838
839 /*
840 * Write buffer destructor automatically called from kfree_skb.
841 * We can't xmit new skbs from this context, as we might already
842 * hold qdisc lock.
843 */
844 void tcp_wfree(struct sk_buff *skb)
845 {
846 struct sock *sk = skb->sk;
847 struct tcp_sock *tp = tcp_sk(sk);
848 int wmem;
849
850 /* Keep one reference on sk_wmem_alloc.
851 * Will be released by sk_free() from here or tcp_tasklet_func()
852 */
853 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
854
855 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
856 * Wait until our queues (qdisc + devices) are drained.
857 * This gives :
858 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
859 * - chance for incoming ACK (processed by another cpu maybe)
860 * to migrate this flow (skb->ooo_okay will be eventually set)
861 */
862 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
863 goto out;
864
865 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
866 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
867 unsigned long flags;
868 struct tsq_tasklet *tsq;
869
870 /* queue this socket to tasklet queue */
871 local_irq_save(flags);
872 tsq = this_cpu_ptr(&tsq_tasklet);
873 list_add(&tp->tsq_node, &tsq->head);
874 tasklet_schedule(&tsq->tasklet);
875 local_irq_restore(flags);
876 return;
877 }
878 out:
879 sk_free(sk);
880 }
881
882 /* This routine actually transmits TCP packets queued in by
883 * tcp_do_sendmsg(). This is used by both the initial
884 * transmission and possible later retransmissions.
885 * All SKB's seen here are completely headerless. It is our
886 * job to build the TCP header, and pass the packet down to
887 * IP so it can do the same plus pass the packet off to the
888 * device.
889 *
890 * We are working here with either a clone of the original
891 * SKB, or a fresh unique copy made by the retransmit engine.
892 */
893 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
894 gfp_t gfp_mask)
895 {
896 const struct inet_connection_sock *icsk = inet_csk(sk);
897 struct inet_sock *inet;
898 struct tcp_sock *tp;
899 struct tcp_skb_cb *tcb;
900 struct tcp_out_options opts;
901 unsigned int tcp_options_size, tcp_header_size;
902 struct tcp_md5sig_key *md5;
903 struct tcphdr *th;
904 int err;
905
906 BUG_ON(!skb || !tcp_skb_pcount(skb));
907
908 if (clone_it) {
909 skb_mstamp_get(&skb->skb_mstamp);
910
911 if (unlikely(skb_cloned(skb)))
912 skb = pskb_copy(skb, gfp_mask);
913 else
914 skb = skb_clone(skb, gfp_mask);
915 if (unlikely(!skb))
916 return -ENOBUFS;
917 }
918
919 inet = inet_sk(sk);
920 tp = tcp_sk(sk);
921 tcb = TCP_SKB_CB(skb);
922 memset(&opts, 0, sizeof(opts));
923
924 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
925 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
926 else
927 tcp_options_size = tcp_established_options(sk, skb, &opts,
928 &md5);
929 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
930
931 if (tcp_packets_in_flight(tp) == 0)
932 tcp_ca_event(sk, CA_EVENT_TX_START);
933
934 /* if no packet is in qdisc/device queue, then allow XPS to select
935 * another queue. We can be called from tcp_tsq_handler()
936 * which holds one reference to sk_wmem_alloc.
937 *
938 * TODO: Ideally, in-flight pure ACK packets should not matter here.
939 * One way to get this would be to set skb->truesize = 2 on them.
940 */
941 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
942
943 skb_push(skb, tcp_header_size);
944 skb_reset_transport_header(skb);
945
946 skb_orphan(skb);
947 skb->sk = sk;
948 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
949 skb_set_hash_from_sk(skb, sk);
950 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
951
952 /* Build TCP header and checksum it. */
953 th = tcp_hdr(skb);
954 th->source = inet->inet_sport;
955 th->dest = inet->inet_dport;
956 th->seq = htonl(tcb->seq);
957 th->ack_seq = htonl(tp->rcv_nxt);
958 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
959 tcb->tcp_flags);
960
961 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
962 /* RFC1323: The window in SYN & SYN/ACK segments
963 * is never scaled.
964 */
965 th->window = htons(min(tp->rcv_wnd, 65535U));
966 } else {
967 th->window = htons(tcp_select_window(sk));
968 }
969 th->check = 0;
970 th->urg_ptr = 0;
971
972 /* The urg_mode check is necessary during a below snd_una win probe */
973 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
974 if (before(tp->snd_up, tcb->seq + 0x10000)) {
975 th->urg_ptr = htons(tp->snd_up - tcb->seq);
976 th->urg = 1;
977 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
978 th->urg_ptr = htons(0xFFFF);
979 th->urg = 1;
980 }
981 }
982
983 tcp_options_write((__be32 *)(th + 1), tp, &opts);
984 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
985 tcp_ecn_send(sk, skb, tcp_header_size);
986
987 #ifdef CONFIG_TCP_MD5SIG
988 /* Calculate the MD5 hash, as we have all we need now */
989 if (md5) {
990 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
991 tp->af_specific->calc_md5_hash(opts.hash_location,
992 md5, sk, NULL, skb);
993 }
994 #endif
995
996 icsk->icsk_af_ops->send_check(sk, skb);
997
998 if (likely(tcb->tcp_flags & TCPHDR_ACK))
999 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1000
1001 if (skb->len != tcp_header_size)
1002 tcp_event_data_sent(tp, sk);
1003
1004 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1005 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1006 tcp_skb_pcount(skb));
1007
1008 /* OK, its time to fill skb_shinfo(skb)->gso_segs */
1009 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1010
1011 /* Our usage of tstamp should remain private */
1012 skb->tstamp.tv64 = 0;
1013
1014 /* Cleanup our debris for IP stacks */
1015 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1016 sizeof(struct inet6_skb_parm)));
1017
1018 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1019
1020 if (likely(err <= 0))
1021 return err;
1022
1023 tcp_enter_cwr(sk);
1024
1025 return net_xmit_eval(err);
1026 }
1027
1028 /* This routine just queues the buffer for sending.
1029 *
1030 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1031 * otherwise socket can stall.
1032 */
1033 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1034 {
1035 struct tcp_sock *tp = tcp_sk(sk);
1036
1037 /* Advance write_seq and place onto the write_queue. */
1038 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1039 __skb_header_release(skb);
1040 tcp_add_write_queue_tail(sk, skb);
1041 sk->sk_wmem_queued += skb->truesize;
1042 sk_mem_charge(sk, skb->truesize);
1043 }
1044
1045 /* Initialize TSO segments for a packet. */
1046 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1047 unsigned int mss_now)
1048 {
1049 struct skb_shared_info *shinfo = skb_shinfo(skb);
1050
1051 /* Make sure we own this skb before messing gso_size/gso_segs */
1052 WARN_ON_ONCE(skb_cloned(skb));
1053
1054 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1055 /* Avoid the costly divide in the normal
1056 * non-TSO case.
1057 */
1058 tcp_skb_pcount_set(skb, 1);
1059 shinfo->gso_size = 0;
1060 shinfo->gso_type = 0;
1061 } else {
1062 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1063 shinfo->gso_size = mss_now;
1064 shinfo->gso_type = sk->sk_gso_type;
1065 }
1066 }
1067
1068 /* When a modification to fackets out becomes necessary, we need to check
1069 * skb is counted to fackets_out or not.
1070 */
1071 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1072 int decr)
1073 {
1074 struct tcp_sock *tp = tcp_sk(sk);
1075
1076 if (!tp->sacked_out || tcp_is_reno(tp))
1077 return;
1078
1079 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1080 tp->fackets_out -= decr;
1081 }
1082
1083 /* Pcount in the middle of the write queue got changed, we need to do various
1084 * tweaks to fix counters
1085 */
1086 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1087 {
1088 struct tcp_sock *tp = tcp_sk(sk);
1089
1090 tp->packets_out -= decr;
1091
1092 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1093 tp->sacked_out -= decr;
1094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1095 tp->retrans_out -= decr;
1096 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1097 tp->lost_out -= decr;
1098
1099 /* Reno case is special. Sigh... */
1100 if (tcp_is_reno(tp) && decr > 0)
1101 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1102
1103 tcp_adjust_fackets_out(sk, skb, decr);
1104
1105 if (tp->lost_skb_hint &&
1106 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1107 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1108 tp->lost_cnt_hint -= decr;
1109
1110 tcp_verify_left_out(tp);
1111 }
1112
1113 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1114 {
1115 struct skb_shared_info *shinfo = skb_shinfo(skb);
1116
1117 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1118 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1119 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1120 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1121
1122 shinfo->tx_flags &= ~tsflags;
1123 shinfo2->tx_flags |= tsflags;
1124 swap(shinfo->tskey, shinfo2->tskey);
1125 }
1126 }
1127
1128 /* Function to create two new TCP segments. Shrinks the given segment
1129 * to the specified size and appends a new segment with the rest of the
1130 * packet to the list. This won't be called frequently, I hope.
1131 * Remember, these are still headerless SKBs at this point.
1132 */
1133 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1134 unsigned int mss_now, gfp_t gfp)
1135 {
1136 struct tcp_sock *tp = tcp_sk(sk);
1137 struct sk_buff *buff;
1138 int nsize, old_factor;
1139 int nlen;
1140 u8 flags;
1141
1142 if (WARN_ON(len > skb->len))
1143 return -EINVAL;
1144
1145 nsize = skb_headlen(skb) - len;
1146 if (nsize < 0)
1147 nsize = 0;
1148
1149 if (skb_unclone(skb, gfp))
1150 return -ENOMEM;
1151
1152 /* Get a new skb... force flag on. */
1153 buff = sk_stream_alloc_skb(sk, nsize, gfp);
1154 if (buff == NULL)
1155 return -ENOMEM; /* We'll just try again later. */
1156
1157 sk->sk_wmem_queued += buff->truesize;
1158 sk_mem_charge(sk, buff->truesize);
1159 nlen = skb->len - len - nsize;
1160 buff->truesize += nlen;
1161 skb->truesize -= nlen;
1162
1163 /* Correct the sequence numbers. */
1164 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1165 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1166 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1167
1168 /* PSH and FIN should only be set in the second packet. */
1169 flags = TCP_SKB_CB(skb)->tcp_flags;
1170 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1171 TCP_SKB_CB(buff)->tcp_flags = flags;
1172 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1173
1174 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1175 /* Copy and checksum data tail into the new buffer. */
1176 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1177 skb_put(buff, nsize),
1178 nsize, 0);
1179
1180 skb_trim(skb, len);
1181
1182 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1183 } else {
1184 skb->ip_summed = CHECKSUM_PARTIAL;
1185 skb_split(skb, buff, len);
1186 }
1187
1188 buff->ip_summed = skb->ip_summed;
1189
1190 buff->tstamp = skb->tstamp;
1191 tcp_fragment_tstamp(skb, buff);
1192
1193 old_factor = tcp_skb_pcount(skb);
1194
1195 /* Fix up tso_factor for both original and new SKB. */
1196 tcp_set_skb_tso_segs(sk, skb, mss_now);
1197 tcp_set_skb_tso_segs(sk, buff, mss_now);
1198
1199 /* If this packet has been sent out already, we must
1200 * adjust the various packet counters.
1201 */
1202 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1203 int diff = old_factor - tcp_skb_pcount(skb) -
1204 tcp_skb_pcount(buff);
1205
1206 if (diff)
1207 tcp_adjust_pcount(sk, skb, diff);
1208 }
1209
1210 /* Link BUFF into the send queue. */
1211 __skb_header_release(buff);
1212 tcp_insert_write_queue_after(skb, buff, sk);
1213
1214 return 0;
1215 }
1216
1217 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1218 * eventually). The difference is that pulled data not copied, but
1219 * immediately discarded.
1220 */
1221 static void __pskb_trim_head(struct sk_buff *skb, int len)
1222 {
1223 struct skb_shared_info *shinfo;
1224 int i, k, eat;
1225
1226 eat = min_t(int, len, skb_headlen(skb));
1227 if (eat) {
1228 __skb_pull(skb, eat);
1229 len -= eat;
1230 if (!len)
1231 return;
1232 }
1233 eat = len;
1234 k = 0;
1235 shinfo = skb_shinfo(skb);
1236 for (i = 0; i < shinfo->nr_frags; i++) {
1237 int size = skb_frag_size(&shinfo->frags[i]);
1238
1239 if (size <= eat) {
1240 skb_frag_unref(skb, i);
1241 eat -= size;
1242 } else {
1243 shinfo->frags[k] = shinfo->frags[i];
1244 if (eat) {
1245 shinfo->frags[k].page_offset += eat;
1246 skb_frag_size_sub(&shinfo->frags[k], eat);
1247 eat = 0;
1248 }
1249 k++;
1250 }
1251 }
1252 shinfo->nr_frags = k;
1253
1254 skb_reset_tail_pointer(skb);
1255 skb->data_len -= len;
1256 skb->len = skb->data_len;
1257 }
1258
1259 /* Remove acked data from a packet in the transmit queue. */
1260 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1261 {
1262 if (skb_unclone(skb, GFP_ATOMIC))
1263 return -ENOMEM;
1264
1265 __pskb_trim_head(skb, len);
1266
1267 TCP_SKB_CB(skb)->seq += len;
1268 skb->ip_summed = CHECKSUM_PARTIAL;
1269
1270 skb->truesize -= len;
1271 sk->sk_wmem_queued -= len;
1272 sk_mem_uncharge(sk, len);
1273 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1274
1275 /* Any change of skb->len requires recalculation of tso factor. */
1276 if (tcp_skb_pcount(skb) > 1)
1277 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1278
1279 return 0;
1280 }
1281
1282 /* Calculate MSS not accounting any TCP options. */
1283 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1284 {
1285 const struct tcp_sock *tp = tcp_sk(sk);
1286 const struct inet_connection_sock *icsk = inet_csk(sk);
1287 int mss_now;
1288
1289 /* Calculate base mss without TCP options:
1290 It is MMS_S - sizeof(tcphdr) of rfc1122
1291 */
1292 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1293
1294 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1295 if (icsk->icsk_af_ops->net_frag_header_len) {
1296 const struct dst_entry *dst = __sk_dst_get(sk);
1297
1298 if (dst && dst_allfrag(dst))
1299 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1300 }
1301
1302 /* Clamp it (mss_clamp does not include tcp options) */
1303 if (mss_now > tp->rx_opt.mss_clamp)
1304 mss_now = tp->rx_opt.mss_clamp;
1305
1306 /* Now subtract optional transport overhead */
1307 mss_now -= icsk->icsk_ext_hdr_len;
1308
1309 /* Then reserve room for full set of TCP options and 8 bytes of data */
1310 if (mss_now < 48)
1311 mss_now = 48;
1312 return mss_now;
1313 }
1314
1315 /* Calculate MSS. Not accounting for SACKs here. */
1316 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1317 {
1318 /* Subtract TCP options size, not including SACKs */
1319 return __tcp_mtu_to_mss(sk, pmtu) -
1320 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1321 }
1322
1323 /* Inverse of above */
1324 int tcp_mss_to_mtu(struct sock *sk, int mss)
1325 {
1326 const struct tcp_sock *tp = tcp_sk(sk);
1327 const struct inet_connection_sock *icsk = inet_csk(sk);
1328 int mtu;
1329
1330 mtu = mss +
1331 tp->tcp_header_len +
1332 icsk->icsk_ext_hdr_len +
1333 icsk->icsk_af_ops->net_header_len;
1334
1335 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1336 if (icsk->icsk_af_ops->net_frag_header_len) {
1337 const struct dst_entry *dst = __sk_dst_get(sk);
1338
1339 if (dst && dst_allfrag(dst))
1340 mtu += icsk->icsk_af_ops->net_frag_header_len;
1341 }
1342 return mtu;
1343 }
1344
1345 /* MTU probing init per socket */
1346 void tcp_mtup_init(struct sock *sk)
1347 {
1348 struct tcp_sock *tp = tcp_sk(sk);
1349 struct inet_connection_sock *icsk = inet_csk(sk);
1350 struct net *net = sock_net(sk);
1351
1352 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1353 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1354 icsk->icsk_af_ops->net_header_len;
1355 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1356 icsk->icsk_mtup.probe_size = 0;
1357 }
1358 EXPORT_SYMBOL(tcp_mtup_init);
1359
1360 /* This function synchronize snd mss to current pmtu/exthdr set.
1361
1362 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1363 for TCP options, but includes only bare TCP header.
1364
1365 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1366 It is minimum of user_mss and mss received with SYN.
1367 It also does not include TCP options.
1368
1369 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1370
1371 tp->mss_cache is current effective sending mss, including
1372 all tcp options except for SACKs. It is evaluated,
1373 taking into account current pmtu, but never exceeds
1374 tp->rx_opt.mss_clamp.
1375
1376 NOTE1. rfc1122 clearly states that advertised MSS
1377 DOES NOT include either tcp or ip options.
1378
1379 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1380 are READ ONLY outside this function. --ANK (980731)
1381 */
1382 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1383 {
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 struct inet_connection_sock *icsk = inet_csk(sk);
1386 int mss_now;
1387
1388 if (icsk->icsk_mtup.search_high > pmtu)
1389 icsk->icsk_mtup.search_high = pmtu;
1390
1391 mss_now = tcp_mtu_to_mss(sk, pmtu);
1392 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1393
1394 /* And store cached results */
1395 icsk->icsk_pmtu_cookie = pmtu;
1396 if (icsk->icsk_mtup.enabled)
1397 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1398 tp->mss_cache = mss_now;
1399
1400 return mss_now;
1401 }
1402 EXPORT_SYMBOL(tcp_sync_mss);
1403
1404 /* Compute the current effective MSS, taking SACKs and IP options,
1405 * and even PMTU discovery events into account.
1406 */
1407 unsigned int tcp_current_mss(struct sock *sk)
1408 {
1409 const struct tcp_sock *tp = tcp_sk(sk);
1410 const struct dst_entry *dst = __sk_dst_get(sk);
1411 u32 mss_now;
1412 unsigned int header_len;
1413 struct tcp_out_options opts;
1414 struct tcp_md5sig_key *md5;
1415
1416 mss_now = tp->mss_cache;
1417
1418 if (dst) {
1419 u32 mtu = dst_mtu(dst);
1420 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1421 mss_now = tcp_sync_mss(sk, mtu);
1422 }
1423
1424 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1425 sizeof(struct tcphdr);
1426 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1427 * some common options. If this is an odd packet (because we have SACK
1428 * blocks etc) then our calculated header_len will be different, and
1429 * we have to adjust mss_now correspondingly */
1430 if (header_len != tp->tcp_header_len) {
1431 int delta = (int) header_len - tp->tcp_header_len;
1432 mss_now -= delta;
1433 }
1434
1435 return mss_now;
1436 }
1437
1438 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1439 * As additional protections, we do not touch cwnd in retransmission phases,
1440 * and if application hit its sndbuf limit recently.
1441 */
1442 static void tcp_cwnd_application_limited(struct sock *sk)
1443 {
1444 struct tcp_sock *tp = tcp_sk(sk);
1445
1446 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1447 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1448 /* Limited by application or receiver window. */
1449 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1450 u32 win_used = max(tp->snd_cwnd_used, init_win);
1451 if (win_used < tp->snd_cwnd) {
1452 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1453 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1454 }
1455 tp->snd_cwnd_used = 0;
1456 }
1457 tp->snd_cwnd_stamp = tcp_time_stamp;
1458 }
1459
1460 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1461 {
1462 struct tcp_sock *tp = tcp_sk(sk);
1463
1464 /* Track the maximum number of outstanding packets in each
1465 * window, and remember whether we were cwnd-limited then.
1466 */
1467 if (!before(tp->snd_una, tp->max_packets_seq) ||
1468 tp->packets_out > tp->max_packets_out) {
1469 tp->max_packets_out = tp->packets_out;
1470 tp->max_packets_seq = tp->snd_nxt;
1471 tp->is_cwnd_limited = is_cwnd_limited;
1472 }
1473
1474 if (tcp_is_cwnd_limited(sk)) {
1475 /* Network is feed fully. */
1476 tp->snd_cwnd_used = 0;
1477 tp->snd_cwnd_stamp = tcp_time_stamp;
1478 } else {
1479 /* Network starves. */
1480 if (tp->packets_out > tp->snd_cwnd_used)
1481 tp->snd_cwnd_used = tp->packets_out;
1482
1483 if (sysctl_tcp_slow_start_after_idle &&
1484 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1485 tcp_cwnd_application_limited(sk);
1486 }
1487 }
1488
1489 /* Minshall's variant of the Nagle send check. */
1490 static bool tcp_minshall_check(const struct tcp_sock *tp)
1491 {
1492 return after(tp->snd_sml, tp->snd_una) &&
1493 !after(tp->snd_sml, tp->snd_nxt);
1494 }
1495
1496 /* Update snd_sml if this skb is under mss
1497 * Note that a TSO packet might end with a sub-mss segment
1498 * The test is really :
1499 * if ((skb->len % mss) != 0)
1500 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1501 * But we can avoid doing the divide again given we already have
1502 * skb_pcount = skb->len / mss_now
1503 */
1504 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1505 const struct sk_buff *skb)
1506 {
1507 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1508 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1509 }
1510
1511 /* Return false, if packet can be sent now without violation Nagle's rules:
1512 * 1. It is full sized. (provided by caller in %partial bool)
1513 * 2. Or it contains FIN. (already checked by caller)
1514 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1515 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1516 * With Minshall's modification: all sent small packets are ACKed.
1517 */
1518 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1519 int nonagle)
1520 {
1521 return partial &&
1522 ((nonagle & TCP_NAGLE_CORK) ||
1523 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1524 }
1525
1526 /* Return how many segs we'd like on a TSO packet,
1527 * to send one TSO packet per ms
1528 */
1529 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1530 {
1531 u32 bytes, segs;
1532
1533 bytes = min(sk->sk_pacing_rate >> 10,
1534 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1535
1536 /* Goal is to send at least one packet per ms,
1537 * not one big TSO packet every 100 ms.
1538 * This preserves ACK clocking and is consistent
1539 * with tcp_tso_should_defer() heuristic.
1540 */
1541 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1542
1543 return min_t(u32, segs, sk->sk_gso_max_segs);
1544 }
1545
1546 /* Returns the portion of skb which can be sent right away */
1547 static unsigned int tcp_mss_split_point(const struct sock *sk,
1548 const struct sk_buff *skb,
1549 unsigned int mss_now,
1550 unsigned int max_segs,
1551 int nonagle)
1552 {
1553 const struct tcp_sock *tp = tcp_sk(sk);
1554 u32 partial, needed, window, max_len;
1555
1556 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1557 max_len = mss_now * max_segs;
1558
1559 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1560 return max_len;
1561
1562 needed = min(skb->len, window);
1563
1564 if (max_len <= needed)
1565 return max_len;
1566
1567 partial = needed % mss_now;
1568 /* If last segment is not a full MSS, check if Nagle rules allow us
1569 * to include this last segment in this skb.
1570 * Otherwise, we'll split the skb at last MSS boundary
1571 */
1572 if (tcp_nagle_check(partial != 0, tp, nonagle))
1573 return needed - partial;
1574
1575 return needed;
1576 }
1577
1578 /* Can at least one segment of SKB be sent right now, according to the
1579 * congestion window rules? If so, return how many segments are allowed.
1580 */
1581 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1582 const struct sk_buff *skb)
1583 {
1584 u32 in_flight, cwnd, halfcwnd;
1585
1586 /* Don't be strict about the congestion window for the final FIN. */
1587 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1588 tcp_skb_pcount(skb) == 1)
1589 return 1;
1590
1591 in_flight = tcp_packets_in_flight(tp);
1592 cwnd = tp->snd_cwnd;
1593 if (in_flight >= cwnd)
1594 return 0;
1595
1596 /* For better scheduling, ensure we have at least
1597 * 2 GSO packets in flight.
1598 */
1599 halfcwnd = max(cwnd >> 1, 1U);
1600 return min(halfcwnd, cwnd - in_flight);
1601 }
1602
1603 /* Initialize TSO state of a skb.
1604 * This must be invoked the first time we consider transmitting
1605 * SKB onto the wire.
1606 */
1607 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1608 unsigned int mss_now)
1609 {
1610 int tso_segs = tcp_skb_pcount(skb);
1611
1612 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1613 tcp_set_skb_tso_segs(sk, skb, mss_now);
1614 tso_segs = tcp_skb_pcount(skb);
1615 }
1616 return tso_segs;
1617 }
1618
1619
1620 /* Return true if the Nagle test allows this packet to be
1621 * sent now.
1622 */
1623 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1624 unsigned int cur_mss, int nonagle)
1625 {
1626 /* Nagle rule does not apply to frames, which sit in the middle of the
1627 * write_queue (they have no chances to get new data).
1628 *
1629 * This is implemented in the callers, where they modify the 'nonagle'
1630 * argument based upon the location of SKB in the send queue.
1631 */
1632 if (nonagle & TCP_NAGLE_PUSH)
1633 return true;
1634
1635 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1636 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1637 return true;
1638
1639 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1640 return true;
1641
1642 return false;
1643 }
1644
1645 /* Does at least the first segment of SKB fit into the send window? */
1646 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1647 const struct sk_buff *skb,
1648 unsigned int cur_mss)
1649 {
1650 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1651
1652 if (skb->len > cur_mss)
1653 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1654
1655 return !after(end_seq, tcp_wnd_end(tp));
1656 }
1657
1658 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1659 * should be put on the wire right now. If so, it returns the number of
1660 * packets allowed by the congestion window.
1661 */
1662 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1663 unsigned int cur_mss, int nonagle)
1664 {
1665 const struct tcp_sock *tp = tcp_sk(sk);
1666 unsigned int cwnd_quota;
1667
1668 tcp_init_tso_segs(sk, skb, cur_mss);
1669
1670 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1671 return 0;
1672
1673 cwnd_quota = tcp_cwnd_test(tp, skb);
1674 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1675 cwnd_quota = 0;
1676
1677 return cwnd_quota;
1678 }
1679
1680 /* Test if sending is allowed right now. */
1681 bool tcp_may_send_now(struct sock *sk)
1682 {
1683 const struct tcp_sock *tp = tcp_sk(sk);
1684 struct sk_buff *skb = tcp_send_head(sk);
1685
1686 return skb &&
1687 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1688 (tcp_skb_is_last(sk, skb) ?
1689 tp->nonagle : TCP_NAGLE_PUSH));
1690 }
1691
1692 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1693 * which is put after SKB on the list. It is very much like
1694 * tcp_fragment() except that it may make several kinds of assumptions
1695 * in order to speed up the splitting operation. In particular, we
1696 * know that all the data is in scatter-gather pages, and that the
1697 * packet has never been sent out before (and thus is not cloned).
1698 */
1699 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1700 unsigned int mss_now, gfp_t gfp)
1701 {
1702 struct sk_buff *buff;
1703 int nlen = skb->len - len;
1704 u8 flags;
1705
1706 /* All of a TSO frame must be composed of paged data. */
1707 if (skb->len != skb->data_len)
1708 return tcp_fragment(sk, skb, len, mss_now, gfp);
1709
1710 buff = sk_stream_alloc_skb(sk, 0, gfp);
1711 if (unlikely(buff == NULL))
1712 return -ENOMEM;
1713
1714 sk->sk_wmem_queued += buff->truesize;
1715 sk_mem_charge(sk, buff->truesize);
1716 buff->truesize += nlen;
1717 skb->truesize -= nlen;
1718
1719 /* Correct the sequence numbers. */
1720 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1721 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1722 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1723
1724 /* PSH and FIN should only be set in the second packet. */
1725 flags = TCP_SKB_CB(skb)->tcp_flags;
1726 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1727 TCP_SKB_CB(buff)->tcp_flags = flags;
1728
1729 /* This packet was never sent out yet, so no SACK bits. */
1730 TCP_SKB_CB(buff)->sacked = 0;
1731
1732 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1733 skb_split(skb, buff, len);
1734 tcp_fragment_tstamp(skb, buff);
1735
1736 /* Fix up tso_factor for both original and new SKB. */
1737 tcp_set_skb_tso_segs(sk, skb, mss_now);
1738 tcp_set_skb_tso_segs(sk, buff, mss_now);
1739
1740 /* Link BUFF into the send queue. */
1741 __skb_header_release(buff);
1742 tcp_insert_write_queue_after(skb, buff, sk);
1743
1744 return 0;
1745 }
1746
1747 /* Try to defer sending, if possible, in order to minimize the amount
1748 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1749 *
1750 * This algorithm is from John Heffner.
1751 */
1752 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1753 bool *is_cwnd_limited, u32 max_segs)
1754 {
1755 struct tcp_sock *tp = tcp_sk(sk);
1756 const struct inet_connection_sock *icsk = inet_csk(sk);
1757 u32 send_win, cong_win, limit, in_flight;
1758 int win_divisor;
1759
1760 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1761 goto send_now;
1762
1763 if (icsk->icsk_ca_state != TCP_CA_Open)
1764 goto send_now;
1765
1766 /* Defer for less than two clock ticks. */
1767 if (tp->tso_deferred &&
1768 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1769 goto send_now;
1770
1771 in_flight = tcp_packets_in_flight(tp);
1772
1773 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1774
1775 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1776
1777 /* From in_flight test above, we know that cwnd > in_flight. */
1778 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1779
1780 limit = min(send_win, cong_win);
1781
1782 /* If a full-sized TSO skb can be sent, do it. */
1783 if (limit >= max_segs * tp->mss_cache)
1784 goto send_now;
1785
1786 /* Middle in queue won't get any more data, full sendable already? */
1787 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1788 goto send_now;
1789
1790 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1791 if (win_divisor) {
1792 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1793
1794 /* If at least some fraction of a window is available,
1795 * just use it.
1796 */
1797 chunk /= win_divisor;
1798 if (limit >= chunk)
1799 goto send_now;
1800 } else {
1801 /* Different approach, try not to defer past a single
1802 * ACK. Receiver should ACK every other full sized
1803 * frame, so if we have space for more than 3 frames
1804 * then send now.
1805 */
1806 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1807 goto send_now;
1808 }
1809
1810 /* Ok, it looks like it is advisable to defer.
1811 * Do not rearm the timer if already set to not break TCP ACK clocking.
1812 */
1813 if (!tp->tso_deferred)
1814 tp->tso_deferred = 1 | (jiffies << 1);
1815
1816 if (cong_win < send_win && cong_win < skb->len)
1817 *is_cwnd_limited = true;
1818
1819 return true;
1820
1821 send_now:
1822 tp->tso_deferred = 0;
1823 return false;
1824 }
1825
1826 /* Create a new MTU probe if we are ready.
1827 * MTU probe is regularly attempting to increase the path MTU by
1828 * deliberately sending larger packets. This discovers routing
1829 * changes resulting in larger path MTUs.
1830 *
1831 * Returns 0 if we should wait to probe (no cwnd available),
1832 * 1 if a probe was sent,
1833 * -1 otherwise
1834 */
1835 static int tcp_mtu_probe(struct sock *sk)
1836 {
1837 struct tcp_sock *tp = tcp_sk(sk);
1838 struct inet_connection_sock *icsk = inet_csk(sk);
1839 struct sk_buff *skb, *nskb, *next;
1840 int len;
1841 int probe_size;
1842 int size_needed;
1843 int copy;
1844 int mss_now;
1845
1846 /* Not currently probing/verifying,
1847 * not in recovery,
1848 * have enough cwnd, and
1849 * not SACKing (the variable headers throw things off) */
1850 if (!icsk->icsk_mtup.enabled ||
1851 icsk->icsk_mtup.probe_size ||
1852 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1853 tp->snd_cwnd < 11 ||
1854 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1855 return -1;
1856
1857 /* Very simple search strategy: just double the MSS. */
1858 mss_now = tcp_current_mss(sk);
1859 probe_size = 2 * tp->mss_cache;
1860 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1861 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1862 /* TODO: set timer for probe_converge_event */
1863 return -1;
1864 }
1865
1866 /* Have enough data in the send queue to probe? */
1867 if (tp->write_seq - tp->snd_nxt < size_needed)
1868 return -1;
1869
1870 if (tp->snd_wnd < size_needed)
1871 return -1;
1872 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1873 return 0;
1874
1875 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1876 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1877 if (!tcp_packets_in_flight(tp))
1878 return -1;
1879 else
1880 return 0;
1881 }
1882
1883 /* We're allowed to probe. Build it now. */
1884 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1885 return -1;
1886 sk->sk_wmem_queued += nskb->truesize;
1887 sk_mem_charge(sk, nskb->truesize);
1888
1889 skb = tcp_send_head(sk);
1890
1891 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1892 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1893 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1894 TCP_SKB_CB(nskb)->sacked = 0;
1895 nskb->csum = 0;
1896 nskb->ip_summed = skb->ip_summed;
1897
1898 tcp_insert_write_queue_before(nskb, skb, sk);
1899
1900 len = 0;
1901 tcp_for_write_queue_from_safe(skb, next, sk) {
1902 copy = min_t(int, skb->len, probe_size - len);
1903 if (nskb->ip_summed)
1904 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1905 else
1906 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1907 skb_put(nskb, copy),
1908 copy, nskb->csum);
1909
1910 if (skb->len <= copy) {
1911 /* We've eaten all the data from this skb.
1912 * Throw it away. */
1913 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1914 tcp_unlink_write_queue(skb, sk);
1915 sk_wmem_free_skb(sk, skb);
1916 } else {
1917 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1918 ~(TCPHDR_FIN|TCPHDR_PSH);
1919 if (!skb_shinfo(skb)->nr_frags) {
1920 skb_pull(skb, copy);
1921 if (skb->ip_summed != CHECKSUM_PARTIAL)
1922 skb->csum = csum_partial(skb->data,
1923 skb->len, 0);
1924 } else {
1925 __pskb_trim_head(skb, copy);
1926 tcp_set_skb_tso_segs(sk, skb, mss_now);
1927 }
1928 TCP_SKB_CB(skb)->seq += copy;
1929 }
1930
1931 len += copy;
1932
1933 if (len >= probe_size)
1934 break;
1935 }
1936 tcp_init_tso_segs(sk, nskb, nskb->len);
1937
1938 /* We're ready to send. If this fails, the probe will
1939 * be resegmented into mss-sized pieces by tcp_write_xmit().
1940 */
1941 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1942 /* Decrement cwnd here because we are sending
1943 * effectively two packets. */
1944 tp->snd_cwnd--;
1945 tcp_event_new_data_sent(sk, nskb);
1946
1947 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1948 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1949 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1950
1951 return 1;
1952 }
1953
1954 return -1;
1955 }
1956
1957 /* This routine writes packets to the network. It advances the
1958 * send_head. This happens as incoming acks open up the remote
1959 * window for us.
1960 *
1961 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1962 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1963 * account rare use of URG, this is not a big flaw.
1964 *
1965 * Send at most one packet when push_one > 0. Temporarily ignore
1966 * cwnd limit to force at most one packet out when push_one == 2.
1967
1968 * Returns true, if no segments are in flight and we have queued segments,
1969 * but cannot send anything now because of SWS or another problem.
1970 */
1971 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1972 int push_one, gfp_t gfp)
1973 {
1974 struct tcp_sock *tp = tcp_sk(sk);
1975 struct sk_buff *skb;
1976 unsigned int tso_segs, sent_pkts;
1977 int cwnd_quota;
1978 int result;
1979 bool is_cwnd_limited = false;
1980 u32 max_segs;
1981
1982 sent_pkts = 0;
1983
1984 if (!push_one) {
1985 /* Do MTU probing. */
1986 result = tcp_mtu_probe(sk);
1987 if (!result) {
1988 return false;
1989 } else if (result > 0) {
1990 sent_pkts = 1;
1991 }
1992 }
1993
1994 max_segs = tcp_tso_autosize(sk, mss_now);
1995 while ((skb = tcp_send_head(sk))) {
1996 unsigned int limit;
1997
1998 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1999 BUG_ON(!tso_segs);
2000
2001 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2002 /* "skb_mstamp" is used as a start point for the retransmit timer */
2003 skb_mstamp_get(&skb->skb_mstamp);
2004 goto repair; /* Skip network transmission */
2005 }
2006
2007 cwnd_quota = tcp_cwnd_test(tp, skb);
2008 if (!cwnd_quota) {
2009 is_cwnd_limited = true;
2010 if (push_one == 2)
2011 /* Force out a loss probe pkt. */
2012 cwnd_quota = 1;
2013 else
2014 break;
2015 }
2016
2017 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2018 break;
2019
2020 if (tso_segs == 1 || !max_segs) {
2021 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2022 (tcp_skb_is_last(sk, skb) ?
2023 nonagle : TCP_NAGLE_PUSH))))
2024 break;
2025 } else {
2026 if (!push_one &&
2027 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2028 max_segs))
2029 break;
2030 }
2031
2032 limit = mss_now;
2033 if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp))
2034 limit = tcp_mss_split_point(sk, skb, mss_now,
2035 min_t(unsigned int,
2036 cwnd_quota,
2037 max_segs),
2038 nonagle);
2039
2040 if (skb->len > limit &&
2041 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2042 break;
2043
2044 /* TCP Small Queues :
2045 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2046 * This allows for :
2047 * - better RTT estimation and ACK scheduling
2048 * - faster recovery
2049 * - high rates
2050 * Alas, some drivers / subsystems require a fair amount
2051 * of queued bytes to ensure line rate.
2052 * One example is wifi aggregation (802.11 AMPDU)
2053 */
2054 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2055 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2056
2057 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2058 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2059 /* It is possible TX completion already happened
2060 * before we set TSQ_THROTTLED, so we must
2061 * test again the condition.
2062 */
2063 smp_mb__after_atomic();
2064 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2065 break;
2066 }
2067
2068 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2069 break;
2070
2071 repair:
2072 /* Advance the send_head. This one is sent out.
2073 * This call will increment packets_out.
2074 */
2075 tcp_event_new_data_sent(sk, skb);
2076
2077 tcp_minshall_update(tp, mss_now, skb);
2078 sent_pkts += tcp_skb_pcount(skb);
2079
2080 if (push_one)
2081 break;
2082 }
2083
2084 if (likely(sent_pkts)) {
2085 if (tcp_in_cwnd_reduction(sk))
2086 tp->prr_out += sent_pkts;
2087
2088 /* Send one loss probe per tail loss episode. */
2089 if (push_one != 2)
2090 tcp_schedule_loss_probe(sk);
2091 tcp_cwnd_validate(sk, is_cwnd_limited);
2092 return false;
2093 }
2094 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2095 }
2096
2097 bool tcp_schedule_loss_probe(struct sock *sk)
2098 {
2099 struct inet_connection_sock *icsk = inet_csk(sk);
2100 struct tcp_sock *tp = tcp_sk(sk);
2101 u32 timeout, tlp_time_stamp, rto_time_stamp;
2102 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2103
2104 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2105 return false;
2106 /* No consecutive loss probes. */
2107 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2108 tcp_rearm_rto(sk);
2109 return false;
2110 }
2111 /* Don't do any loss probe on a Fast Open connection before 3WHS
2112 * finishes.
2113 */
2114 if (sk->sk_state == TCP_SYN_RECV)
2115 return false;
2116
2117 /* TLP is only scheduled when next timer event is RTO. */
2118 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2119 return false;
2120
2121 /* Schedule a loss probe in 2*RTT for SACK capable connections
2122 * in Open state, that are either limited by cwnd or application.
2123 */
2124 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2125 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2126 return false;
2127
2128 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2129 tcp_send_head(sk))
2130 return false;
2131
2132 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2133 * for delayed ack when there's one outstanding packet.
2134 */
2135 timeout = rtt << 1;
2136 if (tp->packets_out == 1)
2137 timeout = max_t(u32, timeout,
2138 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2139 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2140
2141 /* If RTO is shorter, just schedule TLP in its place. */
2142 tlp_time_stamp = tcp_time_stamp + timeout;
2143 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2144 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2145 s32 delta = rto_time_stamp - tcp_time_stamp;
2146 if (delta > 0)
2147 timeout = delta;
2148 }
2149
2150 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2151 TCP_RTO_MAX);
2152 return true;
2153 }
2154
2155 /* Thanks to skb fast clones, we can detect if a prior transmit of
2156 * a packet is still in a qdisc or driver queue.
2157 * In this case, there is very little point doing a retransmit !
2158 * Note: This is called from BH context only.
2159 */
2160 static bool skb_still_in_host_queue(const struct sock *sk,
2161 const struct sk_buff *skb)
2162 {
2163 if (unlikely(skb_fclone_busy(sk, skb))) {
2164 NET_INC_STATS_BH(sock_net(sk),
2165 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2166 return true;
2167 }
2168 return false;
2169 }
2170
2171 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2172 * retransmit the last segment.
2173 */
2174 void tcp_send_loss_probe(struct sock *sk)
2175 {
2176 struct tcp_sock *tp = tcp_sk(sk);
2177 struct sk_buff *skb;
2178 int pcount;
2179 int mss = tcp_current_mss(sk);
2180 int err = -1;
2181
2182 if (tcp_send_head(sk) != NULL) {
2183 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2184 goto rearm_timer;
2185 }
2186
2187 /* At most one outstanding TLP retransmission. */
2188 if (tp->tlp_high_seq)
2189 goto rearm_timer;
2190
2191 /* Retransmit last segment. */
2192 skb = tcp_write_queue_tail(sk);
2193 if (WARN_ON(!skb))
2194 goto rearm_timer;
2195
2196 if (skb_still_in_host_queue(sk, skb))
2197 goto rearm_timer;
2198
2199 pcount = tcp_skb_pcount(skb);
2200 if (WARN_ON(!pcount))
2201 goto rearm_timer;
2202
2203 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2204 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2205 GFP_ATOMIC)))
2206 goto rearm_timer;
2207 skb = tcp_write_queue_tail(sk);
2208 }
2209
2210 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2211 goto rearm_timer;
2212
2213 err = __tcp_retransmit_skb(sk, skb);
2214
2215 /* Record snd_nxt for loss detection. */
2216 if (likely(!err))
2217 tp->tlp_high_seq = tp->snd_nxt;
2218
2219 rearm_timer:
2220 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2221 inet_csk(sk)->icsk_rto,
2222 TCP_RTO_MAX);
2223
2224 if (likely(!err))
2225 NET_INC_STATS_BH(sock_net(sk),
2226 LINUX_MIB_TCPLOSSPROBES);
2227 }
2228
2229 /* Push out any pending frames which were held back due to
2230 * TCP_CORK or attempt at coalescing tiny packets.
2231 * The socket must be locked by the caller.
2232 */
2233 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2234 int nonagle)
2235 {
2236 /* If we are closed, the bytes will have to remain here.
2237 * In time closedown will finish, we empty the write queue and
2238 * all will be happy.
2239 */
2240 if (unlikely(sk->sk_state == TCP_CLOSE))
2241 return;
2242
2243 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2244 sk_gfp_atomic(sk, GFP_ATOMIC)))
2245 tcp_check_probe_timer(sk);
2246 }
2247
2248 /* Send _single_ skb sitting at the send head. This function requires
2249 * true push pending frames to setup probe timer etc.
2250 */
2251 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2252 {
2253 struct sk_buff *skb = tcp_send_head(sk);
2254
2255 BUG_ON(!skb || skb->len < mss_now);
2256
2257 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2258 }
2259
2260 /* This function returns the amount that we can raise the
2261 * usable window based on the following constraints
2262 *
2263 * 1. The window can never be shrunk once it is offered (RFC 793)
2264 * 2. We limit memory per socket
2265 *
2266 * RFC 1122:
2267 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2268 * RECV.NEXT + RCV.WIN fixed until:
2269 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2270 *
2271 * i.e. don't raise the right edge of the window until you can raise
2272 * it at least MSS bytes.
2273 *
2274 * Unfortunately, the recommended algorithm breaks header prediction,
2275 * since header prediction assumes th->window stays fixed.
2276 *
2277 * Strictly speaking, keeping th->window fixed violates the receiver
2278 * side SWS prevention criteria. The problem is that under this rule
2279 * a stream of single byte packets will cause the right side of the
2280 * window to always advance by a single byte.
2281 *
2282 * Of course, if the sender implements sender side SWS prevention
2283 * then this will not be a problem.
2284 *
2285 * BSD seems to make the following compromise:
2286 *
2287 * If the free space is less than the 1/4 of the maximum
2288 * space available and the free space is less than 1/2 mss,
2289 * then set the window to 0.
2290 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2291 * Otherwise, just prevent the window from shrinking
2292 * and from being larger than the largest representable value.
2293 *
2294 * This prevents incremental opening of the window in the regime
2295 * where TCP is limited by the speed of the reader side taking
2296 * data out of the TCP receive queue. It does nothing about
2297 * those cases where the window is constrained on the sender side
2298 * because the pipeline is full.
2299 *
2300 * BSD also seems to "accidentally" limit itself to windows that are a
2301 * multiple of MSS, at least until the free space gets quite small.
2302 * This would appear to be a side effect of the mbuf implementation.
2303 * Combining these two algorithms results in the observed behavior
2304 * of having a fixed window size at almost all times.
2305 *
2306 * Below we obtain similar behavior by forcing the offered window to
2307 * a multiple of the mss when it is feasible to do so.
2308 *
2309 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2310 * Regular options like TIMESTAMP are taken into account.
2311 */
2312 u32 __tcp_select_window(struct sock *sk)
2313 {
2314 struct inet_connection_sock *icsk = inet_csk(sk);
2315 struct tcp_sock *tp = tcp_sk(sk);
2316 /* MSS for the peer's data. Previous versions used mss_clamp
2317 * here. I don't know if the value based on our guesses
2318 * of peer's MSS is better for the performance. It's more correct
2319 * but may be worse for the performance because of rcv_mss
2320 * fluctuations. --SAW 1998/11/1
2321 */
2322 int mss = icsk->icsk_ack.rcv_mss;
2323 int free_space = tcp_space(sk);
2324 int allowed_space = tcp_full_space(sk);
2325 int full_space = min_t(int, tp->window_clamp, allowed_space);
2326 int window;
2327
2328 if (mss > full_space)
2329 mss = full_space;
2330
2331 if (free_space < (full_space >> 1)) {
2332 icsk->icsk_ack.quick = 0;
2333
2334 if (sk_under_memory_pressure(sk))
2335 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2336 4U * tp->advmss);
2337
2338 /* free_space might become our new window, make sure we don't
2339 * increase it due to wscale.
2340 */
2341 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2342
2343 /* if free space is less than mss estimate, or is below 1/16th
2344 * of the maximum allowed, try to move to zero-window, else
2345 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2346 * new incoming data is dropped due to memory limits.
2347 * With large window, mss test triggers way too late in order
2348 * to announce zero window in time before rmem limit kicks in.
2349 */
2350 if (free_space < (allowed_space >> 4) || free_space < mss)
2351 return 0;
2352 }
2353
2354 if (free_space > tp->rcv_ssthresh)
2355 free_space = tp->rcv_ssthresh;
2356
2357 /* Don't do rounding if we are using window scaling, since the
2358 * scaled window will not line up with the MSS boundary anyway.
2359 */
2360 window = tp->rcv_wnd;
2361 if (tp->rx_opt.rcv_wscale) {
2362 window = free_space;
2363
2364 /* Advertise enough space so that it won't get scaled away.
2365 * Import case: prevent zero window announcement if
2366 * 1<<rcv_wscale > mss.
2367 */
2368 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2369 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2370 << tp->rx_opt.rcv_wscale);
2371 } else {
2372 /* Get the largest window that is a nice multiple of mss.
2373 * Window clamp already applied above.
2374 * If our current window offering is within 1 mss of the
2375 * free space we just keep it. This prevents the divide
2376 * and multiply from happening most of the time.
2377 * We also don't do any window rounding when the free space
2378 * is too small.
2379 */
2380 if (window <= free_space - mss || window > free_space)
2381 window = (free_space / mss) * mss;
2382 else if (mss == full_space &&
2383 free_space > window + (full_space >> 1))
2384 window = free_space;
2385 }
2386
2387 return window;
2388 }
2389
2390 /* Collapses two adjacent SKB's during retransmission. */
2391 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2392 {
2393 struct tcp_sock *tp = tcp_sk(sk);
2394 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2395 int skb_size, next_skb_size;
2396
2397 skb_size = skb->len;
2398 next_skb_size = next_skb->len;
2399
2400 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2401
2402 tcp_highest_sack_combine(sk, next_skb, skb);
2403
2404 tcp_unlink_write_queue(next_skb, sk);
2405
2406 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2407 next_skb_size);
2408
2409 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2410 skb->ip_summed = CHECKSUM_PARTIAL;
2411
2412 if (skb->ip_summed != CHECKSUM_PARTIAL)
2413 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2414
2415 /* Update sequence range on original skb. */
2416 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2417
2418 /* Merge over control information. This moves PSH/FIN etc. over */
2419 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2420
2421 /* All done, get rid of second SKB and account for it so
2422 * packet counting does not break.
2423 */
2424 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2425
2426 /* changed transmit queue under us so clear hints */
2427 tcp_clear_retrans_hints_partial(tp);
2428 if (next_skb == tp->retransmit_skb_hint)
2429 tp->retransmit_skb_hint = skb;
2430
2431 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2432
2433 sk_wmem_free_skb(sk, next_skb);
2434 }
2435
2436 /* Check if coalescing SKBs is legal. */
2437 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2438 {
2439 if (tcp_skb_pcount(skb) > 1)
2440 return false;
2441 /* TODO: SACK collapsing could be used to remove this condition */
2442 if (skb_shinfo(skb)->nr_frags != 0)
2443 return false;
2444 if (skb_cloned(skb))
2445 return false;
2446 if (skb == tcp_send_head(sk))
2447 return false;
2448 /* Some heurestics for collapsing over SACK'd could be invented */
2449 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2450 return false;
2451
2452 return true;
2453 }
2454
2455 /* Collapse packets in the retransmit queue to make to create
2456 * less packets on the wire. This is only done on retransmission.
2457 */
2458 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2459 int space)
2460 {
2461 struct tcp_sock *tp = tcp_sk(sk);
2462 struct sk_buff *skb = to, *tmp;
2463 bool first = true;
2464
2465 if (!sysctl_tcp_retrans_collapse)
2466 return;
2467 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2468 return;
2469
2470 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2471 if (!tcp_can_collapse(sk, skb))
2472 break;
2473
2474 space -= skb->len;
2475
2476 if (first) {
2477 first = false;
2478 continue;
2479 }
2480
2481 if (space < 0)
2482 break;
2483 /* Punt if not enough space exists in the first SKB for
2484 * the data in the second
2485 */
2486 if (skb->len > skb_availroom(to))
2487 break;
2488
2489 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2490 break;
2491
2492 tcp_collapse_retrans(sk, to);
2493 }
2494 }
2495
2496 /* This retransmits one SKB. Policy decisions and retransmit queue
2497 * state updates are done by the caller. Returns non-zero if an
2498 * error occurred which prevented the send.
2499 */
2500 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2501 {
2502 struct tcp_sock *tp = tcp_sk(sk);
2503 struct inet_connection_sock *icsk = inet_csk(sk);
2504 unsigned int cur_mss;
2505 int err;
2506
2507 /* Inconslusive MTU probe */
2508 if (icsk->icsk_mtup.probe_size) {
2509 icsk->icsk_mtup.probe_size = 0;
2510 }
2511
2512 /* Do not sent more than we queued. 1/4 is reserved for possible
2513 * copying overhead: fragmentation, tunneling, mangling etc.
2514 */
2515 if (atomic_read(&sk->sk_wmem_alloc) >
2516 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2517 return -EAGAIN;
2518
2519 if (skb_still_in_host_queue(sk, skb))
2520 return -EBUSY;
2521
2522 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2523 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2524 BUG();
2525 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2526 return -ENOMEM;
2527 }
2528
2529 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2530 return -EHOSTUNREACH; /* Routing failure or similar. */
2531
2532 cur_mss = tcp_current_mss(sk);
2533
2534 /* If receiver has shrunk his window, and skb is out of
2535 * new window, do not retransmit it. The exception is the
2536 * case, when window is shrunk to zero. In this case
2537 * our retransmit serves as a zero window probe.
2538 */
2539 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2540 TCP_SKB_CB(skb)->seq != tp->snd_una)
2541 return -EAGAIN;
2542
2543 if (skb->len > cur_mss) {
2544 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2545 return -ENOMEM; /* We'll try again later. */
2546 } else {
2547 int oldpcount = tcp_skb_pcount(skb);
2548
2549 if (unlikely(oldpcount > 1)) {
2550 if (skb_unclone(skb, GFP_ATOMIC))
2551 return -ENOMEM;
2552 tcp_init_tso_segs(sk, skb, cur_mss);
2553 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2554 }
2555 }
2556
2557 tcp_retrans_try_collapse(sk, skb, cur_mss);
2558
2559 /* Make a copy, if the first transmission SKB clone we made
2560 * is still in somebody's hands, else make a clone.
2561 */
2562
2563 /* make sure skb->data is aligned on arches that require it
2564 * and check if ack-trimming & collapsing extended the headroom
2565 * beyond what csum_start can cover.
2566 */
2567 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2568 skb_headroom(skb) >= 0xFFFF)) {
2569 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2570 GFP_ATOMIC);
2571 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2572 -ENOBUFS;
2573 } else {
2574 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2575 }
2576
2577 if (likely(!err)) {
2578 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2579 /* Update global TCP statistics. */
2580 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2581 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2582 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2583 tp->total_retrans++;
2584 }
2585 return err;
2586 }
2587
2588 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2589 {
2590 struct tcp_sock *tp = tcp_sk(sk);
2591 int err = __tcp_retransmit_skb(sk, skb);
2592
2593 if (err == 0) {
2594 #if FASTRETRANS_DEBUG > 0
2595 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2596 net_dbg_ratelimited("retrans_out leaked\n");
2597 }
2598 #endif
2599 if (!tp->retrans_out)
2600 tp->lost_retrans_low = tp->snd_nxt;
2601 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2602 tp->retrans_out += tcp_skb_pcount(skb);
2603
2604 /* Save stamp of the first retransmit. */
2605 if (!tp->retrans_stamp)
2606 tp->retrans_stamp = tcp_skb_timestamp(skb);
2607
2608 /* snd_nxt is stored to detect loss of retransmitted segment,
2609 * see tcp_input.c tcp_sacktag_write_queue().
2610 */
2611 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2612 } else if (err != -EBUSY) {
2613 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2614 }
2615
2616 if (tp->undo_retrans < 0)
2617 tp->undo_retrans = 0;
2618 tp->undo_retrans += tcp_skb_pcount(skb);
2619 return err;
2620 }
2621
2622 /* Check if we forward retransmits are possible in the current
2623 * window/congestion state.
2624 */
2625 static bool tcp_can_forward_retransmit(struct sock *sk)
2626 {
2627 const struct inet_connection_sock *icsk = inet_csk(sk);
2628 const struct tcp_sock *tp = tcp_sk(sk);
2629
2630 /* Forward retransmissions are possible only during Recovery. */
2631 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2632 return false;
2633
2634 /* No forward retransmissions in Reno are possible. */
2635 if (tcp_is_reno(tp))
2636 return false;
2637
2638 /* Yeah, we have to make difficult choice between forward transmission
2639 * and retransmission... Both ways have their merits...
2640 *
2641 * For now we do not retransmit anything, while we have some new
2642 * segments to send. In the other cases, follow rule 3 for
2643 * NextSeg() specified in RFC3517.
2644 */
2645
2646 if (tcp_may_send_now(sk))
2647 return false;
2648
2649 return true;
2650 }
2651
2652 /* This gets called after a retransmit timeout, and the initially
2653 * retransmitted data is acknowledged. It tries to continue
2654 * resending the rest of the retransmit queue, until either
2655 * we've sent it all or the congestion window limit is reached.
2656 * If doing SACK, the first ACK which comes back for a timeout
2657 * based retransmit packet might feed us FACK information again.
2658 * If so, we use it to avoid unnecessarily retransmissions.
2659 */
2660 void tcp_xmit_retransmit_queue(struct sock *sk)
2661 {
2662 const struct inet_connection_sock *icsk = inet_csk(sk);
2663 struct tcp_sock *tp = tcp_sk(sk);
2664 struct sk_buff *skb;
2665 struct sk_buff *hole = NULL;
2666 u32 last_lost;
2667 int mib_idx;
2668 int fwd_rexmitting = 0;
2669
2670 if (!tp->packets_out)
2671 return;
2672
2673 if (!tp->lost_out)
2674 tp->retransmit_high = tp->snd_una;
2675
2676 if (tp->retransmit_skb_hint) {
2677 skb = tp->retransmit_skb_hint;
2678 last_lost = TCP_SKB_CB(skb)->end_seq;
2679 if (after(last_lost, tp->retransmit_high))
2680 last_lost = tp->retransmit_high;
2681 } else {
2682 skb = tcp_write_queue_head(sk);
2683 last_lost = tp->snd_una;
2684 }
2685
2686 tcp_for_write_queue_from(skb, sk) {
2687 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2688
2689 if (skb == tcp_send_head(sk))
2690 break;
2691 /* we could do better than to assign each time */
2692 if (hole == NULL)
2693 tp->retransmit_skb_hint = skb;
2694
2695 /* Assume this retransmit will generate
2696 * only one packet for congestion window
2697 * calculation purposes. This works because
2698 * tcp_retransmit_skb() will chop up the
2699 * packet to be MSS sized and all the
2700 * packet counting works out.
2701 */
2702 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2703 return;
2704
2705 if (fwd_rexmitting) {
2706 begin_fwd:
2707 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2708 break;
2709 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2710
2711 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2712 tp->retransmit_high = last_lost;
2713 if (!tcp_can_forward_retransmit(sk))
2714 break;
2715 /* Backtrack if necessary to non-L'ed skb */
2716 if (hole != NULL) {
2717 skb = hole;
2718 hole = NULL;
2719 }
2720 fwd_rexmitting = 1;
2721 goto begin_fwd;
2722
2723 } else if (!(sacked & TCPCB_LOST)) {
2724 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2725 hole = skb;
2726 continue;
2727
2728 } else {
2729 last_lost = TCP_SKB_CB(skb)->end_seq;
2730 if (icsk->icsk_ca_state != TCP_CA_Loss)
2731 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2732 else
2733 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2734 }
2735
2736 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2737 continue;
2738
2739 if (tcp_retransmit_skb(sk, skb))
2740 return;
2741
2742 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2743
2744 if (tcp_in_cwnd_reduction(sk))
2745 tp->prr_out += tcp_skb_pcount(skb);
2746
2747 if (skb == tcp_write_queue_head(sk))
2748 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2749 inet_csk(sk)->icsk_rto,
2750 TCP_RTO_MAX);
2751 }
2752 }
2753
2754 /* Send a fin. The caller locks the socket for us. This cannot be
2755 * allowed to fail queueing a FIN frame under any circumstances.
2756 */
2757 void tcp_send_fin(struct sock *sk)
2758 {
2759 struct tcp_sock *tp = tcp_sk(sk);
2760 struct sk_buff *skb = tcp_write_queue_tail(sk);
2761 int mss_now;
2762
2763 /* Optimization, tack on the FIN if we have a queue of
2764 * unsent frames. But be careful about outgoing SACKS
2765 * and IP options.
2766 */
2767 mss_now = tcp_current_mss(sk);
2768
2769 if (tcp_send_head(sk) != NULL) {
2770 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2771 TCP_SKB_CB(skb)->end_seq++;
2772 tp->write_seq++;
2773 } else {
2774 /* Socket is locked, keep trying until memory is available. */
2775 for (;;) {
2776 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
2777 if (skb)
2778 break;
2779 yield();
2780 }
2781 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2782 tcp_init_nondata_skb(skb, tp->write_seq,
2783 TCPHDR_ACK | TCPHDR_FIN);
2784 tcp_queue_skb(sk, skb);
2785 }
2786 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2787 }
2788
2789 /* We get here when a process closes a file descriptor (either due to
2790 * an explicit close() or as a byproduct of exit()'ing) and there
2791 * was unread data in the receive queue. This behavior is recommended
2792 * by RFC 2525, section 2.17. -DaveM
2793 */
2794 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2795 {
2796 struct sk_buff *skb;
2797
2798 /* NOTE: No TCP options attached and we never retransmit this. */
2799 skb = alloc_skb(MAX_TCP_HEADER, priority);
2800 if (!skb) {
2801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2802 return;
2803 }
2804
2805 /* Reserve space for headers and prepare control bits. */
2806 skb_reserve(skb, MAX_TCP_HEADER);
2807 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2808 TCPHDR_ACK | TCPHDR_RST);
2809 /* Send it off. */
2810 if (tcp_transmit_skb(sk, skb, 0, priority))
2811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2812
2813 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2814 }
2815
2816 /* Send a crossed SYN-ACK during socket establishment.
2817 * WARNING: This routine must only be called when we have already sent
2818 * a SYN packet that crossed the incoming SYN that caused this routine
2819 * to get called. If this assumption fails then the initial rcv_wnd
2820 * and rcv_wscale values will not be correct.
2821 */
2822 int tcp_send_synack(struct sock *sk)
2823 {
2824 struct sk_buff *skb;
2825
2826 skb = tcp_write_queue_head(sk);
2827 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2828 pr_debug("%s: wrong queue state\n", __func__);
2829 return -EFAULT;
2830 }
2831 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2832 if (skb_cloned(skb)) {
2833 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2834 if (nskb == NULL)
2835 return -ENOMEM;
2836 tcp_unlink_write_queue(skb, sk);
2837 __skb_header_release(nskb);
2838 __tcp_add_write_queue_head(sk, nskb);
2839 sk_wmem_free_skb(sk, skb);
2840 sk->sk_wmem_queued += nskb->truesize;
2841 sk_mem_charge(sk, nskb->truesize);
2842 skb = nskb;
2843 }
2844
2845 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2846 tcp_ecn_send_synack(sk, skb);
2847 }
2848 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2849 }
2850
2851 /**
2852 * tcp_make_synack - Prepare a SYN-ACK.
2853 * sk: listener socket
2854 * dst: dst entry attached to the SYNACK
2855 * req: request_sock pointer
2856 *
2857 * Allocate one skb and build a SYNACK packet.
2858 * @dst is consumed : Caller should not use it again.
2859 */
2860 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2861 struct request_sock *req,
2862 struct tcp_fastopen_cookie *foc)
2863 {
2864 struct tcp_out_options opts;
2865 struct inet_request_sock *ireq = inet_rsk(req);
2866 struct tcp_sock *tp = tcp_sk(sk);
2867 struct tcphdr *th;
2868 struct sk_buff *skb;
2869 struct tcp_md5sig_key *md5;
2870 int tcp_header_size;
2871 int mss;
2872
2873 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2874 if (unlikely(!skb)) {
2875 dst_release(dst);
2876 return NULL;
2877 }
2878 /* Reserve space for headers. */
2879 skb_reserve(skb, MAX_TCP_HEADER);
2880
2881 skb_dst_set(skb, dst);
2882 security_skb_owned_by(skb, sk);
2883
2884 mss = dst_metric_advmss(dst);
2885 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2886 mss = tp->rx_opt.user_mss;
2887
2888 memset(&opts, 0, sizeof(opts));
2889 #ifdef CONFIG_SYN_COOKIES
2890 if (unlikely(req->cookie_ts))
2891 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2892 else
2893 #endif
2894 skb_mstamp_get(&skb->skb_mstamp);
2895 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2896 foc) + sizeof(*th);
2897
2898 skb_push(skb, tcp_header_size);
2899 skb_reset_transport_header(skb);
2900
2901 th = tcp_hdr(skb);
2902 memset(th, 0, sizeof(struct tcphdr));
2903 th->syn = 1;
2904 th->ack = 1;
2905 tcp_ecn_make_synack(req, th, sk);
2906 th->source = htons(ireq->ir_num);
2907 th->dest = ireq->ir_rmt_port;
2908 /* Setting of flags are superfluous here for callers (and ECE is
2909 * not even correctly set)
2910 */
2911 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2912 TCPHDR_SYN | TCPHDR_ACK);
2913
2914 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2915 /* XXX data is queued and acked as is. No buffer/window check */
2916 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2917
2918 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2919 th->window = htons(min(req->rcv_wnd, 65535U));
2920 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2921 th->doff = (tcp_header_size >> 2);
2922 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2923
2924 #ifdef CONFIG_TCP_MD5SIG
2925 /* Okay, we have all we need - do the md5 hash if needed */
2926 if (md5) {
2927 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2928 md5, NULL, req, skb);
2929 }
2930 #endif
2931
2932 return skb;
2933 }
2934 EXPORT_SYMBOL(tcp_make_synack);
2935
2936 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
2937 {
2938 struct inet_connection_sock *icsk = inet_csk(sk);
2939 const struct tcp_congestion_ops *ca;
2940 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
2941
2942 if (ca_key == TCP_CA_UNSPEC)
2943 return;
2944
2945 rcu_read_lock();
2946 ca = tcp_ca_find_key(ca_key);
2947 if (likely(ca && try_module_get(ca->owner))) {
2948 module_put(icsk->icsk_ca_ops->owner);
2949 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
2950 icsk->icsk_ca_ops = ca;
2951 }
2952 rcu_read_unlock();
2953 }
2954
2955 /* Do all connect socket setups that can be done AF independent. */
2956 static void tcp_connect_init(struct sock *sk)
2957 {
2958 const struct dst_entry *dst = __sk_dst_get(sk);
2959 struct tcp_sock *tp = tcp_sk(sk);
2960 __u8 rcv_wscale;
2961
2962 /* We'll fix this up when we get a response from the other end.
2963 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2964 */
2965 tp->tcp_header_len = sizeof(struct tcphdr) +
2966 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2967
2968 #ifdef CONFIG_TCP_MD5SIG
2969 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2970 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2971 #endif
2972
2973 /* If user gave his TCP_MAXSEG, record it to clamp */
2974 if (tp->rx_opt.user_mss)
2975 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2976 tp->max_window = 0;
2977 tcp_mtup_init(sk);
2978 tcp_sync_mss(sk, dst_mtu(dst));
2979
2980 tcp_ca_dst_init(sk, dst);
2981
2982 if (!tp->window_clamp)
2983 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2984 tp->advmss = dst_metric_advmss(dst);
2985 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2986 tp->advmss = tp->rx_opt.user_mss;
2987
2988 tcp_initialize_rcv_mss(sk);
2989
2990 /* limit the window selection if the user enforce a smaller rx buffer */
2991 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2992 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2993 tp->window_clamp = tcp_full_space(sk);
2994
2995 tcp_select_initial_window(tcp_full_space(sk),
2996 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2997 &tp->rcv_wnd,
2998 &tp->window_clamp,
2999 sysctl_tcp_window_scaling,
3000 &rcv_wscale,
3001 dst_metric(dst, RTAX_INITRWND));
3002
3003 tp->rx_opt.rcv_wscale = rcv_wscale;
3004 tp->rcv_ssthresh = tp->rcv_wnd;
3005
3006 sk->sk_err = 0;
3007 sock_reset_flag(sk, SOCK_DONE);
3008 tp->snd_wnd = 0;
3009 tcp_init_wl(tp, 0);
3010 tp->snd_una = tp->write_seq;
3011 tp->snd_sml = tp->write_seq;
3012 tp->snd_up = tp->write_seq;
3013 tp->snd_nxt = tp->write_seq;
3014
3015 if (likely(!tp->repair))
3016 tp->rcv_nxt = 0;
3017 else
3018 tp->rcv_tstamp = tcp_time_stamp;
3019 tp->rcv_wup = tp->rcv_nxt;
3020 tp->copied_seq = tp->rcv_nxt;
3021
3022 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3023 inet_csk(sk)->icsk_retransmits = 0;
3024 tcp_clear_retrans(tp);
3025 }
3026
3027 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3028 {
3029 struct tcp_sock *tp = tcp_sk(sk);
3030 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3031
3032 tcb->end_seq += skb->len;
3033 __skb_header_release(skb);
3034 __tcp_add_write_queue_tail(sk, skb);
3035 sk->sk_wmem_queued += skb->truesize;
3036 sk_mem_charge(sk, skb->truesize);
3037 tp->write_seq = tcb->end_seq;
3038 tp->packets_out += tcp_skb_pcount(skb);
3039 }
3040
3041 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3042 * queue a data-only packet after the regular SYN, such that regular SYNs
3043 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3044 * only the SYN sequence, the data are retransmitted in the first ACK.
3045 * If cookie is not cached or other error occurs, falls back to send a
3046 * regular SYN with Fast Open cookie request option.
3047 */
3048 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3049 {
3050 struct tcp_sock *tp = tcp_sk(sk);
3051 struct tcp_fastopen_request *fo = tp->fastopen_req;
3052 int syn_loss = 0, space, err = 0, copied;
3053 unsigned long last_syn_loss = 0;
3054 struct sk_buff *syn_data;
3055
3056 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3057 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3058 &syn_loss, &last_syn_loss);
3059 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3060 if (syn_loss > 1 &&
3061 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3062 fo->cookie.len = -1;
3063 goto fallback;
3064 }
3065
3066 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3067 fo->cookie.len = -1;
3068 else if (fo->cookie.len <= 0)
3069 goto fallback;
3070
3071 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3072 * user-MSS. Reserve maximum option space for middleboxes that add
3073 * private TCP options. The cost is reduced data space in SYN :(
3074 */
3075 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3076 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3077 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3078 MAX_TCP_OPTION_SPACE;
3079
3080 space = min_t(size_t, space, fo->size);
3081
3082 /* limit to order-0 allocations */
3083 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3084
3085 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3086 if (!syn_data)
3087 goto fallback;
3088 syn_data->ip_summed = CHECKSUM_PARTIAL;
3089 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3090 copied = copy_from_iter(skb_put(syn_data, space), space,
3091 &fo->data->msg_iter);
3092 if (unlikely(!copied)) {
3093 kfree_skb(syn_data);
3094 goto fallback;
3095 }
3096 if (copied != space) {
3097 skb_trim(syn_data, copied);
3098 space = copied;
3099 }
3100
3101 /* No more data pending in inet_wait_for_connect() */
3102 if (space == fo->size)
3103 fo->data = NULL;
3104 fo->copied = space;
3105
3106 tcp_connect_queue_skb(sk, syn_data);
3107
3108 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3109
3110 syn->skb_mstamp = syn_data->skb_mstamp;
3111
3112 /* Now full SYN+DATA was cloned and sent (or not),
3113 * remove the SYN from the original skb (syn_data)
3114 * we keep in write queue in case of a retransmit, as we
3115 * also have the SYN packet (with no data) in the same queue.
3116 */
3117 TCP_SKB_CB(syn_data)->seq++;
3118 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3119 if (!err) {
3120 tp->syn_data = (fo->copied > 0);
3121 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3122 goto done;
3123 }
3124
3125 fallback:
3126 /* Send a regular SYN with Fast Open cookie request option */
3127 if (fo->cookie.len > 0)
3128 fo->cookie.len = 0;
3129 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3130 if (err)
3131 tp->syn_fastopen = 0;
3132 done:
3133 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3134 return err;
3135 }
3136
3137 /* Build a SYN and send it off. */
3138 int tcp_connect(struct sock *sk)
3139 {
3140 struct tcp_sock *tp = tcp_sk(sk);
3141 struct sk_buff *buff;
3142 int err;
3143
3144 tcp_connect_init(sk);
3145
3146 if (unlikely(tp->repair)) {
3147 tcp_finish_connect(sk, NULL);
3148 return 0;
3149 }
3150
3151 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3152 if (unlikely(!buff))
3153 return -ENOBUFS;
3154
3155 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3156 tp->retrans_stamp = tcp_time_stamp;
3157 tcp_connect_queue_skb(sk, buff);
3158 tcp_ecn_send_syn(sk, buff);
3159
3160 /* Send off SYN; include data in Fast Open. */
3161 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3162 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3163 if (err == -ECONNREFUSED)
3164 return err;
3165
3166 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3167 * in order to make this packet get counted in tcpOutSegs.
3168 */
3169 tp->snd_nxt = tp->write_seq;
3170 tp->pushed_seq = tp->write_seq;
3171 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3172
3173 /* Timer for repeating the SYN until an answer. */
3174 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3175 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3176 return 0;
3177 }
3178 EXPORT_SYMBOL(tcp_connect);
3179
3180 /* Send out a delayed ack, the caller does the policy checking
3181 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3182 * for details.
3183 */
3184 void tcp_send_delayed_ack(struct sock *sk)
3185 {
3186 struct inet_connection_sock *icsk = inet_csk(sk);
3187 int ato = icsk->icsk_ack.ato;
3188 unsigned long timeout;
3189
3190 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3191
3192 if (ato > TCP_DELACK_MIN) {
3193 const struct tcp_sock *tp = tcp_sk(sk);
3194 int max_ato = HZ / 2;
3195
3196 if (icsk->icsk_ack.pingpong ||
3197 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3198 max_ato = TCP_DELACK_MAX;
3199
3200 /* Slow path, intersegment interval is "high". */
3201
3202 /* If some rtt estimate is known, use it to bound delayed ack.
3203 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3204 * directly.
3205 */
3206 if (tp->srtt_us) {
3207 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3208 TCP_DELACK_MIN);
3209
3210 if (rtt < max_ato)
3211 max_ato = rtt;
3212 }
3213
3214 ato = min(ato, max_ato);
3215 }
3216
3217 /* Stay within the limit we were given */
3218 timeout = jiffies + ato;
3219
3220 /* Use new timeout only if there wasn't a older one earlier. */
3221 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3222 /* If delack timer was blocked or is about to expire,
3223 * send ACK now.
3224 */
3225 if (icsk->icsk_ack.blocked ||
3226 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3227 tcp_send_ack(sk);
3228 return;
3229 }
3230
3231 if (!time_before(timeout, icsk->icsk_ack.timeout))
3232 timeout = icsk->icsk_ack.timeout;
3233 }
3234 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3235 icsk->icsk_ack.timeout = timeout;
3236 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3237 }
3238
3239 /* This routine sends an ack and also updates the window. */
3240 void tcp_send_ack(struct sock *sk)
3241 {
3242 struct sk_buff *buff;
3243
3244 /* If we have been reset, we may not send again. */
3245 if (sk->sk_state == TCP_CLOSE)
3246 return;
3247
3248 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3249
3250 /* We are not putting this on the write queue, so
3251 * tcp_transmit_skb() will set the ownership to this
3252 * sock.
3253 */
3254 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3255 if (buff == NULL) {
3256 inet_csk_schedule_ack(sk);
3257 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3258 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3259 TCP_DELACK_MAX, TCP_RTO_MAX);
3260 return;
3261 }
3262
3263 /* Reserve space for headers and prepare control bits. */
3264 skb_reserve(buff, MAX_TCP_HEADER);
3265 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3266
3267 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3268 * too much.
3269 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3270 * We also avoid tcp_wfree() overhead (cache line miss accessing
3271 * tp->tsq_flags) by using regular sock_wfree()
3272 */
3273 skb_set_tcp_pure_ack(buff);
3274
3275 /* Send it off, this clears delayed acks for us. */
3276 skb_mstamp_get(&buff->skb_mstamp);
3277 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3278 }
3279 EXPORT_SYMBOL_GPL(tcp_send_ack);
3280
3281 /* This routine sends a packet with an out of date sequence
3282 * number. It assumes the other end will try to ack it.
3283 *
3284 * Question: what should we make while urgent mode?
3285 * 4.4BSD forces sending single byte of data. We cannot send
3286 * out of window data, because we have SND.NXT==SND.MAX...
3287 *
3288 * Current solution: to send TWO zero-length segments in urgent mode:
3289 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3290 * out-of-date with SND.UNA-1 to probe window.
3291 */
3292 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3293 {
3294 struct tcp_sock *tp = tcp_sk(sk);
3295 struct sk_buff *skb;
3296
3297 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3298 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3299 if (skb == NULL)
3300 return -1;
3301
3302 /* Reserve space for headers and set control bits. */
3303 skb_reserve(skb, MAX_TCP_HEADER);
3304 /* Use a previous sequence. This should cause the other
3305 * end to send an ack. Don't queue or clone SKB, just
3306 * send it.
3307 */
3308 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3309 skb_mstamp_get(&skb->skb_mstamp);
3310 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3311 }
3312
3313 void tcp_send_window_probe(struct sock *sk)
3314 {
3315 if (sk->sk_state == TCP_ESTABLISHED) {
3316 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3317 tcp_xmit_probe_skb(sk, 0);
3318 }
3319 }
3320
3321 /* Initiate keepalive or window probe from timer. */
3322 int tcp_write_wakeup(struct sock *sk)
3323 {
3324 struct tcp_sock *tp = tcp_sk(sk);
3325 struct sk_buff *skb;
3326
3327 if (sk->sk_state == TCP_CLOSE)
3328 return -1;
3329
3330 if ((skb = tcp_send_head(sk)) != NULL &&
3331 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3332 int err;
3333 unsigned int mss = tcp_current_mss(sk);
3334 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3335
3336 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3337 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3338
3339 /* We are probing the opening of a window
3340 * but the window size is != 0
3341 * must have been a result SWS avoidance ( sender )
3342 */
3343 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3344 skb->len > mss) {
3345 seg_size = min(seg_size, mss);
3346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3347 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3348 return -1;
3349 } else if (!tcp_skb_pcount(skb))
3350 tcp_set_skb_tso_segs(sk, skb, mss);
3351
3352 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3353 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3354 if (!err)
3355 tcp_event_new_data_sent(sk, skb);
3356 return err;
3357 } else {
3358 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3359 tcp_xmit_probe_skb(sk, 1);
3360 return tcp_xmit_probe_skb(sk, 0);
3361 }
3362 }
3363
3364 /* A window probe timeout has occurred. If window is not closed send
3365 * a partial packet else a zero probe.
3366 */
3367 void tcp_send_probe0(struct sock *sk)
3368 {
3369 struct inet_connection_sock *icsk = inet_csk(sk);
3370 struct tcp_sock *tp = tcp_sk(sk);
3371 unsigned long probe_max;
3372 int err;
3373
3374 err = tcp_write_wakeup(sk);
3375
3376 if (tp->packets_out || !tcp_send_head(sk)) {
3377 /* Cancel probe timer, if it is not required. */
3378 icsk->icsk_probes_out = 0;
3379 icsk->icsk_backoff = 0;
3380 return;
3381 }
3382
3383 if (err <= 0) {
3384 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3385 icsk->icsk_backoff++;
3386 icsk->icsk_probes_out++;
3387 probe_max = TCP_RTO_MAX;
3388 } else {
3389 /* If packet was not sent due to local congestion,
3390 * do not backoff and do not remember icsk_probes_out.
3391 * Let local senders to fight for local resources.
3392 *
3393 * Use accumulated backoff yet.
3394 */
3395 if (!icsk->icsk_probes_out)
3396 icsk->icsk_probes_out = 1;
3397 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3398 }
3399 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3400 inet_csk_rto_backoff(icsk, probe_max),
3401 TCP_RTO_MAX);
3402 }
3403
3404 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3405 {
3406 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3407 struct flowi fl;
3408 int res;
3409
3410 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3411 if (!res) {
3412 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3413 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3414 }
3415 return res;
3416 }
3417 EXPORT_SYMBOL(tcp_rtx_synack);
This page took 0.171311 seconds and 5 git commands to generate.