netlink: make nlmsg_end() and genlmsg_end() void
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
73
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 struct inet_connection_sock *icsk = inet_csk(sk);
78 struct tcp_sock *tp = tcp_sk(sk);
79 unsigned int prior_packets = tp->packets_out;
80
81 tcp_advance_send_head(sk, skb);
82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 tcp_rearm_rto(sk);
88 }
89
90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 tcp_skb_pcount(skb));
92 }
93
94 /* SND.NXT, if window was not shrunk.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
99 */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 const struct tcp_sock *tp = tcp_sk(sk);
103
104 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 return tp->snd_nxt;
106 else
107 return tcp_wnd_end(tp);
108 }
109
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112 *
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
117 * large MSS.
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
123 */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 struct tcp_sock *tp = tcp_sk(sk);
127 const struct dst_entry *dst = __sk_dst_get(sk);
128 int mss = tp->advmss;
129
130 if (dst) {
131 unsigned int metric = dst_metric_advmss(dst);
132
133 if (metric < mss) {
134 mss = metric;
135 tp->advmss = mss;
136 }
137 }
138
139 return (__u16)mss;
140 }
141
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 s32 delta = tcp_time_stamp - tp->lsndtime;
148 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 u32 cwnd = tp->snd_cwnd;
150
151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152
153 tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 restart_cwnd = min(restart_cwnd, cwnd);
155
156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 cwnd >>= 1;
158 tp->snd_cwnd = max(cwnd, restart_cwnd);
159 tp->snd_cwnd_stamp = tcp_time_stamp;
160 tp->snd_cwnd_used = 0;
161 }
162
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 const u32 now = tcp_time_stamp;
169 const struct dst_entry *dst = __sk_dst_get(sk);
170
171 if (sysctl_tcp_slow_start_after_idle &&
172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 tcp_cwnd_restart(sk, __sk_dst_get(sk));
174
175 tp->lsndtime = now;
176
177 /* If it is a reply for ato after last received
178 * packet, enter pingpong mode.
179 */
180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 icsk->icsk_ack.pingpong = 1;
183 }
184
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 tcp_dec_quickack_mode(sk, pkts);
189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191
192
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 /* Initial receive window should be twice of TCP_INIT_CWND to
196 * enable proper sending of new unsent data during fast recovery
197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 * limit when mss is larger than 1460.
199 */
200 u32 init_rwnd = TCP_INIT_CWND * 2;
201
202 if (mss > 1460)
203 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 return init_rwnd;
205 }
206
207 /* Determine a window scaling and initial window to offer.
208 * Based on the assumption that the given amount of space
209 * will be offered. Store the results in the tp structure.
210 * NOTE: for smooth operation initial space offering should
211 * be a multiple of mss if possible. We assume here that mss >= 1.
212 * This MUST be enforced by all callers.
213 */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 __u32 *rcv_wnd, __u32 *window_clamp,
216 int wscale_ok, __u8 *rcv_wscale,
217 __u32 init_rcv_wnd)
218 {
219 unsigned int space = (__space < 0 ? 0 : __space);
220
221 /* If no clamp set the clamp to the max possible scaled window */
222 if (*window_clamp == 0)
223 (*window_clamp) = (65535 << 14);
224 space = min(*window_clamp, space);
225
226 /* Quantize space offering to a multiple of mss if possible. */
227 if (space > mss)
228 space = (space / mss) * mss;
229
230 /* NOTE: offering an initial window larger than 32767
231 * will break some buggy TCP stacks. If the admin tells us
232 * it is likely we could be speaking with such a buggy stack
233 * we will truncate our initial window offering to 32K-1
234 * unless the remote has sent us a window scaling option,
235 * which we interpret as a sign the remote TCP is not
236 * misinterpreting the window field as a signed quantity.
237 */
238 if (sysctl_tcp_workaround_signed_windows)
239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 else
241 (*rcv_wnd) = space;
242
243 (*rcv_wscale) = 0;
244 if (wscale_ok) {
245 /* Set window scaling on max possible window
246 * See RFC1323 for an explanation of the limit to 14
247 */
248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 space = min_t(u32, space, *window_clamp);
250 while (space > 65535 && (*rcv_wscale) < 14) {
251 space >>= 1;
252 (*rcv_wscale)++;
253 }
254 }
255
256 if (mss > (1 << *rcv_wscale)) {
257 if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 init_rcv_wnd = tcp_default_init_rwnd(mss);
259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 }
261
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
270 * frame.
271 */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 struct tcp_sock *tp = tcp_sk(sk);
275 u32 old_win = tp->rcv_wnd;
276 u32 cur_win = tcp_receive_window(tp);
277 u32 new_win = __tcp_select_window(sk);
278
279 /* Never shrink the offered window */
280 if (new_win < cur_win) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
285 *
286 * Relax Will Robinson.
287 */
288 if (new_win == 0)
289 NET_INC_STATS(sock_net(sk),
290 LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 }
293 tp->rcv_wnd = new_win;
294 tp->rcv_wup = tp->rcv_nxt;
295
296 /* Make sure we do not exceed the maximum possible
297 * scaled window.
298 */
299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 new_win = min(new_win, MAX_TCP_WINDOW);
301 else
302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303
304 /* RFC1323 scaling applied */
305 new_win >>= tp->rx_opt.rcv_wscale;
306
307 /* If we advertise zero window, disable fast path. */
308 if (new_win == 0) {
309 tp->pred_flags = 0;
310 if (old_win)
311 NET_INC_STATS(sock_net(sk),
312 LINUX_MIB_TCPTOZEROWINDOWADV);
313 } else if (old_win == 0) {
314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 }
316
317 return new_win;
318 }
319
320 /* Packet ECN state for a SYN-ACK */
321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
322 {
323 const struct tcp_sock *tp = tcp_sk(sk);
324
325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
326 if (!(tp->ecn_flags & TCP_ECN_OK))
327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
328 else if (tcp_ca_needs_ecn(sk))
329 INET_ECN_xmit(sk);
330 }
331
332 /* Packet ECN state for a SYN. */
333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
337 tcp_ca_needs_ecn(sk);
338
339 if (!use_ecn) {
340 const struct dst_entry *dst = __sk_dst_get(sk);
341
342 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
343 use_ecn = true;
344 }
345
346 tp->ecn_flags = 0;
347
348 if (use_ecn) {
349 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
350 tp->ecn_flags = TCP_ECN_OK;
351 if (tcp_ca_needs_ecn(sk))
352 INET_ECN_xmit(sk);
353 }
354 }
355
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
358 struct sock *sk)
359 {
360 if (inet_rsk(req)->ecn_ok) {
361 th->ece = 1;
362 if (tcp_ca_needs_ecn(sk))
363 INET_ECN_xmit(sk);
364 }
365 }
366
367 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
368 * be sent.
369 */
370 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
371 int tcp_header_len)
372 {
373 struct tcp_sock *tp = tcp_sk(sk);
374
375 if (tp->ecn_flags & TCP_ECN_OK) {
376 /* Not-retransmitted data segment: set ECT and inject CWR. */
377 if (skb->len != tcp_header_len &&
378 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
379 INET_ECN_xmit(sk);
380 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
381 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
382 tcp_hdr(skb)->cwr = 1;
383 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
384 }
385 } else if (!tcp_ca_needs_ecn(sk)) {
386 /* ACK or retransmitted segment: clear ECT|CE */
387 INET_ECN_dontxmit(sk);
388 }
389 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
390 tcp_hdr(skb)->ece = 1;
391 }
392 }
393
394 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
395 * auto increment end seqno.
396 */
397 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
398 {
399 struct skb_shared_info *shinfo = skb_shinfo(skb);
400
401 skb->ip_summed = CHECKSUM_PARTIAL;
402 skb->csum = 0;
403
404 TCP_SKB_CB(skb)->tcp_flags = flags;
405 TCP_SKB_CB(skb)->sacked = 0;
406
407 tcp_skb_pcount_set(skb, 1);
408 shinfo->gso_size = 0;
409 shinfo->gso_type = 0;
410
411 TCP_SKB_CB(skb)->seq = seq;
412 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
413 seq++;
414 TCP_SKB_CB(skb)->end_seq = seq;
415 }
416
417 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
418 {
419 return tp->snd_una != tp->snd_up;
420 }
421
422 #define OPTION_SACK_ADVERTISE (1 << 0)
423 #define OPTION_TS (1 << 1)
424 #define OPTION_MD5 (1 << 2)
425 #define OPTION_WSCALE (1 << 3)
426 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
427
428 struct tcp_out_options {
429 u16 options; /* bit field of OPTION_* */
430 u16 mss; /* 0 to disable */
431 u8 ws; /* window scale, 0 to disable */
432 u8 num_sack_blocks; /* number of SACK blocks to include */
433 u8 hash_size; /* bytes in hash_location */
434 __u8 *hash_location; /* temporary pointer, overloaded */
435 __u32 tsval, tsecr; /* need to include OPTION_TS */
436 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
437 };
438
439 /* Write previously computed TCP options to the packet.
440 *
441 * Beware: Something in the Internet is very sensitive to the ordering of
442 * TCP options, we learned this through the hard way, so be careful here.
443 * Luckily we can at least blame others for their non-compliance but from
444 * inter-operability perspective it seems that we're somewhat stuck with
445 * the ordering which we have been using if we want to keep working with
446 * those broken things (not that it currently hurts anybody as there isn't
447 * particular reason why the ordering would need to be changed).
448 *
449 * At least SACK_PERM as the first option is known to lead to a disaster
450 * (but it may well be that other scenarios fail similarly).
451 */
452 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
453 struct tcp_out_options *opts)
454 {
455 u16 options = opts->options; /* mungable copy */
456
457 if (unlikely(OPTION_MD5 & options)) {
458 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
459 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
460 /* overload cookie hash location */
461 opts->hash_location = (__u8 *)ptr;
462 ptr += 4;
463 }
464
465 if (unlikely(opts->mss)) {
466 *ptr++ = htonl((TCPOPT_MSS << 24) |
467 (TCPOLEN_MSS << 16) |
468 opts->mss);
469 }
470
471 if (likely(OPTION_TS & options)) {
472 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
473 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
474 (TCPOLEN_SACK_PERM << 16) |
475 (TCPOPT_TIMESTAMP << 8) |
476 TCPOLEN_TIMESTAMP);
477 options &= ~OPTION_SACK_ADVERTISE;
478 } else {
479 *ptr++ = htonl((TCPOPT_NOP << 24) |
480 (TCPOPT_NOP << 16) |
481 (TCPOPT_TIMESTAMP << 8) |
482 TCPOLEN_TIMESTAMP);
483 }
484 *ptr++ = htonl(opts->tsval);
485 *ptr++ = htonl(opts->tsecr);
486 }
487
488 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_NOP << 16) |
491 (TCPOPT_SACK_PERM << 8) |
492 TCPOLEN_SACK_PERM);
493 }
494
495 if (unlikely(OPTION_WSCALE & options)) {
496 *ptr++ = htonl((TCPOPT_NOP << 24) |
497 (TCPOPT_WINDOW << 16) |
498 (TCPOLEN_WINDOW << 8) |
499 opts->ws);
500 }
501
502 if (unlikely(opts->num_sack_blocks)) {
503 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
504 tp->duplicate_sack : tp->selective_acks;
505 int this_sack;
506
507 *ptr++ = htonl((TCPOPT_NOP << 24) |
508 (TCPOPT_NOP << 16) |
509 (TCPOPT_SACK << 8) |
510 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
511 TCPOLEN_SACK_PERBLOCK)));
512
513 for (this_sack = 0; this_sack < opts->num_sack_blocks;
514 ++this_sack) {
515 *ptr++ = htonl(sp[this_sack].start_seq);
516 *ptr++ = htonl(sp[this_sack].end_seq);
517 }
518
519 tp->rx_opt.dsack = 0;
520 }
521
522 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
523 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
524
525 *ptr++ = htonl((TCPOPT_EXP << 24) |
526 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
527 TCPOPT_FASTOPEN_MAGIC);
528
529 memcpy(ptr, foc->val, foc->len);
530 if ((foc->len & 3) == 2) {
531 u8 *align = ((u8 *)ptr) + foc->len;
532 align[0] = align[1] = TCPOPT_NOP;
533 }
534 ptr += (foc->len + 3) >> 2;
535 }
536 }
537
538 /* Compute TCP options for SYN packets. This is not the final
539 * network wire format yet.
540 */
541 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
542 struct tcp_out_options *opts,
543 struct tcp_md5sig_key **md5)
544 {
545 struct tcp_sock *tp = tcp_sk(sk);
546 unsigned int remaining = MAX_TCP_OPTION_SPACE;
547 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
548
549 #ifdef CONFIG_TCP_MD5SIG
550 *md5 = tp->af_specific->md5_lookup(sk, sk);
551 if (*md5) {
552 opts->options |= OPTION_MD5;
553 remaining -= TCPOLEN_MD5SIG_ALIGNED;
554 }
555 #else
556 *md5 = NULL;
557 #endif
558
559 /* We always get an MSS option. The option bytes which will be seen in
560 * normal data packets should timestamps be used, must be in the MSS
561 * advertised. But we subtract them from tp->mss_cache so that
562 * calculations in tcp_sendmsg are simpler etc. So account for this
563 * fact here if necessary. If we don't do this correctly, as a
564 * receiver we won't recognize data packets as being full sized when we
565 * should, and thus we won't abide by the delayed ACK rules correctly.
566 * SACKs don't matter, we never delay an ACK when we have any of those
567 * going out. */
568 opts->mss = tcp_advertise_mss(sk);
569 remaining -= TCPOLEN_MSS_ALIGNED;
570
571 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
572 opts->options |= OPTION_TS;
573 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
574 opts->tsecr = tp->rx_opt.ts_recent;
575 remaining -= TCPOLEN_TSTAMP_ALIGNED;
576 }
577 if (likely(sysctl_tcp_window_scaling)) {
578 opts->ws = tp->rx_opt.rcv_wscale;
579 opts->options |= OPTION_WSCALE;
580 remaining -= TCPOLEN_WSCALE_ALIGNED;
581 }
582 if (likely(sysctl_tcp_sack)) {
583 opts->options |= OPTION_SACK_ADVERTISE;
584 if (unlikely(!(OPTION_TS & opts->options)))
585 remaining -= TCPOLEN_SACKPERM_ALIGNED;
586 }
587
588 if (fastopen && fastopen->cookie.len >= 0) {
589 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
590 need = (need + 3) & ~3U; /* Align to 32 bits */
591 if (remaining >= need) {
592 opts->options |= OPTION_FAST_OPEN_COOKIE;
593 opts->fastopen_cookie = &fastopen->cookie;
594 remaining -= need;
595 tp->syn_fastopen = 1;
596 }
597 }
598
599 return MAX_TCP_OPTION_SPACE - remaining;
600 }
601
602 /* Set up TCP options for SYN-ACKs. */
603 static unsigned int tcp_synack_options(struct sock *sk,
604 struct request_sock *req,
605 unsigned int mss, struct sk_buff *skb,
606 struct tcp_out_options *opts,
607 struct tcp_md5sig_key **md5,
608 struct tcp_fastopen_cookie *foc)
609 {
610 struct inet_request_sock *ireq = inet_rsk(req);
611 unsigned int remaining = MAX_TCP_OPTION_SPACE;
612
613 #ifdef CONFIG_TCP_MD5SIG
614 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
615 if (*md5) {
616 opts->options |= OPTION_MD5;
617 remaining -= TCPOLEN_MD5SIG_ALIGNED;
618
619 /* We can't fit any SACK blocks in a packet with MD5 + TS
620 * options. There was discussion about disabling SACK
621 * rather than TS in order to fit in better with old,
622 * buggy kernels, but that was deemed to be unnecessary.
623 */
624 ireq->tstamp_ok &= !ireq->sack_ok;
625 }
626 #else
627 *md5 = NULL;
628 #endif
629
630 /* We always send an MSS option. */
631 opts->mss = mss;
632 remaining -= TCPOLEN_MSS_ALIGNED;
633
634 if (likely(ireq->wscale_ok)) {
635 opts->ws = ireq->rcv_wscale;
636 opts->options |= OPTION_WSCALE;
637 remaining -= TCPOLEN_WSCALE_ALIGNED;
638 }
639 if (likely(ireq->tstamp_ok)) {
640 opts->options |= OPTION_TS;
641 opts->tsval = tcp_skb_timestamp(skb);
642 opts->tsecr = req->ts_recent;
643 remaining -= TCPOLEN_TSTAMP_ALIGNED;
644 }
645 if (likely(ireq->sack_ok)) {
646 opts->options |= OPTION_SACK_ADVERTISE;
647 if (unlikely(!ireq->tstamp_ok))
648 remaining -= TCPOLEN_SACKPERM_ALIGNED;
649 }
650 if (foc != NULL && foc->len >= 0) {
651 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
652 need = (need + 3) & ~3U; /* Align to 32 bits */
653 if (remaining >= need) {
654 opts->options |= OPTION_FAST_OPEN_COOKIE;
655 opts->fastopen_cookie = foc;
656 remaining -= need;
657 }
658 }
659
660 return MAX_TCP_OPTION_SPACE - remaining;
661 }
662
663 /* Compute TCP options for ESTABLISHED sockets. This is not the
664 * final wire format yet.
665 */
666 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
667 struct tcp_out_options *opts,
668 struct tcp_md5sig_key **md5)
669 {
670 struct tcp_sock *tp = tcp_sk(sk);
671 unsigned int size = 0;
672 unsigned int eff_sacks;
673
674 opts->options = 0;
675
676 #ifdef CONFIG_TCP_MD5SIG
677 *md5 = tp->af_specific->md5_lookup(sk, sk);
678 if (unlikely(*md5)) {
679 opts->options |= OPTION_MD5;
680 size += TCPOLEN_MD5SIG_ALIGNED;
681 }
682 #else
683 *md5 = NULL;
684 #endif
685
686 if (likely(tp->rx_opt.tstamp_ok)) {
687 opts->options |= OPTION_TS;
688 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
689 opts->tsecr = tp->rx_opt.ts_recent;
690 size += TCPOLEN_TSTAMP_ALIGNED;
691 }
692
693 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
694 if (unlikely(eff_sacks)) {
695 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
696 opts->num_sack_blocks =
697 min_t(unsigned int, eff_sacks,
698 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
699 TCPOLEN_SACK_PERBLOCK);
700 size += TCPOLEN_SACK_BASE_ALIGNED +
701 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
702 }
703
704 return size;
705 }
706
707
708 /* TCP SMALL QUEUES (TSQ)
709 *
710 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
711 * to reduce RTT and bufferbloat.
712 * We do this using a special skb destructor (tcp_wfree).
713 *
714 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
715 * needs to be reallocated in a driver.
716 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
717 *
718 * Since transmit from skb destructor is forbidden, we use a tasklet
719 * to process all sockets that eventually need to send more skbs.
720 * We use one tasklet per cpu, with its own queue of sockets.
721 */
722 struct tsq_tasklet {
723 struct tasklet_struct tasklet;
724 struct list_head head; /* queue of tcp sockets */
725 };
726 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
727
728 static void tcp_tsq_handler(struct sock *sk)
729 {
730 if ((1 << sk->sk_state) &
731 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
732 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
733 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
734 0, GFP_ATOMIC);
735 }
736 /*
737 * One tasklet per cpu tries to send more skbs.
738 * We run in tasklet context but need to disable irqs when
739 * transferring tsq->head because tcp_wfree() might
740 * interrupt us (non NAPI drivers)
741 */
742 static void tcp_tasklet_func(unsigned long data)
743 {
744 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
745 LIST_HEAD(list);
746 unsigned long flags;
747 struct list_head *q, *n;
748 struct tcp_sock *tp;
749 struct sock *sk;
750
751 local_irq_save(flags);
752 list_splice_init(&tsq->head, &list);
753 local_irq_restore(flags);
754
755 list_for_each_safe(q, n, &list) {
756 tp = list_entry(q, struct tcp_sock, tsq_node);
757 list_del(&tp->tsq_node);
758
759 sk = (struct sock *)tp;
760 bh_lock_sock(sk);
761
762 if (!sock_owned_by_user(sk)) {
763 tcp_tsq_handler(sk);
764 } else {
765 /* defer the work to tcp_release_cb() */
766 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
767 }
768 bh_unlock_sock(sk);
769
770 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
771 sk_free(sk);
772 }
773 }
774
775 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
776 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
777 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
778 (1UL << TCP_MTU_REDUCED_DEFERRED))
779 /**
780 * tcp_release_cb - tcp release_sock() callback
781 * @sk: socket
782 *
783 * called from release_sock() to perform protocol dependent
784 * actions before socket release.
785 */
786 void tcp_release_cb(struct sock *sk)
787 {
788 struct tcp_sock *tp = tcp_sk(sk);
789 unsigned long flags, nflags;
790
791 /* perform an atomic operation only if at least one flag is set */
792 do {
793 flags = tp->tsq_flags;
794 if (!(flags & TCP_DEFERRED_ALL))
795 return;
796 nflags = flags & ~TCP_DEFERRED_ALL;
797 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
798
799 if (flags & (1UL << TCP_TSQ_DEFERRED))
800 tcp_tsq_handler(sk);
801
802 /* Here begins the tricky part :
803 * We are called from release_sock() with :
804 * 1) BH disabled
805 * 2) sk_lock.slock spinlock held
806 * 3) socket owned by us (sk->sk_lock.owned == 1)
807 *
808 * But following code is meant to be called from BH handlers,
809 * so we should keep BH disabled, but early release socket ownership
810 */
811 sock_release_ownership(sk);
812
813 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
814 tcp_write_timer_handler(sk);
815 __sock_put(sk);
816 }
817 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
818 tcp_delack_timer_handler(sk);
819 __sock_put(sk);
820 }
821 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
822 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
823 __sock_put(sk);
824 }
825 }
826 EXPORT_SYMBOL(tcp_release_cb);
827
828 void __init tcp_tasklet_init(void)
829 {
830 int i;
831
832 for_each_possible_cpu(i) {
833 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
834
835 INIT_LIST_HEAD(&tsq->head);
836 tasklet_init(&tsq->tasklet,
837 tcp_tasklet_func,
838 (unsigned long)tsq);
839 }
840 }
841
842 /*
843 * Write buffer destructor automatically called from kfree_skb.
844 * We can't xmit new skbs from this context, as we might already
845 * hold qdisc lock.
846 */
847 void tcp_wfree(struct sk_buff *skb)
848 {
849 struct sock *sk = skb->sk;
850 struct tcp_sock *tp = tcp_sk(sk);
851 int wmem;
852
853 /* Keep one reference on sk_wmem_alloc.
854 * Will be released by sk_free() from here or tcp_tasklet_func()
855 */
856 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
857
858 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
859 * Wait until our queues (qdisc + devices) are drained.
860 * This gives :
861 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
862 * - chance for incoming ACK (processed by another cpu maybe)
863 * to migrate this flow (skb->ooo_okay will be eventually set)
864 */
865 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
866 goto out;
867
868 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
869 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
870 unsigned long flags;
871 struct tsq_tasklet *tsq;
872
873 /* queue this socket to tasklet queue */
874 local_irq_save(flags);
875 tsq = this_cpu_ptr(&tsq_tasklet);
876 list_add(&tp->tsq_node, &tsq->head);
877 tasklet_schedule(&tsq->tasklet);
878 local_irq_restore(flags);
879 return;
880 }
881 out:
882 sk_free(sk);
883 }
884
885 /* This routine actually transmits TCP packets queued in by
886 * tcp_do_sendmsg(). This is used by both the initial
887 * transmission and possible later retransmissions.
888 * All SKB's seen here are completely headerless. It is our
889 * job to build the TCP header, and pass the packet down to
890 * IP so it can do the same plus pass the packet off to the
891 * device.
892 *
893 * We are working here with either a clone of the original
894 * SKB, or a fresh unique copy made by the retransmit engine.
895 */
896 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
897 gfp_t gfp_mask)
898 {
899 const struct inet_connection_sock *icsk = inet_csk(sk);
900 struct inet_sock *inet;
901 struct tcp_sock *tp;
902 struct tcp_skb_cb *tcb;
903 struct tcp_out_options opts;
904 unsigned int tcp_options_size, tcp_header_size;
905 struct tcp_md5sig_key *md5;
906 struct tcphdr *th;
907 int err;
908
909 BUG_ON(!skb || !tcp_skb_pcount(skb));
910
911 if (clone_it) {
912 skb_mstamp_get(&skb->skb_mstamp);
913
914 if (unlikely(skb_cloned(skb)))
915 skb = pskb_copy(skb, gfp_mask);
916 else
917 skb = skb_clone(skb, gfp_mask);
918 if (unlikely(!skb))
919 return -ENOBUFS;
920 }
921
922 inet = inet_sk(sk);
923 tp = tcp_sk(sk);
924 tcb = TCP_SKB_CB(skb);
925 memset(&opts, 0, sizeof(opts));
926
927 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
928 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
929 else
930 tcp_options_size = tcp_established_options(sk, skb, &opts,
931 &md5);
932 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
933
934 if (tcp_packets_in_flight(tp) == 0)
935 tcp_ca_event(sk, CA_EVENT_TX_START);
936
937 /* if no packet is in qdisc/device queue, then allow XPS to select
938 * another queue. We can be called from tcp_tsq_handler()
939 * which holds one reference to sk_wmem_alloc.
940 *
941 * TODO: Ideally, in-flight pure ACK packets should not matter here.
942 * One way to get this would be to set skb->truesize = 2 on them.
943 */
944 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
945
946 skb_push(skb, tcp_header_size);
947 skb_reset_transport_header(skb);
948
949 skb_orphan(skb);
950 skb->sk = sk;
951 skb->destructor = tcp_wfree;
952 skb_set_hash_from_sk(skb, sk);
953 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
954
955 /* Build TCP header and checksum it. */
956 th = tcp_hdr(skb);
957 th->source = inet->inet_sport;
958 th->dest = inet->inet_dport;
959 th->seq = htonl(tcb->seq);
960 th->ack_seq = htonl(tp->rcv_nxt);
961 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
962 tcb->tcp_flags);
963
964 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
965 /* RFC1323: The window in SYN & SYN/ACK segments
966 * is never scaled.
967 */
968 th->window = htons(min(tp->rcv_wnd, 65535U));
969 } else {
970 th->window = htons(tcp_select_window(sk));
971 }
972 th->check = 0;
973 th->urg_ptr = 0;
974
975 /* The urg_mode check is necessary during a below snd_una win probe */
976 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
977 if (before(tp->snd_up, tcb->seq + 0x10000)) {
978 th->urg_ptr = htons(tp->snd_up - tcb->seq);
979 th->urg = 1;
980 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
981 th->urg_ptr = htons(0xFFFF);
982 th->urg = 1;
983 }
984 }
985
986 tcp_options_write((__be32 *)(th + 1), tp, &opts);
987 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
988 tcp_ecn_send(sk, skb, tcp_header_size);
989
990 #ifdef CONFIG_TCP_MD5SIG
991 /* Calculate the MD5 hash, as we have all we need now */
992 if (md5) {
993 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
994 tp->af_specific->calc_md5_hash(opts.hash_location,
995 md5, sk, NULL, skb);
996 }
997 #endif
998
999 icsk->icsk_af_ops->send_check(sk, skb);
1000
1001 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1002 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1003
1004 if (skb->len != tcp_header_size)
1005 tcp_event_data_sent(tp, sk);
1006
1007 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1008 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1009 tcp_skb_pcount(skb));
1010
1011 /* OK, its time to fill skb_shinfo(skb)->gso_segs */
1012 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1013
1014 /* Our usage of tstamp should remain private */
1015 skb->tstamp.tv64 = 0;
1016
1017 /* Cleanup our debris for IP stacks */
1018 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1019 sizeof(struct inet6_skb_parm)));
1020
1021 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1022
1023 if (likely(err <= 0))
1024 return err;
1025
1026 tcp_enter_cwr(sk);
1027
1028 return net_xmit_eval(err);
1029 }
1030
1031 /* This routine just queues the buffer for sending.
1032 *
1033 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1034 * otherwise socket can stall.
1035 */
1036 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1037 {
1038 struct tcp_sock *tp = tcp_sk(sk);
1039
1040 /* Advance write_seq and place onto the write_queue. */
1041 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1042 __skb_header_release(skb);
1043 tcp_add_write_queue_tail(sk, skb);
1044 sk->sk_wmem_queued += skb->truesize;
1045 sk_mem_charge(sk, skb->truesize);
1046 }
1047
1048 /* Initialize TSO segments for a packet. */
1049 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1050 unsigned int mss_now)
1051 {
1052 struct skb_shared_info *shinfo = skb_shinfo(skb);
1053
1054 /* Make sure we own this skb before messing gso_size/gso_segs */
1055 WARN_ON_ONCE(skb_cloned(skb));
1056
1057 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1058 /* Avoid the costly divide in the normal
1059 * non-TSO case.
1060 */
1061 tcp_skb_pcount_set(skb, 1);
1062 shinfo->gso_size = 0;
1063 shinfo->gso_type = 0;
1064 } else {
1065 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1066 shinfo->gso_size = mss_now;
1067 shinfo->gso_type = sk->sk_gso_type;
1068 }
1069 }
1070
1071 /* When a modification to fackets out becomes necessary, we need to check
1072 * skb is counted to fackets_out or not.
1073 */
1074 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1075 int decr)
1076 {
1077 struct tcp_sock *tp = tcp_sk(sk);
1078
1079 if (!tp->sacked_out || tcp_is_reno(tp))
1080 return;
1081
1082 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1083 tp->fackets_out -= decr;
1084 }
1085
1086 /* Pcount in the middle of the write queue got changed, we need to do various
1087 * tweaks to fix counters
1088 */
1089 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1090 {
1091 struct tcp_sock *tp = tcp_sk(sk);
1092
1093 tp->packets_out -= decr;
1094
1095 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1096 tp->sacked_out -= decr;
1097 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1098 tp->retrans_out -= decr;
1099 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1100 tp->lost_out -= decr;
1101
1102 /* Reno case is special. Sigh... */
1103 if (tcp_is_reno(tp) && decr > 0)
1104 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1105
1106 tcp_adjust_fackets_out(sk, skb, decr);
1107
1108 if (tp->lost_skb_hint &&
1109 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1110 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1111 tp->lost_cnt_hint -= decr;
1112
1113 tcp_verify_left_out(tp);
1114 }
1115
1116 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1117 {
1118 struct skb_shared_info *shinfo = skb_shinfo(skb);
1119
1120 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1121 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1122 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1123 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1124
1125 shinfo->tx_flags &= ~tsflags;
1126 shinfo2->tx_flags |= tsflags;
1127 swap(shinfo->tskey, shinfo2->tskey);
1128 }
1129 }
1130
1131 /* Function to create two new TCP segments. Shrinks the given segment
1132 * to the specified size and appends a new segment with the rest of the
1133 * packet to the list. This won't be called frequently, I hope.
1134 * Remember, these are still headerless SKBs at this point.
1135 */
1136 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1137 unsigned int mss_now, gfp_t gfp)
1138 {
1139 struct tcp_sock *tp = tcp_sk(sk);
1140 struct sk_buff *buff;
1141 int nsize, old_factor;
1142 int nlen;
1143 u8 flags;
1144
1145 if (WARN_ON(len > skb->len))
1146 return -EINVAL;
1147
1148 nsize = skb_headlen(skb) - len;
1149 if (nsize < 0)
1150 nsize = 0;
1151
1152 if (skb_unclone(skb, gfp))
1153 return -ENOMEM;
1154
1155 /* Get a new skb... force flag on. */
1156 buff = sk_stream_alloc_skb(sk, nsize, gfp);
1157 if (buff == NULL)
1158 return -ENOMEM; /* We'll just try again later. */
1159
1160 sk->sk_wmem_queued += buff->truesize;
1161 sk_mem_charge(sk, buff->truesize);
1162 nlen = skb->len - len - nsize;
1163 buff->truesize += nlen;
1164 skb->truesize -= nlen;
1165
1166 /* Correct the sequence numbers. */
1167 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1168 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1169 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1170
1171 /* PSH and FIN should only be set in the second packet. */
1172 flags = TCP_SKB_CB(skb)->tcp_flags;
1173 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1174 TCP_SKB_CB(buff)->tcp_flags = flags;
1175 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1176
1177 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1178 /* Copy and checksum data tail into the new buffer. */
1179 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1180 skb_put(buff, nsize),
1181 nsize, 0);
1182
1183 skb_trim(skb, len);
1184
1185 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1186 } else {
1187 skb->ip_summed = CHECKSUM_PARTIAL;
1188 skb_split(skb, buff, len);
1189 }
1190
1191 buff->ip_summed = skb->ip_summed;
1192
1193 buff->tstamp = skb->tstamp;
1194 tcp_fragment_tstamp(skb, buff);
1195
1196 old_factor = tcp_skb_pcount(skb);
1197
1198 /* Fix up tso_factor for both original and new SKB. */
1199 tcp_set_skb_tso_segs(sk, skb, mss_now);
1200 tcp_set_skb_tso_segs(sk, buff, mss_now);
1201
1202 /* If this packet has been sent out already, we must
1203 * adjust the various packet counters.
1204 */
1205 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1206 int diff = old_factor - tcp_skb_pcount(skb) -
1207 tcp_skb_pcount(buff);
1208
1209 if (diff)
1210 tcp_adjust_pcount(sk, skb, diff);
1211 }
1212
1213 /* Link BUFF into the send queue. */
1214 __skb_header_release(buff);
1215 tcp_insert_write_queue_after(skb, buff, sk);
1216
1217 return 0;
1218 }
1219
1220 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1221 * eventually). The difference is that pulled data not copied, but
1222 * immediately discarded.
1223 */
1224 static void __pskb_trim_head(struct sk_buff *skb, int len)
1225 {
1226 struct skb_shared_info *shinfo;
1227 int i, k, eat;
1228
1229 eat = min_t(int, len, skb_headlen(skb));
1230 if (eat) {
1231 __skb_pull(skb, eat);
1232 len -= eat;
1233 if (!len)
1234 return;
1235 }
1236 eat = len;
1237 k = 0;
1238 shinfo = skb_shinfo(skb);
1239 for (i = 0; i < shinfo->nr_frags; i++) {
1240 int size = skb_frag_size(&shinfo->frags[i]);
1241
1242 if (size <= eat) {
1243 skb_frag_unref(skb, i);
1244 eat -= size;
1245 } else {
1246 shinfo->frags[k] = shinfo->frags[i];
1247 if (eat) {
1248 shinfo->frags[k].page_offset += eat;
1249 skb_frag_size_sub(&shinfo->frags[k], eat);
1250 eat = 0;
1251 }
1252 k++;
1253 }
1254 }
1255 shinfo->nr_frags = k;
1256
1257 skb_reset_tail_pointer(skb);
1258 skb->data_len -= len;
1259 skb->len = skb->data_len;
1260 }
1261
1262 /* Remove acked data from a packet in the transmit queue. */
1263 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1264 {
1265 if (skb_unclone(skb, GFP_ATOMIC))
1266 return -ENOMEM;
1267
1268 __pskb_trim_head(skb, len);
1269
1270 TCP_SKB_CB(skb)->seq += len;
1271 skb->ip_summed = CHECKSUM_PARTIAL;
1272
1273 skb->truesize -= len;
1274 sk->sk_wmem_queued -= len;
1275 sk_mem_uncharge(sk, len);
1276 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1277
1278 /* Any change of skb->len requires recalculation of tso factor. */
1279 if (tcp_skb_pcount(skb) > 1)
1280 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1281
1282 return 0;
1283 }
1284
1285 /* Calculate MSS not accounting any TCP options. */
1286 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1287 {
1288 const struct tcp_sock *tp = tcp_sk(sk);
1289 const struct inet_connection_sock *icsk = inet_csk(sk);
1290 int mss_now;
1291
1292 /* Calculate base mss without TCP options:
1293 It is MMS_S - sizeof(tcphdr) of rfc1122
1294 */
1295 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1296
1297 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1298 if (icsk->icsk_af_ops->net_frag_header_len) {
1299 const struct dst_entry *dst = __sk_dst_get(sk);
1300
1301 if (dst && dst_allfrag(dst))
1302 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1303 }
1304
1305 /* Clamp it (mss_clamp does not include tcp options) */
1306 if (mss_now > tp->rx_opt.mss_clamp)
1307 mss_now = tp->rx_opt.mss_clamp;
1308
1309 /* Now subtract optional transport overhead */
1310 mss_now -= icsk->icsk_ext_hdr_len;
1311
1312 /* Then reserve room for full set of TCP options and 8 bytes of data */
1313 if (mss_now < 48)
1314 mss_now = 48;
1315 return mss_now;
1316 }
1317
1318 /* Calculate MSS. Not accounting for SACKs here. */
1319 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1320 {
1321 /* Subtract TCP options size, not including SACKs */
1322 return __tcp_mtu_to_mss(sk, pmtu) -
1323 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1324 }
1325
1326 /* Inverse of above */
1327 int tcp_mss_to_mtu(struct sock *sk, int mss)
1328 {
1329 const struct tcp_sock *tp = tcp_sk(sk);
1330 const struct inet_connection_sock *icsk = inet_csk(sk);
1331 int mtu;
1332
1333 mtu = mss +
1334 tp->tcp_header_len +
1335 icsk->icsk_ext_hdr_len +
1336 icsk->icsk_af_ops->net_header_len;
1337
1338 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1339 if (icsk->icsk_af_ops->net_frag_header_len) {
1340 const struct dst_entry *dst = __sk_dst_get(sk);
1341
1342 if (dst && dst_allfrag(dst))
1343 mtu += icsk->icsk_af_ops->net_frag_header_len;
1344 }
1345 return mtu;
1346 }
1347
1348 /* MTU probing init per socket */
1349 void tcp_mtup_init(struct sock *sk)
1350 {
1351 struct tcp_sock *tp = tcp_sk(sk);
1352 struct inet_connection_sock *icsk = inet_csk(sk);
1353
1354 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1355 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1356 icsk->icsk_af_ops->net_header_len;
1357 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1358 icsk->icsk_mtup.probe_size = 0;
1359 }
1360 EXPORT_SYMBOL(tcp_mtup_init);
1361
1362 /* This function synchronize snd mss to current pmtu/exthdr set.
1363
1364 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1365 for TCP options, but includes only bare TCP header.
1366
1367 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1368 It is minimum of user_mss and mss received with SYN.
1369 It also does not include TCP options.
1370
1371 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1372
1373 tp->mss_cache is current effective sending mss, including
1374 all tcp options except for SACKs. It is evaluated,
1375 taking into account current pmtu, but never exceeds
1376 tp->rx_opt.mss_clamp.
1377
1378 NOTE1. rfc1122 clearly states that advertised MSS
1379 DOES NOT include either tcp or ip options.
1380
1381 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1382 are READ ONLY outside this function. --ANK (980731)
1383 */
1384 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1385 {
1386 struct tcp_sock *tp = tcp_sk(sk);
1387 struct inet_connection_sock *icsk = inet_csk(sk);
1388 int mss_now;
1389
1390 if (icsk->icsk_mtup.search_high > pmtu)
1391 icsk->icsk_mtup.search_high = pmtu;
1392
1393 mss_now = tcp_mtu_to_mss(sk, pmtu);
1394 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1395
1396 /* And store cached results */
1397 icsk->icsk_pmtu_cookie = pmtu;
1398 if (icsk->icsk_mtup.enabled)
1399 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1400 tp->mss_cache = mss_now;
1401
1402 return mss_now;
1403 }
1404 EXPORT_SYMBOL(tcp_sync_mss);
1405
1406 /* Compute the current effective MSS, taking SACKs and IP options,
1407 * and even PMTU discovery events into account.
1408 */
1409 unsigned int tcp_current_mss(struct sock *sk)
1410 {
1411 const struct tcp_sock *tp = tcp_sk(sk);
1412 const struct dst_entry *dst = __sk_dst_get(sk);
1413 u32 mss_now;
1414 unsigned int header_len;
1415 struct tcp_out_options opts;
1416 struct tcp_md5sig_key *md5;
1417
1418 mss_now = tp->mss_cache;
1419
1420 if (dst) {
1421 u32 mtu = dst_mtu(dst);
1422 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1423 mss_now = tcp_sync_mss(sk, mtu);
1424 }
1425
1426 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1427 sizeof(struct tcphdr);
1428 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1429 * some common options. If this is an odd packet (because we have SACK
1430 * blocks etc) then our calculated header_len will be different, and
1431 * we have to adjust mss_now correspondingly */
1432 if (header_len != tp->tcp_header_len) {
1433 int delta = (int) header_len - tp->tcp_header_len;
1434 mss_now -= delta;
1435 }
1436
1437 return mss_now;
1438 }
1439
1440 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1441 * As additional protections, we do not touch cwnd in retransmission phases,
1442 * and if application hit its sndbuf limit recently.
1443 */
1444 static void tcp_cwnd_application_limited(struct sock *sk)
1445 {
1446 struct tcp_sock *tp = tcp_sk(sk);
1447
1448 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1449 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1450 /* Limited by application or receiver window. */
1451 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1452 u32 win_used = max(tp->snd_cwnd_used, init_win);
1453 if (win_used < tp->snd_cwnd) {
1454 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1455 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1456 }
1457 tp->snd_cwnd_used = 0;
1458 }
1459 tp->snd_cwnd_stamp = tcp_time_stamp;
1460 }
1461
1462 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1463 {
1464 struct tcp_sock *tp = tcp_sk(sk);
1465
1466 /* Track the maximum number of outstanding packets in each
1467 * window, and remember whether we were cwnd-limited then.
1468 */
1469 if (!before(tp->snd_una, tp->max_packets_seq) ||
1470 tp->packets_out > tp->max_packets_out) {
1471 tp->max_packets_out = tp->packets_out;
1472 tp->max_packets_seq = tp->snd_nxt;
1473 tp->is_cwnd_limited = is_cwnd_limited;
1474 }
1475
1476 if (tcp_is_cwnd_limited(sk)) {
1477 /* Network is feed fully. */
1478 tp->snd_cwnd_used = 0;
1479 tp->snd_cwnd_stamp = tcp_time_stamp;
1480 } else {
1481 /* Network starves. */
1482 if (tp->packets_out > tp->snd_cwnd_used)
1483 tp->snd_cwnd_used = tp->packets_out;
1484
1485 if (sysctl_tcp_slow_start_after_idle &&
1486 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1487 tcp_cwnd_application_limited(sk);
1488 }
1489 }
1490
1491 /* Minshall's variant of the Nagle send check. */
1492 static bool tcp_minshall_check(const struct tcp_sock *tp)
1493 {
1494 return after(tp->snd_sml, tp->snd_una) &&
1495 !after(tp->snd_sml, tp->snd_nxt);
1496 }
1497
1498 /* Update snd_sml if this skb is under mss
1499 * Note that a TSO packet might end with a sub-mss segment
1500 * The test is really :
1501 * if ((skb->len % mss) != 0)
1502 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1503 * But we can avoid doing the divide again given we already have
1504 * skb_pcount = skb->len / mss_now
1505 */
1506 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1507 const struct sk_buff *skb)
1508 {
1509 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1510 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1511 }
1512
1513 /* Return false, if packet can be sent now without violation Nagle's rules:
1514 * 1. It is full sized. (provided by caller in %partial bool)
1515 * 2. Or it contains FIN. (already checked by caller)
1516 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1517 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1518 * With Minshall's modification: all sent small packets are ACKed.
1519 */
1520 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1521 int nonagle)
1522 {
1523 return partial &&
1524 ((nonagle & TCP_NAGLE_CORK) ||
1525 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1526 }
1527
1528 /* Return how many segs we'd like on a TSO packet,
1529 * to send one TSO packet per ms
1530 */
1531 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1532 {
1533 u32 bytes, segs;
1534
1535 bytes = min(sk->sk_pacing_rate >> 10,
1536 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1537
1538 /* Goal is to send at least one packet per ms,
1539 * not one big TSO packet every 100 ms.
1540 * This preserves ACK clocking and is consistent
1541 * with tcp_tso_should_defer() heuristic.
1542 */
1543 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1544
1545 return min_t(u32, segs, sk->sk_gso_max_segs);
1546 }
1547
1548 /* Returns the portion of skb which can be sent right away */
1549 static unsigned int tcp_mss_split_point(const struct sock *sk,
1550 const struct sk_buff *skb,
1551 unsigned int mss_now,
1552 unsigned int max_segs,
1553 int nonagle)
1554 {
1555 const struct tcp_sock *tp = tcp_sk(sk);
1556 u32 partial, needed, window, max_len;
1557
1558 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1559 max_len = mss_now * max_segs;
1560
1561 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1562 return max_len;
1563
1564 needed = min(skb->len, window);
1565
1566 if (max_len <= needed)
1567 return max_len;
1568
1569 partial = needed % mss_now;
1570 /* If last segment is not a full MSS, check if Nagle rules allow us
1571 * to include this last segment in this skb.
1572 * Otherwise, we'll split the skb at last MSS boundary
1573 */
1574 if (tcp_nagle_check(partial != 0, tp, nonagle))
1575 return needed - partial;
1576
1577 return needed;
1578 }
1579
1580 /* Can at least one segment of SKB be sent right now, according to the
1581 * congestion window rules? If so, return how many segments are allowed.
1582 */
1583 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1584 const struct sk_buff *skb)
1585 {
1586 u32 in_flight, cwnd, halfcwnd;
1587
1588 /* Don't be strict about the congestion window for the final FIN. */
1589 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1590 tcp_skb_pcount(skb) == 1)
1591 return 1;
1592
1593 in_flight = tcp_packets_in_flight(tp);
1594 cwnd = tp->snd_cwnd;
1595 if (in_flight >= cwnd)
1596 return 0;
1597
1598 /* For better scheduling, ensure we have at least
1599 * 2 GSO packets in flight.
1600 */
1601 halfcwnd = max(cwnd >> 1, 1U);
1602 return min(halfcwnd, cwnd - in_flight);
1603 }
1604
1605 /* Initialize TSO state of a skb.
1606 * This must be invoked the first time we consider transmitting
1607 * SKB onto the wire.
1608 */
1609 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1610 unsigned int mss_now)
1611 {
1612 int tso_segs = tcp_skb_pcount(skb);
1613
1614 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1615 tcp_set_skb_tso_segs(sk, skb, mss_now);
1616 tso_segs = tcp_skb_pcount(skb);
1617 }
1618 return tso_segs;
1619 }
1620
1621
1622 /* Return true if the Nagle test allows this packet to be
1623 * sent now.
1624 */
1625 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1626 unsigned int cur_mss, int nonagle)
1627 {
1628 /* Nagle rule does not apply to frames, which sit in the middle of the
1629 * write_queue (they have no chances to get new data).
1630 *
1631 * This is implemented in the callers, where they modify the 'nonagle'
1632 * argument based upon the location of SKB in the send queue.
1633 */
1634 if (nonagle & TCP_NAGLE_PUSH)
1635 return true;
1636
1637 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1638 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1639 return true;
1640
1641 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1642 return true;
1643
1644 return false;
1645 }
1646
1647 /* Does at least the first segment of SKB fit into the send window? */
1648 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1649 const struct sk_buff *skb,
1650 unsigned int cur_mss)
1651 {
1652 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1653
1654 if (skb->len > cur_mss)
1655 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1656
1657 return !after(end_seq, tcp_wnd_end(tp));
1658 }
1659
1660 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1661 * should be put on the wire right now. If so, it returns the number of
1662 * packets allowed by the congestion window.
1663 */
1664 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1665 unsigned int cur_mss, int nonagle)
1666 {
1667 const struct tcp_sock *tp = tcp_sk(sk);
1668 unsigned int cwnd_quota;
1669
1670 tcp_init_tso_segs(sk, skb, cur_mss);
1671
1672 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1673 return 0;
1674
1675 cwnd_quota = tcp_cwnd_test(tp, skb);
1676 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1677 cwnd_quota = 0;
1678
1679 return cwnd_quota;
1680 }
1681
1682 /* Test if sending is allowed right now. */
1683 bool tcp_may_send_now(struct sock *sk)
1684 {
1685 const struct tcp_sock *tp = tcp_sk(sk);
1686 struct sk_buff *skb = tcp_send_head(sk);
1687
1688 return skb &&
1689 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1690 (tcp_skb_is_last(sk, skb) ?
1691 tp->nonagle : TCP_NAGLE_PUSH));
1692 }
1693
1694 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1695 * which is put after SKB on the list. It is very much like
1696 * tcp_fragment() except that it may make several kinds of assumptions
1697 * in order to speed up the splitting operation. In particular, we
1698 * know that all the data is in scatter-gather pages, and that the
1699 * packet has never been sent out before (and thus is not cloned).
1700 */
1701 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1702 unsigned int mss_now, gfp_t gfp)
1703 {
1704 struct sk_buff *buff;
1705 int nlen = skb->len - len;
1706 u8 flags;
1707
1708 /* All of a TSO frame must be composed of paged data. */
1709 if (skb->len != skb->data_len)
1710 return tcp_fragment(sk, skb, len, mss_now, gfp);
1711
1712 buff = sk_stream_alloc_skb(sk, 0, gfp);
1713 if (unlikely(buff == NULL))
1714 return -ENOMEM;
1715
1716 sk->sk_wmem_queued += buff->truesize;
1717 sk_mem_charge(sk, buff->truesize);
1718 buff->truesize += nlen;
1719 skb->truesize -= nlen;
1720
1721 /* Correct the sequence numbers. */
1722 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1723 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1724 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1725
1726 /* PSH and FIN should only be set in the second packet. */
1727 flags = TCP_SKB_CB(skb)->tcp_flags;
1728 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1729 TCP_SKB_CB(buff)->tcp_flags = flags;
1730
1731 /* This packet was never sent out yet, so no SACK bits. */
1732 TCP_SKB_CB(buff)->sacked = 0;
1733
1734 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1735 skb_split(skb, buff, len);
1736 tcp_fragment_tstamp(skb, buff);
1737
1738 /* Fix up tso_factor for both original and new SKB. */
1739 tcp_set_skb_tso_segs(sk, skb, mss_now);
1740 tcp_set_skb_tso_segs(sk, buff, mss_now);
1741
1742 /* Link BUFF into the send queue. */
1743 __skb_header_release(buff);
1744 tcp_insert_write_queue_after(skb, buff, sk);
1745
1746 return 0;
1747 }
1748
1749 /* Try to defer sending, if possible, in order to minimize the amount
1750 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1751 *
1752 * This algorithm is from John Heffner.
1753 */
1754 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1755 bool *is_cwnd_limited, u32 max_segs)
1756 {
1757 struct tcp_sock *tp = tcp_sk(sk);
1758 const struct inet_connection_sock *icsk = inet_csk(sk);
1759 u32 send_win, cong_win, limit, in_flight;
1760 int win_divisor;
1761
1762 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1763 goto send_now;
1764
1765 if (icsk->icsk_ca_state != TCP_CA_Open)
1766 goto send_now;
1767
1768 /* Defer for less than two clock ticks. */
1769 if (tp->tso_deferred &&
1770 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1771 goto send_now;
1772
1773 in_flight = tcp_packets_in_flight(tp);
1774
1775 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1776
1777 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1778
1779 /* From in_flight test above, we know that cwnd > in_flight. */
1780 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1781
1782 limit = min(send_win, cong_win);
1783
1784 /* If a full-sized TSO skb can be sent, do it. */
1785 if (limit >= max_segs * tp->mss_cache)
1786 goto send_now;
1787
1788 /* Middle in queue won't get any more data, full sendable already? */
1789 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1790 goto send_now;
1791
1792 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1793 if (win_divisor) {
1794 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1795
1796 /* If at least some fraction of a window is available,
1797 * just use it.
1798 */
1799 chunk /= win_divisor;
1800 if (limit >= chunk)
1801 goto send_now;
1802 } else {
1803 /* Different approach, try not to defer past a single
1804 * ACK. Receiver should ACK every other full sized
1805 * frame, so if we have space for more than 3 frames
1806 * then send now.
1807 */
1808 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1809 goto send_now;
1810 }
1811
1812 /* Ok, it looks like it is advisable to defer.
1813 * Do not rearm the timer if already set to not break TCP ACK clocking.
1814 */
1815 if (!tp->tso_deferred)
1816 tp->tso_deferred = 1 | (jiffies << 1);
1817
1818 if (cong_win < send_win && cong_win < skb->len)
1819 *is_cwnd_limited = true;
1820
1821 return true;
1822
1823 send_now:
1824 tp->tso_deferred = 0;
1825 return false;
1826 }
1827
1828 /* Create a new MTU probe if we are ready.
1829 * MTU probe is regularly attempting to increase the path MTU by
1830 * deliberately sending larger packets. This discovers routing
1831 * changes resulting in larger path MTUs.
1832 *
1833 * Returns 0 if we should wait to probe (no cwnd available),
1834 * 1 if a probe was sent,
1835 * -1 otherwise
1836 */
1837 static int tcp_mtu_probe(struct sock *sk)
1838 {
1839 struct tcp_sock *tp = tcp_sk(sk);
1840 struct inet_connection_sock *icsk = inet_csk(sk);
1841 struct sk_buff *skb, *nskb, *next;
1842 int len;
1843 int probe_size;
1844 int size_needed;
1845 int copy;
1846 int mss_now;
1847
1848 /* Not currently probing/verifying,
1849 * not in recovery,
1850 * have enough cwnd, and
1851 * not SACKing (the variable headers throw things off) */
1852 if (!icsk->icsk_mtup.enabled ||
1853 icsk->icsk_mtup.probe_size ||
1854 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1855 tp->snd_cwnd < 11 ||
1856 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1857 return -1;
1858
1859 /* Very simple search strategy: just double the MSS. */
1860 mss_now = tcp_current_mss(sk);
1861 probe_size = 2 * tp->mss_cache;
1862 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1863 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1864 /* TODO: set timer for probe_converge_event */
1865 return -1;
1866 }
1867
1868 /* Have enough data in the send queue to probe? */
1869 if (tp->write_seq - tp->snd_nxt < size_needed)
1870 return -1;
1871
1872 if (tp->snd_wnd < size_needed)
1873 return -1;
1874 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1875 return 0;
1876
1877 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1878 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1879 if (!tcp_packets_in_flight(tp))
1880 return -1;
1881 else
1882 return 0;
1883 }
1884
1885 /* We're allowed to probe. Build it now. */
1886 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1887 return -1;
1888 sk->sk_wmem_queued += nskb->truesize;
1889 sk_mem_charge(sk, nskb->truesize);
1890
1891 skb = tcp_send_head(sk);
1892
1893 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1894 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1895 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1896 TCP_SKB_CB(nskb)->sacked = 0;
1897 nskb->csum = 0;
1898 nskb->ip_summed = skb->ip_summed;
1899
1900 tcp_insert_write_queue_before(nskb, skb, sk);
1901
1902 len = 0;
1903 tcp_for_write_queue_from_safe(skb, next, sk) {
1904 copy = min_t(int, skb->len, probe_size - len);
1905 if (nskb->ip_summed)
1906 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1907 else
1908 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1909 skb_put(nskb, copy),
1910 copy, nskb->csum);
1911
1912 if (skb->len <= copy) {
1913 /* We've eaten all the data from this skb.
1914 * Throw it away. */
1915 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1916 tcp_unlink_write_queue(skb, sk);
1917 sk_wmem_free_skb(sk, skb);
1918 } else {
1919 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1920 ~(TCPHDR_FIN|TCPHDR_PSH);
1921 if (!skb_shinfo(skb)->nr_frags) {
1922 skb_pull(skb, copy);
1923 if (skb->ip_summed != CHECKSUM_PARTIAL)
1924 skb->csum = csum_partial(skb->data,
1925 skb->len, 0);
1926 } else {
1927 __pskb_trim_head(skb, copy);
1928 tcp_set_skb_tso_segs(sk, skb, mss_now);
1929 }
1930 TCP_SKB_CB(skb)->seq += copy;
1931 }
1932
1933 len += copy;
1934
1935 if (len >= probe_size)
1936 break;
1937 }
1938 tcp_init_tso_segs(sk, nskb, nskb->len);
1939
1940 /* We're ready to send. If this fails, the probe will
1941 * be resegmented into mss-sized pieces by tcp_write_xmit().
1942 */
1943 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1944 /* Decrement cwnd here because we are sending
1945 * effectively two packets. */
1946 tp->snd_cwnd--;
1947 tcp_event_new_data_sent(sk, nskb);
1948
1949 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1950 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1951 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1952
1953 return 1;
1954 }
1955
1956 return -1;
1957 }
1958
1959 /* This routine writes packets to the network. It advances the
1960 * send_head. This happens as incoming acks open up the remote
1961 * window for us.
1962 *
1963 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1964 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1965 * account rare use of URG, this is not a big flaw.
1966 *
1967 * Send at most one packet when push_one > 0. Temporarily ignore
1968 * cwnd limit to force at most one packet out when push_one == 2.
1969
1970 * Returns true, if no segments are in flight and we have queued segments,
1971 * but cannot send anything now because of SWS or another problem.
1972 */
1973 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1974 int push_one, gfp_t gfp)
1975 {
1976 struct tcp_sock *tp = tcp_sk(sk);
1977 struct sk_buff *skb;
1978 unsigned int tso_segs, sent_pkts;
1979 int cwnd_quota;
1980 int result;
1981 bool is_cwnd_limited = false;
1982 u32 max_segs;
1983
1984 sent_pkts = 0;
1985
1986 if (!push_one) {
1987 /* Do MTU probing. */
1988 result = tcp_mtu_probe(sk);
1989 if (!result) {
1990 return false;
1991 } else if (result > 0) {
1992 sent_pkts = 1;
1993 }
1994 }
1995
1996 max_segs = tcp_tso_autosize(sk, mss_now);
1997 while ((skb = tcp_send_head(sk))) {
1998 unsigned int limit;
1999
2000 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
2001 BUG_ON(!tso_segs);
2002
2003 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2004 /* "skb_mstamp" is used as a start point for the retransmit timer */
2005 skb_mstamp_get(&skb->skb_mstamp);
2006 goto repair; /* Skip network transmission */
2007 }
2008
2009 cwnd_quota = tcp_cwnd_test(tp, skb);
2010 if (!cwnd_quota) {
2011 is_cwnd_limited = true;
2012 if (push_one == 2)
2013 /* Force out a loss probe pkt. */
2014 cwnd_quota = 1;
2015 else
2016 break;
2017 }
2018
2019 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2020 break;
2021
2022 if (tso_segs == 1 || !max_segs) {
2023 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2024 (tcp_skb_is_last(sk, skb) ?
2025 nonagle : TCP_NAGLE_PUSH))))
2026 break;
2027 } else {
2028 if (!push_one &&
2029 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2030 max_segs))
2031 break;
2032 }
2033
2034 limit = mss_now;
2035 if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp))
2036 limit = tcp_mss_split_point(sk, skb, mss_now,
2037 min_t(unsigned int,
2038 cwnd_quota,
2039 max_segs),
2040 nonagle);
2041
2042 if (skb->len > limit &&
2043 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2044 break;
2045
2046 /* TCP Small Queues :
2047 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2048 * This allows for :
2049 * - better RTT estimation and ACK scheduling
2050 * - faster recovery
2051 * - high rates
2052 * Alas, some drivers / subsystems require a fair amount
2053 * of queued bytes to ensure line rate.
2054 * One example is wifi aggregation (802.11 AMPDU)
2055 */
2056 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2057 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2058
2059 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2060 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2061 /* It is possible TX completion already happened
2062 * before we set TSQ_THROTTLED, so we must
2063 * test again the condition.
2064 */
2065 smp_mb__after_atomic();
2066 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2067 break;
2068 }
2069
2070 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2071 break;
2072
2073 repair:
2074 /* Advance the send_head. This one is sent out.
2075 * This call will increment packets_out.
2076 */
2077 tcp_event_new_data_sent(sk, skb);
2078
2079 tcp_minshall_update(tp, mss_now, skb);
2080 sent_pkts += tcp_skb_pcount(skb);
2081
2082 if (push_one)
2083 break;
2084 }
2085
2086 if (likely(sent_pkts)) {
2087 if (tcp_in_cwnd_reduction(sk))
2088 tp->prr_out += sent_pkts;
2089
2090 /* Send one loss probe per tail loss episode. */
2091 if (push_one != 2)
2092 tcp_schedule_loss_probe(sk);
2093 tcp_cwnd_validate(sk, is_cwnd_limited);
2094 return false;
2095 }
2096 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2097 }
2098
2099 bool tcp_schedule_loss_probe(struct sock *sk)
2100 {
2101 struct inet_connection_sock *icsk = inet_csk(sk);
2102 struct tcp_sock *tp = tcp_sk(sk);
2103 u32 timeout, tlp_time_stamp, rto_time_stamp;
2104 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2105
2106 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2107 return false;
2108 /* No consecutive loss probes. */
2109 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2110 tcp_rearm_rto(sk);
2111 return false;
2112 }
2113 /* Don't do any loss probe on a Fast Open connection before 3WHS
2114 * finishes.
2115 */
2116 if (sk->sk_state == TCP_SYN_RECV)
2117 return false;
2118
2119 /* TLP is only scheduled when next timer event is RTO. */
2120 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2121 return false;
2122
2123 /* Schedule a loss probe in 2*RTT for SACK capable connections
2124 * in Open state, that are either limited by cwnd or application.
2125 */
2126 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2127 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2128 return false;
2129
2130 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2131 tcp_send_head(sk))
2132 return false;
2133
2134 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2135 * for delayed ack when there's one outstanding packet.
2136 */
2137 timeout = rtt << 1;
2138 if (tp->packets_out == 1)
2139 timeout = max_t(u32, timeout,
2140 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2141 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2142
2143 /* If RTO is shorter, just schedule TLP in its place. */
2144 tlp_time_stamp = tcp_time_stamp + timeout;
2145 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2146 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2147 s32 delta = rto_time_stamp - tcp_time_stamp;
2148 if (delta > 0)
2149 timeout = delta;
2150 }
2151
2152 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2153 TCP_RTO_MAX);
2154 return true;
2155 }
2156
2157 /* Thanks to skb fast clones, we can detect if a prior transmit of
2158 * a packet is still in a qdisc or driver queue.
2159 * In this case, there is very little point doing a retransmit !
2160 * Note: This is called from BH context only.
2161 */
2162 static bool skb_still_in_host_queue(const struct sock *sk,
2163 const struct sk_buff *skb)
2164 {
2165 if (unlikely(skb_fclone_busy(sk, skb))) {
2166 NET_INC_STATS_BH(sock_net(sk),
2167 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2168 return true;
2169 }
2170 return false;
2171 }
2172
2173 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2174 * retransmit the last segment.
2175 */
2176 void tcp_send_loss_probe(struct sock *sk)
2177 {
2178 struct tcp_sock *tp = tcp_sk(sk);
2179 struct sk_buff *skb;
2180 int pcount;
2181 int mss = tcp_current_mss(sk);
2182 int err = -1;
2183
2184 if (tcp_send_head(sk) != NULL) {
2185 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2186 goto rearm_timer;
2187 }
2188
2189 /* At most one outstanding TLP retransmission. */
2190 if (tp->tlp_high_seq)
2191 goto rearm_timer;
2192
2193 /* Retransmit last segment. */
2194 skb = tcp_write_queue_tail(sk);
2195 if (WARN_ON(!skb))
2196 goto rearm_timer;
2197
2198 if (skb_still_in_host_queue(sk, skb))
2199 goto rearm_timer;
2200
2201 pcount = tcp_skb_pcount(skb);
2202 if (WARN_ON(!pcount))
2203 goto rearm_timer;
2204
2205 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2206 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2207 GFP_ATOMIC)))
2208 goto rearm_timer;
2209 skb = tcp_write_queue_tail(sk);
2210 }
2211
2212 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2213 goto rearm_timer;
2214
2215 err = __tcp_retransmit_skb(sk, skb);
2216
2217 /* Record snd_nxt for loss detection. */
2218 if (likely(!err))
2219 tp->tlp_high_seq = tp->snd_nxt;
2220
2221 rearm_timer:
2222 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2223 inet_csk(sk)->icsk_rto,
2224 TCP_RTO_MAX);
2225
2226 if (likely(!err))
2227 NET_INC_STATS_BH(sock_net(sk),
2228 LINUX_MIB_TCPLOSSPROBES);
2229 }
2230
2231 /* Push out any pending frames which were held back due to
2232 * TCP_CORK or attempt at coalescing tiny packets.
2233 * The socket must be locked by the caller.
2234 */
2235 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2236 int nonagle)
2237 {
2238 /* If we are closed, the bytes will have to remain here.
2239 * In time closedown will finish, we empty the write queue and
2240 * all will be happy.
2241 */
2242 if (unlikely(sk->sk_state == TCP_CLOSE))
2243 return;
2244
2245 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2246 sk_gfp_atomic(sk, GFP_ATOMIC)))
2247 tcp_check_probe_timer(sk);
2248 }
2249
2250 /* Send _single_ skb sitting at the send head. This function requires
2251 * true push pending frames to setup probe timer etc.
2252 */
2253 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2254 {
2255 struct sk_buff *skb = tcp_send_head(sk);
2256
2257 BUG_ON(!skb || skb->len < mss_now);
2258
2259 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2260 }
2261
2262 /* This function returns the amount that we can raise the
2263 * usable window based on the following constraints
2264 *
2265 * 1. The window can never be shrunk once it is offered (RFC 793)
2266 * 2. We limit memory per socket
2267 *
2268 * RFC 1122:
2269 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2270 * RECV.NEXT + RCV.WIN fixed until:
2271 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2272 *
2273 * i.e. don't raise the right edge of the window until you can raise
2274 * it at least MSS bytes.
2275 *
2276 * Unfortunately, the recommended algorithm breaks header prediction,
2277 * since header prediction assumes th->window stays fixed.
2278 *
2279 * Strictly speaking, keeping th->window fixed violates the receiver
2280 * side SWS prevention criteria. The problem is that under this rule
2281 * a stream of single byte packets will cause the right side of the
2282 * window to always advance by a single byte.
2283 *
2284 * Of course, if the sender implements sender side SWS prevention
2285 * then this will not be a problem.
2286 *
2287 * BSD seems to make the following compromise:
2288 *
2289 * If the free space is less than the 1/4 of the maximum
2290 * space available and the free space is less than 1/2 mss,
2291 * then set the window to 0.
2292 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2293 * Otherwise, just prevent the window from shrinking
2294 * and from being larger than the largest representable value.
2295 *
2296 * This prevents incremental opening of the window in the regime
2297 * where TCP is limited by the speed of the reader side taking
2298 * data out of the TCP receive queue. It does nothing about
2299 * those cases where the window is constrained on the sender side
2300 * because the pipeline is full.
2301 *
2302 * BSD also seems to "accidentally" limit itself to windows that are a
2303 * multiple of MSS, at least until the free space gets quite small.
2304 * This would appear to be a side effect of the mbuf implementation.
2305 * Combining these two algorithms results in the observed behavior
2306 * of having a fixed window size at almost all times.
2307 *
2308 * Below we obtain similar behavior by forcing the offered window to
2309 * a multiple of the mss when it is feasible to do so.
2310 *
2311 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2312 * Regular options like TIMESTAMP are taken into account.
2313 */
2314 u32 __tcp_select_window(struct sock *sk)
2315 {
2316 struct inet_connection_sock *icsk = inet_csk(sk);
2317 struct tcp_sock *tp = tcp_sk(sk);
2318 /* MSS for the peer's data. Previous versions used mss_clamp
2319 * here. I don't know if the value based on our guesses
2320 * of peer's MSS is better for the performance. It's more correct
2321 * but may be worse for the performance because of rcv_mss
2322 * fluctuations. --SAW 1998/11/1
2323 */
2324 int mss = icsk->icsk_ack.rcv_mss;
2325 int free_space = tcp_space(sk);
2326 int allowed_space = tcp_full_space(sk);
2327 int full_space = min_t(int, tp->window_clamp, allowed_space);
2328 int window;
2329
2330 if (mss > full_space)
2331 mss = full_space;
2332
2333 if (free_space < (full_space >> 1)) {
2334 icsk->icsk_ack.quick = 0;
2335
2336 if (sk_under_memory_pressure(sk))
2337 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2338 4U * tp->advmss);
2339
2340 /* free_space might become our new window, make sure we don't
2341 * increase it due to wscale.
2342 */
2343 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2344
2345 /* if free space is less than mss estimate, or is below 1/16th
2346 * of the maximum allowed, try to move to zero-window, else
2347 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2348 * new incoming data is dropped due to memory limits.
2349 * With large window, mss test triggers way too late in order
2350 * to announce zero window in time before rmem limit kicks in.
2351 */
2352 if (free_space < (allowed_space >> 4) || free_space < mss)
2353 return 0;
2354 }
2355
2356 if (free_space > tp->rcv_ssthresh)
2357 free_space = tp->rcv_ssthresh;
2358
2359 /* Don't do rounding if we are using window scaling, since the
2360 * scaled window will not line up with the MSS boundary anyway.
2361 */
2362 window = tp->rcv_wnd;
2363 if (tp->rx_opt.rcv_wscale) {
2364 window = free_space;
2365
2366 /* Advertise enough space so that it won't get scaled away.
2367 * Import case: prevent zero window announcement if
2368 * 1<<rcv_wscale > mss.
2369 */
2370 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2371 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2372 << tp->rx_opt.rcv_wscale);
2373 } else {
2374 /* Get the largest window that is a nice multiple of mss.
2375 * Window clamp already applied above.
2376 * If our current window offering is within 1 mss of the
2377 * free space we just keep it. This prevents the divide
2378 * and multiply from happening most of the time.
2379 * We also don't do any window rounding when the free space
2380 * is too small.
2381 */
2382 if (window <= free_space - mss || window > free_space)
2383 window = (free_space / mss) * mss;
2384 else if (mss == full_space &&
2385 free_space > window + (full_space >> 1))
2386 window = free_space;
2387 }
2388
2389 return window;
2390 }
2391
2392 /* Collapses two adjacent SKB's during retransmission. */
2393 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2394 {
2395 struct tcp_sock *tp = tcp_sk(sk);
2396 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2397 int skb_size, next_skb_size;
2398
2399 skb_size = skb->len;
2400 next_skb_size = next_skb->len;
2401
2402 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2403
2404 tcp_highest_sack_combine(sk, next_skb, skb);
2405
2406 tcp_unlink_write_queue(next_skb, sk);
2407
2408 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2409 next_skb_size);
2410
2411 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2412 skb->ip_summed = CHECKSUM_PARTIAL;
2413
2414 if (skb->ip_summed != CHECKSUM_PARTIAL)
2415 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2416
2417 /* Update sequence range on original skb. */
2418 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2419
2420 /* Merge over control information. This moves PSH/FIN etc. over */
2421 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2422
2423 /* All done, get rid of second SKB and account for it so
2424 * packet counting does not break.
2425 */
2426 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2427
2428 /* changed transmit queue under us so clear hints */
2429 tcp_clear_retrans_hints_partial(tp);
2430 if (next_skb == tp->retransmit_skb_hint)
2431 tp->retransmit_skb_hint = skb;
2432
2433 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2434
2435 sk_wmem_free_skb(sk, next_skb);
2436 }
2437
2438 /* Check if coalescing SKBs is legal. */
2439 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2440 {
2441 if (tcp_skb_pcount(skb) > 1)
2442 return false;
2443 /* TODO: SACK collapsing could be used to remove this condition */
2444 if (skb_shinfo(skb)->nr_frags != 0)
2445 return false;
2446 if (skb_cloned(skb))
2447 return false;
2448 if (skb == tcp_send_head(sk))
2449 return false;
2450 /* Some heurestics for collapsing over SACK'd could be invented */
2451 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2452 return false;
2453
2454 return true;
2455 }
2456
2457 /* Collapse packets in the retransmit queue to make to create
2458 * less packets on the wire. This is only done on retransmission.
2459 */
2460 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2461 int space)
2462 {
2463 struct tcp_sock *tp = tcp_sk(sk);
2464 struct sk_buff *skb = to, *tmp;
2465 bool first = true;
2466
2467 if (!sysctl_tcp_retrans_collapse)
2468 return;
2469 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2470 return;
2471
2472 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2473 if (!tcp_can_collapse(sk, skb))
2474 break;
2475
2476 space -= skb->len;
2477
2478 if (first) {
2479 first = false;
2480 continue;
2481 }
2482
2483 if (space < 0)
2484 break;
2485 /* Punt if not enough space exists in the first SKB for
2486 * the data in the second
2487 */
2488 if (skb->len > skb_availroom(to))
2489 break;
2490
2491 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2492 break;
2493
2494 tcp_collapse_retrans(sk, to);
2495 }
2496 }
2497
2498 /* This retransmits one SKB. Policy decisions and retransmit queue
2499 * state updates are done by the caller. Returns non-zero if an
2500 * error occurred which prevented the send.
2501 */
2502 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2503 {
2504 struct tcp_sock *tp = tcp_sk(sk);
2505 struct inet_connection_sock *icsk = inet_csk(sk);
2506 unsigned int cur_mss;
2507 int err;
2508
2509 /* Inconslusive MTU probe */
2510 if (icsk->icsk_mtup.probe_size) {
2511 icsk->icsk_mtup.probe_size = 0;
2512 }
2513
2514 /* Do not sent more than we queued. 1/4 is reserved for possible
2515 * copying overhead: fragmentation, tunneling, mangling etc.
2516 */
2517 if (atomic_read(&sk->sk_wmem_alloc) >
2518 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2519 return -EAGAIN;
2520
2521 if (skb_still_in_host_queue(sk, skb))
2522 return -EBUSY;
2523
2524 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2525 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2526 BUG();
2527 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2528 return -ENOMEM;
2529 }
2530
2531 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2532 return -EHOSTUNREACH; /* Routing failure or similar. */
2533
2534 cur_mss = tcp_current_mss(sk);
2535
2536 /* If receiver has shrunk his window, and skb is out of
2537 * new window, do not retransmit it. The exception is the
2538 * case, when window is shrunk to zero. In this case
2539 * our retransmit serves as a zero window probe.
2540 */
2541 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2542 TCP_SKB_CB(skb)->seq != tp->snd_una)
2543 return -EAGAIN;
2544
2545 if (skb->len > cur_mss) {
2546 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2547 return -ENOMEM; /* We'll try again later. */
2548 } else {
2549 int oldpcount = tcp_skb_pcount(skb);
2550
2551 if (unlikely(oldpcount > 1)) {
2552 if (skb_unclone(skb, GFP_ATOMIC))
2553 return -ENOMEM;
2554 tcp_init_tso_segs(sk, skb, cur_mss);
2555 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2556 }
2557 }
2558
2559 tcp_retrans_try_collapse(sk, skb, cur_mss);
2560
2561 /* Make a copy, if the first transmission SKB clone we made
2562 * is still in somebody's hands, else make a clone.
2563 */
2564
2565 /* make sure skb->data is aligned on arches that require it
2566 * and check if ack-trimming & collapsing extended the headroom
2567 * beyond what csum_start can cover.
2568 */
2569 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2570 skb_headroom(skb) >= 0xFFFF)) {
2571 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2572 GFP_ATOMIC);
2573 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2574 -ENOBUFS;
2575 } else {
2576 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2577 }
2578
2579 if (likely(!err)) {
2580 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2581 /* Update global TCP statistics. */
2582 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2583 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2584 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2585 tp->total_retrans++;
2586 }
2587 return err;
2588 }
2589
2590 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2591 {
2592 struct tcp_sock *tp = tcp_sk(sk);
2593 int err = __tcp_retransmit_skb(sk, skb);
2594
2595 if (err == 0) {
2596 #if FASTRETRANS_DEBUG > 0
2597 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2598 net_dbg_ratelimited("retrans_out leaked\n");
2599 }
2600 #endif
2601 if (!tp->retrans_out)
2602 tp->lost_retrans_low = tp->snd_nxt;
2603 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2604 tp->retrans_out += tcp_skb_pcount(skb);
2605
2606 /* Save stamp of the first retransmit. */
2607 if (!tp->retrans_stamp)
2608 tp->retrans_stamp = tcp_skb_timestamp(skb);
2609
2610 /* snd_nxt is stored to detect loss of retransmitted segment,
2611 * see tcp_input.c tcp_sacktag_write_queue().
2612 */
2613 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2614 } else if (err != -EBUSY) {
2615 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2616 }
2617
2618 if (tp->undo_retrans < 0)
2619 tp->undo_retrans = 0;
2620 tp->undo_retrans += tcp_skb_pcount(skb);
2621 return err;
2622 }
2623
2624 /* Check if we forward retransmits are possible in the current
2625 * window/congestion state.
2626 */
2627 static bool tcp_can_forward_retransmit(struct sock *sk)
2628 {
2629 const struct inet_connection_sock *icsk = inet_csk(sk);
2630 const struct tcp_sock *tp = tcp_sk(sk);
2631
2632 /* Forward retransmissions are possible only during Recovery. */
2633 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2634 return false;
2635
2636 /* No forward retransmissions in Reno are possible. */
2637 if (tcp_is_reno(tp))
2638 return false;
2639
2640 /* Yeah, we have to make difficult choice between forward transmission
2641 * and retransmission... Both ways have their merits...
2642 *
2643 * For now we do not retransmit anything, while we have some new
2644 * segments to send. In the other cases, follow rule 3 for
2645 * NextSeg() specified in RFC3517.
2646 */
2647
2648 if (tcp_may_send_now(sk))
2649 return false;
2650
2651 return true;
2652 }
2653
2654 /* This gets called after a retransmit timeout, and the initially
2655 * retransmitted data is acknowledged. It tries to continue
2656 * resending the rest of the retransmit queue, until either
2657 * we've sent it all or the congestion window limit is reached.
2658 * If doing SACK, the first ACK which comes back for a timeout
2659 * based retransmit packet might feed us FACK information again.
2660 * If so, we use it to avoid unnecessarily retransmissions.
2661 */
2662 void tcp_xmit_retransmit_queue(struct sock *sk)
2663 {
2664 const struct inet_connection_sock *icsk = inet_csk(sk);
2665 struct tcp_sock *tp = tcp_sk(sk);
2666 struct sk_buff *skb;
2667 struct sk_buff *hole = NULL;
2668 u32 last_lost;
2669 int mib_idx;
2670 int fwd_rexmitting = 0;
2671
2672 if (!tp->packets_out)
2673 return;
2674
2675 if (!tp->lost_out)
2676 tp->retransmit_high = tp->snd_una;
2677
2678 if (tp->retransmit_skb_hint) {
2679 skb = tp->retransmit_skb_hint;
2680 last_lost = TCP_SKB_CB(skb)->end_seq;
2681 if (after(last_lost, tp->retransmit_high))
2682 last_lost = tp->retransmit_high;
2683 } else {
2684 skb = tcp_write_queue_head(sk);
2685 last_lost = tp->snd_una;
2686 }
2687
2688 tcp_for_write_queue_from(skb, sk) {
2689 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2690
2691 if (skb == tcp_send_head(sk))
2692 break;
2693 /* we could do better than to assign each time */
2694 if (hole == NULL)
2695 tp->retransmit_skb_hint = skb;
2696
2697 /* Assume this retransmit will generate
2698 * only one packet for congestion window
2699 * calculation purposes. This works because
2700 * tcp_retransmit_skb() will chop up the
2701 * packet to be MSS sized and all the
2702 * packet counting works out.
2703 */
2704 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2705 return;
2706
2707 if (fwd_rexmitting) {
2708 begin_fwd:
2709 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2710 break;
2711 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2712
2713 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2714 tp->retransmit_high = last_lost;
2715 if (!tcp_can_forward_retransmit(sk))
2716 break;
2717 /* Backtrack if necessary to non-L'ed skb */
2718 if (hole != NULL) {
2719 skb = hole;
2720 hole = NULL;
2721 }
2722 fwd_rexmitting = 1;
2723 goto begin_fwd;
2724
2725 } else if (!(sacked & TCPCB_LOST)) {
2726 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2727 hole = skb;
2728 continue;
2729
2730 } else {
2731 last_lost = TCP_SKB_CB(skb)->end_seq;
2732 if (icsk->icsk_ca_state != TCP_CA_Loss)
2733 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2734 else
2735 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2736 }
2737
2738 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2739 continue;
2740
2741 if (tcp_retransmit_skb(sk, skb))
2742 return;
2743
2744 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2745
2746 if (tcp_in_cwnd_reduction(sk))
2747 tp->prr_out += tcp_skb_pcount(skb);
2748
2749 if (skb == tcp_write_queue_head(sk))
2750 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2751 inet_csk(sk)->icsk_rto,
2752 TCP_RTO_MAX);
2753 }
2754 }
2755
2756 /* Send a fin. The caller locks the socket for us. This cannot be
2757 * allowed to fail queueing a FIN frame under any circumstances.
2758 */
2759 void tcp_send_fin(struct sock *sk)
2760 {
2761 struct tcp_sock *tp = tcp_sk(sk);
2762 struct sk_buff *skb = tcp_write_queue_tail(sk);
2763 int mss_now;
2764
2765 /* Optimization, tack on the FIN if we have a queue of
2766 * unsent frames. But be careful about outgoing SACKS
2767 * and IP options.
2768 */
2769 mss_now = tcp_current_mss(sk);
2770
2771 if (tcp_send_head(sk) != NULL) {
2772 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2773 TCP_SKB_CB(skb)->end_seq++;
2774 tp->write_seq++;
2775 } else {
2776 /* Socket is locked, keep trying until memory is available. */
2777 for (;;) {
2778 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2779 sk->sk_allocation);
2780 if (skb)
2781 break;
2782 yield();
2783 }
2784
2785 /* Reserve space for headers and prepare control bits. */
2786 skb_reserve(skb, MAX_TCP_HEADER);
2787 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2788 tcp_init_nondata_skb(skb, tp->write_seq,
2789 TCPHDR_ACK | TCPHDR_FIN);
2790 tcp_queue_skb(sk, skb);
2791 }
2792 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2793 }
2794
2795 /* We get here when a process closes a file descriptor (either due to
2796 * an explicit close() or as a byproduct of exit()'ing) and there
2797 * was unread data in the receive queue. This behavior is recommended
2798 * by RFC 2525, section 2.17. -DaveM
2799 */
2800 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2801 {
2802 struct sk_buff *skb;
2803
2804 /* NOTE: No TCP options attached and we never retransmit this. */
2805 skb = alloc_skb(MAX_TCP_HEADER, priority);
2806 if (!skb) {
2807 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2808 return;
2809 }
2810
2811 /* Reserve space for headers and prepare control bits. */
2812 skb_reserve(skb, MAX_TCP_HEADER);
2813 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2814 TCPHDR_ACK | TCPHDR_RST);
2815 /* Send it off. */
2816 if (tcp_transmit_skb(sk, skb, 0, priority))
2817 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2818
2819 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2820 }
2821
2822 /* Send a crossed SYN-ACK during socket establishment.
2823 * WARNING: This routine must only be called when we have already sent
2824 * a SYN packet that crossed the incoming SYN that caused this routine
2825 * to get called. If this assumption fails then the initial rcv_wnd
2826 * and rcv_wscale values will not be correct.
2827 */
2828 int tcp_send_synack(struct sock *sk)
2829 {
2830 struct sk_buff *skb;
2831
2832 skb = tcp_write_queue_head(sk);
2833 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2834 pr_debug("%s: wrong queue state\n", __func__);
2835 return -EFAULT;
2836 }
2837 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2838 if (skb_cloned(skb)) {
2839 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2840 if (nskb == NULL)
2841 return -ENOMEM;
2842 tcp_unlink_write_queue(skb, sk);
2843 __skb_header_release(nskb);
2844 __tcp_add_write_queue_head(sk, nskb);
2845 sk_wmem_free_skb(sk, skb);
2846 sk->sk_wmem_queued += nskb->truesize;
2847 sk_mem_charge(sk, nskb->truesize);
2848 skb = nskb;
2849 }
2850
2851 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2852 tcp_ecn_send_synack(sk, skb);
2853 }
2854 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2855 }
2856
2857 /**
2858 * tcp_make_synack - Prepare a SYN-ACK.
2859 * sk: listener socket
2860 * dst: dst entry attached to the SYNACK
2861 * req: request_sock pointer
2862 *
2863 * Allocate one skb and build a SYNACK packet.
2864 * @dst is consumed : Caller should not use it again.
2865 */
2866 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2867 struct request_sock *req,
2868 struct tcp_fastopen_cookie *foc)
2869 {
2870 struct tcp_out_options opts;
2871 struct inet_request_sock *ireq = inet_rsk(req);
2872 struct tcp_sock *tp = tcp_sk(sk);
2873 struct tcphdr *th;
2874 struct sk_buff *skb;
2875 struct tcp_md5sig_key *md5;
2876 int tcp_header_size;
2877 int mss;
2878
2879 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2880 if (unlikely(!skb)) {
2881 dst_release(dst);
2882 return NULL;
2883 }
2884 /* Reserve space for headers. */
2885 skb_reserve(skb, MAX_TCP_HEADER);
2886
2887 skb_dst_set(skb, dst);
2888 security_skb_owned_by(skb, sk);
2889
2890 mss = dst_metric_advmss(dst);
2891 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2892 mss = tp->rx_opt.user_mss;
2893
2894 memset(&opts, 0, sizeof(opts));
2895 #ifdef CONFIG_SYN_COOKIES
2896 if (unlikely(req->cookie_ts))
2897 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2898 else
2899 #endif
2900 skb_mstamp_get(&skb->skb_mstamp);
2901 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2902 foc) + sizeof(*th);
2903
2904 skb_push(skb, tcp_header_size);
2905 skb_reset_transport_header(skb);
2906
2907 th = tcp_hdr(skb);
2908 memset(th, 0, sizeof(struct tcphdr));
2909 th->syn = 1;
2910 th->ack = 1;
2911 tcp_ecn_make_synack(req, th, sk);
2912 th->source = htons(ireq->ir_num);
2913 th->dest = ireq->ir_rmt_port;
2914 /* Setting of flags are superfluous here for callers (and ECE is
2915 * not even correctly set)
2916 */
2917 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2918 TCPHDR_SYN | TCPHDR_ACK);
2919
2920 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2921 /* XXX data is queued and acked as is. No buffer/window check */
2922 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2923
2924 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2925 th->window = htons(min(req->rcv_wnd, 65535U));
2926 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2927 th->doff = (tcp_header_size >> 2);
2928 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2929
2930 #ifdef CONFIG_TCP_MD5SIG
2931 /* Okay, we have all we need - do the md5 hash if needed */
2932 if (md5) {
2933 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2934 md5, NULL, req, skb);
2935 }
2936 #endif
2937
2938 return skb;
2939 }
2940 EXPORT_SYMBOL(tcp_make_synack);
2941
2942 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
2943 {
2944 struct inet_connection_sock *icsk = inet_csk(sk);
2945 const struct tcp_congestion_ops *ca;
2946 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
2947
2948 if (ca_key == TCP_CA_UNSPEC)
2949 return;
2950
2951 rcu_read_lock();
2952 ca = tcp_ca_find_key(ca_key);
2953 if (likely(ca && try_module_get(ca->owner))) {
2954 module_put(icsk->icsk_ca_ops->owner);
2955 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
2956 icsk->icsk_ca_ops = ca;
2957 }
2958 rcu_read_unlock();
2959 }
2960
2961 /* Do all connect socket setups that can be done AF independent. */
2962 static void tcp_connect_init(struct sock *sk)
2963 {
2964 const struct dst_entry *dst = __sk_dst_get(sk);
2965 struct tcp_sock *tp = tcp_sk(sk);
2966 __u8 rcv_wscale;
2967
2968 /* We'll fix this up when we get a response from the other end.
2969 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2970 */
2971 tp->tcp_header_len = sizeof(struct tcphdr) +
2972 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2973
2974 #ifdef CONFIG_TCP_MD5SIG
2975 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2976 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2977 #endif
2978
2979 /* If user gave his TCP_MAXSEG, record it to clamp */
2980 if (tp->rx_opt.user_mss)
2981 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2982 tp->max_window = 0;
2983 tcp_mtup_init(sk);
2984 tcp_sync_mss(sk, dst_mtu(dst));
2985
2986 tcp_ca_dst_init(sk, dst);
2987
2988 if (!tp->window_clamp)
2989 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2990 tp->advmss = dst_metric_advmss(dst);
2991 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2992 tp->advmss = tp->rx_opt.user_mss;
2993
2994 tcp_initialize_rcv_mss(sk);
2995
2996 /* limit the window selection if the user enforce a smaller rx buffer */
2997 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2998 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2999 tp->window_clamp = tcp_full_space(sk);
3000
3001 tcp_select_initial_window(tcp_full_space(sk),
3002 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3003 &tp->rcv_wnd,
3004 &tp->window_clamp,
3005 sysctl_tcp_window_scaling,
3006 &rcv_wscale,
3007 dst_metric(dst, RTAX_INITRWND));
3008
3009 tp->rx_opt.rcv_wscale = rcv_wscale;
3010 tp->rcv_ssthresh = tp->rcv_wnd;
3011
3012 sk->sk_err = 0;
3013 sock_reset_flag(sk, SOCK_DONE);
3014 tp->snd_wnd = 0;
3015 tcp_init_wl(tp, 0);
3016 tp->snd_una = tp->write_seq;
3017 tp->snd_sml = tp->write_seq;
3018 tp->snd_up = tp->write_seq;
3019 tp->snd_nxt = tp->write_seq;
3020
3021 if (likely(!tp->repair))
3022 tp->rcv_nxt = 0;
3023 else
3024 tp->rcv_tstamp = tcp_time_stamp;
3025 tp->rcv_wup = tp->rcv_nxt;
3026 tp->copied_seq = tp->rcv_nxt;
3027
3028 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3029 inet_csk(sk)->icsk_retransmits = 0;
3030 tcp_clear_retrans(tp);
3031 }
3032
3033 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3034 {
3035 struct tcp_sock *tp = tcp_sk(sk);
3036 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3037
3038 tcb->end_seq += skb->len;
3039 __skb_header_release(skb);
3040 __tcp_add_write_queue_tail(sk, skb);
3041 sk->sk_wmem_queued += skb->truesize;
3042 sk_mem_charge(sk, skb->truesize);
3043 tp->write_seq = tcb->end_seq;
3044 tp->packets_out += tcp_skb_pcount(skb);
3045 }
3046
3047 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3048 * queue a data-only packet after the regular SYN, such that regular SYNs
3049 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3050 * only the SYN sequence, the data are retransmitted in the first ACK.
3051 * If cookie is not cached or other error occurs, falls back to send a
3052 * regular SYN with Fast Open cookie request option.
3053 */
3054 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3055 {
3056 struct tcp_sock *tp = tcp_sk(sk);
3057 struct tcp_fastopen_request *fo = tp->fastopen_req;
3058 int syn_loss = 0, space, err = 0;
3059 unsigned long last_syn_loss = 0;
3060 struct sk_buff *syn_data;
3061
3062 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3063 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3064 &syn_loss, &last_syn_loss);
3065 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3066 if (syn_loss > 1 &&
3067 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3068 fo->cookie.len = -1;
3069 goto fallback;
3070 }
3071
3072 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3073 fo->cookie.len = -1;
3074 else if (fo->cookie.len <= 0)
3075 goto fallback;
3076
3077 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3078 * user-MSS. Reserve maximum option space for middleboxes that add
3079 * private TCP options. The cost is reduced data space in SYN :(
3080 */
3081 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3082 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3083 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3084 MAX_TCP_OPTION_SPACE;
3085
3086 space = min_t(size_t, space, fo->size);
3087
3088 /* limit to order-0 allocations */
3089 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3090
3091 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3092 if (!syn_data)
3093 goto fallback;
3094 syn_data->ip_summed = CHECKSUM_PARTIAL;
3095 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3096 if (unlikely(memcpy_fromiovecend(skb_put(syn_data, space),
3097 fo->data->msg_iter.iov, 0, space))) {
3098 kfree_skb(syn_data);
3099 goto fallback;
3100 }
3101
3102 /* No more data pending in inet_wait_for_connect() */
3103 if (space == fo->size)
3104 fo->data = NULL;
3105 fo->copied = space;
3106
3107 tcp_connect_queue_skb(sk, syn_data);
3108
3109 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3110
3111 syn->skb_mstamp = syn_data->skb_mstamp;
3112
3113 /* Now full SYN+DATA was cloned and sent (or not),
3114 * remove the SYN from the original skb (syn_data)
3115 * we keep in write queue in case of a retransmit, as we
3116 * also have the SYN packet (with no data) in the same queue.
3117 */
3118 TCP_SKB_CB(syn_data)->seq++;
3119 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3120 if (!err) {
3121 tp->syn_data = (fo->copied > 0);
3122 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3123 goto done;
3124 }
3125
3126 fallback:
3127 /* Send a regular SYN with Fast Open cookie request option */
3128 if (fo->cookie.len > 0)
3129 fo->cookie.len = 0;
3130 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3131 if (err)
3132 tp->syn_fastopen = 0;
3133 done:
3134 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3135 return err;
3136 }
3137
3138 /* Build a SYN and send it off. */
3139 int tcp_connect(struct sock *sk)
3140 {
3141 struct tcp_sock *tp = tcp_sk(sk);
3142 struct sk_buff *buff;
3143 int err;
3144
3145 tcp_connect_init(sk);
3146
3147 if (unlikely(tp->repair)) {
3148 tcp_finish_connect(sk, NULL);
3149 return 0;
3150 }
3151
3152 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3153 if (unlikely(!buff))
3154 return -ENOBUFS;
3155
3156 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3157 tp->retrans_stamp = tcp_time_stamp;
3158 tcp_connect_queue_skb(sk, buff);
3159 tcp_ecn_send_syn(sk, buff);
3160
3161 /* Send off SYN; include data in Fast Open. */
3162 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3163 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3164 if (err == -ECONNREFUSED)
3165 return err;
3166
3167 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3168 * in order to make this packet get counted in tcpOutSegs.
3169 */
3170 tp->snd_nxt = tp->write_seq;
3171 tp->pushed_seq = tp->write_seq;
3172 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3173
3174 /* Timer for repeating the SYN until an answer. */
3175 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3176 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3177 return 0;
3178 }
3179 EXPORT_SYMBOL(tcp_connect);
3180
3181 /* Send out a delayed ack, the caller does the policy checking
3182 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3183 * for details.
3184 */
3185 void tcp_send_delayed_ack(struct sock *sk)
3186 {
3187 struct inet_connection_sock *icsk = inet_csk(sk);
3188 int ato = icsk->icsk_ack.ato;
3189 unsigned long timeout;
3190
3191 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3192
3193 if (ato > TCP_DELACK_MIN) {
3194 const struct tcp_sock *tp = tcp_sk(sk);
3195 int max_ato = HZ / 2;
3196
3197 if (icsk->icsk_ack.pingpong ||
3198 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3199 max_ato = TCP_DELACK_MAX;
3200
3201 /* Slow path, intersegment interval is "high". */
3202
3203 /* If some rtt estimate is known, use it to bound delayed ack.
3204 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3205 * directly.
3206 */
3207 if (tp->srtt_us) {
3208 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3209 TCP_DELACK_MIN);
3210
3211 if (rtt < max_ato)
3212 max_ato = rtt;
3213 }
3214
3215 ato = min(ato, max_ato);
3216 }
3217
3218 /* Stay within the limit we were given */
3219 timeout = jiffies + ato;
3220
3221 /* Use new timeout only if there wasn't a older one earlier. */
3222 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3223 /* If delack timer was blocked or is about to expire,
3224 * send ACK now.
3225 */
3226 if (icsk->icsk_ack.blocked ||
3227 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3228 tcp_send_ack(sk);
3229 return;
3230 }
3231
3232 if (!time_before(timeout, icsk->icsk_ack.timeout))
3233 timeout = icsk->icsk_ack.timeout;
3234 }
3235 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3236 icsk->icsk_ack.timeout = timeout;
3237 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3238 }
3239
3240 /* This routine sends an ack and also updates the window. */
3241 void tcp_send_ack(struct sock *sk)
3242 {
3243 struct sk_buff *buff;
3244
3245 /* If we have been reset, we may not send again. */
3246 if (sk->sk_state == TCP_CLOSE)
3247 return;
3248
3249 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3250
3251 /* We are not putting this on the write queue, so
3252 * tcp_transmit_skb() will set the ownership to this
3253 * sock.
3254 */
3255 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3256 if (buff == NULL) {
3257 inet_csk_schedule_ack(sk);
3258 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3259 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3260 TCP_DELACK_MAX, TCP_RTO_MAX);
3261 return;
3262 }
3263
3264 /* Reserve space for headers and prepare control bits. */
3265 skb_reserve(buff, MAX_TCP_HEADER);
3266 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3267
3268 /* Send it off, this clears delayed acks for us. */
3269 skb_mstamp_get(&buff->skb_mstamp);
3270 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3271 }
3272 EXPORT_SYMBOL_GPL(tcp_send_ack);
3273
3274 /* This routine sends a packet with an out of date sequence
3275 * number. It assumes the other end will try to ack it.
3276 *
3277 * Question: what should we make while urgent mode?
3278 * 4.4BSD forces sending single byte of data. We cannot send
3279 * out of window data, because we have SND.NXT==SND.MAX...
3280 *
3281 * Current solution: to send TWO zero-length segments in urgent mode:
3282 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3283 * out-of-date with SND.UNA-1 to probe window.
3284 */
3285 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3286 {
3287 struct tcp_sock *tp = tcp_sk(sk);
3288 struct sk_buff *skb;
3289
3290 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3291 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3292 if (skb == NULL)
3293 return -1;
3294
3295 /* Reserve space for headers and set control bits. */
3296 skb_reserve(skb, MAX_TCP_HEADER);
3297 /* Use a previous sequence. This should cause the other
3298 * end to send an ack. Don't queue or clone SKB, just
3299 * send it.
3300 */
3301 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3302 skb_mstamp_get(&skb->skb_mstamp);
3303 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3304 }
3305
3306 void tcp_send_window_probe(struct sock *sk)
3307 {
3308 if (sk->sk_state == TCP_ESTABLISHED) {
3309 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3310 tcp_xmit_probe_skb(sk, 0);
3311 }
3312 }
3313
3314 /* Initiate keepalive or window probe from timer. */
3315 int tcp_write_wakeup(struct sock *sk)
3316 {
3317 struct tcp_sock *tp = tcp_sk(sk);
3318 struct sk_buff *skb;
3319
3320 if (sk->sk_state == TCP_CLOSE)
3321 return -1;
3322
3323 if ((skb = tcp_send_head(sk)) != NULL &&
3324 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3325 int err;
3326 unsigned int mss = tcp_current_mss(sk);
3327 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3328
3329 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3330 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3331
3332 /* We are probing the opening of a window
3333 * but the window size is != 0
3334 * must have been a result SWS avoidance ( sender )
3335 */
3336 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3337 skb->len > mss) {
3338 seg_size = min(seg_size, mss);
3339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3340 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3341 return -1;
3342 } else if (!tcp_skb_pcount(skb))
3343 tcp_set_skb_tso_segs(sk, skb, mss);
3344
3345 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3346 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3347 if (!err)
3348 tcp_event_new_data_sent(sk, skb);
3349 return err;
3350 } else {
3351 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3352 tcp_xmit_probe_skb(sk, 1);
3353 return tcp_xmit_probe_skb(sk, 0);
3354 }
3355 }
3356
3357 /* A window probe timeout has occurred. If window is not closed send
3358 * a partial packet else a zero probe.
3359 */
3360 void tcp_send_probe0(struct sock *sk)
3361 {
3362 struct inet_connection_sock *icsk = inet_csk(sk);
3363 struct tcp_sock *tp = tcp_sk(sk);
3364 unsigned long probe_max;
3365 int err;
3366
3367 err = tcp_write_wakeup(sk);
3368
3369 if (tp->packets_out || !tcp_send_head(sk)) {
3370 /* Cancel probe timer, if it is not required. */
3371 icsk->icsk_probes_out = 0;
3372 icsk->icsk_backoff = 0;
3373 return;
3374 }
3375
3376 if (err <= 0) {
3377 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3378 icsk->icsk_backoff++;
3379 icsk->icsk_probes_out++;
3380 probe_max = TCP_RTO_MAX;
3381 } else {
3382 /* If packet was not sent due to local congestion,
3383 * do not backoff and do not remember icsk_probes_out.
3384 * Let local senders to fight for local resources.
3385 *
3386 * Use accumulated backoff yet.
3387 */
3388 if (!icsk->icsk_probes_out)
3389 icsk->icsk_probes_out = 1;
3390 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3391 }
3392 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3393 inet_csk_rto_backoff(icsk, probe_max),
3394 TCP_RTO_MAX);
3395 }
3396
3397 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3398 {
3399 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3400 struct flowi fl;
3401 int res;
3402
3403 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3404 if (!res) {
3405 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3406 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3407 }
3408 return res;
3409 }
3410 EXPORT_SYMBOL(tcp_rtx_synack);
This page took 0.10106 seconds and 5 git commands to generate.