[TCP]: Ratelimit debugging warning.
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
28 *
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
36 *
37 */
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
47
48 /* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
51 */
52 int sysctl_tcp_tso_win_divisor = 3;
53
54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb)
56 {
57 sk->sk_send_head = skb->next;
58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 sk->sk_send_head = NULL;
60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 tcp_packets_out_inc(sk, tp, skb);
62 }
63
64 /* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
69 */
70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71 {
72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 return tp->snd_nxt;
74 else
75 return tp->snd_una+tp->snd_wnd;
76 }
77
78 /* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80 *
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
85 * large MSS.
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
91 */
92 static __u16 tcp_advertise_mss(struct sock *sk)
93 {
94 struct tcp_sock *tp = tcp_sk(sk);
95 struct dst_entry *dst = __sk_dst_get(sk);
96 int mss = tp->advmss;
97
98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 mss = dst_metric(dst, RTAX_ADVMSS);
100 tp->advmss = mss;
101 }
102
103 return (__u16)mss;
104 }
105
106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
109 {
110 struct tcp_sock *tp = tcp_sk(sk);
111 s32 delta = tcp_time_stamp - tp->lsndtime;
112 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
113 u32 cwnd = tp->snd_cwnd;
114
115 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
116
117 tp->snd_ssthresh = tcp_current_ssthresh(sk);
118 restart_cwnd = min(restart_cwnd, cwnd);
119
120 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
121 cwnd >>= 1;
122 tp->snd_cwnd = max(cwnd, restart_cwnd);
123 tp->snd_cwnd_stamp = tcp_time_stamp;
124 tp->snd_cwnd_used = 0;
125 }
126
127 static inline void tcp_event_data_sent(struct tcp_sock *tp,
128 struct sk_buff *skb, struct sock *sk)
129 {
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const u32 now = tcp_time_stamp;
132
133 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)
134 tcp_cwnd_restart(sk, __sk_dst_get(sk));
135
136 tp->lsndtime = now;
137
138 /* If it is a reply for ato after last received
139 * packet, enter pingpong mode.
140 */
141 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
142 icsk->icsk_ack.pingpong = 1;
143 }
144
145 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
146 {
147 tcp_dec_quickack_mode(sk, pkts);
148 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
149 }
150
151 /* Determine a window scaling and initial window to offer.
152 * Based on the assumption that the given amount of space
153 * will be offered. Store the results in the tp structure.
154 * NOTE: for smooth operation initial space offering should
155 * be a multiple of mss if possible. We assume here that mss >= 1.
156 * This MUST be enforced by all callers.
157 */
158 void tcp_select_initial_window(int __space, __u32 mss,
159 __u32 *rcv_wnd, __u32 *window_clamp,
160 int wscale_ok, __u8 *rcv_wscale)
161 {
162 unsigned int space = (__space < 0 ? 0 : __space);
163
164 /* If no clamp set the clamp to the max possible scaled window */
165 if (*window_clamp == 0)
166 (*window_clamp) = (65535 << 14);
167 space = min(*window_clamp, space);
168
169 /* Quantize space offering to a multiple of mss if possible. */
170 if (space > mss)
171 space = (space / mss) * mss;
172
173 /* NOTE: offering an initial window larger than 32767
174 * will break some buggy TCP stacks. We try to be nice.
175 * If we are not window scaling, then this truncates
176 * our initial window offering to 32k. There should also
177 * be a sysctl option to stop being nice.
178 */
179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 (*rcv_wscale) = 0;
181 if (wscale_ok) {
182 /* Set window scaling on max possible window
183 * See RFC1323 for an explanation of the limit to 14
184 */
185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 while (space > 65535 && (*rcv_wscale) < 14) {
187 space >>= 1;
188 (*rcv_wscale)++;
189 }
190 }
191
192 /* Set initial window to value enough for senders,
193 * following RFC2414. Senders, not following this RFC,
194 * will be satisfied with 2.
195 */
196 if (mss > (1<<*rcv_wscale)) {
197 int init_cwnd = 4;
198 if (mss > 1460*3)
199 init_cwnd = 2;
200 else if (mss > 1460)
201 init_cwnd = 3;
202 if (*rcv_wnd > init_cwnd*mss)
203 *rcv_wnd = init_cwnd*mss;
204 }
205
206 /* Set the clamp no higher than max representable value */
207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208 }
209
210 /* Chose a new window to advertise, update state in tcp_sock for the
211 * socket, and return result with RFC1323 scaling applied. The return
212 * value can be stuffed directly into th->window for an outgoing
213 * frame.
214 */
215 static __inline__ u16 tcp_select_window(struct sock *sk)
216 {
217 struct tcp_sock *tp = tcp_sk(sk);
218 u32 cur_win = tcp_receive_window(tp);
219 u32 new_win = __tcp_select_window(sk);
220
221 /* Never shrink the offered window */
222 if(new_win < cur_win) {
223 /* Danger Will Robinson!
224 * Don't update rcv_wup/rcv_wnd here or else
225 * we will not be able to advertise a zero
226 * window in time. --DaveM
227 *
228 * Relax Will Robinson.
229 */
230 new_win = cur_win;
231 }
232 tp->rcv_wnd = new_win;
233 tp->rcv_wup = tp->rcv_nxt;
234
235 /* Make sure we do not exceed the maximum possible
236 * scaled window.
237 */
238 if (!tp->rx_opt.rcv_wscale)
239 new_win = min(new_win, MAX_TCP_WINDOW);
240 else
241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242
243 /* RFC1323 scaling applied */
244 new_win >>= tp->rx_opt.rcv_wscale;
245
246 /* If we advertise zero window, disable fast path. */
247 if (new_win == 0)
248 tp->pred_flags = 0;
249
250 return new_win;
251 }
252
253
254 /* This routine actually transmits TCP packets queued in by
255 * tcp_do_sendmsg(). This is used by both the initial
256 * transmission and possible later retransmissions.
257 * All SKB's seen here are completely headerless. It is our
258 * job to build the TCP header, and pass the packet down to
259 * IP so it can do the same plus pass the packet off to the
260 * device.
261 *
262 * We are working here with either a clone of the original
263 * SKB, or a fresh unique copy made by the retransmit engine.
264 */
265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
266 {
267 if (skb != NULL) {
268 const struct inet_connection_sock *icsk = inet_csk(sk);
269 struct inet_sock *inet = inet_sk(sk);
270 struct tcp_sock *tp = tcp_sk(sk);
271 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
272 int tcp_header_size = tp->tcp_header_len;
273 struct tcphdr *th;
274 int sysctl_flags;
275 int err;
276
277 BUG_ON(!tcp_skb_pcount(skb));
278
279 #define SYSCTL_FLAG_TSTAMPS 0x1
280 #define SYSCTL_FLAG_WSCALE 0x2
281 #define SYSCTL_FLAG_SACK 0x4
282
283 /* If congestion control is doing timestamping */
284 if (icsk->icsk_ca_ops->rtt_sample)
285 __net_timestamp(skb);
286
287 sysctl_flags = 0;
288 if (tcb->flags & TCPCB_FLAG_SYN) {
289 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
290 if(sysctl_tcp_timestamps) {
291 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
292 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
293 }
294 if(sysctl_tcp_window_scaling) {
295 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
296 sysctl_flags |= SYSCTL_FLAG_WSCALE;
297 }
298 if(sysctl_tcp_sack) {
299 sysctl_flags |= SYSCTL_FLAG_SACK;
300 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
301 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
302 }
303 } else if (tp->rx_opt.eff_sacks) {
304 /* A SACK is 2 pad bytes, a 2 byte header, plus
305 * 2 32-bit sequence numbers for each SACK block.
306 */
307 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
308 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
309 }
310
311 if (tcp_packets_in_flight(tp) == 0)
312 tcp_ca_event(sk, CA_EVENT_TX_START);
313
314 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
315 skb->h.th = th;
316 skb_set_owner_w(skb, sk);
317
318 /* Build TCP header and checksum it. */
319 th->source = inet->sport;
320 th->dest = inet->dport;
321 th->seq = htonl(tcb->seq);
322 th->ack_seq = htonl(tp->rcv_nxt);
323 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags);
324 if (tcb->flags & TCPCB_FLAG_SYN) {
325 /* RFC1323: The window in SYN & SYN/ACK segments
326 * is never scaled.
327 */
328 th->window = htons(tp->rcv_wnd);
329 } else {
330 th->window = htons(tcp_select_window(sk));
331 }
332 th->check = 0;
333 th->urg_ptr = 0;
334
335 if (tp->urg_mode &&
336 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
337 th->urg_ptr = htons(tp->snd_up-tcb->seq);
338 th->urg = 1;
339 }
340
341 if (tcb->flags & TCPCB_FLAG_SYN) {
342 tcp_syn_build_options((__u32 *)(th + 1),
343 tcp_advertise_mss(sk),
344 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
345 (sysctl_flags & SYSCTL_FLAG_SACK),
346 (sysctl_flags & SYSCTL_FLAG_WSCALE),
347 tp->rx_opt.rcv_wscale,
348 tcb->when,
349 tp->rx_opt.ts_recent);
350 } else {
351 tcp_build_and_update_options((__u32 *)(th + 1),
352 tp, tcb->when);
353
354 TCP_ECN_send(sk, tp, skb, tcp_header_size);
355 }
356 tp->af_specific->send_check(sk, th, skb->len, skb);
357
358 if (tcb->flags & TCPCB_FLAG_ACK)
359 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
360
361 if (skb->len != tcp_header_size)
362 tcp_event_data_sent(tp, skb, sk);
363
364 TCP_INC_STATS(TCP_MIB_OUTSEGS);
365
366 err = tp->af_specific->queue_xmit(skb, 0);
367 if (err <= 0)
368 return err;
369
370 tcp_enter_cwr(sk);
371
372 /* NET_XMIT_CN is special. It does not guarantee,
373 * that this packet is lost. It tells that device
374 * is about to start to drop packets or already
375 * drops some packets of the same priority and
376 * invokes us to send less aggressively.
377 */
378 return err == NET_XMIT_CN ? 0 : err;
379 }
380 return -ENOBUFS;
381 #undef SYSCTL_FLAG_TSTAMPS
382 #undef SYSCTL_FLAG_WSCALE
383 #undef SYSCTL_FLAG_SACK
384 }
385
386
387 /* This routine just queue's the buffer
388 *
389 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
390 * otherwise socket can stall.
391 */
392 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
393 {
394 struct tcp_sock *tp = tcp_sk(sk);
395
396 /* Advance write_seq and place onto the write_queue. */
397 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
398 skb_header_release(skb);
399 __skb_queue_tail(&sk->sk_write_queue, skb);
400 sk_charge_skb(sk, skb);
401
402 /* Queue it, remembering where we must start sending. */
403 if (sk->sk_send_head == NULL)
404 sk->sk_send_head = skb;
405 }
406
407 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
408 {
409 if (skb->len <= mss_now ||
410 !(sk->sk_route_caps & NETIF_F_TSO)) {
411 /* Avoid the costly divide in the normal
412 * non-TSO case.
413 */
414 skb_shinfo(skb)->tso_segs = 1;
415 skb_shinfo(skb)->tso_size = 0;
416 } else {
417 unsigned int factor;
418
419 factor = skb->len + (mss_now - 1);
420 factor /= mss_now;
421 skb_shinfo(skb)->tso_segs = factor;
422 skb_shinfo(skb)->tso_size = mss_now;
423 }
424 }
425
426 /* Function to create two new TCP segments. Shrinks the given segment
427 * to the specified size and appends a new segment with the rest of the
428 * packet to the list. This won't be called frequently, I hope.
429 * Remember, these are still headerless SKBs at this point.
430 */
431 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now)
432 {
433 struct tcp_sock *tp = tcp_sk(sk);
434 struct sk_buff *buff;
435 int nsize, old_factor;
436 u16 flags;
437
438 if (unlikely(len >= skb->len)) {
439 if (net_ratelimit()) {
440 printk(KERN_DEBUG "TCP: seg_size=%u, mss=%u, seq=%u, "
441 "end_seq=%u, skb->len=%u.\n", len, mss_now,
442 TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
443 skb->len);
444 WARN_ON(1);
445 }
446 return 0;
447 }
448
449 nsize = skb_headlen(skb) - len;
450 if (nsize < 0)
451 nsize = 0;
452
453 if (skb_cloned(skb) &&
454 skb_is_nonlinear(skb) &&
455 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
456 return -ENOMEM;
457
458 /* Get a new skb... force flag on. */
459 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
460 if (buff == NULL)
461 return -ENOMEM; /* We'll just try again later. */
462 sk_charge_skb(sk, buff);
463
464 /* Correct the sequence numbers. */
465 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
466 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
467 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
468
469 /* PSH and FIN should only be set in the second packet. */
470 flags = TCP_SKB_CB(skb)->flags;
471 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
472 TCP_SKB_CB(buff)->flags = flags;
473 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
474 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
475
476 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
477 /* Copy and checksum data tail into the new buffer. */
478 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
479 nsize, 0);
480
481 skb_trim(skb, len);
482
483 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
484 } else {
485 skb->ip_summed = CHECKSUM_HW;
486 skb_split(skb, buff, len);
487 }
488
489 buff->ip_summed = skb->ip_summed;
490
491 /* Looks stupid, but our code really uses when of
492 * skbs, which it never sent before. --ANK
493 */
494 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
495 buff->tstamp = skb->tstamp;
496
497 old_factor = tcp_skb_pcount(skb);
498
499 /* Fix up tso_factor for both original and new SKB. */
500 tcp_set_skb_tso_segs(sk, skb, mss_now);
501 tcp_set_skb_tso_segs(sk, buff, mss_now);
502
503 /* If this packet has been sent out already, we must
504 * adjust the various packet counters.
505 */
506 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
507 int diff = old_factor - tcp_skb_pcount(skb) -
508 tcp_skb_pcount(buff);
509
510 tp->packets_out -= diff;
511
512 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
513 tp->sacked_out -= diff;
514 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
515 tp->retrans_out -= diff;
516
517 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
518 tp->lost_out -= diff;
519 tp->left_out -= diff;
520 }
521
522 if (diff > 0) {
523 /* Adjust Reno SACK estimate. */
524 if (!tp->rx_opt.sack_ok) {
525 tp->sacked_out -= diff;
526 if ((int)tp->sacked_out < 0)
527 tp->sacked_out = 0;
528 tcp_sync_left_out(tp);
529 }
530
531 tp->fackets_out -= diff;
532 if ((int)tp->fackets_out < 0)
533 tp->fackets_out = 0;
534 }
535 }
536
537 /* Link BUFF into the send queue. */
538 skb_header_release(buff);
539 __skb_append(skb, buff, &sk->sk_write_queue);
540
541 return 0;
542 }
543
544 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
545 * eventually). The difference is that pulled data not copied, but
546 * immediately discarded.
547 */
548 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
549 {
550 int i, k, eat;
551
552 eat = len;
553 k = 0;
554 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
555 if (skb_shinfo(skb)->frags[i].size <= eat) {
556 put_page(skb_shinfo(skb)->frags[i].page);
557 eat -= skb_shinfo(skb)->frags[i].size;
558 } else {
559 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
560 if (eat) {
561 skb_shinfo(skb)->frags[k].page_offset += eat;
562 skb_shinfo(skb)->frags[k].size -= eat;
563 eat = 0;
564 }
565 k++;
566 }
567 }
568 skb_shinfo(skb)->nr_frags = k;
569
570 skb->tail = skb->data;
571 skb->data_len -= len;
572 skb->len = skb->data_len;
573 return skb->tail;
574 }
575
576 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
577 {
578 if (skb_cloned(skb) &&
579 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
580 return -ENOMEM;
581
582 if (len <= skb_headlen(skb)) {
583 __skb_pull(skb, len);
584 } else {
585 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
586 return -ENOMEM;
587 }
588
589 TCP_SKB_CB(skb)->seq += len;
590 skb->ip_summed = CHECKSUM_HW;
591
592 skb->truesize -= len;
593 sk->sk_wmem_queued -= len;
594 sk->sk_forward_alloc += len;
595 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
596
597 /* Any change of skb->len requires recalculation of tso
598 * factor and mss.
599 */
600 if (tcp_skb_pcount(skb) > 1)
601 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
602
603 return 0;
604 }
605
606 /* This function synchronize snd mss to current pmtu/exthdr set.
607
608 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
609 for TCP options, but includes only bare TCP header.
610
611 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
612 It is minumum of user_mss and mss received with SYN.
613 It also does not include TCP options.
614
615 tp->pmtu_cookie is last pmtu, seen by this function.
616
617 tp->mss_cache is current effective sending mss, including
618 all tcp options except for SACKs. It is evaluated,
619 taking into account current pmtu, but never exceeds
620 tp->rx_opt.mss_clamp.
621
622 NOTE1. rfc1122 clearly states that advertised MSS
623 DOES NOT include either tcp or ip options.
624
625 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
626 this function. --ANK (980731)
627 */
628
629 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
630 {
631 struct tcp_sock *tp = tcp_sk(sk);
632 int mss_now;
633
634 /* Calculate base mss without TCP options:
635 It is MMS_S - sizeof(tcphdr) of rfc1122
636 */
637 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
638
639 /* Clamp it (mss_clamp does not include tcp options) */
640 if (mss_now > tp->rx_opt.mss_clamp)
641 mss_now = tp->rx_opt.mss_clamp;
642
643 /* Now subtract optional transport overhead */
644 mss_now -= tp->ext_header_len;
645
646 /* Then reserve room for full set of TCP options and 8 bytes of data */
647 if (mss_now < 48)
648 mss_now = 48;
649
650 /* Now subtract TCP options size, not including SACKs */
651 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
652
653 /* Bound mss with half of window */
654 if (tp->max_window && mss_now > (tp->max_window>>1))
655 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
656
657 /* And store cached results */
658 tp->pmtu_cookie = pmtu;
659 tp->mss_cache = mss_now;
660
661 return mss_now;
662 }
663
664 /* Compute the current effective MSS, taking SACKs and IP options,
665 * and even PMTU discovery events into account.
666 *
667 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
668 * cannot be large. However, taking into account rare use of URG, this
669 * is not a big flaw.
670 */
671 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
672 {
673 struct tcp_sock *tp = tcp_sk(sk);
674 struct dst_entry *dst = __sk_dst_get(sk);
675 u32 mss_now;
676 u16 xmit_size_goal;
677 int doing_tso = 0;
678
679 mss_now = tp->mss_cache;
680
681 if (large_allowed &&
682 (sk->sk_route_caps & NETIF_F_TSO) &&
683 !tp->urg_mode)
684 doing_tso = 1;
685
686 if (dst) {
687 u32 mtu = dst_mtu(dst);
688 if (mtu != tp->pmtu_cookie)
689 mss_now = tcp_sync_mss(sk, mtu);
690 }
691
692 if (tp->rx_opt.eff_sacks)
693 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
694 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
695
696 xmit_size_goal = mss_now;
697
698 if (doing_tso) {
699 xmit_size_goal = 65535 -
700 tp->af_specific->net_header_len -
701 tp->ext_header_len - tp->tcp_header_len;
702
703 if (tp->max_window &&
704 (xmit_size_goal > (tp->max_window >> 1)))
705 xmit_size_goal = max((tp->max_window >> 1),
706 68U - tp->tcp_header_len);
707
708 xmit_size_goal -= (xmit_size_goal % mss_now);
709 }
710 tp->xmit_size_goal = xmit_size_goal;
711
712 return mss_now;
713 }
714
715 /* Congestion window validation. (RFC2861) */
716
717 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
718 {
719 __u32 packets_out = tp->packets_out;
720
721 if (packets_out >= tp->snd_cwnd) {
722 /* Network is feed fully. */
723 tp->snd_cwnd_used = 0;
724 tp->snd_cwnd_stamp = tcp_time_stamp;
725 } else {
726 /* Network starves. */
727 if (tp->packets_out > tp->snd_cwnd_used)
728 tp->snd_cwnd_used = tp->packets_out;
729
730 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
731 tcp_cwnd_application_limited(sk);
732 }
733 }
734
735 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
736 {
737 u32 window, cwnd_len;
738
739 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
740 cwnd_len = mss_now * cwnd;
741 return min(window, cwnd_len);
742 }
743
744 /* Can at least one segment of SKB be sent right now, according to the
745 * congestion window rules? If so, return how many segments are allowed.
746 */
747 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
748 {
749 u32 in_flight, cwnd;
750
751 /* Don't be strict about the congestion window for the final FIN. */
752 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
753 return 1;
754
755 in_flight = tcp_packets_in_flight(tp);
756 cwnd = tp->snd_cwnd;
757 if (in_flight < cwnd)
758 return (cwnd - in_flight);
759
760 return 0;
761 }
762
763 /* This must be invoked the first time we consider transmitting
764 * SKB onto the wire.
765 */
766 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
767 {
768 int tso_segs = tcp_skb_pcount(skb);
769
770 if (!tso_segs ||
771 (tso_segs > 1 &&
772 skb_shinfo(skb)->tso_size != mss_now)) {
773 tcp_set_skb_tso_segs(sk, skb, mss_now);
774 tso_segs = tcp_skb_pcount(skb);
775 }
776 return tso_segs;
777 }
778
779 static inline int tcp_minshall_check(const struct tcp_sock *tp)
780 {
781 return after(tp->snd_sml,tp->snd_una) &&
782 !after(tp->snd_sml, tp->snd_nxt);
783 }
784
785 /* Return 0, if packet can be sent now without violation Nagle's rules:
786 * 1. It is full sized.
787 * 2. Or it contains FIN. (already checked by caller)
788 * 3. Or TCP_NODELAY was set.
789 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
790 * With Minshall's modification: all sent small packets are ACKed.
791 */
792
793 static inline int tcp_nagle_check(const struct tcp_sock *tp,
794 const struct sk_buff *skb,
795 unsigned mss_now, int nonagle)
796 {
797 return (skb->len < mss_now &&
798 ((nonagle&TCP_NAGLE_CORK) ||
799 (!nonagle &&
800 tp->packets_out &&
801 tcp_minshall_check(tp))));
802 }
803
804 /* Return non-zero if the Nagle test allows this packet to be
805 * sent now.
806 */
807 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
808 unsigned int cur_mss, int nonagle)
809 {
810 /* Nagle rule does not apply to frames, which sit in the middle of the
811 * write_queue (they have no chances to get new data).
812 *
813 * This is implemented in the callers, where they modify the 'nonagle'
814 * argument based upon the location of SKB in the send queue.
815 */
816 if (nonagle & TCP_NAGLE_PUSH)
817 return 1;
818
819 /* Don't use the nagle rule for urgent data (or for the final FIN). */
820 if (tp->urg_mode ||
821 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
822 return 1;
823
824 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
825 return 1;
826
827 return 0;
828 }
829
830 /* Does at least the first segment of SKB fit into the send window? */
831 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
832 {
833 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
834
835 if (skb->len > cur_mss)
836 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
837
838 return !after(end_seq, tp->snd_una + tp->snd_wnd);
839 }
840
841 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
842 * should be put on the wire right now. If so, it returns the number of
843 * packets allowed by the congestion window.
844 */
845 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
846 unsigned int cur_mss, int nonagle)
847 {
848 struct tcp_sock *tp = tcp_sk(sk);
849 unsigned int cwnd_quota;
850
851 tcp_init_tso_segs(sk, skb, cur_mss);
852
853 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
854 return 0;
855
856 cwnd_quota = tcp_cwnd_test(tp, skb);
857 if (cwnd_quota &&
858 !tcp_snd_wnd_test(tp, skb, cur_mss))
859 cwnd_quota = 0;
860
861 return cwnd_quota;
862 }
863
864 static inline int tcp_skb_is_last(const struct sock *sk,
865 const struct sk_buff *skb)
866 {
867 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
868 }
869
870 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
871 {
872 struct sk_buff *skb = sk->sk_send_head;
873
874 return (skb &&
875 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
876 (tcp_skb_is_last(sk, skb) ?
877 TCP_NAGLE_PUSH :
878 tp->nonagle)));
879 }
880
881 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
882 * which is put after SKB on the list. It is very much like
883 * tcp_fragment() except that it may make several kinds of assumptions
884 * in order to speed up the splitting operation. In particular, we
885 * know that all the data is in scatter-gather pages, and that the
886 * packet has never been sent out before (and thus is not cloned).
887 */
888 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now)
889 {
890 struct sk_buff *buff;
891 int nlen = skb->len - len;
892 u16 flags;
893
894 /* All of a TSO frame must be composed of paged data. */
895 if (skb->len != skb->data_len)
896 return tcp_fragment(sk, skb, len, mss_now);
897
898 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
899 if (unlikely(buff == NULL))
900 return -ENOMEM;
901
902 buff->truesize = nlen;
903 skb->truesize -= nlen;
904
905 /* Correct the sequence numbers. */
906 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
907 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
908 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
909
910 /* PSH and FIN should only be set in the second packet. */
911 flags = TCP_SKB_CB(skb)->flags;
912 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
913 TCP_SKB_CB(buff)->flags = flags;
914
915 /* This packet was never sent out yet, so no SACK bits. */
916 TCP_SKB_CB(buff)->sacked = 0;
917
918 buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
919 skb_split(skb, buff, len);
920
921 /* Fix up tso_factor for both original and new SKB. */
922 tcp_set_skb_tso_segs(sk, skb, mss_now);
923 tcp_set_skb_tso_segs(sk, buff, mss_now);
924
925 /* Link BUFF into the send queue. */
926 skb_header_release(buff);
927 __skb_append(skb, buff, &sk->sk_write_queue);
928
929 return 0;
930 }
931
932 /* Try to defer sending, if possible, in order to minimize the amount
933 * of TSO splitting we do. View it as a kind of TSO Nagle test.
934 *
935 * This algorithm is from John Heffner.
936 */
937 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 const struct inet_connection_sock *icsk = inet_csk(sk);
940 u32 send_win, cong_win, limit, in_flight;
941
942 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
943 return 0;
944
945 if (icsk->icsk_ca_state != TCP_CA_Open)
946 return 0;
947
948 in_flight = tcp_packets_in_flight(tp);
949
950 BUG_ON(tcp_skb_pcount(skb) <= 1 ||
951 (tp->snd_cwnd <= in_flight));
952
953 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
954
955 /* From in_flight test above, we know that cwnd > in_flight. */
956 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
957
958 limit = min(send_win, cong_win);
959
960 if (sysctl_tcp_tso_win_divisor) {
961 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
962
963 /* If at least some fraction of a window is available,
964 * just use it.
965 */
966 chunk /= sysctl_tcp_tso_win_divisor;
967 if (limit >= chunk)
968 return 0;
969 } else {
970 /* Different approach, try not to defer past a single
971 * ACK. Receiver should ACK every other full sized
972 * frame, so if we have space for more than 3 frames
973 * then send now.
974 */
975 if (limit > tcp_max_burst(tp) * tp->mss_cache)
976 return 0;
977 }
978
979 /* Ok, it looks like it is advisable to defer. */
980 return 1;
981 }
982
983 /* This routine writes packets to the network. It advances the
984 * send_head. This happens as incoming acks open up the remote
985 * window for us.
986 *
987 * Returns 1, if no segments are in flight and we have queued segments, but
988 * cannot send anything now because of SWS or another problem.
989 */
990 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
991 {
992 struct tcp_sock *tp = tcp_sk(sk);
993 struct sk_buff *skb;
994 unsigned int tso_segs, sent_pkts;
995 int cwnd_quota;
996
997 /* If we are closed, the bytes will have to remain here.
998 * In time closedown will finish, we empty the write queue and all
999 * will be happy.
1000 */
1001 if (unlikely(sk->sk_state == TCP_CLOSE))
1002 return 0;
1003
1004 sent_pkts = 0;
1005 while ((skb = sk->sk_send_head)) {
1006 unsigned int limit;
1007
1008 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1009 BUG_ON(!tso_segs);
1010
1011 cwnd_quota = tcp_cwnd_test(tp, skb);
1012 if (!cwnd_quota)
1013 break;
1014
1015 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1016 break;
1017
1018 if (tso_segs == 1) {
1019 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1020 (tcp_skb_is_last(sk, skb) ?
1021 nonagle : TCP_NAGLE_PUSH))))
1022 break;
1023 } else {
1024 if (tcp_tso_should_defer(sk, tp, skb))
1025 break;
1026 }
1027
1028 limit = mss_now;
1029 if (tso_segs > 1) {
1030 limit = tcp_window_allows(tp, skb,
1031 mss_now, cwnd_quota);
1032
1033 if (skb->len < limit) {
1034 unsigned int trim = skb->len % mss_now;
1035
1036 if (trim)
1037 limit = skb->len - trim;
1038 }
1039 }
1040
1041 if (skb->len > limit &&
1042 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1043 break;
1044
1045 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1046
1047 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))))
1048 break;
1049
1050 /* Advance the send_head. This one is sent out.
1051 * This call will increment packets_out.
1052 */
1053 update_send_head(sk, tp, skb);
1054
1055 tcp_minshall_update(tp, mss_now, skb);
1056 sent_pkts++;
1057 }
1058
1059 if (likely(sent_pkts)) {
1060 tcp_cwnd_validate(sk, tp);
1061 return 0;
1062 }
1063 return !tp->packets_out && sk->sk_send_head;
1064 }
1065
1066 /* Push out any pending frames which were held back due to
1067 * TCP_CORK or attempt at coalescing tiny packets.
1068 * The socket must be locked by the caller.
1069 */
1070 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1071 unsigned int cur_mss, int nonagle)
1072 {
1073 struct sk_buff *skb = sk->sk_send_head;
1074
1075 if (skb) {
1076 if (tcp_write_xmit(sk, cur_mss, nonagle))
1077 tcp_check_probe_timer(sk, tp);
1078 }
1079 }
1080
1081 /* Send _single_ skb sitting at the send head. This function requires
1082 * true push pending frames to setup probe timer etc.
1083 */
1084 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1085 {
1086 struct tcp_sock *tp = tcp_sk(sk);
1087 struct sk_buff *skb = sk->sk_send_head;
1088 unsigned int tso_segs, cwnd_quota;
1089
1090 BUG_ON(!skb || skb->len < mss_now);
1091
1092 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1093 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1094
1095 if (likely(cwnd_quota)) {
1096 unsigned int limit;
1097
1098 BUG_ON(!tso_segs);
1099
1100 limit = mss_now;
1101 if (tso_segs > 1) {
1102 limit = tcp_window_allows(tp, skb,
1103 mss_now, cwnd_quota);
1104
1105 if (skb->len < limit) {
1106 unsigned int trim = skb->len % mss_now;
1107
1108 if (trim)
1109 limit = skb->len - trim;
1110 }
1111 }
1112
1113 if (skb->len > limit &&
1114 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1115 return;
1116
1117 /* Send it out now. */
1118 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1119
1120 if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) {
1121 update_send_head(sk, tp, skb);
1122 tcp_cwnd_validate(sk, tp);
1123 return;
1124 }
1125 }
1126 }
1127
1128 /* This function returns the amount that we can raise the
1129 * usable window based on the following constraints
1130 *
1131 * 1. The window can never be shrunk once it is offered (RFC 793)
1132 * 2. We limit memory per socket
1133 *
1134 * RFC 1122:
1135 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1136 * RECV.NEXT + RCV.WIN fixed until:
1137 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1138 *
1139 * i.e. don't raise the right edge of the window until you can raise
1140 * it at least MSS bytes.
1141 *
1142 * Unfortunately, the recommended algorithm breaks header prediction,
1143 * since header prediction assumes th->window stays fixed.
1144 *
1145 * Strictly speaking, keeping th->window fixed violates the receiver
1146 * side SWS prevention criteria. The problem is that under this rule
1147 * a stream of single byte packets will cause the right side of the
1148 * window to always advance by a single byte.
1149 *
1150 * Of course, if the sender implements sender side SWS prevention
1151 * then this will not be a problem.
1152 *
1153 * BSD seems to make the following compromise:
1154 *
1155 * If the free space is less than the 1/4 of the maximum
1156 * space available and the free space is less than 1/2 mss,
1157 * then set the window to 0.
1158 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1159 * Otherwise, just prevent the window from shrinking
1160 * and from being larger than the largest representable value.
1161 *
1162 * This prevents incremental opening of the window in the regime
1163 * where TCP is limited by the speed of the reader side taking
1164 * data out of the TCP receive queue. It does nothing about
1165 * those cases where the window is constrained on the sender side
1166 * because the pipeline is full.
1167 *
1168 * BSD also seems to "accidentally" limit itself to windows that are a
1169 * multiple of MSS, at least until the free space gets quite small.
1170 * This would appear to be a side effect of the mbuf implementation.
1171 * Combining these two algorithms results in the observed behavior
1172 * of having a fixed window size at almost all times.
1173 *
1174 * Below we obtain similar behavior by forcing the offered window to
1175 * a multiple of the mss when it is feasible to do so.
1176 *
1177 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1178 * Regular options like TIMESTAMP are taken into account.
1179 */
1180 u32 __tcp_select_window(struct sock *sk)
1181 {
1182 struct inet_connection_sock *icsk = inet_csk(sk);
1183 struct tcp_sock *tp = tcp_sk(sk);
1184 /* MSS for the peer's data. Previous verions used mss_clamp
1185 * here. I don't know if the value based on our guesses
1186 * of peer's MSS is better for the performance. It's more correct
1187 * but may be worse for the performance because of rcv_mss
1188 * fluctuations. --SAW 1998/11/1
1189 */
1190 int mss = icsk->icsk_ack.rcv_mss;
1191 int free_space = tcp_space(sk);
1192 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1193 int window;
1194
1195 if (mss > full_space)
1196 mss = full_space;
1197
1198 if (free_space < full_space/2) {
1199 icsk->icsk_ack.quick = 0;
1200
1201 if (tcp_memory_pressure)
1202 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1203
1204 if (free_space < mss)
1205 return 0;
1206 }
1207
1208 if (free_space > tp->rcv_ssthresh)
1209 free_space = tp->rcv_ssthresh;
1210
1211 /* Don't do rounding if we are using window scaling, since the
1212 * scaled window will not line up with the MSS boundary anyway.
1213 */
1214 window = tp->rcv_wnd;
1215 if (tp->rx_opt.rcv_wscale) {
1216 window = free_space;
1217
1218 /* Advertise enough space so that it won't get scaled away.
1219 * Import case: prevent zero window announcement if
1220 * 1<<rcv_wscale > mss.
1221 */
1222 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1223 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1224 << tp->rx_opt.rcv_wscale);
1225 } else {
1226 /* Get the largest window that is a nice multiple of mss.
1227 * Window clamp already applied above.
1228 * If our current window offering is within 1 mss of the
1229 * free space we just keep it. This prevents the divide
1230 * and multiply from happening most of the time.
1231 * We also don't do any window rounding when the free space
1232 * is too small.
1233 */
1234 if (window <= free_space - mss || window > free_space)
1235 window = (free_space/mss)*mss;
1236 }
1237
1238 return window;
1239 }
1240
1241 /* Attempt to collapse two adjacent SKB's during retransmission. */
1242 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1243 {
1244 struct tcp_sock *tp = tcp_sk(sk);
1245 struct sk_buff *next_skb = skb->next;
1246
1247 /* The first test we must make is that neither of these two
1248 * SKB's are still referenced by someone else.
1249 */
1250 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1251 int skb_size = skb->len, next_skb_size = next_skb->len;
1252 u16 flags = TCP_SKB_CB(skb)->flags;
1253
1254 /* Also punt if next skb has been SACK'd. */
1255 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1256 return;
1257
1258 /* Next skb is out of window. */
1259 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1260 return;
1261
1262 /* Punt if not enough space exists in the first SKB for
1263 * the data in the second, or the total combined payload
1264 * would exceed the MSS.
1265 */
1266 if ((next_skb_size > skb_tailroom(skb)) ||
1267 ((skb_size + next_skb_size) > mss_now))
1268 return;
1269
1270 BUG_ON(tcp_skb_pcount(skb) != 1 ||
1271 tcp_skb_pcount(next_skb) != 1);
1272
1273 /* Ok. We will be able to collapse the packet. */
1274 __skb_unlink(next_skb, &sk->sk_write_queue);
1275
1276 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1277
1278 if (next_skb->ip_summed == CHECKSUM_HW)
1279 skb->ip_summed = CHECKSUM_HW;
1280
1281 if (skb->ip_summed != CHECKSUM_HW)
1282 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1283
1284 /* Update sequence range on original skb. */
1285 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1286
1287 /* Merge over control information. */
1288 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1289 TCP_SKB_CB(skb)->flags = flags;
1290
1291 /* All done, get rid of second SKB and account for it so
1292 * packet counting does not break.
1293 */
1294 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1295 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1296 tp->retrans_out -= tcp_skb_pcount(next_skb);
1297 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1298 tp->lost_out -= tcp_skb_pcount(next_skb);
1299 tp->left_out -= tcp_skb_pcount(next_skb);
1300 }
1301 /* Reno case is special. Sigh... */
1302 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1303 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1304 tp->left_out -= tcp_skb_pcount(next_skb);
1305 }
1306
1307 /* Not quite right: it can be > snd.fack, but
1308 * it is better to underestimate fackets.
1309 */
1310 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1311 tcp_packets_out_dec(tp, next_skb);
1312 sk_stream_free_skb(sk, next_skb);
1313 }
1314 }
1315
1316 /* Do a simple retransmit without using the backoff mechanisms in
1317 * tcp_timer. This is used for path mtu discovery.
1318 * The socket is already locked here.
1319 */
1320 void tcp_simple_retransmit(struct sock *sk)
1321 {
1322 const struct inet_connection_sock *icsk = inet_csk(sk);
1323 struct tcp_sock *tp = tcp_sk(sk);
1324 struct sk_buff *skb;
1325 unsigned int mss = tcp_current_mss(sk, 0);
1326 int lost = 0;
1327
1328 sk_stream_for_retrans_queue(skb, sk) {
1329 if (skb->len > mss &&
1330 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1331 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1332 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1333 tp->retrans_out -= tcp_skb_pcount(skb);
1334 }
1335 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1336 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1337 tp->lost_out += tcp_skb_pcount(skb);
1338 lost = 1;
1339 }
1340 }
1341 }
1342
1343 if (!lost)
1344 return;
1345
1346 tcp_sync_left_out(tp);
1347
1348 /* Don't muck with the congestion window here.
1349 * Reason is that we do not increase amount of _data_
1350 * in network, but units changed and effective
1351 * cwnd/ssthresh really reduced now.
1352 */
1353 if (icsk->icsk_ca_state != TCP_CA_Loss) {
1354 tp->high_seq = tp->snd_nxt;
1355 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1356 tp->prior_ssthresh = 0;
1357 tp->undo_marker = 0;
1358 tcp_set_ca_state(sk, TCP_CA_Loss);
1359 }
1360 tcp_xmit_retransmit_queue(sk);
1361 }
1362
1363 /* This retransmits one SKB. Policy decisions and retransmit queue
1364 * state updates are done by the caller. Returns non-zero if an
1365 * error occurred which prevented the send.
1366 */
1367 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1368 {
1369 struct tcp_sock *tp = tcp_sk(sk);
1370 unsigned int cur_mss = tcp_current_mss(sk, 0);
1371 int err;
1372
1373 /* Do not sent more than we queued. 1/4 is reserved for possible
1374 * copying overhead: frgagmentation, tunneling, mangling etc.
1375 */
1376 if (atomic_read(&sk->sk_wmem_alloc) >
1377 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1378 return -EAGAIN;
1379
1380 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1381 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1382 BUG();
1383 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1384 return -ENOMEM;
1385 }
1386
1387 /* If receiver has shrunk his window, and skb is out of
1388 * new window, do not retransmit it. The exception is the
1389 * case, when window is shrunk to zero. In this case
1390 * our retransmit serves as a zero window probe.
1391 */
1392 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1393 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1394 return -EAGAIN;
1395
1396 if (skb->len > cur_mss) {
1397 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1398 return -ENOMEM; /* We'll try again later. */
1399 }
1400
1401 /* Collapse two adjacent packets if worthwhile and we can. */
1402 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1403 (skb->len < (cur_mss >> 1)) &&
1404 (skb->next != sk->sk_send_head) &&
1405 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1406 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1407 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1408 (sysctl_tcp_retrans_collapse != 0))
1409 tcp_retrans_try_collapse(sk, skb, cur_mss);
1410
1411 if(tp->af_specific->rebuild_header(sk))
1412 return -EHOSTUNREACH; /* Routing failure or similar. */
1413
1414 /* Some Solaris stacks overoptimize and ignore the FIN on a
1415 * retransmit when old data is attached. So strip it off
1416 * since it is cheap to do so and saves bytes on the network.
1417 */
1418 if(skb->len > 0 &&
1419 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1420 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1421 if (!pskb_trim(skb, 0)) {
1422 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1423 skb_shinfo(skb)->tso_segs = 1;
1424 skb_shinfo(skb)->tso_size = 0;
1425 skb->ip_summed = CHECKSUM_NONE;
1426 skb->csum = 0;
1427 }
1428 }
1429
1430 /* Make a copy, if the first transmission SKB clone we made
1431 * is still in somebody's hands, else make a clone.
1432 */
1433 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1434
1435 err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1436 pskb_copy(skb, GFP_ATOMIC):
1437 skb_clone(skb, GFP_ATOMIC)));
1438
1439 if (err == 0) {
1440 /* Update global TCP statistics. */
1441 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1442
1443 tp->total_retrans++;
1444
1445 #if FASTRETRANS_DEBUG > 0
1446 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1447 if (net_ratelimit())
1448 printk(KERN_DEBUG "retrans_out leaked.\n");
1449 }
1450 #endif
1451 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1452 tp->retrans_out += tcp_skb_pcount(skb);
1453
1454 /* Save stamp of the first retransmit. */
1455 if (!tp->retrans_stamp)
1456 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1457
1458 tp->undo_retrans++;
1459
1460 /* snd_nxt is stored to detect loss of retransmitted segment,
1461 * see tcp_input.c tcp_sacktag_write_queue().
1462 */
1463 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1464 }
1465 return err;
1466 }
1467
1468 /* This gets called after a retransmit timeout, and the initially
1469 * retransmitted data is acknowledged. It tries to continue
1470 * resending the rest of the retransmit queue, until either
1471 * we've sent it all or the congestion window limit is reached.
1472 * If doing SACK, the first ACK which comes back for a timeout
1473 * based retransmit packet might feed us FACK information again.
1474 * If so, we use it to avoid unnecessarily retransmissions.
1475 */
1476 void tcp_xmit_retransmit_queue(struct sock *sk)
1477 {
1478 const struct inet_connection_sock *icsk = inet_csk(sk);
1479 struct tcp_sock *tp = tcp_sk(sk);
1480 struct sk_buff *skb;
1481 int packet_cnt = tp->lost_out;
1482
1483 /* First pass: retransmit lost packets. */
1484 if (packet_cnt) {
1485 sk_stream_for_retrans_queue(skb, sk) {
1486 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1487
1488 /* Assume this retransmit will generate
1489 * only one packet for congestion window
1490 * calculation purposes. This works because
1491 * tcp_retransmit_skb() will chop up the
1492 * packet to be MSS sized and all the
1493 * packet counting works out.
1494 */
1495 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1496 return;
1497
1498 if (sacked&TCPCB_LOST) {
1499 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1500 if (tcp_retransmit_skb(sk, skb))
1501 return;
1502 if (icsk->icsk_ca_state != TCP_CA_Loss)
1503 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1504 else
1505 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1506
1507 if (skb ==
1508 skb_peek(&sk->sk_write_queue))
1509 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1510 inet_csk(sk)->icsk_rto,
1511 TCP_RTO_MAX);
1512 }
1513
1514 packet_cnt -= tcp_skb_pcount(skb);
1515 if (packet_cnt <= 0)
1516 break;
1517 }
1518 }
1519 }
1520
1521 /* OK, demanded retransmission is finished. */
1522
1523 /* Forward retransmissions are possible only during Recovery. */
1524 if (icsk->icsk_ca_state != TCP_CA_Recovery)
1525 return;
1526
1527 /* No forward retransmissions in Reno are possible. */
1528 if (!tp->rx_opt.sack_ok)
1529 return;
1530
1531 /* Yeah, we have to make difficult choice between forward transmission
1532 * and retransmission... Both ways have their merits...
1533 *
1534 * For now we do not retransmit anything, while we have some new
1535 * segments to send.
1536 */
1537
1538 if (tcp_may_send_now(sk, tp))
1539 return;
1540
1541 packet_cnt = 0;
1542
1543 sk_stream_for_retrans_queue(skb, sk) {
1544 /* Similar to the retransmit loop above we
1545 * can pretend that the retransmitted SKB
1546 * we send out here will be composed of one
1547 * real MSS sized packet because tcp_retransmit_skb()
1548 * will fragment it if necessary.
1549 */
1550 if (++packet_cnt > tp->fackets_out)
1551 break;
1552
1553 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1554 break;
1555
1556 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1557 continue;
1558
1559 /* Ok, retransmit it. */
1560 if (tcp_retransmit_skb(sk, skb))
1561 break;
1562
1563 if (skb == skb_peek(&sk->sk_write_queue))
1564 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1565 inet_csk(sk)->icsk_rto,
1566 TCP_RTO_MAX);
1567
1568 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1569 }
1570 }
1571
1572
1573 /* Send a fin. The caller locks the socket for us. This cannot be
1574 * allowed to fail queueing a FIN frame under any circumstances.
1575 */
1576 void tcp_send_fin(struct sock *sk)
1577 {
1578 struct tcp_sock *tp = tcp_sk(sk);
1579 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1580 int mss_now;
1581
1582 /* Optimization, tack on the FIN if we have a queue of
1583 * unsent frames. But be careful about outgoing SACKS
1584 * and IP options.
1585 */
1586 mss_now = tcp_current_mss(sk, 1);
1587
1588 if (sk->sk_send_head != NULL) {
1589 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1590 TCP_SKB_CB(skb)->end_seq++;
1591 tp->write_seq++;
1592 } else {
1593 /* Socket is locked, keep trying until memory is available. */
1594 for (;;) {
1595 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
1596 if (skb)
1597 break;
1598 yield();
1599 }
1600
1601 /* Reserve space for headers and prepare control bits. */
1602 skb_reserve(skb, MAX_TCP_HEADER);
1603 skb->csum = 0;
1604 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1605 TCP_SKB_CB(skb)->sacked = 0;
1606 skb_shinfo(skb)->tso_segs = 1;
1607 skb_shinfo(skb)->tso_size = 0;
1608
1609 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1610 TCP_SKB_CB(skb)->seq = tp->write_seq;
1611 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1612 tcp_queue_skb(sk, skb);
1613 }
1614 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1615 }
1616
1617 /* We get here when a process closes a file descriptor (either due to
1618 * an explicit close() or as a byproduct of exit()'ing) and there
1619 * was unread data in the receive queue. This behavior is recommended
1620 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1621 */
1622 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
1623 {
1624 struct tcp_sock *tp = tcp_sk(sk);
1625 struct sk_buff *skb;
1626
1627 /* NOTE: No TCP options attached and we never retransmit this. */
1628 skb = alloc_skb(MAX_TCP_HEADER, priority);
1629 if (!skb) {
1630 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1631 return;
1632 }
1633
1634 /* Reserve space for headers and prepare control bits. */
1635 skb_reserve(skb, MAX_TCP_HEADER);
1636 skb->csum = 0;
1637 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1638 TCP_SKB_CB(skb)->sacked = 0;
1639 skb_shinfo(skb)->tso_segs = 1;
1640 skb_shinfo(skb)->tso_size = 0;
1641
1642 /* Send it off. */
1643 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1644 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1645 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1646 if (tcp_transmit_skb(sk, skb))
1647 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1648 }
1649
1650 /* WARNING: This routine must only be called when we have already sent
1651 * a SYN packet that crossed the incoming SYN that caused this routine
1652 * to get called. If this assumption fails then the initial rcv_wnd
1653 * and rcv_wscale values will not be correct.
1654 */
1655 int tcp_send_synack(struct sock *sk)
1656 {
1657 struct sk_buff* skb;
1658
1659 skb = skb_peek(&sk->sk_write_queue);
1660 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1661 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1662 return -EFAULT;
1663 }
1664 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1665 if (skb_cloned(skb)) {
1666 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1667 if (nskb == NULL)
1668 return -ENOMEM;
1669 __skb_unlink(skb, &sk->sk_write_queue);
1670 skb_header_release(nskb);
1671 __skb_queue_head(&sk->sk_write_queue, nskb);
1672 sk_stream_free_skb(sk, skb);
1673 sk_charge_skb(sk, nskb);
1674 skb = nskb;
1675 }
1676
1677 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1678 TCP_ECN_send_synack(tcp_sk(sk), skb);
1679 }
1680 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1681 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1682 }
1683
1684 /*
1685 * Prepare a SYN-ACK.
1686 */
1687 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
1688 struct request_sock *req)
1689 {
1690 struct inet_request_sock *ireq = inet_rsk(req);
1691 struct tcp_sock *tp = tcp_sk(sk);
1692 struct tcphdr *th;
1693 int tcp_header_size;
1694 struct sk_buff *skb;
1695
1696 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1697 if (skb == NULL)
1698 return NULL;
1699
1700 /* Reserve space for headers. */
1701 skb_reserve(skb, MAX_TCP_HEADER);
1702
1703 skb->dst = dst_clone(dst);
1704
1705 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
1706 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1707 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1708 /* SACK_PERM is in the place of NOP NOP of TS */
1709 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1710 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1711
1712 memset(th, 0, sizeof(struct tcphdr));
1713 th->syn = 1;
1714 th->ack = 1;
1715 if (dst->dev->features&NETIF_F_TSO)
1716 ireq->ecn_ok = 0;
1717 TCP_ECN_make_synack(req, th);
1718 th->source = inet_sk(sk)->sport;
1719 th->dest = ireq->rmt_port;
1720 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1721 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1722 TCP_SKB_CB(skb)->sacked = 0;
1723 skb_shinfo(skb)->tso_segs = 1;
1724 skb_shinfo(skb)->tso_size = 0;
1725 th->seq = htonl(TCP_SKB_CB(skb)->seq);
1726 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1727 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1728 __u8 rcv_wscale;
1729 /* Set this up on the first call only */
1730 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1731 /* tcp_full_space because it is guaranteed to be the first packet */
1732 tcp_select_initial_window(tcp_full_space(sk),
1733 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1734 &req->rcv_wnd,
1735 &req->window_clamp,
1736 ireq->wscale_ok,
1737 &rcv_wscale);
1738 ireq->rcv_wscale = rcv_wscale;
1739 }
1740
1741 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1742 th->window = htons(req->rcv_wnd);
1743
1744 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1745 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1746 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1747 TCP_SKB_CB(skb)->when,
1748 req->ts_recent);
1749
1750 skb->csum = 0;
1751 th->doff = (tcp_header_size >> 2);
1752 TCP_INC_STATS(TCP_MIB_OUTSEGS);
1753 return skb;
1754 }
1755
1756 /*
1757 * Do all connect socket setups that can be done AF independent.
1758 */
1759 static inline void tcp_connect_init(struct sock *sk)
1760 {
1761 struct dst_entry *dst = __sk_dst_get(sk);
1762 struct tcp_sock *tp = tcp_sk(sk);
1763 __u8 rcv_wscale;
1764
1765 /* We'll fix this up when we get a response from the other end.
1766 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1767 */
1768 tp->tcp_header_len = sizeof(struct tcphdr) +
1769 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1770
1771 /* If user gave his TCP_MAXSEG, record it to clamp */
1772 if (tp->rx_opt.user_mss)
1773 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1774 tp->max_window = 0;
1775 tcp_sync_mss(sk, dst_mtu(dst));
1776
1777 if (!tp->window_clamp)
1778 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1779 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1780 tcp_initialize_rcv_mss(sk);
1781
1782 tcp_select_initial_window(tcp_full_space(sk),
1783 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1784 &tp->rcv_wnd,
1785 &tp->window_clamp,
1786 sysctl_tcp_window_scaling,
1787 &rcv_wscale);
1788
1789 tp->rx_opt.rcv_wscale = rcv_wscale;
1790 tp->rcv_ssthresh = tp->rcv_wnd;
1791
1792 sk->sk_err = 0;
1793 sock_reset_flag(sk, SOCK_DONE);
1794 tp->snd_wnd = 0;
1795 tcp_init_wl(tp, tp->write_seq, 0);
1796 tp->snd_una = tp->write_seq;
1797 tp->snd_sml = tp->write_seq;
1798 tp->rcv_nxt = 0;
1799 tp->rcv_wup = 0;
1800 tp->copied_seq = 0;
1801
1802 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1803 inet_csk(sk)->icsk_retransmits = 0;
1804 tcp_clear_retrans(tp);
1805 }
1806
1807 /*
1808 * Build a SYN and send it off.
1809 */
1810 int tcp_connect(struct sock *sk)
1811 {
1812 struct tcp_sock *tp = tcp_sk(sk);
1813 struct sk_buff *buff;
1814
1815 tcp_connect_init(sk);
1816
1817 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
1818 if (unlikely(buff == NULL))
1819 return -ENOBUFS;
1820
1821 /* Reserve space for headers. */
1822 skb_reserve(buff, MAX_TCP_HEADER);
1823
1824 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1825 TCP_ECN_send_syn(sk, tp, buff);
1826 TCP_SKB_CB(buff)->sacked = 0;
1827 skb_shinfo(buff)->tso_segs = 1;
1828 skb_shinfo(buff)->tso_size = 0;
1829 buff->csum = 0;
1830 TCP_SKB_CB(buff)->seq = tp->write_seq++;
1831 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1832 tp->snd_nxt = tp->write_seq;
1833 tp->pushed_seq = tp->write_seq;
1834
1835 /* Send it off. */
1836 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1837 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1838 skb_header_release(buff);
1839 __skb_queue_tail(&sk->sk_write_queue, buff);
1840 sk_charge_skb(sk, buff);
1841 tp->packets_out += tcp_skb_pcount(buff);
1842 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1843 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1844
1845 /* Timer for repeating the SYN until an answer. */
1846 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1847 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1848 return 0;
1849 }
1850
1851 /* Send out a delayed ack, the caller does the policy checking
1852 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1853 * for details.
1854 */
1855 void tcp_send_delayed_ack(struct sock *sk)
1856 {
1857 struct inet_connection_sock *icsk = inet_csk(sk);
1858 int ato = icsk->icsk_ack.ato;
1859 unsigned long timeout;
1860
1861 if (ato > TCP_DELACK_MIN) {
1862 const struct tcp_sock *tp = tcp_sk(sk);
1863 int max_ato = HZ/2;
1864
1865 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
1866 max_ato = TCP_DELACK_MAX;
1867
1868 /* Slow path, intersegment interval is "high". */
1869
1870 /* If some rtt estimate is known, use it to bound delayed ack.
1871 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
1872 * directly.
1873 */
1874 if (tp->srtt) {
1875 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1876
1877 if (rtt < max_ato)
1878 max_ato = rtt;
1879 }
1880
1881 ato = min(ato, max_ato);
1882 }
1883
1884 /* Stay within the limit we were given */
1885 timeout = jiffies + ato;
1886
1887 /* Use new timeout only if there wasn't a older one earlier. */
1888 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
1889 /* If delack timer was blocked or is about to expire,
1890 * send ACK now.
1891 */
1892 if (icsk->icsk_ack.blocked ||
1893 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
1894 tcp_send_ack(sk);
1895 return;
1896 }
1897
1898 if (!time_before(timeout, icsk->icsk_ack.timeout))
1899 timeout = icsk->icsk_ack.timeout;
1900 }
1901 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
1902 icsk->icsk_ack.timeout = timeout;
1903 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
1904 }
1905
1906 /* This routine sends an ack and also updates the window. */
1907 void tcp_send_ack(struct sock *sk)
1908 {
1909 /* If we have been reset, we may not send again. */
1910 if (sk->sk_state != TCP_CLOSE) {
1911 struct tcp_sock *tp = tcp_sk(sk);
1912 struct sk_buff *buff;
1913
1914 /* We are not putting this on the write queue, so
1915 * tcp_transmit_skb() will set the ownership to this
1916 * sock.
1917 */
1918 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1919 if (buff == NULL) {
1920 inet_csk_schedule_ack(sk);
1921 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
1922 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1923 TCP_DELACK_MAX, TCP_RTO_MAX);
1924 return;
1925 }
1926
1927 /* Reserve space for headers and prepare control bits. */
1928 skb_reserve(buff, MAX_TCP_HEADER);
1929 buff->csum = 0;
1930 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1931 TCP_SKB_CB(buff)->sacked = 0;
1932 skb_shinfo(buff)->tso_segs = 1;
1933 skb_shinfo(buff)->tso_size = 0;
1934
1935 /* Send it off, this clears delayed acks for us. */
1936 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1937 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1938 tcp_transmit_skb(sk, buff);
1939 }
1940 }
1941
1942 /* This routine sends a packet with an out of date sequence
1943 * number. It assumes the other end will try to ack it.
1944 *
1945 * Question: what should we make while urgent mode?
1946 * 4.4BSD forces sending single byte of data. We cannot send
1947 * out of window data, because we have SND.NXT==SND.MAX...
1948 *
1949 * Current solution: to send TWO zero-length segments in urgent mode:
1950 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1951 * out-of-date with SND.UNA-1 to probe window.
1952 */
1953 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1954 {
1955 struct tcp_sock *tp = tcp_sk(sk);
1956 struct sk_buff *skb;
1957
1958 /* We don't queue it, tcp_transmit_skb() sets ownership. */
1959 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1960 if (skb == NULL)
1961 return -1;
1962
1963 /* Reserve space for headers and set control bits. */
1964 skb_reserve(skb, MAX_TCP_HEADER);
1965 skb->csum = 0;
1966 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1967 TCP_SKB_CB(skb)->sacked = urgent;
1968 skb_shinfo(skb)->tso_segs = 1;
1969 skb_shinfo(skb)->tso_size = 0;
1970
1971 /* Use a previous sequence. This should cause the other
1972 * end to send an ack. Don't queue or clone SKB, just
1973 * send it.
1974 */
1975 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1976 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1977 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1978 return tcp_transmit_skb(sk, skb);
1979 }
1980
1981 int tcp_write_wakeup(struct sock *sk)
1982 {
1983 if (sk->sk_state != TCP_CLOSE) {
1984 struct tcp_sock *tp = tcp_sk(sk);
1985 struct sk_buff *skb;
1986
1987 if ((skb = sk->sk_send_head) != NULL &&
1988 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1989 int err;
1990 unsigned int mss = tcp_current_mss(sk, 0);
1991 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1992
1993 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1994 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1995
1996 /* We are probing the opening of a window
1997 * but the window size is != 0
1998 * must have been a result SWS avoidance ( sender )
1999 */
2000 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2001 skb->len > mss) {
2002 seg_size = min(seg_size, mss);
2003 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2004 if (tcp_fragment(sk, skb, seg_size, mss))
2005 return -1;
2006 } else if (!tcp_skb_pcount(skb))
2007 tcp_set_skb_tso_segs(sk, skb, mss);
2008
2009 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2010 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2011 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
2012 if (!err) {
2013 update_send_head(sk, tp, skb);
2014 }
2015 return err;
2016 } else {
2017 if (tp->urg_mode &&
2018 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2019 tcp_xmit_probe_skb(sk, TCPCB_URG);
2020 return tcp_xmit_probe_skb(sk, 0);
2021 }
2022 }
2023 return -1;
2024 }
2025
2026 /* A window probe timeout has occurred. If window is not closed send
2027 * a partial packet else a zero probe.
2028 */
2029 void tcp_send_probe0(struct sock *sk)
2030 {
2031 struct inet_connection_sock *icsk = inet_csk(sk);
2032 struct tcp_sock *tp = tcp_sk(sk);
2033 int err;
2034
2035 err = tcp_write_wakeup(sk);
2036
2037 if (tp->packets_out || !sk->sk_send_head) {
2038 /* Cancel probe timer, if it is not required. */
2039 icsk->icsk_probes_out = 0;
2040 icsk->icsk_backoff = 0;
2041 return;
2042 }
2043
2044 if (err <= 0) {
2045 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2046 icsk->icsk_backoff++;
2047 icsk->icsk_probes_out++;
2048 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2049 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2050 TCP_RTO_MAX);
2051 } else {
2052 /* If packet was not sent due to local congestion,
2053 * do not backoff and do not remember icsk_probes_out.
2054 * Let local senders to fight for local resources.
2055 *
2056 * Use accumulated backoff yet.
2057 */
2058 if (!icsk->icsk_probes_out)
2059 icsk->icsk_probes_out = 1;
2060 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2061 min(icsk->icsk_rto << icsk->icsk_backoff,
2062 TCP_RESOURCE_PROBE_INTERVAL),
2063 TCP_RTO_MAX);
2064 }
2065 }
2066
2067 EXPORT_SYMBOL(tcp_connect);
2068 EXPORT_SYMBOL(tcp_make_synack);
2069 EXPORT_SYMBOL(tcp_simple_retransmit);
2070 EXPORT_SYMBOL(tcp_sync_mss);
This page took 0.080247 seconds and 5 git commands to generate.