tcp: Fix MD5 signatures for non-linear skbs
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #include <net/tcp.h>
38
39 #include <linux/compiler.h>
40 #include <linux/module.h>
41
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly = 1;
44
45 /* People can turn this on to work with those rare, broken TCPs that
46 * interpret the window field as a signed quantity.
47 */
48 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
49
50 /* This limits the percentage of the congestion window which we
51 * will allow a single TSO frame to consume. Building TSO frames
52 * which are too large can cause TCP streams to be bursty.
53 */
54 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
55
56 int sysctl_tcp_mtu_probing __read_mostly = 0;
57 int sysctl_tcp_base_mss __read_mostly = 512;
58
59 /* By default, RFC2861 behavior. */
60 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
61
62 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
63 {
64 struct tcp_sock *tp = tcp_sk(sk);
65 unsigned int prior_packets = tp->packets_out;
66
67 tcp_advance_send_head(sk, skb);
68 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
69
70 /* Don't override Nagle indefinately with F-RTO */
71 if (tp->frto_counter == 2)
72 tp->frto_counter = 3;
73
74 tp->packets_out += tcp_skb_pcount(skb);
75 if (!prior_packets)
76 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
77 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
78 }
79
80 /* SND.NXT, if window was not shrunk.
81 * If window has been shrunk, what should we make? It is not clear at all.
82 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
83 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
84 * invalid. OK, let's make this for now:
85 */
86 static inline __u32 tcp_acceptable_seq(struct sock *sk)
87 {
88 struct tcp_sock *tp = tcp_sk(sk);
89
90 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
91 return tp->snd_nxt;
92 else
93 return tcp_wnd_end(tp);
94 }
95
96 /* Calculate mss to advertise in SYN segment.
97 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
98 *
99 * 1. It is independent of path mtu.
100 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
101 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
102 * attached devices, because some buggy hosts are confused by
103 * large MSS.
104 * 4. We do not make 3, we advertise MSS, calculated from first
105 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
106 * This may be overridden via information stored in routing table.
107 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
108 * probably even Jumbo".
109 */
110 static __u16 tcp_advertise_mss(struct sock *sk)
111 {
112 struct tcp_sock *tp = tcp_sk(sk);
113 struct dst_entry *dst = __sk_dst_get(sk);
114 int mss = tp->advmss;
115
116 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
117 mss = dst_metric(dst, RTAX_ADVMSS);
118 tp->advmss = mss;
119 }
120
121 return (__u16)mss;
122 }
123
124 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
125 * This is the first part of cwnd validation mechanism. */
126 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
127 {
128 struct tcp_sock *tp = tcp_sk(sk);
129 s32 delta = tcp_time_stamp - tp->lsndtime;
130 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
131 u32 cwnd = tp->snd_cwnd;
132
133 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
134
135 tp->snd_ssthresh = tcp_current_ssthresh(sk);
136 restart_cwnd = min(restart_cwnd, cwnd);
137
138 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
139 cwnd >>= 1;
140 tp->snd_cwnd = max(cwnd, restart_cwnd);
141 tp->snd_cwnd_stamp = tcp_time_stamp;
142 tp->snd_cwnd_used = 0;
143 }
144
145 static void tcp_event_data_sent(struct tcp_sock *tp,
146 struct sk_buff *skb, struct sock *sk)
147 {
148 struct inet_connection_sock *icsk = inet_csk(sk);
149 const u32 now = tcp_time_stamp;
150
151 if (sysctl_tcp_slow_start_after_idle &&
152 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
153 tcp_cwnd_restart(sk, __sk_dst_get(sk));
154
155 tp->lsndtime = now;
156
157 /* If it is a reply for ato after last received
158 * packet, enter pingpong mode.
159 */
160 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
161 icsk->icsk_ack.pingpong = 1;
162 }
163
164 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
165 {
166 tcp_dec_quickack_mode(sk, pkts);
167 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
168 }
169
170 /* Determine a window scaling and initial window to offer.
171 * Based on the assumption that the given amount of space
172 * will be offered. Store the results in the tp structure.
173 * NOTE: for smooth operation initial space offering should
174 * be a multiple of mss if possible. We assume here that mss >= 1.
175 * This MUST be enforced by all callers.
176 */
177 void tcp_select_initial_window(int __space, __u32 mss,
178 __u32 *rcv_wnd, __u32 *window_clamp,
179 int wscale_ok, __u8 *rcv_wscale)
180 {
181 unsigned int space = (__space < 0 ? 0 : __space);
182
183 /* If no clamp set the clamp to the max possible scaled window */
184 if (*window_clamp == 0)
185 (*window_clamp) = (65535 << 14);
186 space = min(*window_clamp, space);
187
188 /* Quantize space offering to a multiple of mss if possible. */
189 if (space > mss)
190 space = (space / mss) * mss;
191
192 /* NOTE: offering an initial window larger than 32767
193 * will break some buggy TCP stacks. If the admin tells us
194 * it is likely we could be speaking with such a buggy stack
195 * we will truncate our initial window offering to 32K-1
196 * unless the remote has sent us a window scaling option,
197 * which we interpret as a sign the remote TCP is not
198 * misinterpreting the window field as a signed quantity.
199 */
200 if (sysctl_tcp_workaround_signed_windows)
201 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
202 else
203 (*rcv_wnd) = space;
204
205 (*rcv_wscale) = 0;
206 if (wscale_ok) {
207 /* Set window scaling on max possible window
208 * See RFC1323 for an explanation of the limit to 14
209 */
210 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
211 space = min_t(u32, space, *window_clamp);
212 while (space > 65535 && (*rcv_wscale) < 14) {
213 space >>= 1;
214 (*rcv_wscale)++;
215 }
216 }
217
218 /* Set initial window to value enough for senders,
219 * following RFC2414. Senders, not following this RFC,
220 * will be satisfied with 2.
221 */
222 if (mss > (1 << *rcv_wscale)) {
223 int init_cwnd = 4;
224 if (mss > 1460 * 3)
225 init_cwnd = 2;
226 else if (mss > 1460)
227 init_cwnd = 3;
228 if (*rcv_wnd > init_cwnd * mss)
229 *rcv_wnd = init_cwnd * mss;
230 }
231
232 /* Set the clamp no higher than max representable value */
233 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
234 }
235
236 /* Chose a new window to advertise, update state in tcp_sock for the
237 * socket, and return result with RFC1323 scaling applied. The return
238 * value can be stuffed directly into th->window for an outgoing
239 * frame.
240 */
241 static u16 tcp_select_window(struct sock *sk)
242 {
243 struct tcp_sock *tp = tcp_sk(sk);
244 u32 cur_win = tcp_receive_window(tp);
245 u32 new_win = __tcp_select_window(sk);
246
247 /* Never shrink the offered window */
248 if (new_win < cur_win) {
249 /* Danger Will Robinson!
250 * Don't update rcv_wup/rcv_wnd here or else
251 * we will not be able to advertise a zero
252 * window in time. --DaveM
253 *
254 * Relax Will Robinson.
255 */
256 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
257 }
258 tp->rcv_wnd = new_win;
259 tp->rcv_wup = tp->rcv_nxt;
260
261 /* Make sure we do not exceed the maximum possible
262 * scaled window.
263 */
264 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
265 new_win = min(new_win, MAX_TCP_WINDOW);
266 else
267 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
268
269 /* RFC1323 scaling applied */
270 new_win >>= tp->rx_opt.rcv_wscale;
271
272 /* If we advertise zero window, disable fast path. */
273 if (new_win == 0)
274 tp->pred_flags = 0;
275
276 return new_win;
277 }
278
279 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb)
280 {
281 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR;
282 if (!(tp->ecn_flags & TCP_ECN_OK))
283 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE;
284 }
285
286 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
287 {
288 struct tcp_sock *tp = tcp_sk(sk);
289
290 tp->ecn_flags = 0;
291 if (sysctl_tcp_ecn) {
292 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR;
293 tp->ecn_flags = TCP_ECN_OK;
294 }
295 }
296
297 static __inline__ void
298 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th)
299 {
300 if (inet_rsk(req)->ecn_ok)
301 th->ece = 1;
302 }
303
304 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
305 int tcp_header_len)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308
309 if (tp->ecn_flags & TCP_ECN_OK) {
310 /* Not-retransmitted data segment: set ECT and inject CWR. */
311 if (skb->len != tcp_header_len &&
312 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
313 INET_ECN_xmit(sk);
314 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
315 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
316 tcp_hdr(skb)->cwr = 1;
317 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
318 }
319 } else {
320 /* ACK or retransmitted segment: clear ECT|CE */
321 INET_ECN_dontxmit(sk);
322 }
323 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
324 tcp_hdr(skb)->ece = 1;
325 }
326 }
327
328 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
329 * auto increment end seqno.
330 */
331 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
332 {
333 skb->csum = 0;
334
335 TCP_SKB_CB(skb)->flags = flags;
336 TCP_SKB_CB(skb)->sacked = 0;
337
338 skb_shinfo(skb)->gso_segs = 1;
339 skb_shinfo(skb)->gso_size = 0;
340 skb_shinfo(skb)->gso_type = 0;
341
342 TCP_SKB_CB(skb)->seq = seq;
343 if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN))
344 seq++;
345 TCP_SKB_CB(skb)->end_seq = seq;
346 }
347
348 static void tcp_build_and_update_options(__be32 *ptr, struct tcp_sock *tp,
349 __u32 tstamp, __u8 **md5_hash)
350 {
351 if (tp->rx_opt.tstamp_ok) {
352 *ptr++ = htonl((TCPOPT_NOP << 24) |
353 (TCPOPT_NOP << 16) |
354 (TCPOPT_TIMESTAMP << 8) |
355 TCPOLEN_TIMESTAMP);
356 *ptr++ = htonl(tstamp);
357 *ptr++ = htonl(tp->rx_opt.ts_recent);
358 }
359 if (tp->rx_opt.eff_sacks) {
360 struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks;
361 int this_sack;
362
363 *ptr++ = htonl((TCPOPT_NOP << 24) |
364 (TCPOPT_NOP << 16) |
365 (TCPOPT_SACK << 8) |
366 (TCPOLEN_SACK_BASE + (tp->rx_opt.eff_sacks *
367 TCPOLEN_SACK_PERBLOCK)));
368
369 for (this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) {
370 *ptr++ = htonl(sp[this_sack].start_seq);
371 *ptr++ = htonl(sp[this_sack].end_seq);
372 }
373
374 if (tp->rx_opt.dsack) {
375 tp->rx_opt.dsack = 0;
376 tp->rx_opt.eff_sacks--;
377 }
378 }
379 #ifdef CONFIG_TCP_MD5SIG
380 if (md5_hash) {
381 *ptr++ = htonl((TCPOPT_NOP << 24) |
382 (TCPOPT_NOP << 16) |
383 (TCPOPT_MD5SIG << 8) |
384 TCPOLEN_MD5SIG);
385 *md5_hash = (__u8 *)ptr;
386 }
387 #endif
388 }
389
390 /* Construct a tcp options header for a SYN or SYN_ACK packet.
391 * If this is every changed make sure to change the definition of
392 * MAX_SYN_SIZE to match the new maximum number of options that you
393 * can generate.
394 *
395 * Note - that with the RFC2385 TCP option, we make room for the
396 * 16 byte MD5 hash. This will be filled in later, so the pointer for the
397 * location to be filled is passed back up.
398 */
399 static void tcp_syn_build_options(__be32 *ptr, int mss, int ts, int sack,
400 int offer_wscale, int wscale, __u32 tstamp,
401 __u32 ts_recent, __u8 **md5_hash)
402 {
403 /* We always get an MSS option.
404 * The option bytes which will be seen in normal data
405 * packets should timestamps be used, must be in the MSS
406 * advertised. But we subtract them from tp->mss_cache so
407 * that calculations in tcp_sendmsg are simpler etc.
408 * So account for this fact here if necessary. If we
409 * don't do this correctly, as a receiver we won't
410 * recognize data packets as being full sized when we
411 * should, and thus we won't abide by the delayed ACK
412 * rules correctly.
413 * SACKs don't matter, we never delay an ACK when we
414 * have any of those going out.
415 */
416 *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
417 if (ts) {
418 if (sack)
419 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
420 (TCPOLEN_SACK_PERM << 16) |
421 (TCPOPT_TIMESTAMP << 8) |
422 TCPOLEN_TIMESTAMP);
423 else
424 *ptr++ = htonl((TCPOPT_NOP << 24) |
425 (TCPOPT_NOP << 16) |
426 (TCPOPT_TIMESTAMP << 8) |
427 TCPOLEN_TIMESTAMP);
428 *ptr++ = htonl(tstamp); /* TSVAL */
429 *ptr++ = htonl(ts_recent); /* TSECR */
430 } else if (sack)
431 *ptr++ = htonl((TCPOPT_NOP << 24) |
432 (TCPOPT_NOP << 16) |
433 (TCPOPT_SACK_PERM << 8) |
434 TCPOLEN_SACK_PERM);
435 if (offer_wscale)
436 *ptr++ = htonl((TCPOPT_NOP << 24) |
437 (TCPOPT_WINDOW << 16) |
438 (TCPOLEN_WINDOW << 8) |
439 (wscale));
440 #ifdef CONFIG_TCP_MD5SIG
441 /*
442 * If MD5 is enabled, then we set the option, and include the size
443 * (always 18). The actual MD5 hash is added just before the
444 * packet is sent.
445 */
446 if (md5_hash) {
447 *ptr++ = htonl((TCPOPT_NOP << 24) |
448 (TCPOPT_NOP << 16) |
449 (TCPOPT_MD5SIG << 8) |
450 TCPOLEN_MD5SIG);
451 *md5_hash = (__u8 *)ptr;
452 }
453 #endif
454 }
455
456 /* This routine actually transmits TCP packets queued in by
457 * tcp_do_sendmsg(). This is used by both the initial
458 * transmission and possible later retransmissions.
459 * All SKB's seen here are completely headerless. It is our
460 * job to build the TCP header, and pass the packet down to
461 * IP so it can do the same plus pass the packet off to the
462 * device.
463 *
464 * We are working here with either a clone of the original
465 * SKB, or a fresh unique copy made by the retransmit engine.
466 */
467 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
468 gfp_t gfp_mask)
469 {
470 const struct inet_connection_sock *icsk = inet_csk(sk);
471 struct inet_sock *inet;
472 struct tcp_sock *tp;
473 struct tcp_skb_cb *tcb;
474 int tcp_header_size;
475 #ifdef CONFIG_TCP_MD5SIG
476 struct tcp_md5sig_key *md5;
477 __u8 *md5_hash_location;
478 #endif
479 struct tcphdr *th;
480 int sysctl_flags;
481 int err;
482
483 BUG_ON(!skb || !tcp_skb_pcount(skb));
484
485 /* If congestion control is doing timestamping, we must
486 * take such a timestamp before we potentially clone/copy.
487 */
488 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
489 __net_timestamp(skb);
490
491 if (likely(clone_it)) {
492 if (unlikely(skb_cloned(skb)))
493 skb = pskb_copy(skb, gfp_mask);
494 else
495 skb = skb_clone(skb, gfp_mask);
496 if (unlikely(!skb))
497 return -ENOBUFS;
498 }
499
500 inet = inet_sk(sk);
501 tp = tcp_sk(sk);
502 tcb = TCP_SKB_CB(skb);
503 tcp_header_size = tp->tcp_header_len;
504
505 #define SYSCTL_FLAG_TSTAMPS 0x1
506 #define SYSCTL_FLAG_WSCALE 0x2
507 #define SYSCTL_FLAG_SACK 0x4
508
509 sysctl_flags = 0;
510 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
511 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
512 if (sysctl_tcp_timestamps) {
513 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
514 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
515 }
516 if (sysctl_tcp_window_scaling) {
517 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
518 sysctl_flags |= SYSCTL_FLAG_WSCALE;
519 }
520 if (sysctl_tcp_sack) {
521 sysctl_flags |= SYSCTL_FLAG_SACK;
522 if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
523 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
524 }
525 } else if (unlikely(tp->rx_opt.eff_sacks)) {
526 /* A SACK is 2 pad bytes, a 2 byte header, plus
527 * 2 32-bit sequence numbers for each SACK block.
528 */
529 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
530 (tp->rx_opt.eff_sacks *
531 TCPOLEN_SACK_PERBLOCK));
532 }
533
534 if (tcp_packets_in_flight(tp) == 0)
535 tcp_ca_event(sk, CA_EVENT_TX_START);
536
537 #ifdef CONFIG_TCP_MD5SIG
538 /*
539 * Are we doing MD5 on this segment? If so - make
540 * room for it.
541 */
542 md5 = tp->af_specific->md5_lookup(sk, sk);
543 if (md5) {
544 tcp_header_size += TCPOLEN_MD5SIG_ALIGNED;
545 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
546 }
547 #endif
548
549 skb_push(skb, tcp_header_size);
550 skb_reset_transport_header(skb);
551 skb_set_owner_w(skb, sk);
552
553 /* Build TCP header and checksum it. */
554 th = tcp_hdr(skb);
555 th->source = inet->sport;
556 th->dest = inet->dport;
557 th->seq = htonl(tcb->seq);
558 th->ack_seq = htonl(tp->rcv_nxt);
559 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
560 tcb->flags);
561
562 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
563 /* RFC1323: The window in SYN & SYN/ACK segments
564 * is never scaled.
565 */
566 th->window = htons(min(tp->rcv_wnd, 65535U));
567 } else {
568 th->window = htons(tcp_select_window(sk));
569 }
570 th->check = 0;
571 th->urg_ptr = 0;
572
573 if (unlikely(tp->urg_mode &&
574 between(tp->snd_up, tcb->seq + 1, tcb->seq + 0xFFFF))) {
575 th->urg_ptr = htons(tp->snd_up - tcb->seq);
576 th->urg = 1;
577 }
578
579 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
580 tcp_syn_build_options((__be32 *)(th + 1),
581 tcp_advertise_mss(sk),
582 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
583 (sysctl_flags & SYSCTL_FLAG_SACK),
584 (sysctl_flags & SYSCTL_FLAG_WSCALE),
585 tp->rx_opt.rcv_wscale,
586 tcb->when,
587 tp->rx_opt.ts_recent,
588
589 #ifdef CONFIG_TCP_MD5SIG
590 md5 ? &md5_hash_location :
591 #endif
592 NULL);
593 } else {
594 tcp_build_and_update_options((__be32 *)(th + 1),
595 tp, tcb->when,
596 #ifdef CONFIG_TCP_MD5SIG
597 md5 ? &md5_hash_location :
598 #endif
599 NULL);
600 TCP_ECN_send(sk, skb, tcp_header_size);
601 }
602
603 #ifdef CONFIG_TCP_MD5SIG
604 /* Calculate the MD5 hash, as we have all we need now */
605 if (md5) {
606 tp->af_specific->calc_md5_hash(md5_hash_location,
607 md5, sk, NULL, skb);
608 }
609 #endif
610
611 icsk->icsk_af_ops->send_check(sk, skb->len, skb);
612
613 if (likely(tcb->flags & TCPCB_FLAG_ACK))
614 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
615
616 if (skb->len != tcp_header_size)
617 tcp_event_data_sent(tp, skb, sk);
618
619 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
620 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
621
622 err = icsk->icsk_af_ops->queue_xmit(skb, 0);
623 if (likely(err <= 0))
624 return err;
625
626 tcp_enter_cwr(sk, 1);
627
628 return net_xmit_eval(err);
629
630 #undef SYSCTL_FLAG_TSTAMPS
631 #undef SYSCTL_FLAG_WSCALE
632 #undef SYSCTL_FLAG_SACK
633 }
634
635 /* This routine just queue's the buffer
636 *
637 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
638 * otherwise socket can stall.
639 */
640 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
641 {
642 struct tcp_sock *tp = tcp_sk(sk);
643
644 /* Advance write_seq and place onto the write_queue. */
645 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
646 skb_header_release(skb);
647 tcp_add_write_queue_tail(sk, skb);
648 sk->sk_wmem_queued += skb->truesize;
649 sk_mem_charge(sk, skb->truesize);
650 }
651
652 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb,
653 unsigned int mss_now)
654 {
655 if (skb->len <= mss_now || !sk_can_gso(sk)) {
656 /* Avoid the costly divide in the normal
657 * non-TSO case.
658 */
659 skb_shinfo(skb)->gso_segs = 1;
660 skb_shinfo(skb)->gso_size = 0;
661 skb_shinfo(skb)->gso_type = 0;
662 } else {
663 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
664 skb_shinfo(skb)->gso_size = mss_now;
665 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
666 }
667 }
668
669 /* When a modification to fackets out becomes necessary, we need to check
670 * skb is counted to fackets_out or not.
671 */
672 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb,
673 int decr)
674 {
675 struct tcp_sock *tp = tcp_sk(sk);
676
677 if (!tp->sacked_out || tcp_is_reno(tp))
678 return;
679
680 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
681 tp->fackets_out -= decr;
682 }
683
684 /* Function to create two new TCP segments. Shrinks the given segment
685 * to the specified size and appends a new segment with the rest of the
686 * packet to the list. This won't be called frequently, I hope.
687 * Remember, these are still headerless SKBs at this point.
688 */
689 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
690 unsigned int mss_now)
691 {
692 struct tcp_sock *tp = tcp_sk(sk);
693 struct sk_buff *buff;
694 int nsize, old_factor;
695 int nlen;
696 u16 flags;
697
698 BUG_ON(len > skb->len);
699
700 tcp_clear_retrans_hints_partial(tp);
701 nsize = skb_headlen(skb) - len;
702 if (nsize < 0)
703 nsize = 0;
704
705 if (skb_cloned(skb) &&
706 skb_is_nonlinear(skb) &&
707 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
708 return -ENOMEM;
709
710 /* Get a new skb... force flag on. */
711 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
712 if (buff == NULL)
713 return -ENOMEM; /* We'll just try again later. */
714
715 sk->sk_wmem_queued += buff->truesize;
716 sk_mem_charge(sk, buff->truesize);
717 nlen = skb->len - len - nsize;
718 buff->truesize += nlen;
719 skb->truesize -= nlen;
720
721 /* Correct the sequence numbers. */
722 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
723 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
724 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
725
726 /* PSH and FIN should only be set in the second packet. */
727 flags = TCP_SKB_CB(skb)->flags;
728 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
729 TCP_SKB_CB(buff)->flags = flags;
730 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
731
732 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
733 /* Copy and checksum data tail into the new buffer. */
734 buff->csum = csum_partial_copy_nocheck(skb->data + len,
735 skb_put(buff, nsize),
736 nsize, 0);
737
738 skb_trim(skb, len);
739
740 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
741 } else {
742 skb->ip_summed = CHECKSUM_PARTIAL;
743 skb_split(skb, buff, len);
744 }
745
746 buff->ip_summed = skb->ip_summed;
747
748 /* Looks stupid, but our code really uses when of
749 * skbs, which it never sent before. --ANK
750 */
751 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
752 buff->tstamp = skb->tstamp;
753
754 old_factor = tcp_skb_pcount(skb);
755
756 /* Fix up tso_factor for both original and new SKB. */
757 tcp_set_skb_tso_segs(sk, skb, mss_now);
758 tcp_set_skb_tso_segs(sk, buff, mss_now);
759
760 /* If this packet has been sent out already, we must
761 * adjust the various packet counters.
762 */
763 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
764 int diff = old_factor - tcp_skb_pcount(skb) -
765 tcp_skb_pcount(buff);
766
767 tp->packets_out -= diff;
768
769 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
770 tp->sacked_out -= diff;
771 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
772 tp->retrans_out -= diff;
773
774 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
775 tp->lost_out -= diff;
776
777 /* Adjust Reno SACK estimate. */
778 if (tcp_is_reno(tp) && diff > 0) {
779 tcp_dec_pcount_approx_int(&tp->sacked_out, diff);
780 tcp_verify_left_out(tp);
781 }
782 tcp_adjust_fackets_out(sk, skb, diff);
783 }
784
785 /* Link BUFF into the send queue. */
786 skb_header_release(buff);
787 tcp_insert_write_queue_after(skb, buff, sk);
788
789 return 0;
790 }
791
792 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
793 * eventually). The difference is that pulled data not copied, but
794 * immediately discarded.
795 */
796 static void __pskb_trim_head(struct sk_buff *skb, int len)
797 {
798 int i, k, eat;
799
800 eat = len;
801 k = 0;
802 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
803 if (skb_shinfo(skb)->frags[i].size <= eat) {
804 put_page(skb_shinfo(skb)->frags[i].page);
805 eat -= skb_shinfo(skb)->frags[i].size;
806 } else {
807 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
808 if (eat) {
809 skb_shinfo(skb)->frags[k].page_offset += eat;
810 skb_shinfo(skb)->frags[k].size -= eat;
811 eat = 0;
812 }
813 k++;
814 }
815 }
816 skb_shinfo(skb)->nr_frags = k;
817
818 skb_reset_tail_pointer(skb);
819 skb->data_len -= len;
820 skb->len = skb->data_len;
821 }
822
823 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
824 {
825 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
826 return -ENOMEM;
827
828 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
829 if (unlikely(len < skb_headlen(skb)))
830 __skb_pull(skb, len);
831 else
832 __pskb_trim_head(skb, len - skb_headlen(skb));
833
834 TCP_SKB_CB(skb)->seq += len;
835 skb->ip_summed = CHECKSUM_PARTIAL;
836
837 skb->truesize -= len;
838 sk->sk_wmem_queued -= len;
839 sk_mem_uncharge(sk, len);
840 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
841
842 /* Any change of skb->len requires recalculation of tso
843 * factor and mss.
844 */
845 if (tcp_skb_pcount(skb) > 1)
846 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
847
848 return 0;
849 }
850
851 /* Not accounting for SACKs here. */
852 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
853 {
854 struct tcp_sock *tp = tcp_sk(sk);
855 struct inet_connection_sock *icsk = inet_csk(sk);
856 int mss_now;
857
858 /* Calculate base mss without TCP options:
859 It is MMS_S - sizeof(tcphdr) of rfc1122
860 */
861 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
862
863 /* Clamp it (mss_clamp does not include tcp options) */
864 if (mss_now > tp->rx_opt.mss_clamp)
865 mss_now = tp->rx_opt.mss_clamp;
866
867 /* Now subtract optional transport overhead */
868 mss_now -= icsk->icsk_ext_hdr_len;
869
870 /* Then reserve room for full set of TCP options and 8 bytes of data */
871 if (mss_now < 48)
872 mss_now = 48;
873
874 /* Now subtract TCP options size, not including SACKs */
875 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
876
877 return mss_now;
878 }
879
880 /* Inverse of above */
881 int tcp_mss_to_mtu(struct sock *sk, int mss)
882 {
883 struct tcp_sock *tp = tcp_sk(sk);
884 struct inet_connection_sock *icsk = inet_csk(sk);
885 int mtu;
886
887 mtu = mss +
888 tp->tcp_header_len +
889 icsk->icsk_ext_hdr_len +
890 icsk->icsk_af_ops->net_header_len;
891
892 return mtu;
893 }
894
895 void tcp_mtup_init(struct sock *sk)
896 {
897 struct tcp_sock *tp = tcp_sk(sk);
898 struct inet_connection_sock *icsk = inet_csk(sk);
899
900 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
901 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
902 icsk->icsk_af_ops->net_header_len;
903 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
904 icsk->icsk_mtup.probe_size = 0;
905 }
906
907 /* Bound MSS / TSO packet size with the half of the window */
908 static int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
909 {
910 if (tp->max_window && pktsize > (tp->max_window >> 1))
911 return max(tp->max_window >> 1, 68U - tp->tcp_header_len);
912 else
913 return pktsize;
914 }
915
916 /* This function synchronize snd mss to current pmtu/exthdr set.
917
918 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
919 for TCP options, but includes only bare TCP header.
920
921 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
922 It is minimum of user_mss and mss received with SYN.
923 It also does not include TCP options.
924
925 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
926
927 tp->mss_cache is current effective sending mss, including
928 all tcp options except for SACKs. It is evaluated,
929 taking into account current pmtu, but never exceeds
930 tp->rx_opt.mss_clamp.
931
932 NOTE1. rfc1122 clearly states that advertised MSS
933 DOES NOT include either tcp or ip options.
934
935 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
936 are READ ONLY outside this function. --ANK (980731)
937 */
938 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
939 {
940 struct tcp_sock *tp = tcp_sk(sk);
941 struct inet_connection_sock *icsk = inet_csk(sk);
942 int mss_now;
943
944 if (icsk->icsk_mtup.search_high > pmtu)
945 icsk->icsk_mtup.search_high = pmtu;
946
947 mss_now = tcp_mtu_to_mss(sk, pmtu);
948 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
949
950 /* And store cached results */
951 icsk->icsk_pmtu_cookie = pmtu;
952 if (icsk->icsk_mtup.enabled)
953 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
954 tp->mss_cache = mss_now;
955
956 return mss_now;
957 }
958
959 /* Compute the current effective MSS, taking SACKs and IP options,
960 * and even PMTU discovery events into account.
961 *
962 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
963 * cannot be large. However, taking into account rare use of URG, this
964 * is not a big flaw.
965 */
966 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
967 {
968 struct tcp_sock *tp = tcp_sk(sk);
969 struct dst_entry *dst = __sk_dst_get(sk);
970 u32 mss_now;
971 u16 xmit_size_goal;
972 int doing_tso = 0;
973
974 mss_now = tp->mss_cache;
975
976 if (large_allowed && sk_can_gso(sk) && !tp->urg_mode)
977 doing_tso = 1;
978
979 if (dst) {
980 u32 mtu = dst_mtu(dst);
981 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
982 mss_now = tcp_sync_mss(sk, mtu);
983 }
984
985 if (tp->rx_opt.eff_sacks)
986 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
987 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
988
989 #ifdef CONFIG_TCP_MD5SIG
990 if (tp->af_specific->md5_lookup(sk, sk))
991 mss_now -= TCPOLEN_MD5SIG_ALIGNED;
992 #endif
993
994 xmit_size_goal = mss_now;
995
996 if (doing_tso) {
997 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
998 inet_csk(sk)->icsk_af_ops->net_header_len -
999 inet_csk(sk)->icsk_ext_hdr_len -
1000 tp->tcp_header_len);
1001
1002 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
1003 xmit_size_goal -= (xmit_size_goal % mss_now);
1004 }
1005 tp->xmit_size_goal = xmit_size_goal;
1006
1007 return mss_now;
1008 }
1009
1010 /* Congestion window validation. (RFC2861) */
1011 static void tcp_cwnd_validate(struct sock *sk)
1012 {
1013 struct tcp_sock *tp = tcp_sk(sk);
1014
1015 if (tp->packets_out >= tp->snd_cwnd) {
1016 /* Network is feed fully. */
1017 tp->snd_cwnd_used = 0;
1018 tp->snd_cwnd_stamp = tcp_time_stamp;
1019 } else {
1020 /* Network starves. */
1021 if (tp->packets_out > tp->snd_cwnd_used)
1022 tp->snd_cwnd_used = tp->packets_out;
1023
1024 if (sysctl_tcp_slow_start_after_idle &&
1025 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1026 tcp_cwnd_application_limited(sk);
1027 }
1028 }
1029
1030 /* Returns the portion of skb which can be sent right away without
1031 * introducing MSS oddities to segment boundaries. In rare cases where
1032 * mss_now != mss_cache, we will request caller to create a small skb
1033 * per input skb which could be mostly avoided here (if desired).
1034 *
1035 * We explicitly want to create a request for splitting write queue tail
1036 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1037 * thus all the complexity (cwnd_len is always MSS multiple which we
1038 * return whenever allowed by the other factors). Basically we need the
1039 * modulo only when the receiver window alone is the limiting factor or
1040 * when we would be allowed to send the split-due-to-Nagle skb fully.
1041 */
1042 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb,
1043 unsigned int mss_now, unsigned int cwnd)
1044 {
1045 struct tcp_sock *tp = tcp_sk(sk);
1046 u32 needed, window, cwnd_len;
1047
1048 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1049 cwnd_len = mss_now * cwnd;
1050
1051 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
1052 return cwnd_len;
1053
1054 needed = min(skb->len, window);
1055
1056 if (cwnd_len <= needed)
1057 return cwnd_len;
1058
1059 return needed - needed % mss_now;
1060 }
1061
1062 /* Can at least one segment of SKB be sent right now, according to the
1063 * congestion window rules? If so, return how many segments are allowed.
1064 */
1065 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp,
1066 struct sk_buff *skb)
1067 {
1068 u32 in_flight, cwnd;
1069
1070 /* Don't be strict about the congestion window for the final FIN. */
1071 if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1072 tcp_skb_pcount(skb) == 1)
1073 return 1;
1074
1075 in_flight = tcp_packets_in_flight(tp);
1076 cwnd = tp->snd_cwnd;
1077 if (in_flight < cwnd)
1078 return (cwnd - in_flight);
1079
1080 return 0;
1081 }
1082
1083 /* This must be invoked the first time we consider transmitting
1084 * SKB onto the wire.
1085 */
1086 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,
1087 unsigned int mss_now)
1088 {
1089 int tso_segs = tcp_skb_pcount(skb);
1090
1091 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1092 tcp_set_skb_tso_segs(sk, skb, mss_now);
1093 tso_segs = tcp_skb_pcount(skb);
1094 }
1095 return tso_segs;
1096 }
1097
1098 static inline int tcp_minshall_check(const struct tcp_sock *tp)
1099 {
1100 return after(tp->snd_sml,tp->snd_una) &&
1101 !after(tp->snd_sml, tp->snd_nxt);
1102 }
1103
1104 /* Return 0, if packet can be sent now without violation Nagle's rules:
1105 * 1. It is full sized.
1106 * 2. Or it contains FIN. (already checked by caller)
1107 * 3. Or TCP_NODELAY was set.
1108 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1109 * With Minshall's modification: all sent small packets are ACKed.
1110 */
1111 static inline int tcp_nagle_check(const struct tcp_sock *tp,
1112 const struct sk_buff *skb,
1113 unsigned mss_now, int nonagle)
1114 {
1115 return (skb->len < mss_now &&
1116 ((nonagle & TCP_NAGLE_CORK) ||
1117 (!nonagle && tp->packets_out && tcp_minshall_check(tp))));
1118 }
1119
1120 /* Return non-zero if the Nagle test allows this packet to be
1121 * sent now.
1122 */
1123 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
1124 unsigned int cur_mss, int nonagle)
1125 {
1126 /* Nagle rule does not apply to frames, which sit in the middle of the
1127 * write_queue (they have no chances to get new data).
1128 *
1129 * This is implemented in the callers, where they modify the 'nonagle'
1130 * argument based upon the location of SKB in the send queue.
1131 */
1132 if (nonagle & TCP_NAGLE_PUSH)
1133 return 1;
1134
1135 /* Don't use the nagle rule for urgent data (or for the final FIN).
1136 * Nagle can be ignored during F-RTO too (see RFC4138).
1137 */
1138 if (tp->urg_mode || (tp->frto_counter == 2) ||
1139 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
1140 return 1;
1141
1142 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1143 return 1;
1144
1145 return 0;
1146 }
1147
1148 /* Does at least the first segment of SKB fit into the send window? */
1149 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb,
1150 unsigned int cur_mss)
1151 {
1152 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1153
1154 if (skb->len > cur_mss)
1155 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1156
1157 return !after(end_seq, tcp_wnd_end(tp));
1158 }
1159
1160 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1161 * should be put on the wire right now. If so, it returns the number of
1162 * packets allowed by the congestion window.
1163 */
1164 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
1165 unsigned int cur_mss, int nonagle)
1166 {
1167 struct tcp_sock *tp = tcp_sk(sk);
1168 unsigned int cwnd_quota;
1169
1170 tcp_init_tso_segs(sk, skb, cur_mss);
1171
1172 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1173 return 0;
1174
1175 cwnd_quota = tcp_cwnd_test(tp, skb);
1176 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1177 cwnd_quota = 0;
1178
1179 return cwnd_quota;
1180 }
1181
1182 int tcp_may_send_now(struct sock *sk)
1183 {
1184 struct tcp_sock *tp = tcp_sk(sk);
1185 struct sk_buff *skb = tcp_send_head(sk);
1186
1187 return (skb &&
1188 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
1189 (tcp_skb_is_last(sk, skb) ?
1190 tp->nonagle : TCP_NAGLE_PUSH)));
1191 }
1192
1193 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1194 * which is put after SKB on the list. It is very much like
1195 * tcp_fragment() except that it may make several kinds of assumptions
1196 * in order to speed up the splitting operation. In particular, we
1197 * know that all the data is in scatter-gather pages, and that the
1198 * packet has never been sent out before (and thus is not cloned).
1199 */
1200 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1201 unsigned int mss_now)
1202 {
1203 struct sk_buff *buff;
1204 int nlen = skb->len - len;
1205 u16 flags;
1206
1207 /* All of a TSO frame must be composed of paged data. */
1208 if (skb->len != skb->data_len)
1209 return tcp_fragment(sk, skb, len, mss_now);
1210
1211 buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC);
1212 if (unlikely(buff == NULL))
1213 return -ENOMEM;
1214
1215 sk->sk_wmem_queued += buff->truesize;
1216 sk_mem_charge(sk, buff->truesize);
1217 buff->truesize += nlen;
1218 skb->truesize -= nlen;
1219
1220 /* Correct the sequence numbers. */
1221 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1222 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1223 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1224
1225 /* PSH and FIN should only be set in the second packet. */
1226 flags = TCP_SKB_CB(skb)->flags;
1227 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
1228 TCP_SKB_CB(buff)->flags = flags;
1229
1230 /* This packet was never sent out yet, so no SACK bits. */
1231 TCP_SKB_CB(buff)->sacked = 0;
1232
1233 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1234 skb_split(skb, buff, len);
1235
1236 /* Fix up tso_factor for both original and new SKB. */
1237 tcp_set_skb_tso_segs(sk, skb, mss_now);
1238 tcp_set_skb_tso_segs(sk, buff, mss_now);
1239
1240 /* Link BUFF into the send queue. */
1241 skb_header_release(buff);
1242 tcp_insert_write_queue_after(skb, buff, sk);
1243
1244 return 0;
1245 }
1246
1247 /* Try to defer sending, if possible, in order to minimize the amount
1248 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1249 *
1250 * This algorithm is from John Heffner.
1251 */
1252 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1253 {
1254 struct tcp_sock *tp = tcp_sk(sk);
1255 const struct inet_connection_sock *icsk = inet_csk(sk);
1256 u32 send_win, cong_win, limit, in_flight;
1257
1258 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1259 goto send_now;
1260
1261 if (icsk->icsk_ca_state != TCP_CA_Open)
1262 goto send_now;
1263
1264 /* Defer for less than two clock ticks. */
1265 if (tp->tso_deferred &&
1266 ((jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1267 goto send_now;
1268
1269 in_flight = tcp_packets_in_flight(tp);
1270
1271 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1272
1273 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1274
1275 /* From in_flight test above, we know that cwnd > in_flight. */
1276 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1277
1278 limit = min(send_win, cong_win);
1279
1280 /* If a full-sized TSO skb can be sent, do it. */
1281 if (limit >= sk->sk_gso_max_size)
1282 goto send_now;
1283
1284 if (sysctl_tcp_tso_win_divisor) {
1285 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1286
1287 /* If at least some fraction of a window is available,
1288 * just use it.
1289 */
1290 chunk /= sysctl_tcp_tso_win_divisor;
1291 if (limit >= chunk)
1292 goto send_now;
1293 } else {
1294 /* Different approach, try not to defer past a single
1295 * ACK. Receiver should ACK every other full sized
1296 * frame, so if we have space for more than 3 frames
1297 * then send now.
1298 */
1299 if (limit > tcp_max_burst(tp) * tp->mss_cache)
1300 goto send_now;
1301 }
1302
1303 /* Ok, it looks like it is advisable to defer. */
1304 tp->tso_deferred = 1 | (jiffies << 1);
1305
1306 return 1;
1307
1308 send_now:
1309 tp->tso_deferred = 0;
1310 return 0;
1311 }
1312
1313 /* Create a new MTU probe if we are ready.
1314 * Returns 0 if we should wait to probe (no cwnd available),
1315 * 1 if a probe was sent,
1316 * -1 otherwise
1317 */
1318 static int tcp_mtu_probe(struct sock *sk)
1319 {
1320 struct tcp_sock *tp = tcp_sk(sk);
1321 struct inet_connection_sock *icsk = inet_csk(sk);
1322 struct sk_buff *skb, *nskb, *next;
1323 int len;
1324 int probe_size;
1325 int size_needed;
1326 int copy;
1327 int mss_now;
1328
1329 /* Not currently probing/verifying,
1330 * not in recovery,
1331 * have enough cwnd, and
1332 * not SACKing (the variable headers throw things off) */
1333 if (!icsk->icsk_mtup.enabled ||
1334 icsk->icsk_mtup.probe_size ||
1335 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1336 tp->snd_cwnd < 11 ||
1337 tp->rx_opt.eff_sacks)
1338 return -1;
1339
1340 /* Very simple search strategy: just double the MSS. */
1341 mss_now = tcp_current_mss(sk, 0);
1342 probe_size = 2 * tp->mss_cache;
1343 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1344 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1345 /* TODO: set timer for probe_converge_event */
1346 return -1;
1347 }
1348
1349 /* Have enough data in the send queue to probe? */
1350 if (tp->write_seq - tp->snd_nxt < size_needed)
1351 return -1;
1352
1353 if (tp->snd_wnd < size_needed)
1354 return -1;
1355 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1356 return 0;
1357
1358 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1359 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1360 if (!tcp_packets_in_flight(tp))
1361 return -1;
1362 else
1363 return 0;
1364 }
1365
1366 /* We're allowed to probe. Build it now. */
1367 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1368 return -1;
1369 sk->sk_wmem_queued += nskb->truesize;
1370 sk_mem_charge(sk, nskb->truesize);
1371
1372 skb = tcp_send_head(sk);
1373
1374 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1375 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1376 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
1377 TCP_SKB_CB(nskb)->sacked = 0;
1378 nskb->csum = 0;
1379 nskb->ip_summed = skb->ip_summed;
1380
1381 tcp_insert_write_queue_before(nskb, skb, sk);
1382
1383 len = 0;
1384 tcp_for_write_queue_from_safe(skb, next, sk) {
1385 copy = min_t(int, skb->len, probe_size - len);
1386 if (nskb->ip_summed)
1387 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1388 else
1389 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1390 skb_put(nskb, copy),
1391 copy, nskb->csum);
1392
1393 if (skb->len <= copy) {
1394 /* We've eaten all the data from this skb.
1395 * Throw it away. */
1396 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
1397 tcp_unlink_write_queue(skb, sk);
1398 sk_wmem_free_skb(sk, skb);
1399 } else {
1400 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
1401 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1402 if (!skb_shinfo(skb)->nr_frags) {
1403 skb_pull(skb, copy);
1404 if (skb->ip_summed != CHECKSUM_PARTIAL)
1405 skb->csum = csum_partial(skb->data,
1406 skb->len, 0);
1407 } else {
1408 __pskb_trim_head(skb, copy);
1409 tcp_set_skb_tso_segs(sk, skb, mss_now);
1410 }
1411 TCP_SKB_CB(skb)->seq += copy;
1412 }
1413
1414 len += copy;
1415
1416 if (len >= probe_size)
1417 break;
1418 }
1419 tcp_init_tso_segs(sk, nskb, nskb->len);
1420
1421 /* We're ready to send. If this fails, the probe will
1422 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1423 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1424 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1425 /* Decrement cwnd here because we are sending
1426 * effectively two packets. */
1427 tp->snd_cwnd--;
1428 tcp_event_new_data_sent(sk, nskb);
1429
1430 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1431 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1432 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1433
1434 return 1;
1435 }
1436
1437 return -1;
1438 }
1439
1440 /* This routine writes packets to the network. It advances the
1441 * send_head. This happens as incoming acks open up the remote
1442 * window for us.
1443 *
1444 * Returns 1, if no segments are in flight and we have queued segments, but
1445 * cannot send anything now because of SWS or another problem.
1446 */
1447 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1448 {
1449 struct tcp_sock *tp = tcp_sk(sk);
1450 struct sk_buff *skb;
1451 unsigned int tso_segs, sent_pkts;
1452 int cwnd_quota;
1453 int result;
1454
1455 /* If we are closed, the bytes will have to remain here.
1456 * In time closedown will finish, we empty the write queue and all
1457 * will be happy.
1458 */
1459 if (unlikely(sk->sk_state == TCP_CLOSE))
1460 return 0;
1461
1462 sent_pkts = 0;
1463
1464 /* Do MTU probing. */
1465 if ((result = tcp_mtu_probe(sk)) == 0) {
1466 return 0;
1467 } else if (result > 0) {
1468 sent_pkts = 1;
1469 }
1470
1471 while ((skb = tcp_send_head(sk))) {
1472 unsigned int limit;
1473
1474 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1475 BUG_ON(!tso_segs);
1476
1477 cwnd_quota = tcp_cwnd_test(tp, skb);
1478 if (!cwnd_quota)
1479 break;
1480
1481 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1482 break;
1483
1484 if (tso_segs == 1) {
1485 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1486 (tcp_skb_is_last(sk, skb) ?
1487 nonagle : TCP_NAGLE_PUSH))))
1488 break;
1489 } else {
1490 if (tcp_tso_should_defer(sk, skb))
1491 break;
1492 }
1493
1494 limit = mss_now;
1495 if (tso_segs > 1)
1496 limit = tcp_mss_split_point(sk, skb, mss_now,
1497 cwnd_quota);
1498
1499 if (skb->len > limit &&
1500 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1501 break;
1502
1503 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1504
1505 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC)))
1506 break;
1507
1508 /* Advance the send_head. This one is sent out.
1509 * This call will increment packets_out.
1510 */
1511 tcp_event_new_data_sent(sk, skb);
1512
1513 tcp_minshall_update(tp, mss_now, skb);
1514 sent_pkts++;
1515 }
1516
1517 if (likely(sent_pkts)) {
1518 tcp_cwnd_validate(sk);
1519 return 0;
1520 }
1521 return !tp->packets_out && tcp_send_head(sk);
1522 }
1523
1524 /* Push out any pending frames which were held back due to
1525 * TCP_CORK or attempt at coalescing tiny packets.
1526 * The socket must be locked by the caller.
1527 */
1528 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
1529 int nonagle)
1530 {
1531 struct sk_buff *skb = tcp_send_head(sk);
1532
1533 if (skb) {
1534 if (tcp_write_xmit(sk, cur_mss, nonagle))
1535 tcp_check_probe_timer(sk);
1536 }
1537 }
1538
1539 /* Send _single_ skb sitting at the send head. This function requires
1540 * true push pending frames to setup probe timer etc.
1541 */
1542 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1543 {
1544 struct sk_buff *skb = tcp_send_head(sk);
1545 unsigned int tso_segs, cwnd_quota;
1546
1547 BUG_ON(!skb || skb->len < mss_now);
1548
1549 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1550 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1551
1552 if (likely(cwnd_quota)) {
1553 unsigned int limit;
1554
1555 BUG_ON(!tso_segs);
1556
1557 limit = mss_now;
1558 if (tso_segs > 1)
1559 limit = tcp_mss_split_point(sk, skb, mss_now,
1560 cwnd_quota);
1561
1562 if (skb->len > limit &&
1563 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1564 return;
1565
1566 /* Send it out now. */
1567 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1568
1569 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) {
1570 tcp_event_new_data_sent(sk, skb);
1571 tcp_cwnd_validate(sk);
1572 return;
1573 }
1574 }
1575 }
1576
1577 /* This function returns the amount that we can raise the
1578 * usable window based on the following constraints
1579 *
1580 * 1. The window can never be shrunk once it is offered (RFC 793)
1581 * 2. We limit memory per socket
1582 *
1583 * RFC 1122:
1584 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1585 * RECV.NEXT + RCV.WIN fixed until:
1586 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1587 *
1588 * i.e. don't raise the right edge of the window until you can raise
1589 * it at least MSS bytes.
1590 *
1591 * Unfortunately, the recommended algorithm breaks header prediction,
1592 * since header prediction assumes th->window stays fixed.
1593 *
1594 * Strictly speaking, keeping th->window fixed violates the receiver
1595 * side SWS prevention criteria. The problem is that under this rule
1596 * a stream of single byte packets will cause the right side of the
1597 * window to always advance by a single byte.
1598 *
1599 * Of course, if the sender implements sender side SWS prevention
1600 * then this will not be a problem.
1601 *
1602 * BSD seems to make the following compromise:
1603 *
1604 * If the free space is less than the 1/4 of the maximum
1605 * space available and the free space is less than 1/2 mss,
1606 * then set the window to 0.
1607 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1608 * Otherwise, just prevent the window from shrinking
1609 * and from being larger than the largest representable value.
1610 *
1611 * This prevents incremental opening of the window in the regime
1612 * where TCP is limited by the speed of the reader side taking
1613 * data out of the TCP receive queue. It does nothing about
1614 * those cases where the window is constrained on the sender side
1615 * because the pipeline is full.
1616 *
1617 * BSD also seems to "accidentally" limit itself to windows that are a
1618 * multiple of MSS, at least until the free space gets quite small.
1619 * This would appear to be a side effect of the mbuf implementation.
1620 * Combining these two algorithms results in the observed behavior
1621 * of having a fixed window size at almost all times.
1622 *
1623 * Below we obtain similar behavior by forcing the offered window to
1624 * a multiple of the mss when it is feasible to do so.
1625 *
1626 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1627 * Regular options like TIMESTAMP are taken into account.
1628 */
1629 u32 __tcp_select_window(struct sock *sk)
1630 {
1631 struct inet_connection_sock *icsk = inet_csk(sk);
1632 struct tcp_sock *tp = tcp_sk(sk);
1633 /* MSS for the peer's data. Previous versions used mss_clamp
1634 * here. I don't know if the value based on our guesses
1635 * of peer's MSS is better for the performance. It's more correct
1636 * but may be worse for the performance because of rcv_mss
1637 * fluctuations. --SAW 1998/11/1
1638 */
1639 int mss = icsk->icsk_ack.rcv_mss;
1640 int free_space = tcp_space(sk);
1641 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1642 int window;
1643
1644 if (mss > full_space)
1645 mss = full_space;
1646
1647 if (free_space < (full_space >> 1)) {
1648 icsk->icsk_ack.quick = 0;
1649
1650 if (tcp_memory_pressure)
1651 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
1652 4U * tp->advmss);
1653
1654 if (free_space < mss)
1655 return 0;
1656 }
1657
1658 if (free_space > tp->rcv_ssthresh)
1659 free_space = tp->rcv_ssthresh;
1660
1661 /* Don't do rounding if we are using window scaling, since the
1662 * scaled window will not line up with the MSS boundary anyway.
1663 */
1664 window = tp->rcv_wnd;
1665 if (tp->rx_opt.rcv_wscale) {
1666 window = free_space;
1667
1668 /* Advertise enough space so that it won't get scaled away.
1669 * Import case: prevent zero window announcement if
1670 * 1<<rcv_wscale > mss.
1671 */
1672 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1673 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1674 << tp->rx_opt.rcv_wscale);
1675 } else {
1676 /* Get the largest window that is a nice multiple of mss.
1677 * Window clamp already applied above.
1678 * If our current window offering is within 1 mss of the
1679 * free space we just keep it. This prevents the divide
1680 * and multiply from happening most of the time.
1681 * We also don't do any window rounding when the free space
1682 * is too small.
1683 */
1684 if (window <= free_space - mss || window > free_space)
1685 window = (free_space / mss) * mss;
1686 else if (mss == full_space &&
1687 free_space > window + (full_space >> 1))
1688 window = free_space;
1689 }
1690
1691 return window;
1692 }
1693
1694 /* Attempt to collapse two adjacent SKB's during retransmission. */
1695 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb,
1696 int mss_now)
1697 {
1698 struct tcp_sock *tp = tcp_sk(sk);
1699 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
1700 int skb_size, next_skb_size;
1701 u16 flags;
1702
1703 /* The first test we must make is that neither of these two
1704 * SKB's are still referenced by someone else.
1705 */
1706 if (skb_cloned(skb) || skb_cloned(next_skb))
1707 return;
1708
1709 skb_size = skb->len;
1710 next_skb_size = next_skb->len;
1711 flags = TCP_SKB_CB(skb)->flags;
1712
1713 /* Also punt if next skb has been SACK'd. */
1714 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1715 return;
1716
1717 /* Next skb is out of window. */
1718 if (after(TCP_SKB_CB(next_skb)->end_seq, tcp_wnd_end(tp)))
1719 return;
1720
1721 /* Punt if not enough space exists in the first SKB for
1722 * the data in the second, or the total combined payload
1723 * would exceed the MSS.
1724 */
1725 if ((next_skb_size > skb_tailroom(skb)) ||
1726 ((skb_size + next_skb_size) > mss_now))
1727 return;
1728
1729 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
1730
1731 tcp_highest_sack_combine(sk, next_skb, skb);
1732
1733 /* Ok. We will be able to collapse the packet. */
1734 tcp_unlink_write_queue(next_skb, sk);
1735
1736 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
1737 next_skb_size);
1738
1739 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
1740 skb->ip_summed = CHECKSUM_PARTIAL;
1741
1742 if (skb->ip_summed != CHECKSUM_PARTIAL)
1743 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1744
1745 /* Update sequence range on original skb. */
1746 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1747
1748 /* Merge over control information. */
1749 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1750 TCP_SKB_CB(skb)->flags = flags;
1751
1752 /* All done, get rid of second SKB and account for it so
1753 * packet counting does not break.
1754 */
1755 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
1756 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_RETRANS)
1757 tp->retrans_out -= tcp_skb_pcount(next_skb);
1758 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_LOST)
1759 tp->lost_out -= tcp_skb_pcount(next_skb);
1760 /* Reno case is special. Sigh... */
1761 if (tcp_is_reno(tp) && tp->sacked_out)
1762 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1763
1764 tcp_adjust_fackets_out(sk, next_skb, tcp_skb_pcount(next_skb));
1765 tp->packets_out -= tcp_skb_pcount(next_skb);
1766
1767 /* changed transmit queue under us so clear hints */
1768 tcp_clear_retrans_hints_partial(tp);
1769
1770 sk_wmem_free_skb(sk, next_skb);
1771 }
1772
1773 /* Do a simple retransmit without using the backoff mechanisms in
1774 * tcp_timer. This is used for path mtu discovery.
1775 * The socket is already locked here.
1776 */
1777 void tcp_simple_retransmit(struct sock *sk)
1778 {
1779 const struct inet_connection_sock *icsk = inet_csk(sk);
1780 struct tcp_sock *tp = tcp_sk(sk);
1781 struct sk_buff *skb;
1782 unsigned int mss = tcp_current_mss(sk, 0);
1783 int lost = 0;
1784
1785 tcp_for_write_queue(skb, sk) {
1786 if (skb == tcp_send_head(sk))
1787 break;
1788 if (skb->len > mss &&
1789 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1790 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1791 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1792 tp->retrans_out -= tcp_skb_pcount(skb);
1793 }
1794 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) {
1795 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1796 tp->lost_out += tcp_skb_pcount(skb);
1797 lost = 1;
1798 }
1799 }
1800 }
1801
1802 tcp_clear_all_retrans_hints(tp);
1803
1804 if (!lost)
1805 return;
1806
1807 if (tcp_is_reno(tp))
1808 tcp_limit_reno_sacked(tp);
1809
1810 tcp_verify_left_out(tp);
1811
1812 /* Don't muck with the congestion window here.
1813 * Reason is that we do not increase amount of _data_
1814 * in network, but units changed and effective
1815 * cwnd/ssthresh really reduced now.
1816 */
1817 if (icsk->icsk_ca_state != TCP_CA_Loss) {
1818 tp->high_seq = tp->snd_nxt;
1819 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1820 tp->prior_ssthresh = 0;
1821 tp->undo_marker = 0;
1822 tcp_set_ca_state(sk, TCP_CA_Loss);
1823 }
1824 tcp_xmit_retransmit_queue(sk);
1825 }
1826
1827 /* This retransmits one SKB. Policy decisions and retransmit queue
1828 * state updates are done by the caller. Returns non-zero if an
1829 * error occurred which prevented the send.
1830 */
1831 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1832 {
1833 struct tcp_sock *tp = tcp_sk(sk);
1834 struct inet_connection_sock *icsk = inet_csk(sk);
1835 unsigned int cur_mss;
1836 int err;
1837
1838 /* Inconslusive MTU probe */
1839 if (icsk->icsk_mtup.probe_size) {
1840 icsk->icsk_mtup.probe_size = 0;
1841 }
1842
1843 /* Do not sent more than we queued. 1/4 is reserved for possible
1844 * copying overhead: fragmentation, tunneling, mangling etc.
1845 */
1846 if (atomic_read(&sk->sk_wmem_alloc) >
1847 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1848 return -EAGAIN;
1849
1850 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1851 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1852 BUG();
1853 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1854 return -ENOMEM;
1855 }
1856
1857 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
1858 return -EHOSTUNREACH; /* Routing failure or similar. */
1859
1860 cur_mss = tcp_current_mss(sk, 0);
1861
1862 /* If receiver has shrunk his window, and skb is out of
1863 * new window, do not retransmit it. The exception is the
1864 * case, when window is shrunk to zero. In this case
1865 * our retransmit serves as a zero window probe.
1866 */
1867 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))
1868 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1869 return -EAGAIN;
1870
1871 if (skb->len > cur_mss) {
1872 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1873 return -ENOMEM; /* We'll try again later. */
1874 }
1875
1876 /* Collapse two adjacent packets if worthwhile and we can. */
1877 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1878 (skb->len < (cur_mss >> 1)) &&
1879 (tcp_write_queue_next(sk, skb) != tcp_send_head(sk)) &&
1880 (!tcp_skb_is_last(sk, skb)) &&
1881 (skb_shinfo(skb)->nr_frags == 0 &&
1882 skb_shinfo(tcp_write_queue_next(sk, skb))->nr_frags == 0) &&
1883 (tcp_skb_pcount(skb) == 1 &&
1884 tcp_skb_pcount(tcp_write_queue_next(sk, skb)) == 1) &&
1885 (sysctl_tcp_retrans_collapse != 0))
1886 tcp_retrans_try_collapse(sk, skb, cur_mss);
1887
1888 /* Some Solaris stacks overoptimize and ignore the FIN on a
1889 * retransmit when old data is attached. So strip it off
1890 * since it is cheap to do so and saves bytes on the network.
1891 */
1892 if (skb->len > 0 &&
1893 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1894 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1895 if (!pskb_trim(skb, 0)) {
1896 /* Reuse, even though it does some unnecessary work */
1897 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
1898 TCP_SKB_CB(skb)->flags);
1899 skb->ip_summed = CHECKSUM_NONE;
1900 }
1901 }
1902
1903 /* Make a copy, if the first transmission SKB clone we made
1904 * is still in somebody's hands, else make a clone.
1905 */
1906 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1907
1908 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1909
1910 if (err == 0) {
1911 /* Update global TCP statistics. */
1912 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
1913
1914 tp->total_retrans++;
1915
1916 #if FASTRETRANS_DEBUG > 0
1917 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1918 if (net_ratelimit())
1919 printk(KERN_DEBUG "retrans_out leaked.\n");
1920 }
1921 #endif
1922 if (!tp->retrans_out)
1923 tp->lost_retrans_low = tp->snd_nxt;
1924 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1925 tp->retrans_out += tcp_skb_pcount(skb);
1926
1927 /* Save stamp of the first retransmit. */
1928 if (!tp->retrans_stamp)
1929 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1930
1931 tp->undo_retrans++;
1932
1933 /* snd_nxt is stored to detect loss of retransmitted segment,
1934 * see tcp_input.c tcp_sacktag_write_queue().
1935 */
1936 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1937 }
1938 return err;
1939 }
1940
1941 /* This gets called after a retransmit timeout, and the initially
1942 * retransmitted data is acknowledged. It tries to continue
1943 * resending the rest of the retransmit queue, until either
1944 * we've sent it all or the congestion window limit is reached.
1945 * If doing SACK, the first ACK which comes back for a timeout
1946 * based retransmit packet might feed us FACK information again.
1947 * If so, we use it to avoid unnecessarily retransmissions.
1948 */
1949 void tcp_xmit_retransmit_queue(struct sock *sk)
1950 {
1951 const struct inet_connection_sock *icsk = inet_csk(sk);
1952 struct tcp_sock *tp = tcp_sk(sk);
1953 struct sk_buff *skb;
1954 int packet_cnt;
1955
1956 if (tp->retransmit_skb_hint) {
1957 skb = tp->retransmit_skb_hint;
1958 packet_cnt = tp->retransmit_cnt_hint;
1959 } else {
1960 skb = tcp_write_queue_head(sk);
1961 packet_cnt = 0;
1962 }
1963
1964 /* First pass: retransmit lost packets. */
1965 if (tp->lost_out) {
1966 tcp_for_write_queue_from(skb, sk) {
1967 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1968
1969 if (skb == tcp_send_head(sk))
1970 break;
1971 /* we could do better than to assign each time */
1972 tp->retransmit_skb_hint = skb;
1973 tp->retransmit_cnt_hint = packet_cnt;
1974
1975 /* Assume this retransmit will generate
1976 * only one packet for congestion window
1977 * calculation purposes. This works because
1978 * tcp_retransmit_skb() will chop up the
1979 * packet to be MSS sized and all the
1980 * packet counting works out.
1981 */
1982 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1983 return;
1984
1985 if (sacked & TCPCB_LOST) {
1986 if (!(sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1987 int mib_idx;
1988
1989 if (tcp_retransmit_skb(sk, skb)) {
1990 tp->retransmit_skb_hint = NULL;
1991 return;
1992 }
1993 if (icsk->icsk_ca_state != TCP_CA_Loss)
1994 mib_idx = LINUX_MIB_TCPFASTRETRANS;
1995 else
1996 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
1997 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1998
1999 if (skb == tcp_write_queue_head(sk))
2000 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2001 inet_csk(sk)->icsk_rto,
2002 TCP_RTO_MAX);
2003 }
2004
2005 packet_cnt += tcp_skb_pcount(skb);
2006 if (packet_cnt >= tp->lost_out)
2007 break;
2008 }
2009 }
2010 }
2011
2012 /* OK, demanded retransmission is finished. */
2013
2014 /* Forward retransmissions are possible only during Recovery. */
2015 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2016 return;
2017
2018 /* No forward retransmissions in Reno are possible. */
2019 if (tcp_is_reno(tp))
2020 return;
2021
2022 /* Yeah, we have to make difficult choice between forward transmission
2023 * and retransmission... Both ways have their merits...
2024 *
2025 * For now we do not retransmit anything, while we have some new
2026 * segments to send. In the other cases, follow rule 3 for
2027 * NextSeg() specified in RFC3517.
2028 */
2029
2030 if (tcp_may_send_now(sk))
2031 return;
2032
2033 /* If nothing is SACKed, highest_sack in the loop won't be valid */
2034 if (!tp->sacked_out)
2035 return;
2036
2037 if (tp->forward_skb_hint)
2038 skb = tp->forward_skb_hint;
2039 else
2040 skb = tcp_write_queue_head(sk);
2041
2042 tcp_for_write_queue_from(skb, sk) {
2043 if (skb == tcp_send_head(sk))
2044 break;
2045 tp->forward_skb_hint = skb;
2046
2047 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2048 break;
2049
2050 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2051 break;
2052
2053 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
2054 continue;
2055
2056 /* Ok, retransmit it. */
2057 if (tcp_retransmit_skb(sk, skb)) {
2058 tp->forward_skb_hint = NULL;
2059 break;
2060 }
2061
2062 if (skb == tcp_write_queue_head(sk))
2063 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2064 inet_csk(sk)->icsk_rto,
2065 TCP_RTO_MAX);
2066
2067 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFORWARDRETRANS);
2068 }
2069 }
2070
2071 /* Send a fin. The caller locks the socket for us. This cannot be
2072 * allowed to fail queueing a FIN frame under any circumstances.
2073 */
2074 void tcp_send_fin(struct sock *sk)
2075 {
2076 struct tcp_sock *tp = tcp_sk(sk);
2077 struct sk_buff *skb = tcp_write_queue_tail(sk);
2078 int mss_now;
2079
2080 /* Optimization, tack on the FIN if we have a queue of
2081 * unsent frames. But be careful about outgoing SACKS
2082 * and IP options.
2083 */
2084 mss_now = tcp_current_mss(sk, 1);
2085
2086 if (tcp_send_head(sk) != NULL) {
2087 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
2088 TCP_SKB_CB(skb)->end_seq++;
2089 tp->write_seq++;
2090 } else {
2091 /* Socket is locked, keep trying until memory is available. */
2092 for (;;) {
2093 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
2094 if (skb)
2095 break;
2096 yield();
2097 }
2098
2099 /* Reserve space for headers and prepare control bits. */
2100 skb_reserve(skb, MAX_TCP_HEADER);
2101 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2102 tcp_init_nondata_skb(skb, tp->write_seq,
2103 TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
2104 tcp_queue_skb(sk, skb);
2105 }
2106 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2107 }
2108
2109 /* We get here when a process closes a file descriptor (either due to
2110 * an explicit close() or as a byproduct of exit()'ing) and there
2111 * was unread data in the receive queue. This behavior is recommended
2112 * by RFC 2525, section 2.17. -DaveM
2113 */
2114 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2115 {
2116 struct sk_buff *skb;
2117
2118 /* NOTE: No TCP options attached and we never retransmit this. */
2119 skb = alloc_skb(MAX_TCP_HEADER, priority);
2120 if (!skb) {
2121 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2122 return;
2123 }
2124
2125 /* Reserve space for headers and prepare control bits. */
2126 skb_reserve(skb, MAX_TCP_HEADER);
2127 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2128 TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
2129 /* Send it off. */
2130 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2131 if (tcp_transmit_skb(sk, skb, 0, priority))
2132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2133
2134 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2135 }
2136
2137 /* WARNING: This routine must only be called when we have already sent
2138 * a SYN packet that crossed the incoming SYN that caused this routine
2139 * to get called. If this assumption fails then the initial rcv_wnd
2140 * and rcv_wscale values will not be correct.
2141 */
2142 int tcp_send_synack(struct sock *sk)
2143 {
2144 struct sk_buff *skb;
2145
2146 skb = tcp_write_queue_head(sk);
2147 if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) {
2148 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
2149 return -EFAULT;
2150 }
2151 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) {
2152 if (skb_cloned(skb)) {
2153 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2154 if (nskb == NULL)
2155 return -ENOMEM;
2156 tcp_unlink_write_queue(skb, sk);
2157 skb_header_release(nskb);
2158 __tcp_add_write_queue_head(sk, nskb);
2159 sk_wmem_free_skb(sk, skb);
2160 sk->sk_wmem_queued += nskb->truesize;
2161 sk_mem_charge(sk, nskb->truesize);
2162 skb = nskb;
2163 }
2164
2165 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
2166 TCP_ECN_send_synack(tcp_sk(sk), skb);
2167 }
2168 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2169 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2170 }
2171
2172 /*
2173 * Prepare a SYN-ACK.
2174 */
2175 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2176 struct request_sock *req)
2177 {
2178 struct inet_request_sock *ireq = inet_rsk(req);
2179 struct tcp_sock *tp = tcp_sk(sk);
2180 struct tcphdr *th;
2181 int tcp_header_size;
2182 struct sk_buff *skb;
2183 #ifdef CONFIG_TCP_MD5SIG
2184 struct tcp_md5sig_key *md5;
2185 __u8 *md5_hash_location;
2186 #endif
2187
2188 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2189 if (skb == NULL)
2190 return NULL;
2191
2192 /* Reserve space for headers. */
2193 skb_reserve(skb, MAX_TCP_HEADER);
2194
2195 skb->dst = dst_clone(dst);
2196
2197 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
2198 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
2199 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
2200 /* SACK_PERM is in the place of NOP NOP of TS */
2201 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
2202
2203 #ifdef CONFIG_TCP_MD5SIG
2204 /* Are we doing MD5 on this segment? If so - make room for it */
2205 md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
2206 if (md5)
2207 tcp_header_size += TCPOLEN_MD5SIG_ALIGNED;
2208 #endif
2209 skb_push(skb, tcp_header_size);
2210 skb_reset_transport_header(skb);
2211
2212 th = tcp_hdr(skb);
2213 memset(th, 0, sizeof(struct tcphdr));
2214 th->syn = 1;
2215 th->ack = 1;
2216 TCP_ECN_make_synack(req, th);
2217 th->source = inet_sk(sk)->sport;
2218 th->dest = ireq->rmt_port;
2219 /* Setting of flags are superfluous here for callers (and ECE is
2220 * not even correctly set)
2221 */
2222 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2223 TCPCB_FLAG_SYN | TCPCB_FLAG_ACK);
2224 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2225 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2226 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2227 __u8 rcv_wscale;
2228 /* Set this up on the first call only */
2229 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2230 /* tcp_full_space because it is guaranteed to be the first packet */
2231 tcp_select_initial_window(tcp_full_space(sk),
2232 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2233 &req->rcv_wnd,
2234 &req->window_clamp,
2235 ireq->wscale_ok,
2236 &rcv_wscale);
2237 ireq->rcv_wscale = rcv_wscale;
2238 }
2239
2240 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2241 th->window = htons(min(req->rcv_wnd, 65535U));
2242 #ifdef CONFIG_SYN_COOKIES
2243 if (unlikely(req->cookie_ts))
2244 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2245 else
2246 #endif
2247 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2248 tcp_syn_build_options((__be32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
2249 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
2250 TCP_SKB_CB(skb)->when,
2251 req->ts_recent,
2252 (
2253 #ifdef CONFIG_TCP_MD5SIG
2254 md5 ? &md5_hash_location :
2255 #endif
2256 NULL)
2257 );
2258
2259 th->doff = (tcp_header_size >> 2);
2260 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
2261
2262 #ifdef CONFIG_TCP_MD5SIG
2263 /* Okay, we have all we need - do the md5 hash if needed */
2264 if (md5) {
2265 tp->af_specific->calc_md5_hash(md5_hash_location,
2266 md5, NULL, req, skb);
2267 }
2268 #endif
2269
2270 return skb;
2271 }
2272
2273 /*
2274 * Do all connect socket setups that can be done AF independent.
2275 */
2276 static void tcp_connect_init(struct sock *sk)
2277 {
2278 struct dst_entry *dst = __sk_dst_get(sk);
2279 struct tcp_sock *tp = tcp_sk(sk);
2280 __u8 rcv_wscale;
2281
2282 /* We'll fix this up when we get a response from the other end.
2283 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2284 */
2285 tp->tcp_header_len = sizeof(struct tcphdr) +
2286 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2287
2288 #ifdef CONFIG_TCP_MD5SIG
2289 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2290 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2291 #endif
2292
2293 /* If user gave his TCP_MAXSEG, record it to clamp */
2294 if (tp->rx_opt.user_mss)
2295 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2296 tp->max_window = 0;
2297 tcp_mtup_init(sk);
2298 tcp_sync_mss(sk, dst_mtu(dst));
2299
2300 if (!tp->window_clamp)
2301 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2302 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
2303 tcp_initialize_rcv_mss(sk);
2304
2305 tcp_select_initial_window(tcp_full_space(sk),
2306 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2307 &tp->rcv_wnd,
2308 &tp->window_clamp,
2309 sysctl_tcp_window_scaling,
2310 &rcv_wscale);
2311
2312 tp->rx_opt.rcv_wscale = rcv_wscale;
2313 tp->rcv_ssthresh = tp->rcv_wnd;
2314
2315 sk->sk_err = 0;
2316 sock_reset_flag(sk, SOCK_DONE);
2317 tp->snd_wnd = 0;
2318 tcp_init_wl(tp, tp->write_seq, 0);
2319 tp->snd_una = tp->write_seq;
2320 tp->snd_sml = tp->write_seq;
2321 tp->rcv_nxt = 0;
2322 tp->rcv_wup = 0;
2323 tp->copied_seq = 0;
2324
2325 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2326 inet_csk(sk)->icsk_retransmits = 0;
2327 tcp_clear_retrans(tp);
2328 }
2329
2330 /*
2331 * Build a SYN and send it off.
2332 */
2333 int tcp_connect(struct sock *sk)
2334 {
2335 struct tcp_sock *tp = tcp_sk(sk);
2336 struct sk_buff *buff;
2337
2338 tcp_connect_init(sk);
2339
2340 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2341 if (unlikely(buff == NULL))
2342 return -ENOBUFS;
2343
2344 /* Reserve space for headers. */
2345 skb_reserve(buff, MAX_TCP_HEADER);
2346
2347 tp->snd_nxt = tp->write_seq;
2348 tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN);
2349 TCP_ECN_send_syn(sk, buff);
2350
2351 /* Send it off. */
2352 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2353 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2354 skb_header_release(buff);
2355 __tcp_add_write_queue_tail(sk, buff);
2356 sk->sk_wmem_queued += buff->truesize;
2357 sk_mem_charge(sk, buff->truesize);
2358 tp->packets_out += tcp_skb_pcount(buff);
2359 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);
2360
2361 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2362 * in order to make this packet get counted in tcpOutSegs.
2363 */
2364 tp->snd_nxt = tp->write_seq;
2365 tp->pushed_seq = tp->write_seq;
2366 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2367
2368 /* Timer for repeating the SYN until an answer. */
2369 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2370 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2371 return 0;
2372 }
2373
2374 /* Send out a delayed ack, the caller does the policy checking
2375 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2376 * for details.
2377 */
2378 void tcp_send_delayed_ack(struct sock *sk)
2379 {
2380 struct inet_connection_sock *icsk = inet_csk(sk);
2381 int ato = icsk->icsk_ack.ato;
2382 unsigned long timeout;
2383
2384 if (ato > TCP_DELACK_MIN) {
2385 const struct tcp_sock *tp = tcp_sk(sk);
2386 int max_ato = HZ / 2;
2387
2388 if (icsk->icsk_ack.pingpong ||
2389 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2390 max_ato = TCP_DELACK_MAX;
2391
2392 /* Slow path, intersegment interval is "high". */
2393
2394 /* If some rtt estimate is known, use it to bound delayed ack.
2395 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2396 * directly.
2397 */
2398 if (tp->srtt) {
2399 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2400
2401 if (rtt < max_ato)
2402 max_ato = rtt;
2403 }
2404
2405 ato = min(ato, max_ato);
2406 }
2407
2408 /* Stay within the limit we were given */
2409 timeout = jiffies + ato;
2410
2411 /* Use new timeout only if there wasn't a older one earlier. */
2412 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2413 /* If delack timer was blocked or is about to expire,
2414 * send ACK now.
2415 */
2416 if (icsk->icsk_ack.blocked ||
2417 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2418 tcp_send_ack(sk);
2419 return;
2420 }
2421
2422 if (!time_before(timeout, icsk->icsk_ack.timeout))
2423 timeout = icsk->icsk_ack.timeout;
2424 }
2425 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2426 icsk->icsk_ack.timeout = timeout;
2427 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2428 }
2429
2430 /* This routine sends an ack and also updates the window. */
2431 void tcp_send_ack(struct sock *sk)
2432 {
2433 struct sk_buff *buff;
2434
2435 /* If we have been reset, we may not send again. */
2436 if (sk->sk_state == TCP_CLOSE)
2437 return;
2438
2439 /* We are not putting this on the write queue, so
2440 * tcp_transmit_skb() will set the ownership to this
2441 * sock.
2442 */
2443 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2444 if (buff == NULL) {
2445 inet_csk_schedule_ack(sk);
2446 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2447 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2448 TCP_DELACK_MAX, TCP_RTO_MAX);
2449 return;
2450 }
2451
2452 /* Reserve space for headers and prepare control bits. */
2453 skb_reserve(buff, MAX_TCP_HEADER);
2454 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK);
2455
2456 /* Send it off, this clears delayed acks for us. */
2457 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2458 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2459 }
2460
2461 /* This routine sends a packet with an out of date sequence
2462 * number. It assumes the other end will try to ack it.
2463 *
2464 * Question: what should we make while urgent mode?
2465 * 4.4BSD forces sending single byte of data. We cannot send
2466 * out of window data, because we have SND.NXT==SND.MAX...
2467 *
2468 * Current solution: to send TWO zero-length segments in urgent mode:
2469 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2470 * out-of-date with SND.UNA-1 to probe window.
2471 */
2472 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2473 {
2474 struct tcp_sock *tp = tcp_sk(sk);
2475 struct sk_buff *skb;
2476
2477 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2478 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2479 if (skb == NULL)
2480 return -1;
2481
2482 /* Reserve space for headers and set control bits. */
2483 skb_reserve(skb, MAX_TCP_HEADER);
2484 /* Use a previous sequence. This should cause the other
2485 * end to send an ack. Don't queue or clone SKB, just
2486 * send it.
2487 */
2488 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK);
2489 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2490 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2491 }
2492
2493 int tcp_write_wakeup(struct sock *sk)
2494 {
2495 struct tcp_sock *tp = tcp_sk(sk);
2496 struct sk_buff *skb;
2497
2498 if (sk->sk_state == TCP_CLOSE)
2499 return -1;
2500
2501 if ((skb = tcp_send_head(sk)) != NULL &&
2502 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
2503 int err;
2504 unsigned int mss = tcp_current_mss(sk, 0);
2505 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2506
2507 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2508 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2509
2510 /* We are probing the opening of a window
2511 * but the window size is != 0
2512 * must have been a result SWS avoidance ( sender )
2513 */
2514 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2515 skb->len > mss) {
2516 seg_size = min(seg_size, mss);
2517 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2518 if (tcp_fragment(sk, skb, seg_size, mss))
2519 return -1;
2520 } else if (!tcp_skb_pcount(skb))
2521 tcp_set_skb_tso_segs(sk, skb, mss);
2522
2523 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2524 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2525 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2526 if (!err)
2527 tcp_event_new_data_sent(sk, skb);
2528 return err;
2529 } else {
2530 if (tp->urg_mode &&
2531 between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
2532 tcp_xmit_probe_skb(sk, 1);
2533 return tcp_xmit_probe_skb(sk, 0);
2534 }
2535 }
2536
2537 /* A window probe timeout has occurred. If window is not closed send
2538 * a partial packet else a zero probe.
2539 */
2540 void tcp_send_probe0(struct sock *sk)
2541 {
2542 struct inet_connection_sock *icsk = inet_csk(sk);
2543 struct tcp_sock *tp = tcp_sk(sk);
2544 int err;
2545
2546 err = tcp_write_wakeup(sk);
2547
2548 if (tp->packets_out || !tcp_send_head(sk)) {
2549 /* Cancel probe timer, if it is not required. */
2550 icsk->icsk_probes_out = 0;
2551 icsk->icsk_backoff = 0;
2552 return;
2553 }
2554
2555 if (err <= 0) {
2556 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2557 icsk->icsk_backoff++;
2558 icsk->icsk_probes_out++;
2559 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2560 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2561 TCP_RTO_MAX);
2562 } else {
2563 /* If packet was not sent due to local congestion,
2564 * do not backoff and do not remember icsk_probes_out.
2565 * Let local senders to fight for local resources.
2566 *
2567 * Use accumulated backoff yet.
2568 */
2569 if (!icsk->icsk_probes_out)
2570 icsk->icsk_probes_out = 1;
2571 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2572 min(icsk->icsk_rto << icsk->icsk_backoff,
2573 TCP_RESOURCE_PROBE_INTERVAL),
2574 TCP_RTO_MAX);
2575 }
2576 }
2577
2578 EXPORT_SYMBOL(tcp_select_initial_window);
2579 EXPORT_SYMBOL(tcp_connect);
2580 EXPORT_SYMBOL(tcp_make_synack);
2581 EXPORT_SYMBOL(tcp_simple_retransmit);
2582 EXPORT_SYMBOL(tcp_sync_mss);
2583 EXPORT_SYMBOL(tcp_mtup_init);
This page took 0.128021 seconds and 5 git commands to generate.