Merge remote-tracking branches 'regmap/topic/bulk', 'regmap/topic/i2c', 'regmap/topic...
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 tcp_rearm_rto(sk);
82 }
83
84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 tcp_skb_pcount(skb));
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
138 */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 struct tcp_sock *tp = tcp_sk(sk);
142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (tcp_packets_in_flight(tp) == 0)
165 tcp_ca_event(sk, CA_EVENT_TX_START);
166
167 tp->lsndtime = now;
168
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
171 */
172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 icsk->icsk_ack.pingpong = 1;
174 }
175
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 tcp_dec_quickack_mode(sk, pkts);
180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182
183
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
190 */
191 u32 init_rwnd = TCP_INIT_CWND * 2;
192
193 if (mss > 1460)
194 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 return init_rwnd;
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (65535 << 14);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = (space / mss) * mss;
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = space;
233
234 (*rcv_wscale) = 0;
235 if (wscale_ok) {
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
238 */
239 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
240 space = min_t(u32, space, *window_clamp);
241 while (space > 65535 && (*rcv_wscale) < 14) {
242 space >>= 1;
243 (*rcv_wscale)++;
244 }
245 }
246
247 if (mss > (1 << *rcv_wscale)) {
248 if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 init_rcv_wnd = tcp_default_init_rwnd(mss);
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 }
252
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
262 */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 struct tcp_sock *tp = tcp_sk(sk);
266 u32 old_win = tp->rcv_wnd;
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
269
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
276 *
277 * Relax Will Robinson.
278 */
279 if (new_win == 0)
280 NET_INC_STATS(sock_net(sk),
281 LINUX_MIB_TCPWANTZEROWINDOWADV);
282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 }
284 tp->rcv_wnd = new_win;
285 tp->rcv_wup = tp->rcv_nxt;
286
287 /* Make sure we do not exceed the maximum possible
288 * scaled window.
289 */
290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 new_win = min(new_win, MAX_TCP_WINDOW);
292 else
293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294
295 /* RFC1323 scaling applied */
296 new_win >>= tp->rx_opt.rcv_wscale;
297
298 /* If we advertise zero window, disable fast path. */
299 if (new_win == 0) {
300 tp->pred_flags = 0;
301 if (old_win)
302 NET_INC_STATS(sock_net(sk),
303 LINUX_MIB_TCPTOZEROWINDOWADV);
304 } else if (old_win == 0) {
305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 }
307
308 return new_win;
309 }
310
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 const struct tcp_sock *tp = tcp_sk(sk);
315
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 if (!(tp->ecn_flags & TCP_ECN_OK))
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 else if (tcp_ca_needs_ecn(sk))
320 INET_ECN_xmit(sk);
321 }
322
323 /* Packet ECN state for a SYN. */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 {
326 struct tcp_sock *tp = tcp_sk(sk);
327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 tcp_ca_needs_ecn(sk);
329
330 if (!use_ecn) {
331 const struct dst_entry *dst = __sk_dst_get(sk);
332
333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 use_ecn = true;
335 }
336
337 tp->ecn_flags = 0;
338
339 if (use_ecn) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk))
343 INET_ECN_xmit(sk);
344 }
345 }
346
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
352 */
353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 if (inet_rsk(req)->ecn_ok)
360 th->ece = 1;
361 }
362
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 * be sent.
365 */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 struct tcphdr *th, int tcp_header_len)
368 {
369 struct tcp_sock *tp = tcp_sk(sk);
370
371 if (tp->ecn_flags & TCP_ECN_OK) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb->len != tcp_header_len &&
374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 INET_ECN_xmit(sk);
376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 th->cwr = 1;
379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 }
381 } else if (!tcp_ca_needs_ecn(sk)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk);
384 }
385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 th->ece = 1;
387 }
388 }
389
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
392 */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 skb->ip_summed = CHECKSUM_PARTIAL;
396 skb->csum = 0;
397
398 TCP_SKB_CB(skb)->tcp_flags = flags;
399 TCP_SKB_CB(skb)->sacked = 0;
400
401 tcp_skb_pcount_set(skb, 1);
402
403 TCP_SKB_CB(skb)->seq = seq;
404 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 seq++;
406 TCP_SKB_CB(skb)->end_seq = seq;
407 }
408
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 return tp->snd_una != tp->snd_up;
412 }
413
414 #define OPTION_SACK_ADVERTISE (1 << 0)
415 #define OPTION_TS (1 << 1)
416 #define OPTION_MD5 (1 << 2)
417 #define OPTION_WSCALE (1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
419
420 struct tcp_out_options {
421 u16 options; /* bit field of OPTION_* */
422 u16 mss; /* 0 to disable */
423 u8 ws; /* window scale, 0 to disable */
424 u8 num_sack_blocks; /* number of SACK blocks to include */
425 u8 hash_size; /* bytes in hash_location */
426 __u8 *hash_location; /* temporary pointer, overloaded */
427 __u32 tsval, tsecr; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
429 };
430
431 /* Write previously computed TCP options to the packet.
432 *
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
440 *
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
443 */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
446 {
447 u16 options = opts->options; /* mungable copy */
448
449 if (unlikely(OPTION_MD5 & options)) {
450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 /* overload cookie hash location */
453 opts->hash_location = (__u8 *)ptr;
454 ptr += 4;
455 }
456
457 if (unlikely(opts->mss)) {
458 *ptr++ = htonl((TCPOPT_MSS << 24) |
459 (TCPOLEN_MSS << 16) |
460 opts->mss);
461 }
462
463 if (likely(OPTION_TS & options)) {
464 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 (TCPOLEN_SACK_PERM << 16) |
467 (TCPOPT_TIMESTAMP << 8) |
468 TCPOLEN_TIMESTAMP);
469 options &= ~OPTION_SACK_ADVERTISE;
470 } else {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_TIMESTAMP << 8) |
474 TCPOLEN_TIMESTAMP);
475 }
476 *ptr++ = htonl(opts->tsval);
477 *ptr++ = htonl(opts->tsecr);
478 }
479
480 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_SACK_PERM << 8) |
484 TCPOLEN_SACK_PERM);
485 }
486
487 if (unlikely(OPTION_WSCALE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_WINDOW << 16) |
490 (TCPOLEN_WINDOW << 8) |
491 opts->ws);
492 }
493
494 if (unlikely(opts->num_sack_blocks)) {
495 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 tp->duplicate_sack : tp->selective_acks;
497 int this_sack;
498
499 *ptr++ = htonl((TCPOPT_NOP << 24) |
500 (TCPOPT_NOP << 16) |
501 (TCPOPT_SACK << 8) |
502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 TCPOLEN_SACK_PERBLOCK)));
504
505 for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 ++this_sack) {
507 *ptr++ = htonl(sp[this_sack].start_seq);
508 *ptr++ = htonl(sp[this_sack].end_seq);
509 }
510
511 tp->rx_opt.dsack = 0;
512 }
513
514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 u8 *p = (u8 *)ptr;
517 u32 len; /* Fast Open option length */
518
519 if (foc->exp) {
520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 TCPOPT_FASTOPEN_MAGIC);
523 p += TCPOLEN_EXP_FASTOPEN_BASE;
524 } else {
525 len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 *p++ = TCPOPT_FASTOPEN;
527 *p++ = len;
528 }
529
530 memcpy(p, foc->val, foc->len);
531 if ((len & 3) == 2) {
532 p[foc->len] = TCPOPT_NOP;
533 p[foc->len + 1] = TCPOPT_NOP;
534 }
535 ptr += (len + 3) >> 2;
536 }
537 }
538
539 /* Compute TCP options for SYN packets. This is not the final
540 * network wire format yet.
541 */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 struct tcp_out_options *opts,
544 struct tcp_md5sig_key **md5)
545 {
546 struct tcp_sock *tp = tcp_sk(sk);
547 unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549
550 #ifdef CONFIG_TCP_MD5SIG
551 *md5 = tp->af_specific->md5_lookup(sk, sk);
552 if (*md5) {
553 opts->options |= OPTION_MD5;
554 remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 }
556 #else
557 *md5 = NULL;
558 #endif
559
560 /* We always get an MSS option. The option bytes which will be seen in
561 * normal data packets should timestamps be used, must be in the MSS
562 * advertised. But we subtract them from tp->mss_cache so that
563 * calculations in tcp_sendmsg are simpler etc. So account for this
564 * fact here if necessary. If we don't do this correctly, as a
565 * receiver we won't recognize data packets as being full sized when we
566 * should, and thus we won't abide by the delayed ACK rules correctly.
567 * SACKs don't matter, we never delay an ACK when we have any of those
568 * going out. */
569 opts->mss = tcp_advertise_mss(sk);
570 remaining -= TCPOLEN_MSS_ALIGNED;
571
572 if (likely(sysctl_tcp_timestamps && !*md5)) {
573 opts->options |= OPTION_TS;
574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 opts->tsecr = tp->rx_opt.ts_recent;
576 remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 }
578 if (likely(sysctl_tcp_window_scaling)) {
579 opts->ws = tp->rx_opt.rcv_wscale;
580 opts->options |= OPTION_WSCALE;
581 remaining -= TCPOLEN_WSCALE_ALIGNED;
582 }
583 if (likely(sysctl_tcp_sack)) {
584 opts->options |= OPTION_SACK_ADVERTISE;
585 if (unlikely(!(OPTION_TS & opts->options)))
586 remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 }
588
589 if (fastopen && fastopen->cookie.len >= 0) {
590 u32 need = fastopen->cookie.len;
591
592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 TCPOLEN_FASTOPEN_BASE;
594 need = (need + 3) & ~3U; /* Align to 32 bits */
595 if (remaining >= need) {
596 opts->options |= OPTION_FAST_OPEN_COOKIE;
597 opts->fastopen_cookie = &fastopen->cookie;
598 remaining -= need;
599 tp->syn_fastopen = 1;
600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 }
602 }
603
604 return MAX_TCP_OPTION_SPACE - remaining;
605 }
606
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 unsigned int mss, struct sk_buff *skb,
610 struct tcp_out_options *opts,
611 const struct tcp_md5sig_key *md5,
612 struct tcp_fastopen_cookie *foc)
613 {
614 struct inet_request_sock *ireq = inet_rsk(req);
615 unsigned int remaining = MAX_TCP_OPTION_SPACE;
616
617 #ifdef CONFIG_TCP_MD5SIG
618 if (md5) {
619 opts->options |= OPTION_MD5;
620 remaining -= TCPOLEN_MD5SIG_ALIGNED;
621
622 /* We can't fit any SACK blocks in a packet with MD5 + TS
623 * options. There was discussion about disabling SACK
624 * rather than TS in order to fit in better with old,
625 * buggy kernels, but that was deemed to be unnecessary.
626 */
627 ireq->tstamp_ok &= !ireq->sack_ok;
628 }
629 #endif
630
631 /* We always send an MSS option. */
632 opts->mss = mss;
633 remaining -= TCPOLEN_MSS_ALIGNED;
634
635 if (likely(ireq->wscale_ok)) {
636 opts->ws = ireq->rcv_wscale;
637 opts->options |= OPTION_WSCALE;
638 remaining -= TCPOLEN_WSCALE_ALIGNED;
639 }
640 if (likely(ireq->tstamp_ok)) {
641 opts->options |= OPTION_TS;
642 opts->tsval = tcp_skb_timestamp(skb);
643 opts->tsecr = req->ts_recent;
644 remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 }
646 if (likely(ireq->sack_ok)) {
647 opts->options |= OPTION_SACK_ADVERTISE;
648 if (unlikely(!ireq->tstamp_ok))
649 remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 }
651 if (foc != NULL && foc->len >= 0) {
652 u32 need = foc->len;
653
654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 TCPOLEN_FASTOPEN_BASE;
656 need = (need + 3) & ~3U; /* Align to 32 bits */
657 if (remaining >= need) {
658 opts->options |= OPTION_FAST_OPEN_COOKIE;
659 opts->fastopen_cookie = foc;
660 remaining -= need;
661 }
662 }
663
664 return MAX_TCP_OPTION_SPACE - remaining;
665 }
666
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668 * final wire format yet.
669 */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 struct tcp_out_options *opts,
672 struct tcp_md5sig_key **md5)
673 {
674 struct tcp_sock *tp = tcp_sk(sk);
675 unsigned int size = 0;
676 unsigned int eff_sacks;
677
678 opts->options = 0;
679
680 #ifdef CONFIG_TCP_MD5SIG
681 *md5 = tp->af_specific->md5_lookup(sk, sk);
682 if (unlikely(*md5)) {
683 opts->options |= OPTION_MD5;
684 size += TCPOLEN_MD5SIG_ALIGNED;
685 }
686 #else
687 *md5 = NULL;
688 #endif
689
690 if (likely(tp->rx_opt.tstamp_ok)) {
691 opts->options |= OPTION_TS;
692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 opts->tsecr = tp->rx_opt.ts_recent;
694 size += TCPOLEN_TSTAMP_ALIGNED;
695 }
696
697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 if (unlikely(eff_sacks)) {
699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 opts->num_sack_blocks =
701 min_t(unsigned int, eff_sacks,
702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 TCPOLEN_SACK_PERBLOCK);
704 size += TCPOLEN_SACK_BASE_ALIGNED +
705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 }
707
708 return size;
709 }
710
711
712 /* TCP SMALL QUEUES (TSQ)
713 *
714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715 * to reduce RTT and bufferbloat.
716 * We do this using a special skb destructor (tcp_wfree).
717 *
718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719 * needs to be reallocated in a driver.
720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721 *
722 * Since transmit from skb destructor is forbidden, we use a tasklet
723 * to process all sockets that eventually need to send more skbs.
724 * We use one tasklet per cpu, with its own queue of sockets.
725 */
726 struct tsq_tasklet {
727 struct tasklet_struct tasklet;
728 struct list_head head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 if ((1 << sk->sk_state) &
735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
737 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
738 0, GFP_ATOMIC);
739 }
740 /*
741 * One tasklet per cpu tries to send more skbs.
742 * We run in tasklet context but need to disable irqs when
743 * transferring tsq->head because tcp_wfree() might
744 * interrupt us (non NAPI drivers)
745 */
746 static void tcp_tasklet_func(unsigned long data)
747 {
748 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
749 LIST_HEAD(list);
750 unsigned long flags;
751 struct list_head *q, *n;
752 struct tcp_sock *tp;
753 struct sock *sk;
754
755 local_irq_save(flags);
756 list_splice_init(&tsq->head, &list);
757 local_irq_restore(flags);
758
759 list_for_each_safe(q, n, &list) {
760 tp = list_entry(q, struct tcp_sock, tsq_node);
761 list_del(&tp->tsq_node);
762
763 sk = (struct sock *)tp;
764 bh_lock_sock(sk);
765
766 if (!sock_owned_by_user(sk)) {
767 tcp_tsq_handler(sk);
768 } else {
769 /* defer the work to tcp_release_cb() */
770 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
771 }
772 bh_unlock_sock(sk);
773
774 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
775 sk_free(sk);
776 }
777 }
778
779 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
780 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
781 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
782 (1UL << TCP_MTU_REDUCED_DEFERRED))
783 /**
784 * tcp_release_cb - tcp release_sock() callback
785 * @sk: socket
786 *
787 * called from release_sock() to perform protocol dependent
788 * actions before socket release.
789 */
790 void tcp_release_cb(struct sock *sk)
791 {
792 struct tcp_sock *tp = tcp_sk(sk);
793 unsigned long flags, nflags;
794
795 /* perform an atomic operation only if at least one flag is set */
796 do {
797 flags = tp->tsq_flags;
798 if (!(flags & TCP_DEFERRED_ALL))
799 return;
800 nflags = flags & ~TCP_DEFERRED_ALL;
801 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
802
803 if (flags & (1UL << TCP_TSQ_DEFERRED))
804 tcp_tsq_handler(sk);
805
806 /* Here begins the tricky part :
807 * We are called from release_sock() with :
808 * 1) BH disabled
809 * 2) sk_lock.slock spinlock held
810 * 3) socket owned by us (sk->sk_lock.owned == 1)
811 *
812 * But following code is meant to be called from BH handlers,
813 * so we should keep BH disabled, but early release socket ownership
814 */
815 sock_release_ownership(sk);
816
817 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
818 tcp_write_timer_handler(sk);
819 __sock_put(sk);
820 }
821 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
822 tcp_delack_timer_handler(sk);
823 __sock_put(sk);
824 }
825 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
826 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
827 __sock_put(sk);
828 }
829 }
830 EXPORT_SYMBOL(tcp_release_cb);
831
832 void __init tcp_tasklet_init(void)
833 {
834 int i;
835
836 for_each_possible_cpu(i) {
837 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
838
839 INIT_LIST_HEAD(&tsq->head);
840 tasklet_init(&tsq->tasklet,
841 tcp_tasklet_func,
842 (unsigned long)tsq);
843 }
844 }
845
846 /*
847 * Write buffer destructor automatically called from kfree_skb.
848 * We can't xmit new skbs from this context, as we might already
849 * hold qdisc lock.
850 */
851 void tcp_wfree(struct sk_buff *skb)
852 {
853 struct sock *sk = skb->sk;
854 struct tcp_sock *tp = tcp_sk(sk);
855 int wmem;
856
857 /* Keep one reference on sk_wmem_alloc.
858 * Will be released by sk_free() from here or tcp_tasklet_func()
859 */
860 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
861
862 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
863 * Wait until our queues (qdisc + devices) are drained.
864 * This gives :
865 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
866 * - chance for incoming ACK (processed by another cpu maybe)
867 * to migrate this flow (skb->ooo_okay will be eventually set)
868 */
869 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
870 goto out;
871
872 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
873 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
874 unsigned long flags;
875 struct tsq_tasklet *tsq;
876
877 /* queue this socket to tasklet queue */
878 local_irq_save(flags);
879 tsq = this_cpu_ptr(&tsq_tasklet);
880 list_add(&tp->tsq_node, &tsq->head);
881 tasklet_schedule(&tsq->tasklet);
882 local_irq_restore(flags);
883 return;
884 }
885 out:
886 sk_free(sk);
887 }
888
889 /* This routine actually transmits TCP packets queued in by
890 * tcp_do_sendmsg(). This is used by both the initial
891 * transmission and possible later retransmissions.
892 * All SKB's seen here are completely headerless. It is our
893 * job to build the TCP header, and pass the packet down to
894 * IP so it can do the same plus pass the packet off to the
895 * device.
896 *
897 * We are working here with either a clone of the original
898 * SKB, or a fresh unique copy made by the retransmit engine.
899 */
900 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
901 gfp_t gfp_mask)
902 {
903 const struct inet_connection_sock *icsk = inet_csk(sk);
904 struct inet_sock *inet;
905 struct tcp_sock *tp;
906 struct tcp_skb_cb *tcb;
907 struct tcp_out_options opts;
908 unsigned int tcp_options_size, tcp_header_size;
909 struct tcp_md5sig_key *md5;
910 struct tcphdr *th;
911 int err;
912
913 BUG_ON(!skb || !tcp_skb_pcount(skb));
914
915 if (clone_it) {
916 skb_mstamp_get(&skb->skb_mstamp);
917
918 if (unlikely(skb_cloned(skb)))
919 skb = pskb_copy(skb, gfp_mask);
920 else
921 skb = skb_clone(skb, gfp_mask);
922 if (unlikely(!skb))
923 return -ENOBUFS;
924 }
925
926 inet = inet_sk(sk);
927 tp = tcp_sk(sk);
928 tcb = TCP_SKB_CB(skb);
929 memset(&opts, 0, sizeof(opts));
930
931 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
932 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
933 else
934 tcp_options_size = tcp_established_options(sk, skb, &opts,
935 &md5);
936 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
937
938 /* if no packet is in qdisc/device queue, then allow XPS to select
939 * another queue. We can be called from tcp_tsq_handler()
940 * which holds one reference to sk_wmem_alloc.
941 *
942 * TODO: Ideally, in-flight pure ACK packets should not matter here.
943 * One way to get this would be to set skb->truesize = 2 on them.
944 */
945 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
946
947 skb_push(skb, tcp_header_size);
948 skb_reset_transport_header(skb);
949
950 skb_orphan(skb);
951 skb->sk = sk;
952 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
953 skb_set_hash_from_sk(skb, sk);
954 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
955
956 /* Build TCP header and checksum it. */
957 th = (struct tcphdr *)skb->data;
958 th->source = inet->inet_sport;
959 th->dest = inet->inet_dport;
960 th->seq = htonl(tcb->seq);
961 th->ack_seq = htonl(tp->rcv_nxt);
962 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
963 tcb->tcp_flags);
964
965 th->check = 0;
966 th->urg_ptr = 0;
967
968 /* The urg_mode check is necessary during a below snd_una win probe */
969 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
970 if (before(tp->snd_up, tcb->seq + 0x10000)) {
971 th->urg_ptr = htons(tp->snd_up - tcb->seq);
972 th->urg = 1;
973 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
974 th->urg_ptr = htons(0xFFFF);
975 th->urg = 1;
976 }
977 }
978
979 tcp_options_write((__be32 *)(th + 1), tp, &opts);
980 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
981 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
982 th->window = htons(tcp_select_window(sk));
983 tcp_ecn_send(sk, skb, th, tcp_header_size);
984 } else {
985 /* RFC1323: The window in SYN & SYN/ACK segments
986 * is never scaled.
987 */
988 th->window = htons(min(tp->rcv_wnd, 65535U));
989 }
990 #ifdef CONFIG_TCP_MD5SIG
991 /* Calculate the MD5 hash, as we have all we need now */
992 if (md5) {
993 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
994 tp->af_specific->calc_md5_hash(opts.hash_location,
995 md5, sk, skb);
996 }
997 #endif
998
999 icsk->icsk_af_ops->send_check(sk, skb);
1000
1001 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1002 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1003
1004 if (skb->len != tcp_header_size) {
1005 tcp_event_data_sent(tp, sk);
1006 tp->data_segs_out += tcp_skb_pcount(skb);
1007 }
1008
1009 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1010 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1011 tcp_skb_pcount(skb));
1012
1013 tp->segs_out += tcp_skb_pcount(skb);
1014 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1015 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1016 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1017
1018 /* Our usage of tstamp should remain private */
1019 skb->tstamp.tv64 = 0;
1020
1021 /* Cleanup our debris for IP stacks */
1022 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1023 sizeof(struct inet6_skb_parm)));
1024
1025 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1026
1027 if (likely(err <= 0))
1028 return err;
1029
1030 tcp_enter_cwr(sk);
1031
1032 return net_xmit_eval(err);
1033 }
1034
1035 /* This routine just queues the buffer for sending.
1036 *
1037 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1038 * otherwise socket can stall.
1039 */
1040 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1041 {
1042 struct tcp_sock *tp = tcp_sk(sk);
1043
1044 /* Advance write_seq and place onto the write_queue. */
1045 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1046 __skb_header_release(skb);
1047 tcp_add_write_queue_tail(sk, skb);
1048 sk->sk_wmem_queued += skb->truesize;
1049 sk_mem_charge(sk, skb->truesize);
1050 }
1051
1052 /* Initialize TSO segments for a packet. */
1053 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1054 {
1055 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1056 /* Avoid the costly divide in the normal
1057 * non-TSO case.
1058 */
1059 tcp_skb_pcount_set(skb, 1);
1060 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1061 } else {
1062 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1063 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1064 }
1065 }
1066
1067 /* When a modification to fackets out becomes necessary, we need to check
1068 * skb is counted to fackets_out or not.
1069 */
1070 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1071 int decr)
1072 {
1073 struct tcp_sock *tp = tcp_sk(sk);
1074
1075 if (!tp->sacked_out || tcp_is_reno(tp))
1076 return;
1077
1078 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1079 tp->fackets_out -= decr;
1080 }
1081
1082 /* Pcount in the middle of the write queue got changed, we need to do various
1083 * tweaks to fix counters
1084 */
1085 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1086 {
1087 struct tcp_sock *tp = tcp_sk(sk);
1088
1089 tp->packets_out -= decr;
1090
1091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1092 tp->sacked_out -= decr;
1093 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1094 tp->retrans_out -= decr;
1095 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1096 tp->lost_out -= decr;
1097
1098 /* Reno case is special. Sigh... */
1099 if (tcp_is_reno(tp) && decr > 0)
1100 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1101
1102 tcp_adjust_fackets_out(sk, skb, decr);
1103
1104 if (tp->lost_skb_hint &&
1105 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1106 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1107 tp->lost_cnt_hint -= decr;
1108
1109 tcp_verify_left_out(tp);
1110 }
1111
1112 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1113 {
1114 return TCP_SKB_CB(skb)->txstamp_ack ||
1115 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1116 }
1117
1118 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1119 {
1120 struct skb_shared_info *shinfo = skb_shinfo(skb);
1121
1122 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1123 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1124 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1125 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1126
1127 shinfo->tx_flags &= ~tsflags;
1128 shinfo2->tx_flags |= tsflags;
1129 swap(shinfo->tskey, shinfo2->tskey);
1130 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1131 TCP_SKB_CB(skb)->txstamp_ack = 0;
1132 }
1133 }
1134
1135 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1136 {
1137 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1138 TCP_SKB_CB(skb)->eor = 0;
1139 }
1140
1141 /* Function to create two new TCP segments. Shrinks the given segment
1142 * to the specified size and appends a new segment with the rest of the
1143 * packet to the list. This won't be called frequently, I hope.
1144 * Remember, these are still headerless SKBs at this point.
1145 */
1146 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1147 unsigned int mss_now, gfp_t gfp)
1148 {
1149 struct tcp_sock *tp = tcp_sk(sk);
1150 struct sk_buff *buff;
1151 int nsize, old_factor;
1152 int nlen;
1153 u8 flags;
1154
1155 if (WARN_ON(len > skb->len))
1156 return -EINVAL;
1157
1158 nsize = skb_headlen(skb) - len;
1159 if (nsize < 0)
1160 nsize = 0;
1161
1162 if (skb_unclone(skb, gfp))
1163 return -ENOMEM;
1164
1165 /* Get a new skb... force flag on. */
1166 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1167 if (!buff)
1168 return -ENOMEM; /* We'll just try again later. */
1169
1170 sk->sk_wmem_queued += buff->truesize;
1171 sk_mem_charge(sk, buff->truesize);
1172 nlen = skb->len - len - nsize;
1173 buff->truesize += nlen;
1174 skb->truesize -= nlen;
1175
1176 /* Correct the sequence numbers. */
1177 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1178 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1179 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1180
1181 /* PSH and FIN should only be set in the second packet. */
1182 flags = TCP_SKB_CB(skb)->tcp_flags;
1183 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1184 TCP_SKB_CB(buff)->tcp_flags = flags;
1185 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1186 tcp_skb_fragment_eor(skb, buff);
1187
1188 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1189 /* Copy and checksum data tail into the new buffer. */
1190 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1191 skb_put(buff, nsize),
1192 nsize, 0);
1193
1194 skb_trim(skb, len);
1195
1196 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1197 } else {
1198 skb->ip_summed = CHECKSUM_PARTIAL;
1199 skb_split(skb, buff, len);
1200 }
1201
1202 buff->ip_summed = skb->ip_summed;
1203
1204 buff->tstamp = skb->tstamp;
1205 tcp_fragment_tstamp(skb, buff);
1206
1207 old_factor = tcp_skb_pcount(skb);
1208
1209 /* Fix up tso_factor for both original and new SKB. */
1210 tcp_set_skb_tso_segs(skb, mss_now);
1211 tcp_set_skb_tso_segs(buff, mss_now);
1212
1213 /* If this packet has been sent out already, we must
1214 * adjust the various packet counters.
1215 */
1216 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1217 int diff = old_factor - tcp_skb_pcount(skb) -
1218 tcp_skb_pcount(buff);
1219
1220 if (diff)
1221 tcp_adjust_pcount(sk, skb, diff);
1222 }
1223
1224 /* Link BUFF into the send queue. */
1225 __skb_header_release(buff);
1226 tcp_insert_write_queue_after(skb, buff, sk);
1227
1228 return 0;
1229 }
1230
1231 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1232 * eventually). The difference is that pulled data not copied, but
1233 * immediately discarded.
1234 */
1235 static void __pskb_trim_head(struct sk_buff *skb, int len)
1236 {
1237 struct skb_shared_info *shinfo;
1238 int i, k, eat;
1239
1240 eat = min_t(int, len, skb_headlen(skb));
1241 if (eat) {
1242 __skb_pull(skb, eat);
1243 len -= eat;
1244 if (!len)
1245 return;
1246 }
1247 eat = len;
1248 k = 0;
1249 shinfo = skb_shinfo(skb);
1250 for (i = 0; i < shinfo->nr_frags; i++) {
1251 int size = skb_frag_size(&shinfo->frags[i]);
1252
1253 if (size <= eat) {
1254 skb_frag_unref(skb, i);
1255 eat -= size;
1256 } else {
1257 shinfo->frags[k] = shinfo->frags[i];
1258 if (eat) {
1259 shinfo->frags[k].page_offset += eat;
1260 skb_frag_size_sub(&shinfo->frags[k], eat);
1261 eat = 0;
1262 }
1263 k++;
1264 }
1265 }
1266 shinfo->nr_frags = k;
1267
1268 skb_reset_tail_pointer(skb);
1269 skb->data_len -= len;
1270 skb->len = skb->data_len;
1271 }
1272
1273 /* Remove acked data from a packet in the transmit queue. */
1274 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1275 {
1276 if (skb_unclone(skb, GFP_ATOMIC))
1277 return -ENOMEM;
1278
1279 __pskb_trim_head(skb, len);
1280
1281 TCP_SKB_CB(skb)->seq += len;
1282 skb->ip_summed = CHECKSUM_PARTIAL;
1283
1284 skb->truesize -= len;
1285 sk->sk_wmem_queued -= len;
1286 sk_mem_uncharge(sk, len);
1287 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1288
1289 /* Any change of skb->len requires recalculation of tso factor. */
1290 if (tcp_skb_pcount(skb) > 1)
1291 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1292
1293 return 0;
1294 }
1295
1296 /* Calculate MSS not accounting any TCP options. */
1297 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1298 {
1299 const struct tcp_sock *tp = tcp_sk(sk);
1300 const struct inet_connection_sock *icsk = inet_csk(sk);
1301 int mss_now;
1302
1303 /* Calculate base mss without TCP options:
1304 It is MMS_S - sizeof(tcphdr) of rfc1122
1305 */
1306 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1307
1308 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1309 if (icsk->icsk_af_ops->net_frag_header_len) {
1310 const struct dst_entry *dst = __sk_dst_get(sk);
1311
1312 if (dst && dst_allfrag(dst))
1313 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1314 }
1315
1316 /* Clamp it (mss_clamp does not include tcp options) */
1317 if (mss_now > tp->rx_opt.mss_clamp)
1318 mss_now = tp->rx_opt.mss_clamp;
1319
1320 /* Now subtract optional transport overhead */
1321 mss_now -= icsk->icsk_ext_hdr_len;
1322
1323 /* Then reserve room for full set of TCP options and 8 bytes of data */
1324 if (mss_now < 48)
1325 mss_now = 48;
1326 return mss_now;
1327 }
1328
1329 /* Calculate MSS. Not accounting for SACKs here. */
1330 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1331 {
1332 /* Subtract TCP options size, not including SACKs */
1333 return __tcp_mtu_to_mss(sk, pmtu) -
1334 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1335 }
1336
1337 /* Inverse of above */
1338 int tcp_mss_to_mtu(struct sock *sk, int mss)
1339 {
1340 const struct tcp_sock *tp = tcp_sk(sk);
1341 const struct inet_connection_sock *icsk = inet_csk(sk);
1342 int mtu;
1343
1344 mtu = mss +
1345 tp->tcp_header_len +
1346 icsk->icsk_ext_hdr_len +
1347 icsk->icsk_af_ops->net_header_len;
1348
1349 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1350 if (icsk->icsk_af_ops->net_frag_header_len) {
1351 const struct dst_entry *dst = __sk_dst_get(sk);
1352
1353 if (dst && dst_allfrag(dst))
1354 mtu += icsk->icsk_af_ops->net_frag_header_len;
1355 }
1356 return mtu;
1357 }
1358
1359 /* MTU probing init per socket */
1360 void tcp_mtup_init(struct sock *sk)
1361 {
1362 struct tcp_sock *tp = tcp_sk(sk);
1363 struct inet_connection_sock *icsk = inet_csk(sk);
1364 struct net *net = sock_net(sk);
1365
1366 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1367 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1368 icsk->icsk_af_ops->net_header_len;
1369 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1370 icsk->icsk_mtup.probe_size = 0;
1371 if (icsk->icsk_mtup.enabled)
1372 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1373 }
1374 EXPORT_SYMBOL(tcp_mtup_init);
1375
1376 /* This function synchronize snd mss to current pmtu/exthdr set.
1377
1378 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1379 for TCP options, but includes only bare TCP header.
1380
1381 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1382 It is minimum of user_mss and mss received with SYN.
1383 It also does not include TCP options.
1384
1385 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1386
1387 tp->mss_cache is current effective sending mss, including
1388 all tcp options except for SACKs. It is evaluated,
1389 taking into account current pmtu, but never exceeds
1390 tp->rx_opt.mss_clamp.
1391
1392 NOTE1. rfc1122 clearly states that advertised MSS
1393 DOES NOT include either tcp or ip options.
1394
1395 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1396 are READ ONLY outside this function. --ANK (980731)
1397 */
1398 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1399 {
1400 struct tcp_sock *tp = tcp_sk(sk);
1401 struct inet_connection_sock *icsk = inet_csk(sk);
1402 int mss_now;
1403
1404 if (icsk->icsk_mtup.search_high > pmtu)
1405 icsk->icsk_mtup.search_high = pmtu;
1406
1407 mss_now = tcp_mtu_to_mss(sk, pmtu);
1408 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1409
1410 /* And store cached results */
1411 icsk->icsk_pmtu_cookie = pmtu;
1412 if (icsk->icsk_mtup.enabled)
1413 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1414 tp->mss_cache = mss_now;
1415
1416 return mss_now;
1417 }
1418 EXPORT_SYMBOL(tcp_sync_mss);
1419
1420 /* Compute the current effective MSS, taking SACKs and IP options,
1421 * and even PMTU discovery events into account.
1422 */
1423 unsigned int tcp_current_mss(struct sock *sk)
1424 {
1425 const struct tcp_sock *tp = tcp_sk(sk);
1426 const struct dst_entry *dst = __sk_dst_get(sk);
1427 u32 mss_now;
1428 unsigned int header_len;
1429 struct tcp_out_options opts;
1430 struct tcp_md5sig_key *md5;
1431
1432 mss_now = tp->mss_cache;
1433
1434 if (dst) {
1435 u32 mtu = dst_mtu(dst);
1436 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1437 mss_now = tcp_sync_mss(sk, mtu);
1438 }
1439
1440 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1441 sizeof(struct tcphdr);
1442 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1443 * some common options. If this is an odd packet (because we have SACK
1444 * blocks etc) then our calculated header_len will be different, and
1445 * we have to adjust mss_now correspondingly */
1446 if (header_len != tp->tcp_header_len) {
1447 int delta = (int) header_len - tp->tcp_header_len;
1448 mss_now -= delta;
1449 }
1450
1451 return mss_now;
1452 }
1453
1454 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1455 * As additional protections, we do not touch cwnd in retransmission phases,
1456 * and if application hit its sndbuf limit recently.
1457 */
1458 static void tcp_cwnd_application_limited(struct sock *sk)
1459 {
1460 struct tcp_sock *tp = tcp_sk(sk);
1461
1462 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1463 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1464 /* Limited by application or receiver window. */
1465 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1466 u32 win_used = max(tp->snd_cwnd_used, init_win);
1467 if (win_used < tp->snd_cwnd) {
1468 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1469 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1470 }
1471 tp->snd_cwnd_used = 0;
1472 }
1473 tp->snd_cwnd_stamp = tcp_time_stamp;
1474 }
1475
1476 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1477 {
1478 struct tcp_sock *tp = tcp_sk(sk);
1479
1480 /* Track the maximum number of outstanding packets in each
1481 * window, and remember whether we were cwnd-limited then.
1482 */
1483 if (!before(tp->snd_una, tp->max_packets_seq) ||
1484 tp->packets_out > tp->max_packets_out) {
1485 tp->max_packets_out = tp->packets_out;
1486 tp->max_packets_seq = tp->snd_nxt;
1487 tp->is_cwnd_limited = is_cwnd_limited;
1488 }
1489
1490 if (tcp_is_cwnd_limited(sk)) {
1491 /* Network is feed fully. */
1492 tp->snd_cwnd_used = 0;
1493 tp->snd_cwnd_stamp = tcp_time_stamp;
1494 } else {
1495 /* Network starves. */
1496 if (tp->packets_out > tp->snd_cwnd_used)
1497 tp->snd_cwnd_used = tp->packets_out;
1498
1499 if (sysctl_tcp_slow_start_after_idle &&
1500 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1501 tcp_cwnd_application_limited(sk);
1502 }
1503 }
1504
1505 /* Minshall's variant of the Nagle send check. */
1506 static bool tcp_minshall_check(const struct tcp_sock *tp)
1507 {
1508 return after(tp->snd_sml, tp->snd_una) &&
1509 !after(tp->snd_sml, tp->snd_nxt);
1510 }
1511
1512 /* Update snd_sml if this skb is under mss
1513 * Note that a TSO packet might end with a sub-mss segment
1514 * The test is really :
1515 * if ((skb->len % mss) != 0)
1516 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1517 * But we can avoid doing the divide again given we already have
1518 * skb_pcount = skb->len / mss_now
1519 */
1520 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1521 const struct sk_buff *skb)
1522 {
1523 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1524 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1525 }
1526
1527 /* Return false, if packet can be sent now without violation Nagle's rules:
1528 * 1. It is full sized. (provided by caller in %partial bool)
1529 * 2. Or it contains FIN. (already checked by caller)
1530 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1531 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1532 * With Minshall's modification: all sent small packets are ACKed.
1533 */
1534 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1535 int nonagle)
1536 {
1537 return partial &&
1538 ((nonagle & TCP_NAGLE_CORK) ||
1539 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1540 }
1541
1542 /* Return how many segs we'd like on a TSO packet,
1543 * to send one TSO packet per ms
1544 */
1545 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1546 {
1547 u32 bytes, segs;
1548
1549 bytes = min(sk->sk_pacing_rate >> 10,
1550 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1551
1552 /* Goal is to send at least one packet per ms,
1553 * not one big TSO packet every 100 ms.
1554 * This preserves ACK clocking and is consistent
1555 * with tcp_tso_should_defer() heuristic.
1556 */
1557 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1558
1559 return min_t(u32, segs, sk->sk_gso_max_segs);
1560 }
1561
1562 /* Returns the portion of skb which can be sent right away */
1563 static unsigned int tcp_mss_split_point(const struct sock *sk,
1564 const struct sk_buff *skb,
1565 unsigned int mss_now,
1566 unsigned int max_segs,
1567 int nonagle)
1568 {
1569 const struct tcp_sock *tp = tcp_sk(sk);
1570 u32 partial, needed, window, max_len;
1571
1572 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1573 max_len = mss_now * max_segs;
1574
1575 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1576 return max_len;
1577
1578 needed = min(skb->len, window);
1579
1580 if (max_len <= needed)
1581 return max_len;
1582
1583 partial = needed % mss_now;
1584 /* If last segment is not a full MSS, check if Nagle rules allow us
1585 * to include this last segment in this skb.
1586 * Otherwise, we'll split the skb at last MSS boundary
1587 */
1588 if (tcp_nagle_check(partial != 0, tp, nonagle))
1589 return needed - partial;
1590
1591 return needed;
1592 }
1593
1594 /* Can at least one segment of SKB be sent right now, according to the
1595 * congestion window rules? If so, return how many segments are allowed.
1596 */
1597 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1598 const struct sk_buff *skb)
1599 {
1600 u32 in_flight, cwnd, halfcwnd;
1601
1602 /* Don't be strict about the congestion window for the final FIN. */
1603 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1604 tcp_skb_pcount(skb) == 1)
1605 return 1;
1606
1607 in_flight = tcp_packets_in_flight(tp);
1608 cwnd = tp->snd_cwnd;
1609 if (in_flight >= cwnd)
1610 return 0;
1611
1612 /* For better scheduling, ensure we have at least
1613 * 2 GSO packets in flight.
1614 */
1615 halfcwnd = max(cwnd >> 1, 1U);
1616 return min(halfcwnd, cwnd - in_flight);
1617 }
1618
1619 /* Initialize TSO state of a skb.
1620 * This must be invoked the first time we consider transmitting
1621 * SKB onto the wire.
1622 */
1623 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1624 {
1625 int tso_segs = tcp_skb_pcount(skb);
1626
1627 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1628 tcp_set_skb_tso_segs(skb, mss_now);
1629 tso_segs = tcp_skb_pcount(skb);
1630 }
1631 return tso_segs;
1632 }
1633
1634
1635 /* Return true if the Nagle test allows this packet to be
1636 * sent now.
1637 */
1638 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1639 unsigned int cur_mss, int nonagle)
1640 {
1641 /* Nagle rule does not apply to frames, which sit in the middle of the
1642 * write_queue (they have no chances to get new data).
1643 *
1644 * This is implemented in the callers, where they modify the 'nonagle'
1645 * argument based upon the location of SKB in the send queue.
1646 */
1647 if (nonagle & TCP_NAGLE_PUSH)
1648 return true;
1649
1650 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1651 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1652 return true;
1653
1654 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1655 return true;
1656
1657 return false;
1658 }
1659
1660 /* Does at least the first segment of SKB fit into the send window? */
1661 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1662 const struct sk_buff *skb,
1663 unsigned int cur_mss)
1664 {
1665 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1666
1667 if (skb->len > cur_mss)
1668 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1669
1670 return !after(end_seq, tcp_wnd_end(tp));
1671 }
1672
1673 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1674 * should be put on the wire right now. If so, it returns the number of
1675 * packets allowed by the congestion window.
1676 */
1677 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1678 unsigned int cur_mss, int nonagle)
1679 {
1680 const struct tcp_sock *tp = tcp_sk(sk);
1681 unsigned int cwnd_quota;
1682
1683 tcp_init_tso_segs(skb, cur_mss);
1684
1685 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1686 return 0;
1687
1688 cwnd_quota = tcp_cwnd_test(tp, skb);
1689 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1690 cwnd_quota = 0;
1691
1692 return cwnd_quota;
1693 }
1694
1695 /* Test if sending is allowed right now. */
1696 bool tcp_may_send_now(struct sock *sk)
1697 {
1698 const struct tcp_sock *tp = tcp_sk(sk);
1699 struct sk_buff *skb = tcp_send_head(sk);
1700
1701 return skb &&
1702 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1703 (tcp_skb_is_last(sk, skb) ?
1704 tp->nonagle : TCP_NAGLE_PUSH));
1705 }
1706
1707 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1708 * which is put after SKB on the list. It is very much like
1709 * tcp_fragment() except that it may make several kinds of assumptions
1710 * in order to speed up the splitting operation. In particular, we
1711 * know that all the data is in scatter-gather pages, and that the
1712 * packet has never been sent out before (and thus is not cloned).
1713 */
1714 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1715 unsigned int mss_now, gfp_t gfp)
1716 {
1717 struct sk_buff *buff;
1718 int nlen = skb->len - len;
1719 u8 flags;
1720
1721 /* All of a TSO frame must be composed of paged data. */
1722 if (skb->len != skb->data_len)
1723 return tcp_fragment(sk, skb, len, mss_now, gfp);
1724
1725 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1726 if (unlikely(!buff))
1727 return -ENOMEM;
1728
1729 sk->sk_wmem_queued += buff->truesize;
1730 sk_mem_charge(sk, buff->truesize);
1731 buff->truesize += nlen;
1732 skb->truesize -= nlen;
1733
1734 /* Correct the sequence numbers. */
1735 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1736 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1737 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1738
1739 /* PSH and FIN should only be set in the second packet. */
1740 flags = TCP_SKB_CB(skb)->tcp_flags;
1741 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1742 TCP_SKB_CB(buff)->tcp_flags = flags;
1743
1744 /* This packet was never sent out yet, so no SACK bits. */
1745 TCP_SKB_CB(buff)->sacked = 0;
1746
1747 tcp_skb_fragment_eor(skb, buff);
1748
1749 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1750 skb_split(skb, buff, len);
1751 tcp_fragment_tstamp(skb, buff);
1752
1753 /* Fix up tso_factor for both original and new SKB. */
1754 tcp_set_skb_tso_segs(skb, mss_now);
1755 tcp_set_skb_tso_segs(buff, mss_now);
1756
1757 /* Link BUFF into the send queue. */
1758 __skb_header_release(buff);
1759 tcp_insert_write_queue_after(skb, buff, sk);
1760
1761 return 0;
1762 }
1763
1764 /* Try to defer sending, if possible, in order to minimize the amount
1765 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1766 *
1767 * This algorithm is from John Heffner.
1768 */
1769 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1770 bool *is_cwnd_limited, u32 max_segs)
1771 {
1772 const struct inet_connection_sock *icsk = inet_csk(sk);
1773 u32 age, send_win, cong_win, limit, in_flight;
1774 struct tcp_sock *tp = tcp_sk(sk);
1775 struct skb_mstamp now;
1776 struct sk_buff *head;
1777 int win_divisor;
1778
1779 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1780 goto send_now;
1781
1782 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1783 goto send_now;
1784
1785 /* Avoid bursty behavior by allowing defer
1786 * only if the last write was recent.
1787 */
1788 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1789 goto send_now;
1790
1791 in_flight = tcp_packets_in_flight(tp);
1792
1793 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1794
1795 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1796
1797 /* From in_flight test above, we know that cwnd > in_flight. */
1798 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1799
1800 limit = min(send_win, cong_win);
1801
1802 /* If a full-sized TSO skb can be sent, do it. */
1803 if (limit >= max_segs * tp->mss_cache)
1804 goto send_now;
1805
1806 /* Middle in queue won't get any more data, full sendable already? */
1807 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1808 goto send_now;
1809
1810 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1811 if (win_divisor) {
1812 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1813
1814 /* If at least some fraction of a window is available,
1815 * just use it.
1816 */
1817 chunk /= win_divisor;
1818 if (limit >= chunk)
1819 goto send_now;
1820 } else {
1821 /* Different approach, try not to defer past a single
1822 * ACK. Receiver should ACK every other full sized
1823 * frame, so if we have space for more than 3 frames
1824 * then send now.
1825 */
1826 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1827 goto send_now;
1828 }
1829
1830 head = tcp_write_queue_head(sk);
1831 skb_mstamp_get(&now);
1832 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1833 /* If next ACK is likely to come too late (half srtt), do not defer */
1834 if (age < (tp->srtt_us >> 4))
1835 goto send_now;
1836
1837 /* Ok, it looks like it is advisable to defer. */
1838
1839 if (cong_win < send_win && cong_win <= skb->len)
1840 *is_cwnd_limited = true;
1841
1842 return true;
1843
1844 send_now:
1845 return false;
1846 }
1847
1848 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1849 {
1850 struct inet_connection_sock *icsk = inet_csk(sk);
1851 struct tcp_sock *tp = tcp_sk(sk);
1852 struct net *net = sock_net(sk);
1853 u32 interval;
1854 s32 delta;
1855
1856 interval = net->ipv4.sysctl_tcp_probe_interval;
1857 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1858 if (unlikely(delta >= interval * HZ)) {
1859 int mss = tcp_current_mss(sk);
1860
1861 /* Update current search range */
1862 icsk->icsk_mtup.probe_size = 0;
1863 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1864 sizeof(struct tcphdr) +
1865 icsk->icsk_af_ops->net_header_len;
1866 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1867
1868 /* Update probe time stamp */
1869 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1870 }
1871 }
1872
1873 /* Create a new MTU probe if we are ready.
1874 * MTU probe is regularly attempting to increase the path MTU by
1875 * deliberately sending larger packets. This discovers routing
1876 * changes resulting in larger path MTUs.
1877 *
1878 * Returns 0 if we should wait to probe (no cwnd available),
1879 * 1 if a probe was sent,
1880 * -1 otherwise
1881 */
1882 static int tcp_mtu_probe(struct sock *sk)
1883 {
1884 struct tcp_sock *tp = tcp_sk(sk);
1885 struct inet_connection_sock *icsk = inet_csk(sk);
1886 struct sk_buff *skb, *nskb, *next;
1887 struct net *net = sock_net(sk);
1888 int len;
1889 int probe_size;
1890 int size_needed;
1891 int copy;
1892 int mss_now;
1893 int interval;
1894
1895 /* Not currently probing/verifying,
1896 * not in recovery,
1897 * have enough cwnd, and
1898 * not SACKing (the variable headers throw things off) */
1899 if (!icsk->icsk_mtup.enabled ||
1900 icsk->icsk_mtup.probe_size ||
1901 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1902 tp->snd_cwnd < 11 ||
1903 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1904 return -1;
1905
1906 /* Use binary search for probe_size between tcp_mss_base,
1907 * and current mss_clamp. if (search_high - search_low)
1908 * smaller than a threshold, backoff from probing.
1909 */
1910 mss_now = tcp_current_mss(sk);
1911 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1912 icsk->icsk_mtup.search_low) >> 1);
1913 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1914 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1915 /* When misfortune happens, we are reprobing actively,
1916 * and then reprobe timer has expired. We stick with current
1917 * probing process by not resetting search range to its orignal.
1918 */
1919 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1920 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1921 /* Check whether enough time has elaplased for
1922 * another round of probing.
1923 */
1924 tcp_mtu_check_reprobe(sk);
1925 return -1;
1926 }
1927
1928 /* Have enough data in the send queue to probe? */
1929 if (tp->write_seq - tp->snd_nxt < size_needed)
1930 return -1;
1931
1932 if (tp->snd_wnd < size_needed)
1933 return -1;
1934 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1935 return 0;
1936
1937 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1938 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1939 if (!tcp_packets_in_flight(tp))
1940 return -1;
1941 else
1942 return 0;
1943 }
1944
1945 /* We're allowed to probe. Build it now. */
1946 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1947 if (!nskb)
1948 return -1;
1949 sk->sk_wmem_queued += nskb->truesize;
1950 sk_mem_charge(sk, nskb->truesize);
1951
1952 skb = tcp_send_head(sk);
1953
1954 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1955 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1956 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1957 TCP_SKB_CB(nskb)->sacked = 0;
1958 nskb->csum = 0;
1959 nskb->ip_summed = skb->ip_summed;
1960
1961 tcp_insert_write_queue_before(nskb, skb, sk);
1962
1963 len = 0;
1964 tcp_for_write_queue_from_safe(skb, next, sk) {
1965 copy = min_t(int, skb->len, probe_size - len);
1966 if (nskb->ip_summed)
1967 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1968 else
1969 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1970 skb_put(nskb, copy),
1971 copy, nskb->csum);
1972
1973 if (skb->len <= copy) {
1974 /* We've eaten all the data from this skb.
1975 * Throw it away. */
1976 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1977 tcp_unlink_write_queue(skb, sk);
1978 sk_wmem_free_skb(sk, skb);
1979 } else {
1980 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1981 ~(TCPHDR_FIN|TCPHDR_PSH);
1982 if (!skb_shinfo(skb)->nr_frags) {
1983 skb_pull(skb, copy);
1984 if (skb->ip_summed != CHECKSUM_PARTIAL)
1985 skb->csum = csum_partial(skb->data,
1986 skb->len, 0);
1987 } else {
1988 __pskb_trim_head(skb, copy);
1989 tcp_set_skb_tso_segs(skb, mss_now);
1990 }
1991 TCP_SKB_CB(skb)->seq += copy;
1992 }
1993
1994 len += copy;
1995
1996 if (len >= probe_size)
1997 break;
1998 }
1999 tcp_init_tso_segs(nskb, nskb->len);
2000
2001 /* We're ready to send. If this fails, the probe will
2002 * be resegmented into mss-sized pieces by tcp_write_xmit().
2003 */
2004 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2005 /* Decrement cwnd here because we are sending
2006 * effectively two packets. */
2007 tp->snd_cwnd--;
2008 tcp_event_new_data_sent(sk, nskb);
2009
2010 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2011 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2012 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2013
2014 return 1;
2015 }
2016
2017 return -1;
2018 }
2019
2020 /* This routine writes packets to the network. It advances the
2021 * send_head. This happens as incoming acks open up the remote
2022 * window for us.
2023 *
2024 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2025 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2026 * account rare use of URG, this is not a big flaw.
2027 *
2028 * Send at most one packet when push_one > 0. Temporarily ignore
2029 * cwnd limit to force at most one packet out when push_one == 2.
2030
2031 * Returns true, if no segments are in flight and we have queued segments,
2032 * but cannot send anything now because of SWS or another problem.
2033 */
2034 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2035 int push_one, gfp_t gfp)
2036 {
2037 struct tcp_sock *tp = tcp_sk(sk);
2038 struct sk_buff *skb;
2039 unsigned int tso_segs, sent_pkts;
2040 int cwnd_quota;
2041 int result;
2042 bool is_cwnd_limited = false;
2043 u32 max_segs;
2044
2045 sent_pkts = 0;
2046
2047 if (!push_one) {
2048 /* Do MTU probing. */
2049 result = tcp_mtu_probe(sk);
2050 if (!result) {
2051 return false;
2052 } else if (result > 0) {
2053 sent_pkts = 1;
2054 }
2055 }
2056
2057 max_segs = tcp_tso_autosize(sk, mss_now);
2058 while ((skb = tcp_send_head(sk))) {
2059 unsigned int limit;
2060
2061 tso_segs = tcp_init_tso_segs(skb, mss_now);
2062 BUG_ON(!tso_segs);
2063
2064 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2065 /* "skb_mstamp" is used as a start point for the retransmit timer */
2066 skb_mstamp_get(&skb->skb_mstamp);
2067 goto repair; /* Skip network transmission */
2068 }
2069
2070 cwnd_quota = tcp_cwnd_test(tp, skb);
2071 if (!cwnd_quota) {
2072 if (push_one == 2)
2073 /* Force out a loss probe pkt. */
2074 cwnd_quota = 1;
2075 else
2076 break;
2077 }
2078
2079 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2080 break;
2081
2082 if (tso_segs == 1) {
2083 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2084 (tcp_skb_is_last(sk, skb) ?
2085 nonagle : TCP_NAGLE_PUSH))))
2086 break;
2087 } else {
2088 if (!push_one &&
2089 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2090 max_segs))
2091 break;
2092 }
2093
2094 limit = mss_now;
2095 if (tso_segs > 1 && !tcp_urg_mode(tp))
2096 limit = tcp_mss_split_point(sk, skb, mss_now,
2097 min_t(unsigned int,
2098 cwnd_quota,
2099 max_segs),
2100 nonagle);
2101
2102 if (skb->len > limit &&
2103 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2104 break;
2105
2106 /* TCP Small Queues :
2107 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2108 * This allows for :
2109 * - better RTT estimation and ACK scheduling
2110 * - faster recovery
2111 * - high rates
2112 * Alas, some drivers / subsystems require a fair amount
2113 * of queued bytes to ensure line rate.
2114 * One example is wifi aggregation (802.11 AMPDU)
2115 */
2116 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2117 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2118
2119 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2120 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2121 /* It is possible TX completion already happened
2122 * before we set TSQ_THROTTLED, so we must
2123 * test again the condition.
2124 */
2125 smp_mb__after_atomic();
2126 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2127 break;
2128 }
2129
2130 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2131 break;
2132
2133 repair:
2134 /* Advance the send_head. This one is sent out.
2135 * This call will increment packets_out.
2136 */
2137 tcp_event_new_data_sent(sk, skb);
2138
2139 tcp_minshall_update(tp, mss_now, skb);
2140 sent_pkts += tcp_skb_pcount(skb);
2141
2142 if (push_one)
2143 break;
2144 }
2145
2146 if (likely(sent_pkts)) {
2147 if (tcp_in_cwnd_reduction(sk))
2148 tp->prr_out += sent_pkts;
2149
2150 /* Send one loss probe per tail loss episode. */
2151 if (push_one != 2)
2152 tcp_schedule_loss_probe(sk);
2153 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2154 tcp_cwnd_validate(sk, is_cwnd_limited);
2155 return false;
2156 }
2157 return !tp->packets_out && tcp_send_head(sk);
2158 }
2159
2160 bool tcp_schedule_loss_probe(struct sock *sk)
2161 {
2162 struct inet_connection_sock *icsk = inet_csk(sk);
2163 struct tcp_sock *tp = tcp_sk(sk);
2164 u32 timeout, tlp_time_stamp, rto_time_stamp;
2165 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2166
2167 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2168 return false;
2169 /* No consecutive loss probes. */
2170 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2171 tcp_rearm_rto(sk);
2172 return false;
2173 }
2174 /* Don't do any loss probe on a Fast Open connection before 3WHS
2175 * finishes.
2176 */
2177 if (tp->fastopen_rsk)
2178 return false;
2179
2180 /* TLP is only scheduled when next timer event is RTO. */
2181 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2182 return false;
2183
2184 /* Schedule a loss probe in 2*RTT for SACK capable connections
2185 * in Open state, that are either limited by cwnd or application.
2186 */
2187 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2188 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2189 return false;
2190
2191 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2192 tcp_send_head(sk))
2193 return false;
2194
2195 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2196 * for delayed ack when there's one outstanding packet. If no RTT
2197 * sample is available then probe after TCP_TIMEOUT_INIT.
2198 */
2199 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2200 if (tp->packets_out == 1)
2201 timeout = max_t(u32, timeout,
2202 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2203 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2204
2205 /* If RTO is shorter, just schedule TLP in its place. */
2206 tlp_time_stamp = tcp_time_stamp + timeout;
2207 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2208 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2209 s32 delta = rto_time_stamp - tcp_time_stamp;
2210 if (delta > 0)
2211 timeout = delta;
2212 }
2213
2214 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2215 TCP_RTO_MAX);
2216 return true;
2217 }
2218
2219 /* Thanks to skb fast clones, we can detect if a prior transmit of
2220 * a packet is still in a qdisc or driver queue.
2221 * In this case, there is very little point doing a retransmit !
2222 */
2223 static bool skb_still_in_host_queue(const struct sock *sk,
2224 const struct sk_buff *skb)
2225 {
2226 if (unlikely(skb_fclone_busy(sk, skb))) {
2227 NET_INC_STATS(sock_net(sk),
2228 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2229 return true;
2230 }
2231 return false;
2232 }
2233
2234 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2235 * retransmit the last segment.
2236 */
2237 void tcp_send_loss_probe(struct sock *sk)
2238 {
2239 struct tcp_sock *tp = tcp_sk(sk);
2240 struct sk_buff *skb;
2241 int pcount;
2242 int mss = tcp_current_mss(sk);
2243
2244 skb = tcp_send_head(sk);
2245 if (skb) {
2246 if (tcp_snd_wnd_test(tp, skb, mss)) {
2247 pcount = tp->packets_out;
2248 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2249 if (tp->packets_out > pcount)
2250 goto probe_sent;
2251 goto rearm_timer;
2252 }
2253 skb = tcp_write_queue_prev(sk, skb);
2254 } else {
2255 skb = tcp_write_queue_tail(sk);
2256 }
2257
2258 /* At most one outstanding TLP retransmission. */
2259 if (tp->tlp_high_seq)
2260 goto rearm_timer;
2261
2262 /* Retransmit last segment. */
2263 if (WARN_ON(!skb))
2264 goto rearm_timer;
2265
2266 if (skb_still_in_host_queue(sk, skb))
2267 goto rearm_timer;
2268
2269 pcount = tcp_skb_pcount(skb);
2270 if (WARN_ON(!pcount))
2271 goto rearm_timer;
2272
2273 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2274 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2275 GFP_ATOMIC)))
2276 goto rearm_timer;
2277 skb = tcp_write_queue_next(sk, skb);
2278 }
2279
2280 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2281 goto rearm_timer;
2282
2283 if (__tcp_retransmit_skb(sk, skb, 1))
2284 goto rearm_timer;
2285
2286 /* Record snd_nxt for loss detection. */
2287 tp->tlp_high_seq = tp->snd_nxt;
2288
2289 probe_sent:
2290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2291 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2292 inet_csk(sk)->icsk_pending = 0;
2293 rearm_timer:
2294 tcp_rearm_rto(sk);
2295 }
2296
2297 /* Push out any pending frames which were held back due to
2298 * TCP_CORK or attempt at coalescing tiny packets.
2299 * The socket must be locked by the caller.
2300 */
2301 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2302 int nonagle)
2303 {
2304 /* If we are closed, the bytes will have to remain here.
2305 * In time closedown will finish, we empty the write queue and
2306 * all will be happy.
2307 */
2308 if (unlikely(sk->sk_state == TCP_CLOSE))
2309 return;
2310
2311 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2312 sk_gfp_mask(sk, GFP_ATOMIC)))
2313 tcp_check_probe_timer(sk);
2314 }
2315
2316 /* Send _single_ skb sitting at the send head. This function requires
2317 * true push pending frames to setup probe timer etc.
2318 */
2319 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2320 {
2321 struct sk_buff *skb = tcp_send_head(sk);
2322
2323 BUG_ON(!skb || skb->len < mss_now);
2324
2325 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2326 }
2327
2328 /* This function returns the amount that we can raise the
2329 * usable window based on the following constraints
2330 *
2331 * 1. The window can never be shrunk once it is offered (RFC 793)
2332 * 2. We limit memory per socket
2333 *
2334 * RFC 1122:
2335 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2336 * RECV.NEXT + RCV.WIN fixed until:
2337 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2338 *
2339 * i.e. don't raise the right edge of the window until you can raise
2340 * it at least MSS bytes.
2341 *
2342 * Unfortunately, the recommended algorithm breaks header prediction,
2343 * since header prediction assumes th->window stays fixed.
2344 *
2345 * Strictly speaking, keeping th->window fixed violates the receiver
2346 * side SWS prevention criteria. The problem is that under this rule
2347 * a stream of single byte packets will cause the right side of the
2348 * window to always advance by a single byte.
2349 *
2350 * Of course, if the sender implements sender side SWS prevention
2351 * then this will not be a problem.
2352 *
2353 * BSD seems to make the following compromise:
2354 *
2355 * If the free space is less than the 1/4 of the maximum
2356 * space available and the free space is less than 1/2 mss,
2357 * then set the window to 0.
2358 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2359 * Otherwise, just prevent the window from shrinking
2360 * and from being larger than the largest representable value.
2361 *
2362 * This prevents incremental opening of the window in the regime
2363 * where TCP is limited by the speed of the reader side taking
2364 * data out of the TCP receive queue. It does nothing about
2365 * those cases where the window is constrained on the sender side
2366 * because the pipeline is full.
2367 *
2368 * BSD also seems to "accidentally" limit itself to windows that are a
2369 * multiple of MSS, at least until the free space gets quite small.
2370 * This would appear to be a side effect of the mbuf implementation.
2371 * Combining these two algorithms results in the observed behavior
2372 * of having a fixed window size at almost all times.
2373 *
2374 * Below we obtain similar behavior by forcing the offered window to
2375 * a multiple of the mss when it is feasible to do so.
2376 *
2377 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2378 * Regular options like TIMESTAMP are taken into account.
2379 */
2380 u32 __tcp_select_window(struct sock *sk)
2381 {
2382 struct inet_connection_sock *icsk = inet_csk(sk);
2383 struct tcp_sock *tp = tcp_sk(sk);
2384 /* MSS for the peer's data. Previous versions used mss_clamp
2385 * here. I don't know if the value based on our guesses
2386 * of peer's MSS is better for the performance. It's more correct
2387 * but may be worse for the performance because of rcv_mss
2388 * fluctuations. --SAW 1998/11/1
2389 */
2390 int mss = icsk->icsk_ack.rcv_mss;
2391 int free_space = tcp_space(sk);
2392 int allowed_space = tcp_full_space(sk);
2393 int full_space = min_t(int, tp->window_clamp, allowed_space);
2394 int window;
2395
2396 if (mss > full_space)
2397 mss = full_space;
2398
2399 if (free_space < (full_space >> 1)) {
2400 icsk->icsk_ack.quick = 0;
2401
2402 if (tcp_under_memory_pressure(sk))
2403 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2404 4U * tp->advmss);
2405
2406 /* free_space might become our new window, make sure we don't
2407 * increase it due to wscale.
2408 */
2409 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2410
2411 /* if free space is less than mss estimate, or is below 1/16th
2412 * of the maximum allowed, try to move to zero-window, else
2413 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2414 * new incoming data is dropped due to memory limits.
2415 * With large window, mss test triggers way too late in order
2416 * to announce zero window in time before rmem limit kicks in.
2417 */
2418 if (free_space < (allowed_space >> 4) || free_space < mss)
2419 return 0;
2420 }
2421
2422 if (free_space > tp->rcv_ssthresh)
2423 free_space = tp->rcv_ssthresh;
2424
2425 /* Don't do rounding if we are using window scaling, since the
2426 * scaled window will not line up with the MSS boundary anyway.
2427 */
2428 window = tp->rcv_wnd;
2429 if (tp->rx_opt.rcv_wscale) {
2430 window = free_space;
2431
2432 /* Advertise enough space so that it won't get scaled away.
2433 * Import case: prevent zero window announcement if
2434 * 1<<rcv_wscale > mss.
2435 */
2436 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2437 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2438 << tp->rx_opt.rcv_wscale);
2439 } else {
2440 /* Get the largest window that is a nice multiple of mss.
2441 * Window clamp already applied above.
2442 * If our current window offering is within 1 mss of the
2443 * free space we just keep it. This prevents the divide
2444 * and multiply from happening most of the time.
2445 * We also don't do any window rounding when the free space
2446 * is too small.
2447 */
2448 if (window <= free_space - mss || window > free_space)
2449 window = (free_space / mss) * mss;
2450 else if (mss == full_space &&
2451 free_space > window + (full_space >> 1))
2452 window = free_space;
2453 }
2454
2455 return window;
2456 }
2457
2458 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2459 const struct sk_buff *next_skb)
2460 {
2461 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2462 const struct skb_shared_info *next_shinfo =
2463 skb_shinfo(next_skb);
2464 struct skb_shared_info *shinfo = skb_shinfo(skb);
2465
2466 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2467 shinfo->tskey = next_shinfo->tskey;
2468 TCP_SKB_CB(skb)->txstamp_ack |=
2469 TCP_SKB_CB(next_skb)->txstamp_ack;
2470 }
2471 }
2472
2473 /* Collapses two adjacent SKB's during retransmission. */
2474 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2475 {
2476 struct tcp_sock *tp = tcp_sk(sk);
2477 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2478 int skb_size, next_skb_size;
2479
2480 skb_size = skb->len;
2481 next_skb_size = next_skb->len;
2482
2483 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2484
2485 tcp_highest_sack_combine(sk, next_skb, skb);
2486
2487 tcp_unlink_write_queue(next_skb, sk);
2488
2489 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2490 next_skb_size);
2491
2492 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2493 skb->ip_summed = CHECKSUM_PARTIAL;
2494
2495 if (skb->ip_summed != CHECKSUM_PARTIAL)
2496 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2497
2498 /* Update sequence range on original skb. */
2499 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2500
2501 /* Merge over control information. This moves PSH/FIN etc. over */
2502 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2503
2504 /* All done, get rid of second SKB and account for it so
2505 * packet counting does not break.
2506 */
2507 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2508 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2509
2510 /* changed transmit queue under us so clear hints */
2511 tcp_clear_retrans_hints_partial(tp);
2512 if (next_skb == tp->retransmit_skb_hint)
2513 tp->retransmit_skb_hint = skb;
2514
2515 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2516
2517 tcp_skb_collapse_tstamp(skb, next_skb);
2518
2519 sk_wmem_free_skb(sk, next_skb);
2520 }
2521
2522 /* Check if coalescing SKBs is legal. */
2523 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2524 {
2525 if (tcp_skb_pcount(skb) > 1)
2526 return false;
2527 /* TODO: SACK collapsing could be used to remove this condition */
2528 if (skb_shinfo(skb)->nr_frags != 0)
2529 return false;
2530 if (skb_cloned(skb))
2531 return false;
2532 if (skb == tcp_send_head(sk))
2533 return false;
2534 /* Some heurestics for collapsing over SACK'd could be invented */
2535 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2536 return false;
2537
2538 return true;
2539 }
2540
2541 /* Collapse packets in the retransmit queue to make to create
2542 * less packets on the wire. This is only done on retransmission.
2543 */
2544 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2545 int space)
2546 {
2547 struct tcp_sock *tp = tcp_sk(sk);
2548 struct sk_buff *skb = to, *tmp;
2549 bool first = true;
2550
2551 if (!sysctl_tcp_retrans_collapse)
2552 return;
2553 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2554 return;
2555
2556 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2557 if (!tcp_can_collapse(sk, skb))
2558 break;
2559
2560 if (!tcp_skb_can_collapse_to(to))
2561 break;
2562
2563 space -= skb->len;
2564
2565 if (first) {
2566 first = false;
2567 continue;
2568 }
2569
2570 if (space < 0)
2571 break;
2572 /* Punt if not enough space exists in the first SKB for
2573 * the data in the second
2574 */
2575 if (skb->len > skb_availroom(to))
2576 break;
2577
2578 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2579 break;
2580
2581 tcp_collapse_retrans(sk, to);
2582 }
2583 }
2584
2585 /* This retransmits one SKB. Policy decisions and retransmit queue
2586 * state updates are done by the caller. Returns non-zero if an
2587 * error occurred which prevented the send.
2588 */
2589 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2590 {
2591 struct inet_connection_sock *icsk = inet_csk(sk);
2592 struct tcp_sock *tp = tcp_sk(sk);
2593 unsigned int cur_mss;
2594 int diff, len, err;
2595
2596
2597 /* Inconclusive MTU probe */
2598 if (icsk->icsk_mtup.probe_size)
2599 icsk->icsk_mtup.probe_size = 0;
2600
2601 /* Do not sent more than we queued. 1/4 is reserved for possible
2602 * copying overhead: fragmentation, tunneling, mangling etc.
2603 */
2604 if (atomic_read(&sk->sk_wmem_alloc) >
2605 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2606 return -EAGAIN;
2607
2608 if (skb_still_in_host_queue(sk, skb))
2609 return -EBUSY;
2610
2611 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2612 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2613 BUG();
2614 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2615 return -ENOMEM;
2616 }
2617
2618 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2619 return -EHOSTUNREACH; /* Routing failure or similar. */
2620
2621 cur_mss = tcp_current_mss(sk);
2622
2623 /* If receiver has shrunk his window, and skb is out of
2624 * new window, do not retransmit it. The exception is the
2625 * case, when window is shrunk to zero. In this case
2626 * our retransmit serves as a zero window probe.
2627 */
2628 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2629 TCP_SKB_CB(skb)->seq != tp->snd_una)
2630 return -EAGAIN;
2631
2632 len = cur_mss * segs;
2633 if (skb->len > len) {
2634 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2635 return -ENOMEM; /* We'll try again later. */
2636 } else {
2637 if (skb_unclone(skb, GFP_ATOMIC))
2638 return -ENOMEM;
2639
2640 diff = tcp_skb_pcount(skb);
2641 tcp_set_skb_tso_segs(skb, cur_mss);
2642 diff -= tcp_skb_pcount(skb);
2643 if (diff)
2644 tcp_adjust_pcount(sk, skb, diff);
2645 if (skb->len < cur_mss)
2646 tcp_retrans_try_collapse(sk, skb, cur_mss);
2647 }
2648
2649 /* RFC3168, section 6.1.1.1. ECN fallback */
2650 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2651 tcp_ecn_clear_syn(sk, skb);
2652
2653 /* make sure skb->data is aligned on arches that require it
2654 * and check if ack-trimming & collapsing extended the headroom
2655 * beyond what csum_start can cover.
2656 */
2657 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2658 skb_headroom(skb) >= 0xFFFF)) {
2659 struct sk_buff *nskb;
2660
2661 skb_mstamp_get(&skb->skb_mstamp);
2662 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2663 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2664 -ENOBUFS;
2665 } else {
2666 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2667 }
2668
2669 if (likely(!err)) {
2670 segs = tcp_skb_pcount(skb);
2671
2672 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2673 /* Update global TCP statistics. */
2674 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2675 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2676 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2677 tp->total_retrans += segs;
2678 }
2679 return err;
2680 }
2681
2682 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2683 {
2684 struct tcp_sock *tp = tcp_sk(sk);
2685 int err = __tcp_retransmit_skb(sk, skb, segs);
2686
2687 if (err == 0) {
2688 #if FASTRETRANS_DEBUG > 0
2689 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2690 net_dbg_ratelimited("retrans_out leaked\n");
2691 }
2692 #endif
2693 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2694 tp->retrans_out += tcp_skb_pcount(skb);
2695
2696 /* Save stamp of the first retransmit. */
2697 if (!tp->retrans_stamp)
2698 tp->retrans_stamp = tcp_skb_timestamp(skb);
2699
2700 } else if (err != -EBUSY) {
2701 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2702 }
2703
2704 if (tp->undo_retrans < 0)
2705 tp->undo_retrans = 0;
2706 tp->undo_retrans += tcp_skb_pcount(skb);
2707 return err;
2708 }
2709
2710 /* Check if we forward retransmits are possible in the current
2711 * window/congestion state.
2712 */
2713 static bool tcp_can_forward_retransmit(struct sock *sk)
2714 {
2715 const struct inet_connection_sock *icsk = inet_csk(sk);
2716 const struct tcp_sock *tp = tcp_sk(sk);
2717
2718 /* Forward retransmissions are possible only during Recovery. */
2719 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2720 return false;
2721
2722 /* No forward retransmissions in Reno are possible. */
2723 if (tcp_is_reno(tp))
2724 return false;
2725
2726 /* Yeah, we have to make difficult choice between forward transmission
2727 * and retransmission... Both ways have their merits...
2728 *
2729 * For now we do not retransmit anything, while we have some new
2730 * segments to send. In the other cases, follow rule 3 for
2731 * NextSeg() specified in RFC3517.
2732 */
2733
2734 if (tcp_may_send_now(sk))
2735 return false;
2736
2737 return true;
2738 }
2739
2740 /* This gets called after a retransmit timeout, and the initially
2741 * retransmitted data is acknowledged. It tries to continue
2742 * resending the rest of the retransmit queue, until either
2743 * we've sent it all or the congestion window limit is reached.
2744 * If doing SACK, the first ACK which comes back for a timeout
2745 * based retransmit packet might feed us FACK information again.
2746 * If so, we use it to avoid unnecessarily retransmissions.
2747 */
2748 void tcp_xmit_retransmit_queue(struct sock *sk)
2749 {
2750 const struct inet_connection_sock *icsk = inet_csk(sk);
2751 struct tcp_sock *tp = tcp_sk(sk);
2752 struct sk_buff *skb;
2753 struct sk_buff *hole = NULL;
2754 u32 max_segs, last_lost;
2755 int mib_idx;
2756 int fwd_rexmitting = 0;
2757
2758 if (!tp->packets_out)
2759 return;
2760
2761 if (!tp->lost_out)
2762 tp->retransmit_high = tp->snd_una;
2763
2764 if (tp->retransmit_skb_hint) {
2765 skb = tp->retransmit_skb_hint;
2766 last_lost = TCP_SKB_CB(skb)->end_seq;
2767 if (after(last_lost, tp->retransmit_high))
2768 last_lost = tp->retransmit_high;
2769 } else {
2770 skb = tcp_write_queue_head(sk);
2771 last_lost = tp->snd_una;
2772 }
2773
2774 max_segs = tcp_tso_autosize(sk, tcp_current_mss(sk));
2775 tcp_for_write_queue_from(skb, sk) {
2776 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2777 int segs;
2778
2779 if (skb == tcp_send_head(sk))
2780 break;
2781 /* we could do better than to assign each time */
2782 if (!hole)
2783 tp->retransmit_skb_hint = skb;
2784
2785 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2786 if (segs <= 0)
2787 return;
2788 /* In case tcp_shift_skb_data() have aggregated large skbs,
2789 * we need to make sure not sending too bigs TSO packets
2790 */
2791 segs = min_t(int, segs, max_segs);
2792
2793 if (fwd_rexmitting) {
2794 begin_fwd:
2795 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2796 break;
2797 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2798
2799 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2800 tp->retransmit_high = last_lost;
2801 if (!tcp_can_forward_retransmit(sk))
2802 break;
2803 /* Backtrack if necessary to non-L'ed skb */
2804 if (hole) {
2805 skb = hole;
2806 hole = NULL;
2807 }
2808 fwd_rexmitting = 1;
2809 goto begin_fwd;
2810
2811 } else if (!(sacked & TCPCB_LOST)) {
2812 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2813 hole = skb;
2814 continue;
2815
2816 } else {
2817 last_lost = TCP_SKB_CB(skb)->end_seq;
2818 if (icsk->icsk_ca_state != TCP_CA_Loss)
2819 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2820 else
2821 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2822 }
2823
2824 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2825 continue;
2826
2827 if (tcp_retransmit_skb(sk, skb, segs))
2828 return;
2829
2830 NET_INC_STATS(sock_net(sk), mib_idx);
2831
2832 if (tcp_in_cwnd_reduction(sk))
2833 tp->prr_out += tcp_skb_pcount(skb);
2834
2835 if (skb == tcp_write_queue_head(sk))
2836 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2837 inet_csk(sk)->icsk_rto,
2838 TCP_RTO_MAX);
2839 }
2840 }
2841
2842 /* We allow to exceed memory limits for FIN packets to expedite
2843 * connection tear down and (memory) recovery.
2844 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2845 * or even be forced to close flow without any FIN.
2846 * In general, we want to allow one skb per socket to avoid hangs
2847 * with edge trigger epoll()
2848 */
2849 void sk_forced_mem_schedule(struct sock *sk, int size)
2850 {
2851 int amt;
2852
2853 if (size <= sk->sk_forward_alloc)
2854 return;
2855 amt = sk_mem_pages(size);
2856 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2857 sk_memory_allocated_add(sk, amt);
2858
2859 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2860 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2861 }
2862
2863 /* Send a FIN. The caller locks the socket for us.
2864 * We should try to send a FIN packet really hard, but eventually give up.
2865 */
2866 void tcp_send_fin(struct sock *sk)
2867 {
2868 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2869 struct tcp_sock *tp = tcp_sk(sk);
2870
2871 /* Optimization, tack on the FIN if we have one skb in write queue and
2872 * this skb was not yet sent, or we are under memory pressure.
2873 * Note: in the latter case, FIN packet will be sent after a timeout,
2874 * as TCP stack thinks it has already been transmitted.
2875 */
2876 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2877 coalesce:
2878 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2879 TCP_SKB_CB(tskb)->end_seq++;
2880 tp->write_seq++;
2881 if (!tcp_send_head(sk)) {
2882 /* This means tskb was already sent.
2883 * Pretend we included the FIN on previous transmit.
2884 * We need to set tp->snd_nxt to the value it would have
2885 * if FIN had been sent. This is because retransmit path
2886 * does not change tp->snd_nxt.
2887 */
2888 tp->snd_nxt++;
2889 return;
2890 }
2891 } else {
2892 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2893 if (unlikely(!skb)) {
2894 if (tskb)
2895 goto coalesce;
2896 return;
2897 }
2898 skb_reserve(skb, MAX_TCP_HEADER);
2899 sk_forced_mem_schedule(sk, skb->truesize);
2900 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2901 tcp_init_nondata_skb(skb, tp->write_seq,
2902 TCPHDR_ACK | TCPHDR_FIN);
2903 tcp_queue_skb(sk, skb);
2904 }
2905 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2906 }
2907
2908 /* We get here when a process closes a file descriptor (either due to
2909 * an explicit close() or as a byproduct of exit()'ing) and there
2910 * was unread data in the receive queue. This behavior is recommended
2911 * by RFC 2525, section 2.17. -DaveM
2912 */
2913 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2914 {
2915 struct sk_buff *skb;
2916
2917 /* NOTE: No TCP options attached and we never retransmit this. */
2918 skb = alloc_skb(MAX_TCP_HEADER, priority);
2919 if (!skb) {
2920 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2921 return;
2922 }
2923
2924 /* Reserve space for headers and prepare control bits. */
2925 skb_reserve(skb, MAX_TCP_HEADER);
2926 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2927 TCPHDR_ACK | TCPHDR_RST);
2928 skb_mstamp_get(&skb->skb_mstamp);
2929 /* Send it off. */
2930 if (tcp_transmit_skb(sk, skb, 0, priority))
2931 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2932
2933 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2934 }
2935
2936 /* Send a crossed SYN-ACK during socket establishment.
2937 * WARNING: This routine must only be called when we have already sent
2938 * a SYN packet that crossed the incoming SYN that caused this routine
2939 * to get called. If this assumption fails then the initial rcv_wnd
2940 * and rcv_wscale values will not be correct.
2941 */
2942 int tcp_send_synack(struct sock *sk)
2943 {
2944 struct sk_buff *skb;
2945
2946 skb = tcp_write_queue_head(sk);
2947 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2948 pr_debug("%s: wrong queue state\n", __func__);
2949 return -EFAULT;
2950 }
2951 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2952 if (skb_cloned(skb)) {
2953 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2954 if (!nskb)
2955 return -ENOMEM;
2956 tcp_unlink_write_queue(skb, sk);
2957 __skb_header_release(nskb);
2958 __tcp_add_write_queue_head(sk, nskb);
2959 sk_wmem_free_skb(sk, skb);
2960 sk->sk_wmem_queued += nskb->truesize;
2961 sk_mem_charge(sk, nskb->truesize);
2962 skb = nskb;
2963 }
2964
2965 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2966 tcp_ecn_send_synack(sk, skb);
2967 }
2968 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2969 }
2970
2971 /**
2972 * tcp_make_synack - Prepare a SYN-ACK.
2973 * sk: listener socket
2974 * dst: dst entry attached to the SYNACK
2975 * req: request_sock pointer
2976 *
2977 * Allocate one skb and build a SYNACK packet.
2978 * @dst is consumed : Caller should not use it again.
2979 */
2980 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2981 struct request_sock *req,
2982 struct tcp_fastopen_cookie *foc,
2983 enum tcp_synack_type synack_type)
2984 {
2985 struct inet_request_sock *ireq = inet_rsk(req);
2986 const struct tcp_sock *tp = tcp_sk(sk);
2987 struct tcp_md5sig_key *md5 = NULL;
2988 struct tcp_out_options opts;
2989 struct sk_buff *skb;
2990 int tcp_header_size;
2991 struct tcphdr *th;
2992 u16 user_mss;
2993 int mss;
2994
2995 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2996 if (unlikely(!skb)) {
2997 dst_release(dst);
2998 return NULL;
2999 }
3000 /* Reserve space for headers. */
3001 skb_reserve(skb, MAX_TCP_HEADER);
3002
3003 switch (synack_type) {
3004 case TCP_SYNACK_NORMAL:
3005 skb_set_owner_w(skb, req_to_sk(req));
3006 break;
3007 case TCP_SYNACK_COOKIE:
3008 /* Under synflood, we do not attach skb to a socket,
3009 * to avoid false sharing.
3010 */
3011 break;
3012 case TCP_SYNACK_FASTOPEN:
3013 /* sk is a const pointer, because we want to express multiple
3014 * cpu might call us concurrently.
3015 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3016 */
3017 skb_set_owner_w(skb, (struct sock *)sk);
3018 break;
3019 }
3020 skb_dst_set(skb, dst);
3021
3022 mss = dst_metric_advmss(dst);
3023 user_mss = READ_ONCE(tp->rx_opt.user_mss);
3024 if (user_mss && user_mss < mss)
3025 mss = user_mss;
3026
3027 memset(&opts, 0, sizeof(opts));
3028 #ifdef CONFIG_SYN_COOKIES
3029 if (unlikely(req->cookie_ts))
3030 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3031 else
3032 #endif
3033 skb_mstamp_get(&skb->skb_mstamp);
3034
3035 #ifdef CONFIG_TCP_MD5SIG
3036 rcu_read_lock();
3037 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3038 #endif
3039 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3040 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3041 sizeof(*th);
3042
3043 skb_push(skb, tcp_header_size);
3044 skb_reset_transport_header(skb);
3045
3046 th = (struct tcphdr *)skb->data;
3047 memset(th, 0, sizeof(struct tcphdr));
3048 th->syn = 1;
3049 th->ack = 1;
3050 tcp_ecn_make_synack(req, th);
3051 th->source = htons(ireq->ir_num);
3052 th->dest = ireq->ir_rmt_port;
3053 /* Setting of flags are superfluous here for callers (and ECE is
3054 * not even correctly set)
3055 */
3056 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3057 TCPHDR_SYN | TCPHDR_ACK);
3058
3059 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3060 /* XXX data is queued and acked as is. No buffer/window check */
3061 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3062
3063 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3064 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3065 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3066 th->doff = (tcp_header_size >> 2);
3067 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3068
3069 #ifdef CONFIG_TCP_MD5SIG
3070 /* Okay, we have all we need - do the md5 hash if needed */
3071 if (md5)
3072 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3073 md5, req_to_sk(req), skb);
3074 rcu_read_unlock();
3075 #endif
3076
3077 /* Do not fool tcpdump (if any), clean our debris */
3078 skb->tstamp.tv64 = 0;
3079 return skb;
3080 }
3081 EXPORT_SYMBOL(tcp_make_synack);
3082
3083 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3084 {
3085 struct inet_connection_sock *icsk = inet_csk(sk);
3086 const struct tcp_congestion_ops *ca;
3087 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3088
3089 if (ca_key == TCP_CA_UNSPEC)
3090 return;
3091
3092 rcu_read_lock();
3093 ca = tcp_ca_find_key(ca_key);
3094 if (likely(ca && try_module_get(ca->owner))) {
3095 module_put(icsk->icsk_ca_ops->owner);
3096 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3097 icsk->icsk_ca_ops = ca;
3098 }
3099 rcu_read_unlock();
3100 }
3101
3102 /* Do all connect socket setups that can be done AF independent. */
3103 static void tcp_connect_init(struct sock *sk)
3104 {
3105 const struct dst_entry *dst = __sk_dst_get(sk);
3106 struct tcp_sock *tp = tcp_sk(sk);
3107 __u8 rcv_wscale;
3108
3109 /* We'll fix this up when we get a response from the other end.
3110 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3111 */
3112 tp->tcp_header_len = sizeof(struct tcphdr) +
3113 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3114
3115 #ifdef CONFIG_TCP_MD5SIG
3116 if (tp->af_specific->md5_lookup(sk, sk))
3117 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3118 #endif
3119
3120 /* If user gave his TCP_MAXSEG, record it to clamp */
3121 if (tp->rx_opt.user_mss)
3122 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3123 tp->max_window = 0;
3124 tcp_mtup_init(sk);
3125 tcp_sync_mss(sk, dst_mtu(dst));
3126
3127 tcp_ca_dst_init(sk, dst);
3128
3129 if (!tp->window_clamp)
3130 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3131 tp->advmss = dst_metric_advmss(dst);
3132 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3133 tp->advmss = tp->rx_opt.user_mss;
3134
3135 tcp_initialize_rcv_mss(sk);
3136
3137 /* limit the window selection if the user enforce a smaller rx buffer */
3138 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3139 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3140 tp->window_clamp = tcp_full_space(sk);
3141
3142 tcp_select_initial_window(tcp_full_space(sk),
3143 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3144 &tp->rcv_wnd,
3145 &tp->window_clamp,
3146 sysctl_tcp_window_scaling,
3147 &rcv_wscale,
3148 dst_metric(dst, RTAX_INITRWND));
3149
3150 tp->rx_opt.rcv_wscale = rcv_wscale;
3151 tp->rcv_ssthresh = tp->rcv_wnd;
3152
3153 sk->sk_err = 0;
3154 sock_reset_flag(sk, SOCK_DONE);
3155 tp->snd_wnd = 0;
3156 tcp_init_wl(tp, 0);
3157 tp->snd_una = tp->write_seq;
3158 tp->snd_sml = tp->write_seq;
3159 tp->snd_up = tp->write_seq;
3160 tp->snd_nxt = tp->write_seq;
3161
3162 if (likely(!tp->repair))
3163 tp->rcv_nxt = 0;
3164 else
3165 tp->rcv_tstamp = tcp_time_stamp;
3166 tp->rcv_wup = tp->rcv_nxt;
3167 tp->copied_seq = tp->rcv_nxt;
3168
3169 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3170 inet_csk(sk)->icsk_retransmits = 0;
3171 tcp_clear_retrans(tp);
3172 }
3173
3174 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3175 {
3176 struct tcp_sock *tp = tcp_sk(sk);
3177 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3178
3179 tcb->end_seq += skb->len;
3180 __skb_header_release(skb);
3181 __tcp_add_write_queue_tail(sk, skb);
3182 sk->sk_wmem_queued += skb->truesize;
3183 sk_mem_charge(sk, skb->truesize);
3184 tp->write_seq = tcb->end_seq;
3185 tp->packets_out += tcp_skb_pcount(skb);
3186 }
3187
3188 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3189 * queue a data-only packet after the regular SYN, such that regular SYNs
3190 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3191 * only the SYN sequence, the data are retransmitted in the first ACK.
3192 * If cookie is not cached or other error occurs, falls back to send a
3193 * regular SYN with Fast Open cookie request option.
3194 */
3195 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3196 {
3197 struct tcp_sock *tp = tcp_sk(sk);
3198 struct tcp_fastopen_request *fo = tp->fastopen_req;
3199 int syn_loss = 0, space, err = 0;
3200 unsigned long last_syn_loss = 0;
3201 struct sk_buff *syn_data;
3202
3203 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3204 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3205 &syn_loss, &last_syn_loss);
3206 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3207 if (syn_loss > 1 &&
3208 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3209 fo->cookie.len = -1;
3210 goto fallback;
3211 }
3212
3213 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3214 fo->cookie.len = -1;
3215 else if (fo->cookie.len <= 0)
3216 goto fallback;
3217
3218 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3219 * user-MSS. Reserve maximum option space for middleboxes that add
3220 * private TCP options. The cost is reduced data space in SYN :(
3221 */
3222 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3223 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3224 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3225 MAX_TCP_OPTION_SPACE;
3226
3227 space = min_t(size_t, space, fo->size);
3228
3229 /* limit to order-0 allocations */
3230 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3231
3232 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3233 if (!syn_data)
3234 goto fallback;
3235 syn_data->ip_summed = CHECKSUM_PARTIAL;
3236 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3237 if (space) {
3238 int copied = copy_from_iter(skb_put(syn_data, space), space,
3239 &fo->data->msg_iter);
3240 if (unlikely(!copied)) {
3241 kfree_skb(syn_data);
3242 goto fallback;
3243 }
3244 if (copied != space) {
3245 skb_trim(syn_data, copied);
3246 space = copied;
3247 }
3248 }
3249 /* No more data pending in inet_wait_for_connect() */
3250 if (space == fo->size)
3251 fo->data = NULL;
3252 fo->copied = space;
3253
3254 tcp_connect_queue_skb(sk, syn_data);
3255
3256 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3257
3258 syn->skb_mstamp = syn_data->skb_mstamp;
3259
3260 /* Now full SYN+DATA was cloned and sent (or not),
3261 * remove the SYN from the original skb (syn_data)
3262 * we keep in write queue in case of a retransmit, as we
3263 * also have the SYN packet (with no data) in the same queue.
3264 */
3265 TCP_SKB_CB(syn_data)->seq++;
3266 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3267 if (!err) {
3268 tp->syn_data = (fo->copied > 0);
3269 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3270 goto done;
3271 }
3272
3273 fallback:
3274 /* Send a regular SYN with Fast Open cookie request option */
3275 if (fo->cookie.len > 0)
3276 fo->cookie.len = 0;
3277 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3278 if (err)
3279 tp->syn_fastopen = 0;
3280 done:
3281 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3282 return err;
3283 }
3284
3285 /* Build a SYN and send it off. */
3286 int tcp_connect(struct sock *sk)
3287 {
3288 struct tcp_sock *tp = tcp_sk(sk);
3289 struct sk_buff *buff;
3290 int err;
3291
3292 tcp_connect_init(sk);
3293
3294 if (unlikely(tp->repair)) {
3295 tcp_finish_connect(sk, NULL);
3296 return 0;
3297 }
3298
3299 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3300 if (unlikely(!buff))
3301 return -ENOBUFS;
3302
3303 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3304 tp->retrans_stamp = tcp_time_stamp;
3305 tcp_connect_queue_skb(sk, buff);
3306 tcp_ecn_send_syn(sk, buff);
3307
3308 /* Send off SYN; include data in Fast Open. */
3309 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3310 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3311 if (err == -ECONNREFUSED)
3312 return err;
3313
3314 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3315 * in order to make this packet get counted in tcpOutSegs.
3316 */
3317 tp->snd_nxt = tp->write_seq;
3318 tp->pushed_seq = tp->write_seq;
3319 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3320
3321 /* Timer for repeating the SYN until an answer. */
3322 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3323 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3324 return 0;
3325 }
3326 EXPORT_SYMBOL(tcp_connect);
3327
3328 /* Send out a delayed ack, the caller does the policy checking
3329 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3330 * for details.
3331 */
3332 void tcp_send_delayed_ack(struct sock *sk)
3333 {
3334 struct inet_connection_sock *icsk = inet_csk(sk);
3335 int ato = icsk->icsk_ack.ato;
3336 unsigned long timeout;
3337
3338 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3339
3340 if (ato > TCP_DELACK_MIN) {
3341 const struct tcp_sock *tp = tcp_sk(sk);
3342 int max_ato = HZ / 2;
3343
3344 if (icsk->icsk_ack.pingpong ||
3345 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3346 max_ato = TCP_DELACK_MAX;
3347
3348 /* Slow path, intersegment interval is "high". */
3349
3350 /* If some rtt estimate is known, use it to bound delayed ack.
3351 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3352 * directly.
3353 */
3354 if (tp->srtt_us) {
3355 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3356 TCP_DELACK_MIN);
3357
3358 if (rtt < max_ato)
3359 max_ato = rtt;
3360 }
3361
3362 ato = min(ato, max_ato);
3363 }
3364
3365 /* Stay within the limit we were given */
3366 timeout = jiffies + ato;
3367
3368 /* Use new timeout only if there wasn't a older one earlier. */
3369 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3370 /* If delack timer was blocked or is about to expire,
3371 * send ACK now.
3372 */
3373 if (icsk->icsk_ack.blocked ||
3374 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3375 tcp_send_ack(sk);
3376 return;
3377 }
3378
3379 if (!time_before(timeout, icsk->icsk_ack.timeout))
3380 timeout = icsk->icsk_ack.timeout;
3381 }
3382 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3383 icsk->icsk_ack.timeout = timeout;
3384 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3385 }
3386
3387 /* This routine sends an ack and also updates the window. */
3388 void tcp_send_ack(struct sock *sk)
3389 {
3390 struct sk_buff *buff;
3391
3392 /* If we have been reset, we may not send again. */
3393 if (sk->sk_state == TCP_CLOSE)
3394 return;
3395
3396 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3397
3398 /* We are not putting this on the write queue, so
3399 * tcp_transmit_skb() will set the ownership to this
3400 * sock.
3401 */
3402 buff = alloc_skb(MAX_TCP_HEADER,
3403 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3404 if (unlikely(!buff)) {
3405 inet_csk_schedule_ack(sk);
3406 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3407 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3408 TCP_DELACK_MAX, TCP_RTO_MAX);
3409 return;
3410 }
3411
3412 /* Reserve space for headers and prepare control bits. */
3413 skb_reserve(buff, MAX_TCP_HEADER);
3414 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3415
3416 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3417 * too much.
3418 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3419 * We also avoid tcp_wfree() overhead (cache line miss accessing
3420 * tp->tsq_flags) by using regular sock_wfree()
3421 */
3422 skb_set_tcp_pure_ack(buff);
3423
3424 /* Send it off, this clears delayed acks for us. */
3425 skb_mstamp_get(&buff->skb_mstamp);
3426 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3427 }
3428 EXPORT_SYMBOL_GPL(tcp_send_ack);
3429
3430 /* This routine sends a packet with an out of date sequence
3431 * number. It assumes the other end will try to ack it.
3432 *
3433 * Question: what should we make while urgent mode?
3434 * 4.4BSD forces sending single byte of data. We cannot send
3435 * out of window data, because we have SND.NXT==SND.MAX...
3436 *
3437 * Current solution: to send TWO zero-length segments in urgent mode:
3438 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3439 * out-of-date with SND.UNA-1 to probe window.
3440 */
3441 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3442 {
3443 struct tcp_sock *tp = tcp_sk(sk);
3444 struct sk_buff *skb;
3445
3446 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3447 skb = alloc_skb(MAX_TCP_HEADER,
3448 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3449 if (!skb)
3450 return -1;
3451
3452 /* Reserve space for headers and set control bits. */
3453 skb_reserve(skb, MAX_TCP_HEADER);
3454 /* Use a previous sequence. This should cause the other
3455 * end to send an ack. Don't queue or clone SKB, just
3456 * send it.
3457 */
3458 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3459 skb_mstamp_get(&skb->skb_mstamp);
3460 NET_INC_STATS(sock_net(sk), mib);
3461 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3462 }
3463
3464 void tcp_send_window_probe(struct sock *sk)
3465 {
3466 if (sk->sk_state == TCP_ESTABLISHED) {
3467 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3468 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3469 }
3470 }
3471
3472 /* Initiate keepalive or window probe from timer. */
3473 int tcp_write_wakeup(struct sock *sk, int mib)
3474 {
3475 struct tcp_sock *tp = tcp_sk(sk);
3476 struct sk_buff *skb;
3477
3478 if (sk->sk_state == TCP_CLOSE)
3479 return -1;
3480
3481 skb = tcp_send_head(sk);
3482 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3483 int err;
3484 unsigned int mss = tcp_current_mss(sk);
3485 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3486
3487 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3488 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3489
3490 /* We are probing the opening of a window
3491 * but the window size is != 0
3492 * must have been a result SWS avoidance ( sender )
3493 */
3494 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3495 skb->len > mss) {
3496 seg_size = min(seg_size, mss);
3497 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3498 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3499 return -1;
3500 } else if (!tcp_skb_pcount(skb))
3501 tcp_set_skb_tso_segs(skb, mss);
3502
3503 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3504 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3505 if (!err)
3506 tcp_event_new_data_sent(sk, skb);
3507 return err;
3508 } else {
3509 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3510 tcp_xmit_probe_skb(sk, 1, mib);
3511 return tcp_xmit_probe_skb(sk, 0, mib);
3512 }
3513 }
3514
3515 /* A window probe timeout has occurred. If window is not closed send
3516 * a partial packet else a zero probe.
3517 */
3518 void tcp_send_probe0(struct sock *sk)
3519 {
3520 struct inet_connection_sock *icsk = inet_csk(sk);
3521 struct tcp_sock *tp = tcp_sk(sk);
3522 struct net *net = sock_net(sk);
3523 unsigned long probe_max;
3524 int err;
3525
3526 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3527
3528 if (tp->packets_out || !tcp_send_head(sk)) {
3529 /* Cancel probe timer, if it is not required. */
3530 icsk->icsk_probes_out = 0;
3531 icsk->icsk_backoff = 0;
3532 return;
3533 }
3534
3535 if (err <= 0) {
3536 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3537 icsk->icsk_backoff++;
3538 icsk->icsk_probes_out++;
3539 probe_max = TCP_RTO_MAX;
3540 } else {
3541 /* If packet was not sent due to local congestion,
3542 * do not backoff and do not remember icsk_probes_out.
3543 * Let local senders to fight for local resources.
3544 *
3545 * Use accumulated backoff yet.
3546 */
3547 if (!icsk->icsk_probes_out)
3548 icsk->icsk_probes_out = 1;
3549 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3550 }
3551 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3552 tcp_probe0_when(sk, probe_max),
3553 TCP_RTO_MAX);
3554 }
3555
3556 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3557 {
3558 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3559 struct flowi fl;
3560 int res;
3561
3562 tcp_rsk(req)->txhash = net_tx_rndhash();
3563 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3564 if (!res) {
3565 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3566 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3567 }
3568 return res;
3569 }
3570 EXPORT_SYMBOL(tcp_rtx_synack);
This page took 0.144034 seconds and 5 git commands to generate.