tcp: add rfc3168, section 6.1.1.1. fallback
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86
87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 tcp_skb_pcount(skb));
89 }
90
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 struct tcp_sock *tp = tcp_sk(sk);
144 s32 delta = tcp_time_stamp - tp->lsndtime;
145 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166 const struct dst_entry *dst = __sk_dst_get(sk);
167
168 if (sysctl_tcp_slow_start_after_idle &&
169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 tcp_cwnd_restart(sk, __sk_dst_get(sk));
171
172 tp->lsndtime = now;
173
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
176 */
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 icsk->icsk_ack.pingpong = 1;
180 }
181
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 tcp_dec_quickack_mode(sk, pkts);
186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188
189
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
196 */
197 u32 init_rwnd = TCP_INIT_CWND * 2;
198
199 if (mss > 1460)
200 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 return init_rwnd;
202 }
203
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
210 */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 __u32 *rcv_wnd, __u32 *window_clamp,
213 int wscale_ok, __u8 *rcv_wscale,
214 __u32 init_rcv_wnd)
215 {
216 unsigned int space = (__space < 0 ? 0 : __space);
217
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp == 0)
220 (*window_clamp) = (65535 << 14);
221 space = min(*window_clamp, space);
222
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = (space / mss) * mss;
226
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
234 */
235 if (sysctl_tcp_workaround_signed_windows)
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
239
240 (*rcv_wscale) = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window
243 * See RFC1323 for an explanation of the limit to 14
244 */
245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 space = min_t(u32, space, *window_clamp);
247 while (space > 65535 && (*rcv_wscale) < 14) {
248 space >>= 1;
249 (*rcv_wscale)++;
250 }
251 }
252
253 if (mss > (1 << *rcv_wscale)) {
254 if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 init_rcv_wnd = tcp_default_init_rwnd(mss);
256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 }
258
259 /* Set the clamp no higher than max representable value */
260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263
264 /* Chose a new window to advertise, update state in tcp_sock for the
265 * socket, and return result with RFC1323 scaling applied. The return
266 * value can be stuffed directly into th->window for an outgoing
267 * frame.
268 */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 struct tcp_sock *tp = tcp_sk(sk);
272 u32 old_win = tp->rcv_wnd;
273 u32 cur_win = tcp_receive_window(tp);
274 u32 new_win = __tcp_select_window(sk);
275
276 /* Never shrink the offered window */
277 if (new_win < cur_win) {
278 /* Danger Will Robinson!
279 * Don't update rcv_wup/rcv_wnd here or else
280 * we will not be able to advertise a zero
281 * window in time. --DaveM
282 *
283 * Relax Will Robinson.
284 */
285 if (new_win == 0)
286 NET_INC_STATS(sock_net(sk),
287 LINUX_MIB_TCPWANTZEROWINDOWADV);
288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289 }
290 tp->rcv_wnd = new_win;
291 tp->rcv_wup = tp->rcv_nxt;
292
293 /* Make sure we do not exceed the maximum possible
294 * scaled window.
295 */
296 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
297 new_win = min(new_win, MAX_TCP_WINDOW);
298 else
299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300
301 /* RFC1323 scaling applied */
302 new_win >>= tp->rx_opt.rcv_wscale;
303
304 /* If we advertise zero window, disable fast path. */
305 if (new_win == 0) {
306 tp->pred_flags = 0;
307 if (old_win)
308 NET_INC_STATS(sock_net(sk),
309 LINUX_MIB_TCPTOZEROWINDOWADV);
310 } else if (old_win == 0) {
311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
312 }
313
314 return new_win;
315 }
316
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 const struct tcp_sock *tp = tcp_sk(sk);
321
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 if (!(tp->ecn_flags & TCP_ECN_OK))
324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 else if (tcp_ca_needs_ecn(sk))
326 INET_ECN_xmit(sk);
327 }
328
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334 tcp_ca_needs_ecn(sk);
335
336 if (!use_ecn) {
337 const struct dst_entry *dst = __sk_dst_get(sk);
338
339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 use_ecn = true;
341 }
342
343 tp->ecn_flags = 0;
344
345 if (use_ecn) {
346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 tp->ecn_flags = TCP_ECN_OK;
348 if (tcp_ca_needs_ecn(sk))
349 INET_ECN_xmit(sk);
350 }
351 }
352
353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354 {
355 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
356 /* tp->ecn_flags are cleared at a later point in time when
357 * SYN ACK is ultimatively being received.
358 */
359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360 }
361
362 static void
363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
364 struct sock *sk)
365 {
366 if (inet_rsk(req)->ecn_ok) {
367 th->ece = 1;
368 if (tcp_ca_needs_ecn(sk))
369 INET_ECN_xmit(sk);
370 }
371 }
372
373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
374 * be sent.
375 */
376 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
377 int tcp_header_len)
378 {
379 struct tcp_sock *tp = tcp_sk(sk);
380
381 if (tp->ecn_flags & TCP_ECN_OK) {
382 /* Not-retransmitted data segment: set ECT and inject CWR. */
383 if (skb->len != tcp_header_len &&
384 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
385 INET_ECN_xmit(sk);
386 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
387 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
388 tcp_hdr(skb)->cwr = 1;
389 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
390 }
391 } else if (!tcp_ca_needs_ecn(sk)) {
392 /* ACK or retransmitted segment: clear ECT|CE */
393 INET_ECN_dontxmit(sk);
394 }
395 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
396 tcp_hdr(skb)->ece = 1;
397 }
398 }
399
400 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
401 * auto increment end seqno.
402 */
403 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
404 {
405 struct skb_shared_info *shinfo = skb_shinfo(skb);
406
407 skb->ip_summed = CHECKSUM_PARTIAL;
408 skb->csum = 0;
409
410 TCP_SKB_CB(skb)->tcp_flags = flags;
411 TCP_SKB_CB(skb)->sacked = 0;
412
413 tcp_skb_pcount_set(skb, 1);
414 shinfo->gso_size = 0;
415 shinfo->gso_type = 0;
416
417 TCP_SKB_CB(skb)->seq = seq;
418 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
419 seq++;
420 TCP_SKB_CB(skb)->end_seq = seq;
421 }
422
423 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
424 {
425 return tp->snd_una != tp->snd_up;
426 }
427
428 #define OPTION_SACK_ADVERTISE (1 << 0)
429 #define OPTION_TS (1 << 1)
430 #define OPTION_MD5 (1 << 2)
431 #define OPTION_WSCALE (1 << 3)
432 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
433
434 struct tcp_out_options {
435 u16 options; /* bit field of OPTION_* */
436 u16 mss; /* 0 to disable */
437 u8 ws; /* window scale, 0 to disable */
438 u8 num_sack_blocks; /* number of SACK blocks to include */
439 u8 hash_size; /* bytes in hash_location */
440 __u8 *hash_location; /* temporary pointer, overloaded */
441 __u32 tsval, tsecr; /* need to include OPTION_TS */
442 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
443 };
444
445 /* Write previously computed TCP options to the packet.
446 *
447 * Beware: Something in the Internet is very sensitive to the ordering of
448 * TCP options, we learned this through the hard way, so be careful here.
449 * Luckily we can at least blame others for their non-compliance but from
450 * inter-operability perspective it seems that we're somewhat stuck with
451 * the ordering which we have been using if we want to keep working with
452 * those broken things (not that it currently hurts anybody as there isn't
453 * particular reason why the ordering would need to be changed).
454 *
455 * At least SACK_PERM as the first option is known to lead to a disaster
456 * (but it may well be that other scenarios fail similarly).
457 */
458 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
459 struct tcp_out_options *opts)
460 {
461 u16 options = opts->options; /* mungable copy */
462
463 if (unlikely(OPTION_MD5 & options)) {
464 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
465 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
466 /* overload cookie hash location */
467 opts->hash_location = (__u8 *)ptr;
468 ptr += 4;
469 }
470
471 if (unlikely(opts->mss)) {
472 *ptr++ = htonl((TCPOPT_MSS << 24) |
473 (TCPOLEN_MSS << 16) |
474 opts->mss);
475 }
476
477 if (likely(OPTION_TS & options)) {
478 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
479 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
480 (TCPOLEN_SACK_PERM << 16) |
481 (TCPOPT_TIMESTAMP << 8) |
482 TCPOLEN_TIMESTAMP);
483 options &= ~OPTION_SACK_ADVERTISE;
484 } else {
485 *ptr++ = htonl((TCPOPT_NOP << 24) |
486 (TCPOPT_NOP << 16) |
487 (TCPOPT_TIMESTAMP << 8) |
488 TCPOLEN_TIMESTAMP);
489 }
490 *ptr++ = htonl(opts->tsval);
491 *ptr++ = htonl(opts->tsecr);
492 }
493
494 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
495 *ptr++ = htonl((TCPOPT_NOP << 24) |
496 (TCPOPT_NOP << 16) |
497 (TCPOPT_SACK_PERM << 8) |
498 TCPOLEN_SACK_PERM);
499 }
500
501 if (unlikely(OPTION_WSCALE & options)) {
502 *ptr++ = htonl((TCPOPT_NOP << 24) |
503 (TCPOPT_WINDOW << 16) |
504 (TCPOLEN_WINDOW << 8) |
505 opts->ws);
506 }
507
508 if (unlikely(opts->num_sack_blocks)) {
509 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
510 tp->duplicate_sack : tp->selective_acks;
511 int this_sack;
512
513 *ptr++ = htonl((TCPOPT_NOP << 24) |
514 (TCPOPT_NOP << 16) |
515 (TCPOPT_SACK << 8) |
516 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
517 TCPOLEN_SACK_PERBLOCK)));
518
519 for (this_sack = 0; this_sack < opts->num_sack_blocks;
520 ++this_sack) {
521 *ptr++ = htonl(sp[this_sack].start_seq);
522 *ptr++ = htonl(sp[this_sack].end_seq);
523 }
524
525 tp->rx_opt.dsack = 0;
526 }
527
528 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
529 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
530 u8 *p = (u8 *)ptr;
531 u32 len; /* Fast Open option length */
532
533 if (foc->exp) {
534 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
535 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
536 TCPOPT_FASTOPEN_MAGIC);
537 p += TCPOLEN_EXP_FASTOPEN_BASE;
538 } else {
539 len = TCPOLEN_FASTOPEN_BASE + foc->len;
540 *p++ = TCPOPT_FASTOPEN;
541 *p++ = len;
542 }
543
544 memcpy(p, foc->val, foc->len);
545 if ((len & 3) == 2) {
546 p[foc->len] = TCPOPT_NOP;
547 p[foc->len + 1] = TCPOPT_NOP;
548 }
549 ptr += (len + 3) >> 2;
550 }
551 }
552
553 /* Compute TCP options for SYN packets. This is not the final
554 * network wire format yet.
555 */
556 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
557 struct tcp_out_options *opts,
558 struct tcp_md5sig_key **md5)
559 {
560 struct tcp_sock *tp = tcp_sk(sk);
561 unsigned int remaining = MAX_TCP_OPTION_SPACE;
562 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
563
564 #ifdef CONFIG_TCP_MD5SIG
565 *md5 = tp->af_specific->md5_lookup(sk, sk);
566 if (*md5) {
567 opts->options |= OPTION_MD5;
568 remaining -= TCPOLEN_MD5SIG_ALIGNED;
569 }
570 #else
571 *md5 = NULL;
572 #endif
573
574 /* We always get an MSS option. The option bytes which will be seen in
575 * normal data packets should timestamps be used, must be in the MSS
576 * advertised. But we subtract them from tp->mss_cache so that
577 * calculations in tcp_sendmsg are simpler etc. So account for this
578 * fact here if necessary. If we don't do this correctly, as a
579 * receiver we won't recognize data packets as being full sized when we
580 * should, and thus we won't abide by the delayed ACK rules correctly.
581 * SACKs don't matter, we never delay an ACK when we have any of those
582 * going out. */
583 opts->mss = tcp_advertise_mss(sk);
584 remaining -= TCPOLEN_MSS_ALIGNED;
585
586 if (likely(sysctl_tcp_timestamps && !*md5)) {
587 opts->options |= OPTION_TS;
588 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
589 opts->tsecr = tp->rx_opt.ts_recent;
590 remaining -= TCPOLEN_TSTAMP_ALIGNED;
591 }
592 if (likely(sysctl_tcp_window_scaling)) {
593 opts->ws = tp->rx_opt.rcv_wscale;
594 opts->options |= OPTION_WSCALE;
595 remaining -= TCPOLEN_WSCALE_ALIGNED;
596 }
597 if (likely(sysctl_tcp_sack)) {
598 opts->options |= OPTION_SACK_ADVERTISE;
599 if (unlikely(!(OPTION_TS & opts->options)))
600 remaining -= TCPOLEN_SACKPERM_ALIGNED;
601 }
602
603 if (fastopen && fastopen->cookie.len >= 0) {
604 u32 need = fastopen->cookie.len;
605
606 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
607 TCPOLEN_FASTOPEN_BASE;
608 need = (need + 3) & ~3U; /* Align to 32 bits */
609 if (remaining >= need) {
610 opts->options |= OPTION_FAST_OPEN_COOKIE;
611 opts->fastopen_cookie = &fastopen->cookie;
612 remaining -= need;
613 tp->syn_fastopen = 1;
614 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
615 }
616 }
617
618 return MAX_TCP_OPTION_SPACE - remaining;
619 }
620
621 /* Set up TCP options for SYN-ACKs. */
622 static unsigned int tcp_synack_options(struct sock *sk,
623 struct request_sock *req,
624 unsigned int mss, struct sk_buff *skb,
625 struct tcp_out_options *opts,
626 const struct tcp_md5sig_key *md5,
627 struct tcp_fastopen_cookie *foc)
628 {
629 struct inet_request_sock *ireq = inet_rsk(req);
630 unsigned int remaining = MAX_TCP_OPTION_SPACE;
631
632 #ifdef CONFIG_TCP_MD5SIG
633 if (md5) {
634 opts->options |= OPTION_MD5;
635 remaining -= TCPOLEN_MD5SIG_ALIGNED;
636
637 /* We can't fit any SACK blocks in a packet with MD5 + TS
638 * options. There was discussion about disabling SACK
639 * rather than TS in order to fit in better with old,
640 * buggy kernels, but that was deemed to be unnecessary.
641 */
642 ireq->tstamp_ok &= !ireq->sack_ok;
643 }
644 #endif
645
646 /* We always send an MSS option. */
647 opts->mss = mss;
648 remaining -= TCPOLEN_MSS_ALIGNED;
649
650 if (likely(ireq->wscale_ok)) {
651 opts->ws = ireq->rcv_wscale;
652 opts->options |= OPTION_WSCALE;
653 remaining -= TCPOLEN_WSCALE_ALIGNED;
654 }
655 if (likely(ireq->tstamp_ok)) {
656 opts->options |= OPTION_TS;
657 opts->tsval = tcp_skb_timestamp(skb);
658 opts->tsecr = req->ts_recent;
659 remaining -= TCPOLEN_TSTAMP_ALIGNED;
660 }
661 if (likely(ireq->sack_ok)) {
662 opts->options |= OPTION_SACK_ADVERTISE;
663 if (unlikely(!ireq->tstamp_ok))
664 remaining -= TCPOLEN_SACKPERM_ALIGNED;
665 }
666 if (foc != NULL && foc->len >= 0) {
667 u32 need = foc->len;
668
669 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
670 TCPOLEN_FASTOPEN_BASE;
671 need = (need + 3) & ~3U; /* Align to 32 bits */
672 if (remaining >= need) {
673 opts->options |= OPTION_FAST_OPEN_COOKIE;
674 opts->fastopen_cookie = foc;
675 remaining -= need;
676 }
677 }
678
679 return MAX_TCP_OPTION_SPACE - remaining;
680 }
681
682 /* Compute TCP options for ESTABLISHED sockets. This is not the
683 * final wire format yet.
684 */
685 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
686 struct tcp_out_options *opts,
687 struct tcp_md5sig_key **md5)
688 {
689 struct tcp_sock *tp = tcp_sk(sk);
690 unsigned int size = 0;
691 unsigned int eff_sacks;
692
693 opts->options = 0;
694
695 #ifdef CONFIG_TCP_MD5SIG
696 *md5 = tp->af_specific->md5_lookup(sk, sk);
697 if (unlikely(*md5)) {
698 opts->options |= OPTION_MD5;
699 size += TCPOLEN_MD5SIG_ALIGNED;
700 }
701 #else
702 *md5 = NULL;
703 #endif
704
705 if (likely(tp->rx_opt.tstamp_ok)) {
706 opts->options |= OPTION_TS;
707 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
708 opts->tsecr = tp->rx_opt.ts_recent;
709 size += TCPOLEN_TSTAMP_ALIGNED;
710 }
711
712 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
713 if (unlikely(eff_sacks)) {
714 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
715 opts->num_sack_blocks =
716 min_t(unsigned int, eff_sacks,
717 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
718 TCPOLEN_SACK_PERBLOCK);
719 size += TCPOLEN_SACK_BASE_ALIGNED +
720 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
721 }
722
723 return size;
724 }
725
726
727 /* TCP SMALL QUEUES (TSQ)
728 *
729 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
730 * to reduce RTT and bufferbloat.
731 * We do this using a special skb destructor (tcp_wfree).
732 *
733 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
734 * needs to be reallocated in a driver.
735 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
736 *
737 * Since transmit from skb destructor is forbidden, we use a tasklet
738 * to process all sockets that eventually need to send more skbs.
739 * We use one tasklet per cpu, with its own queue of sockets.
740 */
741 struct tsq_tasklet {
742 struct tasklet_struct tasklet;
743 struct list_head head; /* queue of tcp sockets */
744 };
745 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
746
747 static void tcp_tsq_handler(struct sock *sk)
748 {
749 if ((1 << sk->sk_state) &
750 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
751 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
752 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
753 0, GFP_ATOMIC);
754 }
755 /*
756 * One tasklet per cpu tries to send more skbs.
757 * We run in tasklet context but need to disable irqs when
758 * transferring tsq->head because tcp_wfree() might
759 * interrupt us (non NAPI drivers)
760 */
761 static void tcp_tasklet_func(unsigned long data)
762 {
763 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
764 LIST_HEAD(list);
765 unsigned long flags;
766 struct list_head *q, *n;
767 struct tcp_sock *tp;
768 struct sock *sk;
769
770 local_irq_save(flags);
771 list_splice_init(&tsq->head, &list);
772 local_irq_restore(flags);
773
774 list_for_each_safe(q, n, &list) {
775 tp = list_entry(q, struct tcp_sock, tsq_node);
776 list_del(&tp->tsq_node);
777
778 sk = (struct sock *)tp;
779 bh_lock_sock(sk);
780
781 if (!sock_owned_by_user(sk)) {
782 tcp_tsq_handler(sk);
783 } else {
784 /* defer the work to tcp_release_cb() */
785 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
786 }
787 bh_unlock_sock(sk);
788
789 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
790 sk_free(sk);
791 }
792 }
793
794 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
795 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
796 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
797 (1UL << TCP_MTU_REDUCED_DEFERRED))
798 /**
799 * tcp_release_cb - tcp release_sock() callback
800 * @sk: socket
801 *
802 * called from release_sock() to perform protocol dependent
803 * actions before socket release.
804 */
805 void tcp_release_cb(struct sock *sk)
806 {
807 struct tcp_sock *tp = tcp_sk(sk);
808 unsigned long flags, nflags;
809
810 /* perform an atomic operation only if at least one flag is set */
811 do {
812 flags = tp->tsq_flags;
813 if (!(flags & TCP_DEFERRED_ALL))
814 return;
815 nflags = flags & ~TCP_DEFERRED_ALL;
816 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
817
818 if (flags & (1UL << TCP_TSQ_DEFERRED))
819 tcp_tsq_handler(sk);
820
821 /* Here begins the tricky part :
822 * We are called from release_sock() with :
823 * 1) BH disabled
824 * 2) sk_lock.slock spinlock held
825 * 3) socket owned by us (sk->sk_lock.owned == 1)
826 *
827 * But following code is meant to be called from BH handlers,
828 * so we should keep BH disabled, but early release socket ownership
829 */
830 sock_release_ownership(sk);
831
832 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
833 tcp_write_timer_handler(sk);
834 __sock_put(sk);
835 }
836 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
837 tcp_delack_timer_handler(sk);
838 __sock_put(sk);
839 }
840 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
841 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
842 __sock_put(sk);
843 }
844 }
845 EXPORT_SYMBOL(tcp_release_cb);
846
847 void __init tcp_tasklet_init(void)
848 {
849 int i;
850
851 for_each_possible_cpu(i) {
852 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
853
854 INIT_LIST_HEAD(&tsq->head);
855 tasklet_init(&tsq->tasklet,
856 tcp_tasklet_func,
857 (unsigned long)tsq);
858 }
859 }
860
861 /*
862 * Write buffer destructor automatically called from kfree_skb.
863 * We can't xmit new skbs from this context, as we might already
864 * hold qdisc lock.
865 */
866 void tcp_wfree(struct sk_buff *skb)
867 {
868 struct sock *sk = skb->sk;
869 struct tcp_sock *tp = tcp_sk(sk);
870 int wmem;
871
872 /* Keep one reference on sk_wmem_alloc.
873 * Will be released by sk_free() from here or tcp_tasklet_func()
874 */
875 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
876
877 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
878 * Wait until our queues (qdisc + devices) are drained.
879 * This gives :
880 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
881 * - chance for incoming ACK (processed by another cpu maybe)
882 * to migrate this flow (skb->ooo_okay will be eventually set)
883 */
884 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
885 goto out;
886
887 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
888 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
889 unsigned long flags;
890 struct tsq_tasklet *tsq;
891
892 /* queue this socket to tasklet queue */
893 local_irq_save(flags);
894 tsq = this_cpu_ptr(&tsq_tasklet);
895 list_add(&tp->tsq_node, &tsq->head);
896 tasklet_schedule(&tsq->tasklet);
897 local_irq_restore(flags);
898 return;
899 }
900 out:
901 sk_free(sk);
902 }
903
904 /* This routine actually transmits TCP packets queued in by
905 * tcp_do_sendmsg(). This is used by both the initial
906 * transmission and possible later retransmissions.
907 * All SKB's seen here are completely headerless. It is our
908 * job to build the TCP header, and pass the packet down to
909 * IP so it can do the same plus pass the packet off to the
910 * device.
911 *
912 * We are working here with either a clone of the original
913 * SKB, or a fresh unique copy made by the retransmit engine.
914 */
915 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
916 gfp_t gfp_mask)
917 {
918 const struct inet_connection_sock *icsk = inet_csk(sk);
919 struct inet_sock *inet;
920 struct tcp_sock *tp;
921 struct tcp_skb_cb *tcb;
922 struct tcp_out_options opts;
923 unsigned int tcp_options_size, tcp_header_size;
924 struct tcp_md5sig_key *md5;
925 struct tcphdr *th;
926 int err;
927
928 BUG_ON(!skb || !tcp_skb_pcount(skb));
929
930 if (clone_it) {
931 skb_mstamp_get(&skb->skb_mstamp);
932
933 if (unlikely(skb_cloned(skb)))
934 skb = pskb_copy(skb, gfp_mask);
935 else
936 skb = skb_clone(skb, gfp_mask);
937 if (unlikely(!skb))
938 return -ENOBUFS;
939 }
940
941 inet = inet_sk(sk);
942 tp = tcp_sk(sk);
943 tcb = TCP_SKB_CB(skb);
944 memset(&opts, 0, sizeof(opts));
945
946 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
947 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
948 else
949 tcp_options_size = tcp_established_options(sk, skb, &opts,
950 &md5);
951 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
952
953 if (tcp_packets_in_flight(tp) == 0)
954 tcp_ca_event(sk, CA_EVENT_TX_START);
955
956 /* if no packet is in qdisc/device queue, then allow XPS to select
957 * another queue. We can be called from tcp_tsq_handler()
958 * which holds one reference to sk_wmem_alloc.
959 *
960 * TODO: Ideally, in-flight pure ACK packets should not matter here.
961 * One way to get this would be to set skb->truesize = 2 on them.
962 */
963 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
964
965 skb_push(skb, tcp_header_size);
966 skb_reset_transport_header(skb);
967
968 skb_orphan(skb);
969 skb->sk = sk;
970 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
971 skb_set_hash_from_sk(skb, sk);
972 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
973
974 /* Build TCP header and checksum it. */
975 th = tcp_hdr(skb);
976 th->source = inet->inet_sport;
977 th->dest = inet->inet_dport;
978 th->seq = htonl(tcb->seq);
979 th->ack_seq = htonl(tp->rcv_nxt);
980 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
981 tcb->tcp_flags);
982
983 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
984 /* RFC1323: The window in SYN & SYN/ACK segments
985 * is never scaled.
986 */
987 th->window = htons(min(tp->rcv_wnd, 65535U));
988 } else {
989 th->window = htons(tcp_select_window(sk));
990 }
991 th->check = 0;
992 th->urg_ptr = 0;
993
994 /* The urg_mode check is necessary during a below snd_una win probe */
995 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
996 if (before(tp->snd_up, tcb->seq + 0x10000)) {
997 th->urg_ptr = htons(tp->snd_up - tcb->seq);
998 th->urg = 1;
999 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1000 th->urg_ptr = htons(0xFFFF);
1001 th->urg = 1;
1002 }
1003 }
1004
1005 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1006 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
1007 tcp_ecn_send(sk, skb, tcp_header_size);
1008
1009 #ifdef CONFIG_TCP_MD5SIG
1010 /* Calculate the MD5 hash, as we have all we need now */
1011 if (md5) {
1012 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1013 tp->af_specific->calc_md5_hash(opts.hash_location,
1014 md5, sk, skb);
1015 }
1016 #endif
1017
1018 icsk->icsk_af_ops->send_check(sk, skb);
1019
1020 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1021 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1022
1023 if (skb->len != tcp_header_size)
1024 tcp_event_data_sent(tp, sk);
1025
1026 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1027 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1028 tcp_skb_pcount(skb));
1029
1030 /* OK, its time to fill skb_shinfo(skb)->gso_segs */
1031 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1032
1033 /* Our usage of tstamp should remain private */
1034 skb->tstamp.tv64 = 0;
1035
1036 /* Cleanup our debris for IP stacks */
1037 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1038 sizeof(struct inet6_skb_parm)));
1039
1040 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1041
1042 if (likely(err <= 0))
1043 return err;
1044
1045 tcp_enter_cwr(sk);
1046
1047 return net_xmit_eval(err);
1048 }
1049
1050 /* This routine just queues the buffer for sending.
1051 *
1052 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1053 * otherwise socket can stall.
1054 */
1055 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1056 {
1057 struct tcp_sock *tp = tcp_sk(sk);
1058
1059 /* Advance write_seq and place onto the write_queue. */
1060 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1061 __skb_header_release(skb);
1062 tcp_add_write_queue_tail(sk, skb);
1063 sk->sk_wmem_queued += skb->truesize;
1064 sk_mem_charge(sk, skb->truesize);
1065 }
1066
1067 /* Initialize TSO segments for a packet. */
1068 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1069 unsigned int mss_now)
1070 {
1071 struct skb_shared_info *shinfo = skb_shinfo(skb);
1072
1073 /* Make sure we own this skb before messing gso_size/gso_segs */
1074 WARN_ON_ONCE(skb_cloned(skb));
1075
1076 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1077 /* Avoid the costly divide in the normal
1078 * non-TSO case.
1079 */
1080 tcp_skb_pcount_set(skb, 1);
1081 shinfo->gso_size = 0;
1082 shinfo->gso_type = 0;
1083 } else {
1084 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1085 shinfo->gso_size = mss_now;
1086 shinfo->gso_type = sk->sk_gso_type;
1087 }
1088 }
1089
1090 /* When a modification to fackets out becomes necessary, we need to check
1091 * skb is counted to fackets_out or not.
1092 */
1093 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1094 int decr)
1095 {
1096 struct tcp_sock *tp = tcp_sk(sk);
1097
1098 if (!tp->sacked_out || tcp_is_reno(tp))
1099 return;
1100
1101 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1102 tp->fackets_out -= decr;
1103 }
1104
1105 /* Pcount in the middle of the write queue got changed, we need to do various
1106 * tweaks to fix counters
1107 */
1108 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1109 {
1110 struct tcp_sock *tp = tcp_sk(sk);
1111
1112 tp->packets_out -= decr;
1113
1114 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1115 tp->sacked_out -= decr;
1116 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1117 tp->retrans_out -= decr;
1118 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1119 tp->lost_out -= decr;
1120
1121 /* Reno case is special. Sigh... */
1122 if (tcp_is_reno(tp) && decr > 0)
1123 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1124
1125 tcp_adjust_fackets_out(sk, skb, decr);
1126
1127 if (tp->lost_skb_hint &&
1128 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1129 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1130 tp->lost_cnt_hint -= decr;
1131
1132 tcp_verify_left_out(tp);
1133 }
1134
1135 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1136 {
1137 struct skb_shared_info *shinfo = skb_shinfo(skb);
1138
1139 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1140 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1141 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1142 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1143
1144 shinfo->tx_flags &= ~tsflags;
1145 shinfo2->tx_flags |= tsflags;
1146 swap(shinfo->tskey, shinfo2->tskey);
1147 }
1148 }
1149
1150 /* Function to create two new TCP segments. Shrinks the given segment
1151 * to the specified size and appends a new segment with the rest of the
1152 * packet to the list. This won't be called frequently, I hope.
1153 * Remember, these are still headerless SKBs at this point.
1154 */
1155 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1156 unsigned int mss_now, gfp_t gfp)
1157 {
1158 struct tcp_sock *tp = tcp_sk(sk);
1159 struct sk_buff *buff;
1160 int nsize, old_factor;
1161 int nlen;
1162 u8 flags;
1163
1164 if (WARN_ON(len > skb->len))
1165 return -EINVAL;
1166
1167 nsize = skb_headlen(skb) - len;
1168 if (nsize < 0)
1169 nsize = 0;
1170
1171 if (skb_unclone(skb, gfp))
1172 return -ENOMEM;
1173
1174 /* Get a new skb... force flag on. */
1175 buff = sk_stream_alloc_skb(sk, nsize, gfp);
1176 if (!buff)
1177 return -ENOMEM; /* We'll just try again later. */
1178
1179 sk->sk_wmem_queued += buff->truesize;
1180 sk_mem_charge(sk, buff->truesize);
1181 nlen = skb->len - len - nsize;
1182 buff->truesize += nlen;
1183 skb->truesize -= nlen;
1184
1185 /* Correct the sequence numbers. */
1186 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1187 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1188 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1189
1190 /* PSH and FIN should only be set in the second packet. */
1191 flags = TCP_SKB_CB(skb)->tcp_flags;
1192 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1193 TCP_SKB_CB(buff)->tcp_flags = flags;
1194 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1195
1196 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1197 /* Copy and checksum data tail into the new buffer. */
1198 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1199 skb_put(buff, nsize),
1200 nsize, 0);
1201
1202 skb_trim(skb, len);
1203
1204 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1205 } else {
1206 skb->ip_summed = CHECKSUM_PARTIAL;
1207 skb_split(skb, buff, len);
1208 }
1209
1210 buff->ip_summed = skb->ip_summed;
1211
1212 buff->tstamp = skb->tstamp;
1213 tcp_fragment_tstamp(skb, buff);
1214
1215 old_factor = tcp_skb_pcount(skb);
1216
1217 /* Fix up tso_factor for both original and new SKB. */
1218 tcp_set_skb_tso_segs(sk, skb, mss_now);
1219 tcp_set_skb_tso_segs(sk, buff, mss_now);
1220
1221 /* If this packet has been sent out already, we must
1222 * adjust the various packet counters.
1223 */
1224 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1225 int diff = old_factor - tcp_skb_pcount(skb) -
1226 tcp_skb_pcount(buff);
1227
1228 if (diff)
1229 tcp_adjust_pcount(sk, skb, diff);
1230 }
1231
1232 /* Link BUFF into the send queue. */
1233 __skb_header_release(buff);
1234 tcp_insert_write_queue_after(skb, buff, sk);
1235
1236 return 0;
1237 }
1238
1239 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1240 * eventually). The difference is that pulled data not copied, but
1241 * immediately discarded.
1242 */
1243 static void __pskb_trim_head(struct sk_buff *skb, int len)
1244 {
1245 struct skb_shared_info *shinfo;
1246 int i, k, eat;
1247
1248 eat = min_t(int, len, skb_headlen(skb));
1249 if (eat) {
1250 __skb_pull(skb, eat);
1251 len -= eat;
1252 if (!len)
1253 return;
1254 }
1255 eat = len;
1256 k = 0;
1257 shinfo = skb_shinfo(skb);
1258 for (i = 0; i < shinfo->nr_frags; i++) {
1259 int size = skb_frag_size(&shinfo->frags[i]);
1260
1261 if (size <= eat) {
1262 skb_frag_unref(skb, i);
1263 eat -= size;
1264 } else {
1265 shinfo->frags[k] = shinfo->frags[i];
1266 if (eat) {
1267 shinfo->frags[k].page_offset += eat;
1268 skb_frag_size_sub(&shinfo->frags[k], eat);
1269 eat = 0;
1270 }
1271 k++;
1272 }
1273 }
1274 shinfo->nr_frags = k;
1275
1276 skb_reset_tail_pointer(skb);
1277 skb->data_len -= len;
1278 skb->len = skb->data_len;
1279 }
1280
1281 /* Remove acked data from a packet in the transmit queue. */
1282 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1283 {
1284 if (skb_unclone(skb, GFP_ATOMIC))
1285 return -ENOMEM;
1286
1287 __pskb_trim_head(skb, len);
1288
1289 TCP_SKB_CB(skb)->seq += len;
1290 skb->ip_summed = CHECKSUM_PARTIAL;
1291
1292 skb->truesize -= len;
1293 sk->sk_wmem_queued -= len;
1294 sk_mem_uncharge(sk, len);
1295 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1296
1297 /* Any change of skb->len requires recalculation of tso factor. */
1298 if (tcp_skb_pcount(skb) > 1)
1299 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1300
1301 return 0;
1302 }
1303
1304 /* Calculate MSS not accounting any TCP options. */
1305 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1306 {
1307 const struct tcp_sock *tp = tcp_sk(sk);
1308 const struct inet_connection_sock *icsk = inet_csk(sk);
1309 int mss_now;
1310
1311 /* Calculate base mss without TCP options:
1312 It is MMS_S - sizeof(tcphdr) of rfc1122
1313 */
1314 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1315
1316 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1317 if (icsk->icsk_af_ops->net_frag_header_len) {
1318 const struct dst_entry *dst = __sk_dst_get(sk);
1319
1320 if (dst && dst_allfrag(dst))
1321 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1322 }
1323
1324 /* Clamp it (mss_clamp does not include tcp options) */
1325 if (mss_now > tp->rx_opt.mss_clamp)
1326 mss_now = tp->rx_opt.mss_clamp;
1327
1328 /* Now subtract optional transport overhead */
1329 mss_now -= icsk->icsk_ext_hdr_len;
1330
1331 /* Then reserve room for full set of TCP options and 8 bytes of data */
1332 if (mss_now < 48)
1333 mss_now = 48;
1334 return mss_now;
1335 }
1336
1337 /* Calculate MSS. Not accounting for SACKs here. */
1338 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1339 {
1340 /* Subtract TCP options size, not including SACKs */
1341 return __tcp_mtu_to_mss(sk, pmtu) -
1342 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1343 }
1344
1345 /* Inverse of above */
1346 int tcp_mss_to_mtu(struct sock *sk, int mss)
1347 {
1348 const struct tcp_sock *tp = tcp_sk(sk);
1349 const struct inet_connection_sock *icsk = inet_csk(sk);
1350 int mtu;
1351
1352 mtu = mss +
1353 tp->tcp_header_len +
1354 icsk->icsk_ext_hdr_len +
1355 icsk->icsk_af_ops->net_header_len;
1356
1357 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1358 if (icsk->icsk_af_ops->net_frag_header_len) {
1359 const struct dst_entry *dst = __sk_dst_get(sk);
1360
1361 if (dst && dst_allfrag(dst))
1362 mtu += icsk->icsk_af_ops->net_frag_header_len;
1363 }
1364 return mtu;
1365 }
1366
1367 /* MTU probing init per socket */
1368 void tcp_mtup_init(struct sock *sk)
1369 {
1370 struct tcp_sock *tp = tcp_sk(sk);
1371 struct inet_connection_sock *icsk = inet_csk(sk);
1372 struct net *net = sock_net(sk);
1373
1374 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1375 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1376 icsk->icsk_af_ops->net_header_len;
1377 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1378 icsk->icsk_mtup.probe_size = 0;
1379 if (icsk->icsk_mtup.enabled)
1380 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1381 }
1382 EXPORT_SYMBOL(tcp_mtup_init);
1383
1384 /* This function synchronize snd mss to current pmtu/exthdr set.
1385
1386 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1387 for TCP options, but includes only bare TCP header.
1388
1389 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1390 It is minimum of user_mss and mss received with SYN.
1391 It also does not include TCP options.
1392
1393 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1394
1395 tp->mss_cache is current effective sending mss, including
1396 all tcp options except for SACKs. It is evaluated,
1397 taking into account current pmtu, but never exceeds
1398 tp->rx_opt.mss_clamp.
1399
1400 NOTE1. rfc1122 clearly states that advertised MSS
1401 DOES NOT include either tcp or ip options.
1402
1403 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1404 are READ ONLY outside this function. --ANK (980731)
1405 */
1406 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1407 {
1408 struct tcp_sock *tp = tcp_sk(sk);
1409 struct inet_connection_sock *icsk = inet_csk(sk);
1410 int mss_now;
1411
1412 if (icsk->icsk_mtup.search_high > pmtu)
1413 icsk->icsk_mtup.search_high = pmtu;
1414
1415 mss_now = tcp_mtu_to_mss(sk, pmtu);
1416 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1417
1418 /* And store cached results */
1419 icsk->icsk_pmtu_cookie = pmtu;
1420 if (icsk->icsk_mtup.enabled)
1421 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1422 tp->mss_cache = mss_now;
1423
1424 return mss_now;
1425 }
1426 EXPORT_SYMBOL(tcp_sync_mss);
1427
1428 /* Compute the current effective MSS, taking SACKs and IP options,
1429 * and even PMTU discovery events into account.
1430 */
1431 unsigned int tcp_current_mss(struct sock *sk)
1432 {
1433 const struct tcp_sock *tp = tcp_sk(sk);
1434 const struct dst_entry *dst = __sk_dst_get(sk);
1435 u32 mss_now;
1436 unsigned int header_len;
1437 struct tcp_out_options opts;
1438 struct tcp_md5sig_key *md5;
1439
1440 mss_now = tp->mss_cache;
1441
1442 if (dst) {
1443 u32 mtu = dst_mtu(dst);
1444 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1445 mss_now = tcp_sync_mss(sk, mtu);
1446 }
1447
1448 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1449 sizeof(struct tcphdr);
1450 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1451 * some common options. If this is an odd packet (because we have SACK
1452 * blocks etc) then our calculated header_len will be different, and
1453 * we have to adjust mss_now correspondingly */
1454 if (header_len != tp->tcp_header_len) {
1455 int delta = (int) header_len - tp->tcp_header_len;
1456 mss_now -= delta;
1457 }
1458
1459 return mss_now;
1460 }
1461
1462 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1463 * As additional protections, we do not touch cwnd in retransmission phases,
1464 * and if application hit its sndbuf limit recently.
1465 */
1466 static void tcp_cwnd_application_limited(struct sock *sk)
1467 {
1468 struct tcp_sock *tp = tcp_sk(sk);
1469
1470 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1471 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1472 /* Limited by application or receiver window. */
1473 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1474 u32 win_used = max(tp->snd_cwnd_used, init_win);
1475 if (win_used < tp->snd_cwnd) {
1476 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1477 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1478 }
1479 tp->snd_cwnd_used = 0;
1480 }
1481 tp->snd_cwnd_stamp = tcp_time_stamp;
1482 }
1483
1484 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1485 {
1486 struct tcp_sock *tp = tcp_sk(sk);
1487
1488 /* Track the maximum number of outstanding packets in each
1489 * window, and remember whether we were cwnd-limited then.
1490 */
1491 if (!before(tp->snd_una, tp->max_packets_seq) ||
1492 tp->packets_out > tp->max_packets_out) {
1493 tp->max_packets_out = tp->packets_out;
1494 tp->max_packets_seq = tp->snd_nxt;
1495 tp->is_cwnd_limited = is_cwnd_limited;
1496 }
1497
1498 if (tcp_is_cwnd_limited(sk)) {
1499 /* Network is feed fully. */
1500 tp->snd_cwnd_used = 0;
1501 tp->snd_cwnd_stamp = tcp_time_stamp;
1502 } else {
1503 /* Network starves. */
1504 if (tp->packets_out > tp->snd_cwnd_used)
1505 tp->snd_cwnd_used = tp->packets_out;
1506
1507 if (sysctl_tcp_slow_start_after_idle &&
1508 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1509 tcp_cwnd_application_limited(sk);
1510 }
1511 }
1512
1513 /* Minshall's variant of the Nagle send check. */
1514 static bool tcp_minshall_check(const struct tcp_sock *tp)
1515 {
1516 return after(tp->snd_sml, tp->snd_una) &&
1517 !after(tp->snd_sml, tp->snd_nxt);
1518 }
1519
1520 /* Update snd_sml if this skb is under mss
1521 * Note that a TSO packet might end with a sub-mss segment
1522 * The test is really :
1523 * if ((skb->len % mss) != 0)
1524 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1525 * But we can avoid doing the divide again given we already have
1526 * skb_pcount = skb->len / mss_now
1527 */
1528 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1529 const struct sk_buff *skb)
1530 {
1531 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1532 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1533 }
1534
1535 /* Return false, if packet can be sent now without violation Nagle's rules:
1536 * 1. It is full sized. (provided by caller in %partial bool)
1537 * 2. Or it contains FIN. (already checked by caller)
1538 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1539 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1540 * With Minshall's modification: all sent small packets are ACKed.
1541 */
1542 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1543 int nonagle)
1544 {
1545 return partial &&
1546 ((nonagle & TCP_NAGLE_CORK) ||
1547 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1548 }
1549
1550 /* Return how many segs we'd like on a TSO packet,
1551 * to send one TSO packet per ms
1552 */
1553 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1554 {
1555 u32 bytes, segs;
1556
1557 bytes = min(sk->sk_pacing_rate >> 10,
1558 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1559
1560 /* Goal is to send at least one packet per ms,
1561 * not one big TSO packet every 100 ms.
1562 * This preserves ACK clocking and is consistent
1563 * with tcp_tso_should_defer() heuristic.
1564 */
1565 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1566
1567 return min_t(u32, segs, sk->sk_gso_max_segs);
1568 }
1569
1570 /* Returns the portion of skb which can be sent right away */
1571 static unsigned int tcp_mss_split_point(const struct sock *sk,
1572 const struct sk_buff *skb,
1573 unsigned int mss_now,
1574 unsigned int max_segs,
1575 int nonagle)
1576 {
1577 const struct tcp_sock *tp = tcp_sk(sk);
1578 u32 partial, needed, window, max_len;
1579
1580 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1581 max_len = mss_now * max_segs;
1582
1583 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1584 return max_len;
1585
1586 needed = min(skb->len, window);
1587
1588 if (max_len <= needed)
1589 return max_len;
1590
1591 partial = needed % mss_now;
1592 /* If last segment is not a full MSS, check if Nagle rules allow us
1593 * to include this last segment in this skb.
1594 * Otherwise, we'll split the skb at last MSS boundary
1595 */
1596 if (tcp_nagle_check(partial != 0, tp, nonagle))
1597 return needed - partial;
1598
1599 return needed;
1600 }
1601
1602 /* Can at least one segment of SKB be sent right now, according to the
1603 * congestion window rules? If so, return how many segments are allowed.
1604 */
1605 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1606 const struct sk_buff *skb)
1607 {
1608 u32 in_flight, cwnd, halfcwnd;
1609
1610 /* Don't be strict about the congestion window for the final FIN. */
1611 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1612 tcp_skb_pcount(skb) == 1)
1613 return 1;
1614
1615 in_flight = tcp_packets_in_flight(tp);
1616 cwnd = tp->snd_cwnd;
1617 if (in_flight >= cwnd)
1618 return 0;
1619
1620 /* For better scheduling, ensure we have at least
1621 * 2 GSO packets in flight.
1622 */
1623 halfcwnd = max(cwnd >> 1, 1U);
1624 return min(halfcwnd, cwnd - in_flight);
1625 }
1626
1627 /* Initialize TSO state of a skb.
1628 * This must be invoked the first time we consider transmitting
1629 * SKB onto the wire.
1630 */
1631 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1632 unsigned int mss_now)
1633 {
1634 int tso_segs = tcp_skb_pcount(skb);
1635
1636 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1637 tcp_set_skb_tso_segs(sk, skb, mss_now);
1638 tso_segs = tcp_skb_pcount(skb);
1639 }
1640 return tso_segs;
1641 }
1642
1643
1644 /* Return true if the Nagle test allows this packet to be
1645 * sent now.
1646 */
1647 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1648 unsigned int cur_mss, int nonagle)
1649 {
1650 /* Nagle rule does not apply to frames, which sit in the middle of the
1651 * write_queue (they have no chances to get new data).
1652 *
1653 * This is implemented in the callers, where they modify the 'nonagle'
1654 * argument based upon the location of SKB in the send queue.
1655 */
1656 if (nonagle & TCP_NAGLE_PUSH)
1657 return true;
1658
1659 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1660 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1661 return true;
1662
1663 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1664 return true;
1665
1666 return false;
1667 }
1668
1669 /* Does at least the first segment of SKB fit into the send window? */
1670 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1671 const struct sk_buff *skb,
1672 unsigned int cur_mss)
1673 {
1674 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1675
1676 if (skb->len > cur_mss)
1677 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1678
1679 return !after(end_seq, tcp_wnd_end(tp));
1680 }
1681
1682 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1683 * should be put on the wire right now. If so, it returns the number of
1684 * packets allowed by the congestion window.
1685 */
1686 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1687 unsigned int cur_mss, int nonagle)
1688 {
1689 const struct tcp_sock *tp = tcp_sk(sk);
1690 unsigned int cwnd_quota;
1691
1692 tcp_init_tso_segs(sk, skb, cur_mss);
1693
1694 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1695 return 0;
1696
1697 cwnd_quota = tcp_cwnd_test(tp, skb);
1698 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1699 cwnd_quota = 0;
1700
1701 return cwnd_quota;
1702 }
1703
1704 /* Test if sending is allowed right now. */
1705 bool tcp_may_send_now(struct sock *sk)
1706 {
1707 const struct tcp_sock *tp = tcp_sk(sk);
1708 struct sk_buff *skb = tcp_send_head(sk);
1709
1710 return skb &&
1711 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1712 (tcp_skb_is_last(sk, skb) ?
1713 tp->nonagle : TCP_NAGLE_PUSH));
1714 }
1715
1716 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1717 * which is put after SKB on the list. It is very much like
1718 * tcp_fragment() except that it may make several kinds of assumptions
1719 * in order to speed up the splitting operation. In particular, we
1720 * know that all the data is in scatter-gather pages, and that the
1721 * packet has never been sent out before (and thus is not cloned).
1722 */
1723 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1724 unsigned int mss_now, gfp_t gfp)
1725 {
1726 struct sk_buff *buff;
1727 int nlen = skb->len - len;
1728 u8 flags;
1729
1730 /* All of a TSO frame must be composed of paged data. */
1731 if (skb->len != skb->data_len)
1732 return tcp_fragment(sk, skb, len, mss_now, gfp);
1733
1734 buff = sk_stream_alloc_skb(sk, 0, gfp);
1735 if (unlikely(!buff))
1736 return -ENOMEM;
1737
1738 sk->sk_wmem_queued += buff->truesize;
1739 sk_mem_charge(sk, buff->truesize);
1740 buff->truesize += nlen;
1741 skb->truesize -= nlen;
1742
1743 /* Correct the sequence numbers. */
1744 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1745 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1746 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1747
1748 /* PSH and FIN should only be set in the second packet. */
1749 flags = TCP_SKB_CB(skb)->tcp_flags;
1750 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1751 TCP_SKB_CB(buff)->tcp_flags = flags;
1752
1753 /* This packet was never sent out yet, so no SACK bits. */
1754 TCP_SKB_CB(buff)->sacked = 0;
1755
1756 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1757 skb_split(skb, buff, len);
1758 tcp_fragment_tstamp(skb, buff);
1759
1760 /* Fix up tso_factor for both original and new SKB. */
1761 tcp_set_skb_tso_segs(sk, skb, mss_now);
1762 tcp_set_skb_tso_segs(sk, buff, mss_now);
1763
1764 /* Link BUFF into the send queue. */
1765 __skb_header_release(buff);
1766 tcp_insert_write_queue_after(skb, buff, sk);
1767
1768 return 0;
1769 }
1770
1771 /* Try to defer sending, if possible, in order to minimize the amount
1772 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1773 *
1774 * This algorithm is from John Heffner.
1775 */
1776 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1777 bool *is_cwnd_limited, u32 max_segs)
1778 {
1779 const struct inet_connection_sock *icsk = inet_csk(sk);
1780 u32 age, send_win, cong_win, limit, in_flight;
1781 struct tcp_sock *tp = tcp_sk(sk);
1782 struct skb_mstamp now;
1783 struct sk_buff *head;
1784 int win_divisor;
1785
1786 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1787 goto send_now;
1788
1789 if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR)))
1790 goto send_now;
1791
1792 /* Avoid bursty behavior by allowing defer
1793 * only if the last write was recent.
1794 */
1795 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1796 goto send_now;
1797
1798 in_flight = tcp_packets_in_flight(tp);
1799
1800 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1801
1802 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1803
1804 /* From in_flight test above, we know that cwnd > in_flight. */
1805 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1806
1807 limit = min(send_win, cong_win);
1808
1809 /* If a full-sized TSO skb can be sent, do it. */
1810 if (limit >= max_segs * tp->mss_cache)
1811 goto send_now;
1812
1813 /* Middle in queue won't get any more data, full sendable already? */
1814 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1815 goto send_now;
1816
1817 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1818 if (win_divisor) {
1819 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1820
1821 /* If at least some fraction of a window is available,
1822 * just use it.
1823 */
1824 chunk /= win_divisor;
1825 if (limit >= chunk)
1826 goto send_now;
1827 } else {
1828 /* Different approach, try not to defer past a single
1829 * ACK. Receiver should ACK every other full sized
1830 * frame, so if we have space for more than 3 frames
1831 * then send now.
1832 */
1833 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1834 goto send_now;
1835 }
1836
1837 head = tcp_write_queue_head(sk);
1838 skb_mstamp_get(&now);
1839 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1840 /* If next ACK is likely to come too late (half srtt), do not defer */
1841 if (age < (tp->srtt_us >> 4))
1842 goto send_now;
1843
1844 /* Ok, it looks like it is advisable to defer. */
1845
1846 if (cong_win < send_win && cong_win < skb->len)
1847 *is_cwnd_limited = true;
1848
1849 return true;
1850
1851 send_now:
1852 return false;
1853 }
1854
1855 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1856 {
1857 struct inet_connection_sock *icsk = inet_csk(sk);
1858 struct tcp_sock *tp = tcp_sk(sk);
1859 struct net *net = sock_net(sk);
1860 u32 interval;
1861 s32 delta;
1862
1863 interval = net->ipv4.sysctl_tcp_probe_interval;
1864 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1865 if (unlikely(delta >= interval * HZ)) {
1866 int mss = tcp_current_mss(sk);
1867
1868 /* Update current search range */
1869 icsk->icsk_mtup.probe_size = 0;
1870 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1871 sizeof(struct tcphdr) +
1872 icsk->icsk_af_ops->net_header_len;
1873 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1874
1875 /* Update probe time stamp */
1876 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1877 }
1878 }
1879
1880 /* Create a new MTU probe if we are ready.
1881 * MTU probe is regularly attempting to increase the path MTU by
1882 * deliberately sending larger packets. This discovers routing
1883 * changes resulting in larger path MTUs.
1884 *
1885 * Returns 0 if we should wait to probe (no cwnd available),
1886 * 1 if a probe was sent,
1887 * -1 otherwise
1888 */
1889 static int tcp_mtu_probe(struct sock *sk)
1890 {
1891 struct tcp_sock *tp = tcp_sk(sk);
1892 struct inet_connection_sock *icsk = inet_csk(sk);
1893 struct sk_buff *skb, *nskb, *next;
1894 struct net *net = sock_net(sk);
1895 int len;
1896 int probe_size;
1897 int size_needed;
1898 int copy;
1899 int mss_now;
1900 int interval;
1901
1902 /* Not currently probing/verifying,
1903 * not in recovery,
1904 * have enough cwnd, and
1905 * not SACKing (the variable headers throw things off) */
1906 if (!icsk->icsk_mtup.enabled ||
1907 icsk->icsk_mtup.probe_size ||
1908 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1909 tp->snd_cwnd < 11 ||
1910 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1911 return -1;
1912
1913 /* Use binary search for probe_size between tcp_mss_base,
1914 * and current mss_clamp. if (search_high - search_low)
1915 * smaller than a threshold, backoff from probing.
1916 */
1917 mss_now = tcp_current_mss(sk);
1918 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1919 icsk->icsk_mtup.search_low) >> 1);
1920 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1921 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1922 /* When misfortune happens, we are reprobing actively,
1923 * and then reprobe timer has expired. We stick with current
1924 * probing process by not resetting search range to its orignal.
1925 */
1926 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1927 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1928 /* Check whether enough time has elaplased for
1929 * another round of probing.
1930 */
1931 tcp_mtu_check_reprobe(sk);
1932 return -1;
1933 }
1934
1935 /* Have enough data in the send queue to probe? */
1936 if (tp->write_seq - tp->snd_nxt < size_needed)
1937 return -1;
1938
1939 if (tp->snd_wnd < size_needed)
1940 return -1;
1941 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1942 return 0;
1943
1944 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1945 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1946 if (!tcp_packets_in_flight(tp))
1947 return -1;
1948 else
1949 return 0;
1950 }
1951
1952 /* We're allowed to probe. Build it now. */
1953 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC);
1954 if (!nskb)
1955 return -1;
1956 sk->sk_wmem_queued += nskb->truesize;
1957 sk_mem_charge(sk, nskb->truesize);
1958
1959 skb = tcp_send_head(sk);
1960
1961 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1962 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1963 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1964 TCP_SKB_CB(nskb)->sacked = 0;
1965 nskb->csum = 0;
1966 nskb->ip_summed = skb->ip_summed;
1967
1968 tcp_insert_write_queue_before(nskb, skb, sk);
1969
1970 len = 0;
1971 tcp_for_write_queue_from_safe(skb, next, sk) {
1972 copy = min_t(int, skb->len, probe_size - len);
1973 if (nskb->ip_summed)
1974 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1975 else
1976 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1977 skb_put(nskb, copy),
1978 copy, nskb->csum);
1979
1980 if (skb->len <= copy) {
1981 /* We've eaten all the data from this skb.
1982 * Throw it away. */
1983 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1984 tcp_unlink_write_queue(skb, sk);
1985 sk_wmem_free_skb(sk, skb);
1986 } else {
1987 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1988 ~(TCPHDR_FIN|TCPHDR_PSH);
1989 if (!skb_shinfo(skb)->nr_frags) {
1990 skb_pull(skb, copy);
1991 if (skb->ip_summed != CHECKSUM_PARTIAL)
1992 skb->csum = csum_partial(skb->data,
1993 skb->len, 0);
1994 } else {
1995 __pskb_trim_head(skb, copy);
1996 tcp_set_skb_tso_segs(sk, skb, mss_now);
1997 }
1998 TCP_SKB_CB(skb)->seq += copy;
1999 }
2000
2001 len += copy;
2002
2003 if (len >= probe_size)
2004 break;
2005 }
2006 tcp_init_tso_segs(sk, nskb, nskb->len);
2007
2008 /* We're ready to send. If this fails, the probe will
2009 * be resegmented into mss-sized pieces by tcp_write_xmit().
2010 */
2011 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2012 /* Decrement cwnd here because we are sending
2013 * effectively two packets. */
2014 tp->snd_cwnd--;
2015 tcp_event_new_data_sent(sk, nskb);
2016
2017 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2018 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2019 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2020
2021 return 1;
2022 }
2023
2024 return -1;
2025 }
2026
2027 /* This routine writes packets to the network. It advances the
2028 * send_head. This happens as incoming acks open up the remote
2029 * window for us.
2030 *
2031 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2032 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2033 * account rare use of URG, this is not a big flaw.
2034 *
2035 * Send at most one packet when push_one > 0. Temporarily ignore
2036 * cwnd limit to force at most one packet out when push_one == 2.
2037
2038 * Returns true, if no segments are in flight and we have queued segments,
2039 * but cannot send anything now because of SWS or another problem.
2040 */
2041 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2042 int push_one, gfp_t gfp)
2043 {
2044 struct tcp_sock *tp = tcp_sk(sk);
2045 struct sk_buff *skb;
2046 unsigned int tso_segs, sent_pkts;
2047 int cwnd_quota;
2048 int result;
2049 bool is_cwnd_limited = false;
2050 u32 max_segs;
2051
2052 sent_pkts = 0;
2053
2054 if (!push_one) {
2055 /* Do MTU probing. */
2056 result = tcp_mtu_probe(sk);
2057 if (!result) {
2058 return false;
2059 } else if (result > 0) {
2060 sent_pkts = 1;
2061 }
2062 }
2063
2064 max_segs = tcp_tso_autosize(sk, mss_now);
2065 while ((skb = tcp_send_head(sk))) {
2066 unsigned int limit;
2067
2068 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
2069 BUG_ON(!tso_segs);
2070
2071 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2072 /* "skb_mstamp" is used as a start point for the retransmit timer */
2073 skb_mstamp_get(&skb->skb_mstamp);
2074 goto repair; /* Skip network transmission */
2075 }
2076
2077 cwnd_quota = tcp_cwnd_test(tp, skb);
2078 if (!cwnd_quota) {
2079 is_cwnd_limited = true;
2080 if (push_one == 2)
2081 /* Force out a loss probe pkt. */
2082 cwnd_quota = 1;
2083 else
2084 break;
2085 }
2086
2087 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2088 break;
2089
2090 if (tso_segs == 1 || !max_segs) {
2091 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2092 (tcp_skb_is_last(sk, skb) ?
2093 nonagle : TCP_NAGLE_PUSH))))
2094 break;
2095 } else {
2096 if (!push_one &&
2097 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2098 max_segs))
2099 break;
2100 }
2101
2102 limit = mss_now;
2103 if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp))
2104 limit = tcp_mss_split_point(sk, skb, mss_now,
2105 min_t(unsigned int,
2106 cwnd_quota,
2107 max_segs),
2108 nonagle);
2109
2110 if (skb->len > limit &&
2111 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2112 break;
2113
2114 /* TCP Small Queues :
2115 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2116 * This allows for :
2117 * - better RTT estimation and ACK scheduling
2118 * - faster recovery
2119 * - high rates
2120 * Alas, some drivers / subsystems require a fair amount
2121 * of queued bytes to ensure line rate.
2122 * One example is wifi aggregation (802.11 AMPDU)
2123 */
2124 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2125 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2126
2127 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2128 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2129 /* It is possible TX completion already happened
2130 * before we set TSQ_THROTTLED, so we must
2131 * test again the condition.
2132 */
2133 smp_mb__after_atomic();
2134 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2135 break;
2136 }
2137
2138 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2139 break;
2140
2141 repair:
2142 /* Advance the send_head. This one is sent out.
2143 * This call will increment packets_out.
2144 */
2145 tcp_event_new_data_sent(sk, skb);
2146
2147 tcp_minshall_update(tp, mss_now, skb);
2148 sent_pkts += tcp_skb_pcount(skb);
2149
2150 if (push_one)
2151 break;
2152 }
2153
2154 if (likely(sent_pkts)) {
2155 if (tcp_in_cwnd_reduction(sk))
2156 tp->prr_out += sent_pkts;
2157
2158 /* Send one loss probe per tail loss episode. */
2159 if (push_one != 2)
2160 tcp_schedule_loss_probe(sk);
2161 tcp_cwnd_validate(sk, is_cwnd_limited);
2162 return false;
2163 }
2164 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2165 }
2166
2167 bool tcp_schedule_loss_probe(struct sock *sk)
2168 {
2169 struct inet_connection_sock *icsk = inet_csk(sk);
2170 struct tcp_sock *tp = tcp_sk(sk);
2171 u32 timeout, tlp_time_stamp, rto_time_stamp;
2172 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2173
2174 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2175 return false;
2176 /* No consecutive loss probes. */
2177 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2178 tcp_rearm_rto(sk);
2179 return false;
2180 }
2181 /* Don't do any loss probe on a Fast Open connection before 3WHS
2182 * finishes.
2183 */
2184 if (sk->sk_state == TCP_SYN_RECV)
2185 return false;
2186
2187 /* TLP is only scheduled when next timer event is RTO. */
2188 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2189 return false;
2190
2191 /* Schedule a loss probe in 2*RTT for SACK capable connections
2192 * in Open state, that are either limited by cwnd or application.
2193 */
2194 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2195 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2196 return false;
2197
2198 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2199 tcp_send_head(sk))
2200 return false;
2201
2202 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2203 * for delayed ack when there's one outstanding packet.
2204 */
2205 timeout = rtt << 1;
2206 if (tp->packets_out == 1)
2207 timeout = max_t(u32, timeout,
2208 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2209 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2210
2211 /* If RTO is shorter, just schedule TLP in its place. */
2212 tlp_time_stamp = tcp_time_stamp + timeout;
2213 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2214 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2215 s32 delta = rto_time_stamp - tcp_time_stamp;
2216 if (delta > 0)
2217 timeout = delta;
2218 }
2219
2220 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2221 TCP_RTO_MAX);
2222 return true;
2223 }
2224
2225 /* Thanks to skb fast clones, we can detect if a prior transmit of
2226 * a packet is still in a qdisc or driver queue.
2227 * In this case, there is very little point doing a retransmit !
2228 * Note: This is called from BH context only.
2229 */
2230 static bool skb_still_in_host_queue(const struct sock *sk,
2231 const struct sk_buff *skb)
2232 {
2233 if (unlikely(skb_fclone_busy(sk, skb))) {
2234 NET_INC_STATS_BH(sock_net(sk),
2235 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2236 return true;
2237 }
2238 return false;
2239 }
2240
2241 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2242 * retransmit the last segment.
2243 */
2244 void tcp_send_loss_probe(struct sock *sk)
2245 {
2246 struct tcp_sock *tp = tcp_sk(sk);
2247 struct sk_buff *skb;
2248 int pcount;
2249 int mss = tcp_current_mss(sk);
2250 int err = -1;
2251
2252 if (tcp_send_head(sk)) {
2253 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2254 goto rearm_timer;
2255 }
2256
2257 /* At most one outstanding TLP retransmission. */
2258 if (tp->tlp_high_seq)
2259 goto rearm_timer;
2260
2261 /* Retransmit last segment. */
2262 skb = tcp_write_queue_tail(sk);
2263 if (WARN_ON(!skb))
2264 goto rearm_timer;
2265
2266 if (skb_still_in_host_queue(sk, skb))
2267 goto rearm_timer;
2268
2269 pcount = tcp_skb_pcount(skb);
2270 if (WARN_ON(!pcount))
2271 goto rearm_timer;
2272
2273 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2274 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2275 GFP_ATOMIC)))
2276 goto rearm_timer;
2277 skb = tcp_write_queue_tail(sk);
2278 }
2279
2280 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2281 goto rearm_timer;
2282
2283 err = __tcp_retransmit_skb(sk, skb);
2284
2285 /* Record snd_nxt for loss detection. */
2286 if (likely(!err))
2287 tp->tlp_high_seq = tp->snd_nxt;
2288
2289 rearm_timer:
2290 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2291 inet_csk(sk)->icsk_rto,
2292 TCP_RTO_MAX);
2293
2294 if (likely(!err))
2295 NET_INC_STATS_BH(sock_net(sk),
2296 LINUX_MIB_TCPLOSSPROBES);
2297 }
2298
2299 /* Push out any pending frames which were held back due to
2300 * TCP_CORK or attempt at coalescing tiny packets.
2301 * The socket must be locked by the caller.
2302 */
2303 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2304 int nonagle)
2305 {
2306 /* If we are closed, the bytes will have to remain here.
2307 * In time closedown will finish, we empty the write queue and
2308 * all will be happy.
2309 */
2310 if (unlikely(sk->sk_state == TCP_CLOSE))
2311 return;
2312
2313 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2314 sk_gfp_atomic(sk, GFP_ATOMIC)))
2315 tcp_check_probe_timer(sk);
2316 }
2317
2318 /* Send _single_ skb sitting at the send head. This function requires
2319 * true push pending frames to setup probe timer etc.
2320 */
2321 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2322 {
2323 struct sk_buff *skb = tcp_send_head(sk);
2324
2325 BUG_ON(!skb || skb->len < mss_now);
2326
2327 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2328 }
2329
2330 /* This function returns the amount that we can raise the
2331 * usable window based on the following constraints
2332 *
2333 * 1. The window can never be shrunk once it is offered (RFC 793)
2334 * 2. We limit memory per socket
2335 *
2336 * RFC 1122:
2337 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2338 * RECV.NEXT + RCV.WIN fixed until:
2339 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2340 *
2341 * i.e. don't raise the right edge of the window until you can raise
2342 * it at least MSS bytes.
2343 *
2344 * Unfortunately, the recommended algorithm breaks header prediction,
2345 * since header prediction assumes th->window stays fixed.
2346 *
2347 * Strictly speaking, keeping th->window fixed violates the receiver
2348 * side SWS prevention criteria. The problem is that under this rule
2349 * a stream of single byte packets will cause the right side of the
2350 * window to always advance by a single byte.
2351 *
2352 * Of course, if the sender implements sender side SWS prevention
2353 * then this will not be a problem.
2354 *
2355 * BSD seems to make the following compromise:
2356 *
2357 * If the free space is less than the 1/4 of the maximum
2358 * space available and the free space is less than 1/2 mss,
2359 * then set the window to 0.
2360 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2361 * Otherwise, just prevent the window from shrinking
2362 * and from being larger than the largest representable value.
2363 *
2364 * This prevents incremental opening of the window in the regime
2365 * where TCP is limited by the speed of the reader side taking
2366 * data out of the TCP receive queue. It does nothing about
2367 * those cases where the window is constrained on the sender side
2368 * because the pipeline is full.
2369 *
2370 * BSD also seems to "accidentally" limit itself to windows that are a
2371 * multiple of MSS, at least until the free space gets quite small.
2372 * This would appear to be a side effect of the mbuf implementation.
2373 * Combining these two algorithms results in the observed behavior
2374 * of having a fixed window size at almost all times.
2375 *
2376 * Below we obtain similar behavior by forcing the offered window to
2377 * a multiple of the mss when it is feasible to do so.
2378 *
2379 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2380 * Regular options like TIMESTAMP are taken into account.
2381 */
2382 u32 __tcp_select_window(struct sock *sk)
2383 {
2384 struct inet_connection_sock *icsk = inet_csk(sk);
2385 struct tcp_sock *tp = tcp_sk(sk);
2386 /* MSS for the peer's data. Previous versions used mss_clamp
2387 * here. I don't know if the value based on our guesses
2388 * of peer's MSS is better for the performance. It's more correct
2389 * but may be worse for the performance because of rcv_mss
2390 * fluctuations. --SAW 1998/11/1
2391 */
2392 int mss = icsk->icsk_ack.rcv_mss;
2393 int free_space = tcp_space(sk);
2394 int allowed_space = tcp_full_space(sk);
2395 int full_space = min_t(int, tp->window_clamp, allowed_space);
2396 int window;
2397
2398 if (mss > full_space)
2399 mss = full_space;
2400
2401 if (free_space < (full_space >> 1)) {
2402 icsk->icsk_ack.quick = 0;
2403
2404 if (tcp_under_memory_pressure(sk))
2405 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2406 4U * tp->advmss);
2407
2408 /* free_space might become our new window, make sure we don't
2409 * increase it due to wscale.
2410 */
2411 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2412
2413 /* if free space is less than mss estimate, or is below 1/16th
2414 * of the maximum allowed, try to move to zero-window, else
2415 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2416 * new incoming data is dropped due to memory limits.
2417 * With large window, mss test triggers way too late in order
2418 * to announce zero window in time before rmem limit kicks in.
2419 */
2420 if (free_space < (allowed_space >> 4) || free_space < mss)
2421 return 0;
2422 }
2423
2424 if (free_space > tp->rcv_ssthresh)
2425 free_space = tp->rcv_ssthresh;
2426
2427 /* Don't do rounding if we are using window scaling, since the
2428 * scaled window will not line up with the MSS boundary anyway.
2429 */
2430 window = tp->rcv_wnd;
2431 if (tp->rx_opt.rcv_wscale) {
2432 window = free_space;
2433
2434 /* Advertise enough space so that it won't get scaled away.
2435 * Import case: prevent zero window announcement if
2436 * 1<<rcv_wscale > mss.
2437 */
2438 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2439 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2440 << tp->rx_opt.rcv_wscale);
2441 } else {
2442 /* Get the largest window that is a nice multiple of mss.
2443 * Window clamp already applied above.
2444 * If our current window offering is within 1 mss of the
2445 * free space we just keep it. This prevents the divide
2446 * and multiply from happening most of the time.
2447 * We also don't do any window rounding when the free space
2448 * is too small.
2449 */
2450 if (window <= free_space - mss || window > free_space)
2451 window = (free_space / mss) * mss;
2452 else if (mss == full_space &&
2453 free_space > window + (full_space >> 1))
2454 window = free_space;
2455 }
2456
2457 return window;
2458 }
2459
2460 /* Collapses two adjacent SKB's during retransmission. */
2461 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2462 {
2463 struct tcp_sock *tp = tcp_sk(sk);
2464 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2465 int skb_size, next_skb_size;
2466
2467 skb_size = skb->len;
2468 next_skb_size = next_skb->len;
2469
2470 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2471
2472 tcp_highest_sack_combine(sk, next_skb, skb);
2473
2474 tcp_unlink_write_queue(next_skb, sk);
2475
2476 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2477 next_skb_size);
2478
2479 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2480 skb->ip_summed = CHECKSUM_PARTIAL;
2481
2482 if (skb->ip_summed != CHECKSUM_PARTIAL)
2483 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2484
2485 /* Update sequence range on original skb. */
2486 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2487
2488 /* Merge over control information. This moves PSH/FIN etc. over */
2489 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2490
2491 /* All done, get rid of second SKB and account for it so
2492 * packet counting does not break.
2493 */
2494 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2495
2496 /* changed transmit queue under us so clear hints */
2497 tcp_clear_retrans_hints_partial(tp);
2498 if (next_skb == tp->retransmit_skb_hint)
2499 tp->retransmit_skb_hint = skb;
2500
2501 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2502
2503 sk_wmem_free_skb(sk, next_skb);
2504 }
2505
2506 /* Check if coalescing SKBs is legal. */
2507 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2508 {
2509 if (tcp_skb_pcount(skb) > 1)
2510 return false;
2511 /* TODO: SACK collapsing could be used to remove this condition */
2512 if (skb_shinfo(skb)->nr_frags != 0)
2513 return false;
2514 if (skb_cloned(skb))
2515 return false;
2516 if (skb == tcp_send_head(sk))
2517 return false;
2518 /* Some heurestics for collapsing over SACK'd could be invented */
2519 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2520 return false;
2521
2522 return true;
2523 }
2524
2525 /* Collapse packets in the retransmit queue to make to create
2526 * less packets on the wire. This is only done on retransmission.
2527 */
2528 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2529 int space)
2530 {
2531 struct tcp_sock *tp = tcp_sk(sk);
2532 struct sk_buff *skb = to, *tmp;
2533 bool first = true;
2534
2535 if (!sysctl_tcp_retrans_collapse)
2536 return;
2537 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2538 return;
2539
2540 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2541 if (!tcp_can_collapse(sk, skb))
2542 break;
2543
2544 space -= skb->len;
2545
2546 if (first) {
2547 first = false;
2548 continue;
2549 }
2550
2551 if (space < 0)
2552 break;
2553 /* Punt if not enough space exists in the first SKB for
2554 * the data in the second
2555 */
2556 if (skb->len > skb_availroom(to))
2557 break;
2558
2559 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2560 break;
2561
2562 tcp_collapse_retrans(sk, to);
2563 }
2564 }
2565
2566 /* This retransmits one SKB. Policy decisions and retransmit queue
2567 * state updates are done by the caller. Returns non-zero if an
2568 * error occurred which prevented the send.
2569 */
2570 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2571 {
2572 struct tcp_sock *tp = tcp_sk(sk);
2573 struct inet_connection_sock *icsk = inet_csk(sk);
2574 unsigned int cur_mss;
2575 int err;
2576
2577 /* Inconslusive MTU probe */
2578 if (icsk->icsk_mtup.probe_size) {
2579 icsk->icsk_mtup.probe_size = 0;
2580 }
2581
2582 /* Do not sent more than we queued. 1/4 is reserved for possible
2583 * copying overhead: fragmentation, tunneling, mangling etc.
2584 */
2585 if (atomic_read(&sk->sk_wmem_alloc) >
2586 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2587 return -EAGAIN;
2588
2589 if (skb_still_in_host_queue(sk, skb))
2590 return -EBUSY;
2591
2592 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2593 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2594 BUG();
2595 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2596 return -ENOMEM;
2597 }
2598
2599 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2600 return -EHOSTUNREACH; /* Routing failure or similar. */
2601
2602 cur_mss = tcp_current_mss(sk);
2603
2604 /* If receiver has shrunk his window, and skb is out of
2605 * new window, do not retransmit it. The exception is the
2606 * case, when window is shrunk to zero. In this case
2607 * our retransmit serves as a zero window probe.
2608 */
2609 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2610 TCP_SKB_CB(skb)->seq != tp->snd_una)
2611 return -EAGAIN;
2612
2613 if (skb->len > cur_mss) {
2614 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2615 return -ENOMEM; /* We'll try again later. */
2616 } else {
2617 int oldpcount = tcp_skb_pcount(skb);
2618
2619 if (unlikely(oldpcount > 1)) {
2620 if (skb_unclone(skb, GFP_ATOMIC))
2621 return -ENOMEM;
2622 tcp_init_tso_segs(sk, skb, cur_mss);
2623 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2624 }
2625 }
2626
2627 /* RFC3168, section 6.1.1.1. ECN fallback */
2628 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2629 tcp_ecn_clear_syn(sk, skb);
2630
2631 tcp_retrans_try_collapse(sk, skb, cur_mss);
2632
2633 /* Make a copy, if the first transmission SKB clone we made
2634 * is still in somebody's hands, else make a clone.
2635 */
2636
2637 /* make sure skb->data is aligned on arches that require it
2638 * and check if ack-trimming & collapsing extended the headroom
2639 * beyond what csum_start can cover.
2640 */
2641 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2642 skb_headroom(skb) >= 0xFFFF)) {
2643 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2644 GFP_ATOMIC);
2645 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2646 -ENOBUFS;
2647 } else {
2648 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2649 }
2650
2651 if (likely(!err)) {
2652 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2653 /* Update global TCP statistics. */
2654 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2655 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2656 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2657 tp->total_retrans++;
2658 }
2659 return err;
2660 }
2661
2662 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2663 {
2664 struct tcp_sock *tp = tcp_sk(sk);
2665 int err = __tcp_retransmit_skb(sk, skb);
2666
2667 if (err == 0) {
2668 #if FASTRETRANS_DEBUG > 0
2669 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2670 net_dbg_ratelimited("retrans_out leaked\n");
2671 }
2672 #endif
2673 if (!tp->retrans_out)
2674 tp->lost_retrans_low = tp->snd_nxt;
2675 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2676 tp->retrans_out += tcp_skb_pcount(skb);
2677
2678 /* Save stamp of the first retransmit. */
2679 if (!tp->retrans_stamp)
2680 tp->retrans_stamp = tcp_skb_timestamp(skb);
2681
2682 /* snd_nxt is stored to detect loss of retransmitted segment,
2683 * see tcp_input.c tcp_sacktag_write_queue().
2684 */
2685 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2686 } else if (err != -EBUSY) {
2687 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2688 }
2689
2690 if (tp->undo_retrans < 0)
2691 tp->undo_retrans = 0;
2692 tp->undo_retrans += tcp_skb_pcount(skb);
2693 return err;
2694 }
2695
2696 /* Check if we forward retransmits are possible in the current
2697 * window/congestion state.
2698 */
2699 static bool tcp_can_forward_retransmit(struct sock *sk)
2700 {
2701 const struct inet_connection_sock *icsk = inet_csk(sk);
2702 const struct tcp_sock *tp = tcp_sk(sk);
2703
2704 /* Forward retransmissions are possible only during Recovery. */
2705 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2706 return false;
2707
2708 /* No forward retransmissions in Reno are possible. */
2709 if (tcp_is_reno(tp))
2710 return false;
2711
2712 /* Yeah, we have to make difficult choice between forward transmission
2713 * and retransmission... Both ways have their merits...
2714 *
2715 * For now we do not retransmit anything, while we have some new
2716 * segments to send. In the other cases, follow rule 3 for
2717 * NextSeg() specified in RFC3517.
2718 */
2719
2720 if (tcp_may_send_now(sk))
2721 return false;
2722
2723 return true;
2724 }
2725
2726 /* This gets called after a retransmit timeout, and the initially
2727 * retransmitted data is acknowledged. It tries to continue
2728 * resending the rest of the retransmit queue, until either
2729 * we've sent it all or the congestion window limit is reached.
2730 * If doing SACK, the first ACK which comes back for a timeout
2731 * based retransmit packet might feed us FACK information again.
2732 * If so, we use it to avoid unnecessarily retransmissions.
2733 */
2734 void tcp_xmit_retransmit_queue(struct sock *sk)
2735 {
2736 const struct inet_connection_sock *icsk = inet_csk(sk);
2737 struct tcp_sock *tp = tcp_sk(sk);
2738 struct sk_buff *skb;
2739 struct sk_buff *hole = NULL;
2740 u32 last_lost;
2741 int mib_idx;
2742 int fwd_rexmitting = 0;
2743
2744 if (!tp->packets_out)
2745 return;
2746
2747 if (!tp->lost_out)
2748 tp->retransmit_high = tp->snd_una;
2749
2750 if (tp->retransmit_skb_hint) {
2751 skb = tp->retransmit_skb_hint;
2752 last_lost = TCP_SKB_CB(skb)->end_seq;
2753 if (after(last_lost, tp->retransmit_high))
2754 last_lost = tp->retransmit_high;
2755 } else {
2756 skb = tcp_write_queue_head(sk);
2757 last_lost = tp->snd_una;
2758 }
2759
2760 tcp_for_write_queue_from(skb, sk) {
2761 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2762
2763 if (skb == tcp_send_head(sk))
2764 break;
2765 /* we could do better than to assign each time */
2766 if (!hole)
2767 tp->retransmit_skb_hint = skb;
2768
2769 /* Assume this retransmit will generate
2770 * only one packet for congestion window
2771 * calculation purposes. This works because
2772 * tcp_retransmit_skb() will chop up the
2773 * packet to be MSS sized and all the
2774 * packet counting works out.
2775 */
2776 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2777 return;
2778
2779 if (fwd_rexmitting) {
2780 begin_fwd:
2781 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2782 break;
2783 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2784
2785 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2786 tp->retransmit_high = last_lost;
2787 if (!tcp_can_forward_retransmit(sk))
2788 break;
2789 /* Backtrack if necessary to non-L'ed skb */
2790 if (hole) {
2791 skb = hole;
2792 hole = NULL;
2793 }
2794 fwd_rexmitting = 1;
2795 goto begin_fwd;
2796
2797 } else if (!(sacked & TCPCB_LOST)) {
2798 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2799 hole = skb;
2800 continue;
2801
2802 } else {
2803 last_lost = TCP_SKB_CB(skb)->end_seq;
2804 if (icsk->icsk_ca_state != TCP_CA_Loss)
2805 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2806 else
2807 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2808 }
2809
2810 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2811 continue;
2812
2813 if (tcp_retransmit_skb(sk, skb))
2814 return;
2815
2816 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2817
2818 if (tcp_in_cwnd_reduction(sk))
2819 tp->prr_out += tcp_skb_pcount(skb);
2820
2821 if (skb == tcp_write_queue_head(sk))
2822 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2823 inet_csk(sk)->icsk_rto,
2824 TCP_RTO_MAX);
2825 }
2826 }
2827
2828 /* We allow to exceed memory limits for FIN packets to expedite
2829 * connection tear down and (memory) recovery.
2830 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2831 * or even be forced to close flow without any FIN.
2832 * In general, we want to allow one skb per socket to avoid hangs
2833 * with edge trigger epoll()
2834 */
2835 void sk_forced_mem_schedule(struct sock *sk, int size)
2836 {
2837 int amt, status;
2838
2839 if (size <= sk->sk_forward_alloc)
2840 return;
2841 amt = sk_mem_pages(size);
2842 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2843 sk_memory_allocated_add(sk, amt, &status);
2844 }
2845
2846 /* Send a FIN. The caller locks the socket for us.
2847 * We should try to send a FIN packet really hard, but eventually give up.
2848 */
2849 void tcp_send_fin(struct sock *sk)
2850 {
2851 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2852 struct tcp_sock *tp = tcp_sk(sk);
2853
2854 /* Optimization, tack on the FIN if we have one skb in write queue and
2855 * this skb was not yet sent, or we are under memory pressure.
2856 * Note: in the latter case, FIN packet will be sent after a timeout,
2857 * as TCP stack thinks it has already been transmitted.
2858 */
2859 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2860 coalesce:
2861 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2862 TCP_SKB_CB(tskb)->end_seq++;
2863 tp->write_seq++;
2864 if (!tcp_send_head(sk)) {
2865 /* This means tskb was already sent.
2866 * Pretend we included the FIN on previous transmit.
2867 * We need to set tp->snd_nxt to the value it would have
2868 * if FIN had been sent. This is because retransmit path
2869 * does not change tp->snd_nxt.
2870 */
2871 tp->snd_nxt++;
2872 return;
2873 }
2874 } else {
2875 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2876 if (unlikely(!skb)) {
2877 if (tskb)
2878 goto coalesce;
2879 return;
2880 }
2881 skb_reserve(skb, MAX_TCP_HEADER);
2882 sk_forced_mem_schedule(sk, skb->truesize);
2883 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2884 tcp_init_nondata_skb(skb, tp->write_seq,
2885 TCPHDR_ACK | TCPHDR_FIN);
2886 tcp_queue_skb(sk, skb);
2887 }
2888 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2889 }
2890
2891 /* We get here when a process closes a file descriptor (either due to
2892 * an explicit close() or as a byproduct of exit()'ing) and there
2893 * was unread data in the receive queue. This behavior is recommended
2894 * by RFC 2525, section 2.17. -DaveM
2895 */
2896 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2897 {
2898 struct sk_buff *skb;
2899
2900 /* NOTE: No TCP options attached and we never retransmit this. */
2901 skb = alloc_skb(MAX_TCP_HEADER, priority);
2902 if (!skb) {
2903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2904 return;
2905 }
2906
2907 /* Reserve space for headers and prepare control bits. */
2908 skb_reserve(skb, MAX_TCP_HEADER);
2909 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2910 TCPHDR_ACK | TCPHDR_RST);
2911 /* Send it off. */
2912 if (tcp_transmit_skb(sk, skb, 0, priority))
2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2914
2915 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2916 }
2917
2918 /* Send a crossed SYN-ACK during socket establishment.
2919 * WARNING: This routine must only be called when we have already sent
2920 * a SYN packet that crossed the incoming SYN that caused this routine
2921 * to get called. If this assumption fails then the initial rcv_wnd
2922 * and rcv_wscale values will not be correct.
2923 */
2924 int tcp_send_synack(struct sock *sk)
2925 {
2926 struct sk_buff *skb;
2927
2928 skb = tcp_write_queue_head(sk);
2929 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2930 pr_debug("%s: wrong queue state\n", __func__);
2931 return -EFAULT;
2932 }
2933 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2934 if (skb_cloned(skb)) {
2935 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2936 if (!nskb)
2937 return -ENOMEM;
2938 tcp_unlink_write_queue(skb, sk);
2939 __skb_header_release(nskb);
2940 __tcp_add_write_queue_head(sk, nskb);
2941 sk_wmem_free_skb(sk, skb);
2942 sk->sk_wmem_queued += nskb->truesize;
2943 sk_mem_charge(sk, nskb->truesize);
2944 skb = nskb;
2945 }
2946
2947 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2948 tcp_ecn_send_synack(sk, skb);
2949 }
2950 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2951 }
2952
2953 /**
2954 * tcp_make_synack - Prepare a SYN-ACK.
2955 * sk: listener socket
2956 * dst: dst entry attached to the SYNACK
2957 * req: request_sock pointer
2958 *
2959 * Allocate one skb and build a SYNACK packet.
2960 * @dst is consumed : Caller should not use it again.
2961 */
2962 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2963 struct request_sock *req,
2964 struct tcp_fastopen_cookie *foc)
2965 {
2966 struct tcp_out_options opts;
2967 struct inet_request_sock *ireq = inet_rsk(req);
2968 struct tcp_sock *tp = tcp_sk(sk);
2969 struct tcphdr *th;
2970 struct sk_buff *skb;
2971 struct tcp_md5sig_key *md5 = NULL;
2972 int tcp_header_size;
2973 int mss;
2974
2975 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2976 if (unlikely(!skb)) {
2977 dst_release(dst);
2978 return NULL;
2979 }
2980 /* Reserve space for headers. */
2981 skb_reserve(skb, MAX_TCP_HEADER);
2982
2983 skb_dst_set(skb, dst);
2984
2985 mss = dst_metric_advmss(dst);
2986 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2987 mss = tp->rx_opt.user_mss;
2988
2989 memset(&opts, 0, sizeof(opts));
2990 #ifdef CONFIG_SYN_COOKIES
2991 if (unlikely(req->cookie_ts))
2992 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2993 else
2994 #endif
2995 skb_mstamp_get(&skb->skb_mstamp);
2996
2997 #ifdef CONFIG_TCP_MD5SIG
2998 rcu_read_lock();
2999 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3000 #endif
3001 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3002 foc) + sizeof(*th);
3003
3004 skb_push(skb, tcp_header_size);
3005 skb_reset_transport_header(skb);
3006
3007 th = tcp_hdr(skb);
3008 memset(th, 0, sizeof(struct tcphdr));
3009 th->syn = 1;
3010 th->ack = 1;
3011 tcp_ecn_make_synack(req, th, sk);
3012 th->source = htons(ireq->ir_num);
3013 th->dest = ireq->ir_rmt_port;
3014 /* Setting of flags are superfluous here for callers (and ECE is
3015 * not even correctly set)
3016 */
3017 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3018 TCPHDR_SYN | TCPHDR_ACK);
3019
3020 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3021 /* XXX data is queued and acked as is. No buffer/window check */
3022 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3023
3024 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3025 th->window = htons(min(req->rcv_wnd, 65535U));
3026 tcp_options_write((__be32 *)(th + 1), tp, &opts);
3027 th->doff = (tcp_header_size >> 2);
3028 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3029
3030 #ifdef CONFIG_TCP_MD5SIG
3031 /* Okay, we have all we need - do the md5 hash if needed */
3032 if (md5)
3033 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3034 md5, req_to_sk(req), skb);
3035 rcu_read_unlock();
3036 #endif
3037
3038 /* Do not fool tcpdump (if any), clean our debris */
3039 skb->tstamp.tv64 = 0;
3040 return skb;
3041 }
3042 EXPORT_SYMBOL(tcp_make_synack);
3043
3044 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3045 {
3046 struct inet_connection_sock *icsk = inet_csk(sk);
3047 const struct tcp_congestion_ops *ca;
3048 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3049
3050 if (ca_key == TCP_CA_UNSPEC)
3051 return;
3052
3053 rcu_read_lock();
3054 ca = tcp_ca_find_key(ca_key);
3055 if (likely(ca && try_module_get(ca->owner))) {
3056 module_put(icsk->icsk_ca_ops->owner);
3057 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3058 icsk->icsk_ca_ops = ca;
3059 }
3060 rcu_read_unlock();
3061 }
3062
3063 /* Do all connect socket setups that can be done AF independent. */
3064 static void tcp_connect_init(struct sock *sk)
3065 {
3066 const struct dst_entry *dst = __sk_dst_get(sk);
3067 struct tcp_sock *tp = tcp_sk(sk);
3068 __u8 rcv_wscale;
3069
3070 /* We'll fix this up when we get a response from the other end.
3071 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3072 */
3073 tp->tcp_header_len = sizeof(struct tcphdr) +
3074 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3075
3076 #ifdef CONFIG_TCP_MD5SIG
3077 if (tp->af_specific->md5_lookup(sk, sk))
3078 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3079 #endif
3080
3081 /* If user gave his TCP_MAXSEG, record it to clamp */
3082 if (tp->rx_opt.user_mss)
3083 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3084 tp->max_window = 0;
3085 tcp_mtup_init(sk);
3086 tcp_sync_mss(sk, dst_mtu(dst));
3087
3088 tcp_ca_dst_init(sk, dst);
3089
3090 if (!tp->window_clamp)
3091 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3092 tp->advmss = dst_metric_advmss(dst);
3093 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3094 tp->advmss = tp->rx_opt.user_mss;
3095
3096 tcp_initialize_rcv_mss(sk);
3097
3098 /* limit the window selection if the user enforce a smaller rx buffer */
3099 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3100 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3101 tp->window_clamp = tcp_full_space(sk);
3102
3103 tcp_select_initial_window(tcp_full_space(sk),
3104 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3105 &tp->rcv_wnd,
3106 &tp->window_clamp,
3107 sysctl_tcp_window_scaling,
3108 &rcv_wscale,
3109 dst_metric(dst, RTAX_INITRWND));
3110
3111 tp->rx_opt.rcv_wscale = rcv_wscale;
3112 tp->rcv_ssthresh = tp->rcv_wnd;
3113
3114 sk->sk_err = 0;
3115 sock_reset_flag(sk, SOCK_DONE);
3116 tp->snd_wnd = 0;
3117 tcp_init_wl(tp, 0);
3118 tp->snd_una = tp->write_seq;
3119 tp->snd_sml = tp->write_seq;
3120 tp->snd_up = tp->write_seq;
3121 tp->snd_nxt = tp->write_seq;
3122
3123 if (likely(!tp->repair))
3124 tp->rcv_nxt = 0;
3125 else
3126 tp->rcv_tstamp = tcp_time_stamp;
3127 tp->rcv_wup = tp->rcv_nxt;
3128 tp->copied_seq = tp->rcv_nxt;
3129
3130 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3131 inet_csk(sk)->icsk_retransmits = 0;
3132 tcp_clear_retrans(tp);
3133 }
3134
3135 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3136 {
3137 struct tcp_sock *tp = tcp_sk(sk);
3138 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3139
3140 tcb->end_seq += skb->len;
3141 __skb_header_release(skb);
3142 __tcp_add_write_queue_tail(sk, skb);
3143 sk->sk_wmem_queued += skb->truesize;
3144 sk_mem_charge(sk, skb->truesize);
3145 tp->write_seq = tcb->end_seq;
3146 tp->packets_out += tcp_skb_pcount(skb);
3147 }
3148
3149 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3150 * queue a data-only packet after the regular SYN, such that regular SYNs
3151 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3152 * only the SYN sequence, the data are retransmitted in the first ACK.
3153 * If cookie is not cached or other error occurs, falls back to send a
3154 * regular SYN with Fast Open cookie request option.
3155 */
3156 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3157 {
3158 struct tcp_sock *tp = tcp_sk(sk);
3159 struct tcp_fastopen_request *fo = tp->fastopen_req;
3160 int syn_loss = 0, space, err = 0, copied;
3161 unsigned long last_syn_loss = 0;
3162 struct sk_buff *syn_data;
3163
3164 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3165 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3166 &syn_loss, &last_syn_loss);
3167 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3168 if (syn_loss > 1 &&
3169 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3170 fo->cookie.len = -1;
3171 goto fallback;
3172 }
3173
3174 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3175 fo->cookie.len = -1;
3176 else if (fo->cookie.len <= 0)
3177 goto fallback;
3178
3179 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3180 * user-MSS. Reserve maximum option space for middleboxes that add
3181 * private TCP options. The cost is reduced data space in SYN :(
3182 */
3183 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3184 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3185 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3186 MAX_TCP_OPTION_SPACE;
3187
3188 space = min_t(size_t, space, fo->size);
3189
3190 /* limit to order-0 allocations */
3191 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3192
3193 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation);
3194 if (!syn_data)
3195 goto fallback;
3196 syn_data->ip_summed = CHECKSUM_PARTIAL;
3197 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3198 copied = copy_from_iter(skb_put(syn_data, space), space,
3199 &fo->data->msg_iter);
3200 if (unlikely(!copied)) {
3201 kfree_skb(syn_data);
3202 goto fallback;
3203 }
3204 if (copied != space) {
3205 skb_trim(syn_data, copied);
3206 space = copied;
3207 }
3208
3209 /* No more data pending in inet_wait_for_connect() */
3210 if (space == fo->size)
3211 fo->data = NULL;
3212 fo->copied = space;
3213
3214 tcp_connect_queue_skb(sk, syn_data);
3215
3216 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3217
3218 syn->skb_mstamp = syn_data->skb_mstamp;
3219
3220 /* Now full SYN+DATA was cloned and sent (or not),
3221 * remove the SYN from the original skb (syn_data)
3222 * we keep in write queue in case of a retransmit, as we
3223 * also have the SYN packet (with no data) in the same queue.
3224 */
3225 TCP_SKB_CB(syn_data)->seq++;
3226 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3227 if (!err) {
3228 tp->syn_data = (fo->copied > 0);
3229 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3230 goto done;
3231 }
3232
3233 fallback:
3234 /* Send a regular SYN with Fast Open cookie request option */
3235 if (fo->cookie.len > 0)
3236 fo->cookie.len = 0;
3237 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3238 if (err)
3239 tp->syn_fastopen = 0;
3240 done:
3241 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3242 return err;
3243 }
3244
3245 /* Build a SYN and send it off. */
3246 int tcp_connect(struct sock *sk)
3247 {
3248 struct tcp_sock *tp = tcp_sk(sk);
3249 struct sk_buff *buff;
3250 int err;
3251
3252 tcp_connect_init(sk);
3253
3254 if (unlikely(tp->repair)) {
3255 tcp_finish_connect(sk, NULL);
3256 return 0;
3257 }
3258
3259 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
3260 if (unlikely(!buff))
3261 return -ENOBUFS;
3262
3263 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3264 tp->retrans_stamp = tcp_time_stamp;
3265 tcp_connect_queue_skb(sk, buff);
3266 tcp_ecn_send_syn(sk, buff);
3267
3268 /* Send off SYN; include data in Fast Open. */
3269 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3270 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3271 if (err == -ECONNREFUSED)
3272 return err;
3273
3274 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3275 * in order to make this packet get counted in tcpOutSegs.
3276 */
3277 tp->snd_nxt = tp->write_seq;
3278 tp->pushed_seq = tp->write_seq;
3279 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3280
3281 /* Timer for repeating the SYN until an answer. */
3282 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3283 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3284 return 0;
3285 }
3286 EXPORT_SYMBOL(tcp_connect);
3287
3288 /* Send out a delayed ack, the caller does the policy checking
3289 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3290 * for details.
3291 */
3292 void tcp_send_delayed_ack(struct sock *sk)
3293 {
3294 struct inet_connection_sock *icsk = inet_csk(sk);
3295 int ato = icsk->icsk_ack.ato;
3296 unsigned long timeout;
3297
3298 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3299
3300 if (ato > TCP_DELACK_MIN) {
3301 const struct tcp_sock *tp = tcp_sk(sk);
3302 int max_ato = HZ / 2;
3303
3304 if (icsk->icsk_ack.pingpong ||
3305 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3306 max_ato = TCP_DELACK_MAX;
3307
3308 /* Slow path, intersegment interval is "high". */
3309
3310 /* If some rtt estimate is known, use it to bound delayed ack.
3311 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3312 * directly.
3313 */
3314 if (tp->srtt_us) {
3315 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3316 TCP_DELACK_MIN);
3317
3318 if (rtt < max_ato)
3319 max_ato = rtt;
3320 }
3321
3322 ato = min(ato, max_ato);
3323 }
3324
3325 /* Stay within the limit we were given */
3326 timeout = jiffies + ato;
3327
3328 /* Use new timeout only if there wasn't a older one earlier. */
3329 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3330 /* If delack timer was blocked or is about to expire,
3331 * send ACK now.
3332 */
3333 if (icsk->icsk_ack.blocked ||
3334 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3335 tcp_send_ack(sk);
3336 return;
3337 }
3338
3339 if (!time_before(timeout, icsk->icsk_ack.timeout))
3340 timeout = icsk->icsk_ack.timeout;
3341 }
3342 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3343 icsk->icsk_ack.timeout = timeout;
3344 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3345 }
3346
3347 /* This routine sends an ack and also updates the window. */
3348 void tcp_send_ack(struct sock *sk)
3349 {
3350 struct sk_buff *buff;
3351
3352 /* If we have been reset, we may not send again. */
3353 if (sk->sk_state == TCP_CLOSE)
3354 return;
3355
3356 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3357
3358 /* We are not putting this on the write queue, so
3359 * tcp_transmit_skb() will set the ownership to this
3360 * sock.
3361 */
3362 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3363 if (!buff) {
3364 inet_csk_schedule_ack(sk);
3365 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3366 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3367 TCP_DELACK_MAX, TCP_RTO_MAX);
3368 return;
3369 }
3370
3371 /* Reserve space for headers and prepare control bits. */
3372 skb_reserve(buff, MAX_TCP_HEADER);
3373 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3374
3375 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3376 * too much.
3377 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3378 * We also avoid tcp_wfree() overhead (cache line miss accessing
3379 * tp->tsq_flags) by using regular sock_wfree()
3380 */
3381 skb_set_tcp_pure_ack(buff);
3382
3383 /* Send it off, this clears delayed acks for us. */
3384 skb_mstamp_get(&buff->skb_mstamp);
3385 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3386 }
3387 EXPORT_SYMBOL_GPL(tcp_send_ack);
3388
3389 /* This routine sends a packet with an out of date sequence
3390 * number. It assumes the other end will try to ack it.
3391 *
3392 * Question: what should we make while urgent mode?
3393 * 4.4BSD forces sending single byte of data. We cannot send
3394 * out of window data, because we have SND.NXT==SND.MAX...
3395 *
3396 * Current solution: to send TWO zero-length segments in urgent mode:
3397 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3398 * out-of-date with SND.UNA-1 to probe window.
3399 */
3400 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3401 {
3402 struct tcp_sock *tp = tcp_sk(sk);
3403 struct sk_buff *skb;
3404
3405 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3406 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3407 if (!skb)
3408 return -1;
3409
3410 /* Reserve space for headers and set control bits. */
3411 skb_reserve(skb, MAX_TCP_HEADER);
3412 /* Use a previous sequence. This should cause the other
3413 * end to send an ack. Don't queue or clone SKB, just
3414 * send it.
3415 */
3416 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3417 skb_mstamp_get(&skb->skb_mstamp);
3418 NET_INC_STATS_BH(sock_net(sk), mib);
3419 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3420 }
3421
3422 void tcp_send_window_probe(struct sock *sk)
3423 {
3424 if (sk->sk_state == TCP_ESTABLISHED) {
3425 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3426 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3427 }
3428 }
3429
3430 /* Initiate keepalive or window probe from timer. */
3431 int tcp_write_wakeup(struct sock *sk, int mib)
3432 {
3433 struct tcp_sock *tp = tcp_sk(sk);
3434 struct sk_buff *skb;
3435
3436 if (sk->sk_state == TCP_CLOSE)
3437 return -1;
3438
3439 skb = tcp_send_head(sk);
3440 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3441 int err;
3442 unsigned int mss = tcp_current_mss(sk);
3443 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3444
3445 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3446 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3447
3448 /* We are probing the opening of a window
3449 * but the window size is != 0
3450 * must have been a result SWS avoidance ( sender )
3451 */
3452 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3453 skb->len > mss) {
3454 seg_size = min(seg_size, mss);
3455 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3456 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3457 return -1;
3458 } else if (!tcp_skb_pcount(skb))
3459 tcp_set_skb_tso_segs(sk, skb, mss);
3460
3461 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3462 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3463 if (!err)
3464 tcp_event_new_data_sent(sk, skb);
3465 return err;
3466 } else {
3467 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3468 tcp_xmit_probe_skb(sk, 1, mib);
3469 return tcp_xmit_probe_skb(sk, 0, mib);
3470 }
3471 }
3472
3473 /* A window probe timeout has occurred. If window is not closed send
3474 * a partial packet else a zero probe.
3475 */
3476 void tcp_send_probe0(struct sock *sk)
3477 {
3478 struct inet_connection_sock *icsk = inet_csk(sk);
3479 struct tcp_sock *tp = tcp_sk(sk);
3480 unsigned long probe_max;
3481 int err;
3482
3483 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3484
3485 if (tp->packets_out || !tcp_send_head(sk)) {
3486 /* Cancel probe timer, if it is not required. */
3487 icsk->icsk_probes_out = 0;
3488 icsk->icsk_backoff = 0;
3489 return;
3490 }
3491
3492 if (err <= 0) {
3493 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3494 icsk->icsk_backoff++;
3495 icsk->icsk_probes_out++;
3496 probe_max = TCP_RTO_MAX;
3497 } else {
3498 /* If packet was not sent due to local congestion,
3499 * do not backoff and do not remember icsk_probes_out.
3500 * Let local senders to fight for local resources.
3501 *
3502 * Use accumulated backoff yet.
3503 */
3504 if (!icsk->icsk_probes_out)
3505 icsk->icsk_probes_out = 1;
3506 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3507 }
3508 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3509 tcp_probe0_when(sk, probe_max),
3510 TCP_RTO_MAX);
3511 }
3512
3513 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3514 {
3515 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3516 struct flowi fl;
3517 int res;
3518
3519 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3520 if (!res) {
3521 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3522 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3523 }
3524 return res;
3525 }
3526 EXPORT_SYMBOL(tcp_rtx_synack);
This page took 0.103395 seconds and 5 git commands to generate.