Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 const struct udp_hslot *hslot,
138 unsigned long *bitmap,
139 struct sock *sk,
140 int (*saddr_comp)(const struct sock *sk1,
141 const struct sock *sk2,
142 bool match_wildcard),
143 unsigned int log)
144 {
145 struct sock *sk2;
146 kuid_t uid = sock_i_uid(sk);
147
148 sk_for_each(sk2, &hslot->head) {
149 if (net_eq(sock_net(sk2), net) &&
150 sk2 != sk &&
151 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 (!sk2->sk_reuse || !sk->sk_reuse) &&
153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 rcu_access_pointer(sk->sk_reuseport_cb) ||
157 !uid_eq(uid, sock_i_uid(sk2))) &&
158 saddr_comp(sk, sk2, true)) {
159 if (!bitmap)
160 return 1;
161 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
162 }
163 }
164 return 0;
165 }
166
167 /*
168 * Note: we still hold spinlock of primary hash chain, so no other writer
169 * can insert/delete a socket with local_port == num
170 */
171 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
172 struct udp_hslot *hslot2,
173 struct sock *sk,
174 int (*saddr_comp)(const struct sock *sk1,
175 const struct sock *sk2,
176 bool match_wildcard))
177 {
178 struct sock *sk2;
179 kuid_t uid = sock_i_uid(sk);
180 int res = 0;
181
182 spin_lock(&hslot2->lock);
183 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
184 if (net_eq(sock_net(sk2), net) &&
185 sk2 != sk &&
186 (udp_sk(sk2)->udp_port_hash == num) &&
187 (!sk2->sk_reuse || !sk->sk_reuse) &&
188 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
189 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
190 (!sk2->sk_reuseport || !sk->sk_reuseport ||
191 rcu_access_pointer(sk->sk_reuseport_cb) ||
192 !uid_eq(uid, sock_i_uid(sk2))) &&
193 saddr_comp(sk, sk2, true)) {
194 res = 1;
195 break;
196 }
197 }
198 spin_unlock(&hslot2->lock);
199 return res;
200 }
201
202 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
203 int (*saddr_same)(const struct sock *sk1,
204 const struct sock *sk2,
205 bool match_wildcard))
206 {
207 struct net *net = sock_net(sk);
208 kuid_t uid = sock_i_uid(sk);
209 struct sock *sk2;
210
211 sk_for_each(sk2, &hslot->head) {
212 if (net_eq(sock_net(sk2), net) &&
213 sk2 != sk &&
214 sk2->sk_family == sk->sk_family &&
215 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
216 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
217 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
218 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
219 (*saddr_same)(sk, sk2, false)) {
220 return reuseport_add_sock(sk, sk2);
221 }
222 }
223
224 /* Initial allocation may have already happened via setsockopt */
225 if (!rcu_access_pointer(sk->sk_reuseport_cb))
226 return reuseport_alloc(sk);
227 return 0;
228 }
229
230 /**
231 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
232 *
233 * @sk: socket struct in question
234 * @snum: port number to look up
235 * @saddr_comp: AF-dependent comparison of bound local IP addresses
236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237 * with NULL address
238 */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 int (*saddr_comp)(const struct sock *sk1,
241 const struct sock *sk2,
242 bool match_wildcard),
243 unsigned int hash2_nulladdr)
244 {
245 struct udp_hslot *hslot, *hslot2;
246 struct udp_table *udptable = sk->sk_prot->h.udp_table;
247 int error = 1;
248 struct net *net = sock_net(sk);
249
250 if (!snum) {
251 int low, high, remaining;
252 unsigned int rand;
253 unsigned short first, last;
254 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
255
256 inet_get_local_port_range(net, &low, &high);
257 remaining = (high - low) + 1;
258
259 rand = prandom_u32();
260 first = reciprocal_scale(rand, remaining) + low;
261 /*
262 * force rand to be an odd multiple of UDP_HTABLE_SIZE
263 */
264 rand = (rand | 1) * (udptable->mask + 1);
265 last = first + udptable->mask + 1;
266 do {
267 hslot = udp_hashslot(udptable, net, first);
268 bitmap_zero(bitmap, PORTS_PER_CHAIN);
269 spin_lock_bh(&hslot->lock);
270 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
271 saddr_comp, udptable->log);
272
273 snum = first;
274 /*
275 * Iterate on all possible values of snum for this hash.
276 * Using steps of an odd multiple of UDP_HTABLE_SIZE
277 * give us randomization and full range coverage.
278 */
279 do {
280 if (low <= snum && snum <= high &&
281 !test_bit(snum >> udptable->log, bitmap) &&
282 !inet_is_local_reserved_port(net, snum))
283 goto found;
284 snum += rand;
285 } while (snum != first);
286 spin_unlock_bh(&hslot->lock);
287 } while (++first != last);
288 goto fail;
289 } else {
290 hslot = udp_hashslot(udptable, net, snum);
291 spin_lock_bh(&hslot->lock);
292 if (hslot->count > 10) {
293 int exist;
294 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
295
296 slot2 &= udptable->mask;
297 hash2_nulladdr &= udptable->mask;
298
299 hslot2 = udp_hashslot2(udptable, slot2);
300 if (hslot->count < hslot2->count)
301 goto scan_primary_hash;
302
303 exist = udp_lib_lport_inuse2(net, snum, hslot2,
304 sk, saddr_comp);
305 if (!exist && (hash2_nulladdr != slot2)) {
306 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
307 exist = udp_lib_lport_inuse2(net, snum, hslot2,
308 sk, saddr_comp);
309 }
310 if (exist)
311 goto fail_unlock;
312 else
313 goto found;
314 }
315 scan_primary_hash:
316 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
317 saddr_comp, 0))
318 goto fail_unlock;
319 }
320 found:
321 inet_sk(sk)->inet_num = snum;
322 udp_sk(sk)->udp_port_hash = snum;
323 udp_sk(sk)->udp_portaddr_hash ^= snum;
324 if (sk_unhashed(sk)) {
325 if (sk->sk_reuseport &&
326 udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
327 inet_sk(sk)->inet_num = 0;
328 udp_sk(sk)->udp_port_hash = 0;
329 udp_sk(sk)->udp_portaddr_hash ^= snum;
330 goto fail_unlock;
331 }
332
333 sk_add_node_rcu(sk, &hslot->head);
334 hslot->count++;
335 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
336
337 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
338 spin_lock(&hslot2->lock);
339 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
340 sk->sk_family == AF_INET6)
341 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
342 &hslot2->head);
343 else
344 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
345 &hslot2->head);
346 hslot2->count++;
347 spin_unlock(&hslot2->lock);
348 }
349 sock_set_flag(sk, SOCK_RCU_FREE);
350 error = 0;
351 fail_unlock:
352 spin_unlock_bh(&hslot->lock);
353 fail:
354 return error;
355 }
356 EXPORT_SYMBOL(udp_lib_get_port);
357
358 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
359 * match_wildcard == false: addresses must be exactly the same, i.e.
360 * 0.0.0.0 only equals to 0.0.0.0
361 */
362 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
363 bool match_wildcard)
364 {
365 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
366
367 if (!ipv6_only_sock(sk2)) {
368 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
369 return 1;
370 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
371 return match_wildcard;
372 }
373 return 0;
374 }
375
376 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
377 unsigned int port)
378 {
379 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
380 }
381
382 int udp_v4_get_port(struct sock *sk, unsigned short snum)
383 {
384 unsigned int hash2_nulladdr =
385 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
386 unsigned int hash2_partial =
387 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
388
389 /* precompute partial secondary hash */
390 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
391 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
392 }
393
394 static inline int compute_score(struct sock *sk, struct net *net,
395 __be32 saddr, unsigned short hnum, __be16 sport,
396 __be32 daddr, __be16 dport, int dif)
397 {
398 int score;
399 struct inet_sock *inet;
400
401 if (!net_eq(sock_net(sk), net) ||
402 udp_sk(sk)->udp_port_hash != hnum ||
403 ipv6_only_sock(sk))
404 return -1;
405
406 score = (sk->sk_family == PF_INET) ? 2 : 1;
407 inet = inet_sk(sk);
408
409 if (inet->inet_rcv_saddr) {
410 if (inet->inet_rcv_saddr != daddr)
411 return -1;
412 score += 4;
413 }
414
415 if (inet->inet_daddr) {
416 if (inet->inet_daddr != saddr)
417 return -1;
418 score += 4;
419 }
420
421 if (inet->inet_dport) {
422 if (inet->inet_dport != sport)
423 return -1;
424 score += 4;
425 }
426
427 if (sk->sk_bound_dev_if) {
428 if (sk->sk_bound_dev_if != dif)
429 return -1;
430 score += 4;
431 }
432 if (sk->sk_incoming_cpu == raw_smp_processor_id())
433 score++;
434 return score;
435 }
436
437 /*
438 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
439 */
440 static inline int compute_score2(struct sock *sk, struct net *net,
441 __be32 saddr, __be16 sport,
442 __be32 daddr, unsigned int hnum, int dif)
443 {
444 int score;
445 struct inet_sock *inet;
446
447 if (!net_eq(sock_net(sk), net) ||
448 ipv6_only_sock(sk))
449 return -1;
450
451 inet = inet_sk(sk);
452
453 if (inet->inet_rcv_saddr != daddr ||
454 inet->inet_num != hnum)
455 return -1;
456
457 score = (sk->sk_family == PF_INET) ? 2 : 1;
458
459 if (inet->inet_daddr) {
460 if (inet->inet_daddr != saddr)
461 return -1;
462 score += 4;
463 }
464
465 if (inet->inet_dport) {
466 if (inet->inet_dport != sport)
467 return -1;
468 score += 4;
469 }
470
471 if (sk->sk_bound_dev_if) {
472 if (sk->sk_bound_dev_if != dif)
473 return -1;
474 score += 4;
475 }
476
477 if (sk->sk_incoming_cpu == raw_smp_processor_id())
478 score++;
479
480 return score;
481 }
482
483 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
484 const __u16 lport, const __be32 faddr,
485 const __be16 fport)
486 {
487 static u32 udp_ehash_secret __read_mostly;
488
489 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
490
491 return __inet_ehashfn(laddr, lport, faddr, fport,
492 udp_ehash_secret + net_hash_mix(net));
493 }
494
495 /* called with read_rcu_lock() */
496 static struct sock *udp4_lib_lookup2(struct net *net,
497 __be32 saddr, __be16 sport,
498 __be32 daddr, unsigned int hnum, int dif,
499 struct udp_hslot *hslot2, unsigned int slot2,
500 struct sk_buff *skb)
501 {
502 struct sock *sk, *result;
503 int score, badness, matches = 0, reuseport = 0;
504 u32 hash = 0;
505
506 result = NULL;
507 badness = 0;
508 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
509 score = compute_score2(sk, net, saddr, sport,
510 daddr, hnum, dif);
511 if (score > badness) {
512 reuseport = sk->sk_reuseport;
513 if (reuseport) {
514 hash = udp_ehashfn(net, daddr, hnum,
515 saddr, sport);
516 result = reuseport_select_sock(sk, hash, skb,
517 sizeof(struct udphdr));
518 if (result)
519 return result;
520 matches = 1;
521 }
522 badness = score;
523 result = sk;
524 } else if (score == badness && reuseport) {
525 matches++;
526 if (reciprocal_scale(hash, matches) == 0)
527 result = sk;
528 hash = next_pseudo_random32(hash);
529 }
530 }
531 return result;
532 }
533
534 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
535 * harder than this. -DaveM
536 */
537 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
538 __be16 sport, __be32 daddr, __be16 dport,
539 int dif, struct udp_table *udptable, struct sk_buff *skb)
540 {
541 struct sock *sk, *result;
542 unsigned short hnum = ntohs(dport);
543 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
544 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
545 int score, badness, matches = 0, reuseport = 0;
546 u32 hash = 0;
547
548 if (hslot->count > 10) {
549 hash2 = udp4_portaddr_hash(net, daddr, hnum);
550 slot2 = hash2 & udptable->mask;
551 hslot2 = &udptable->hash2[slot2];
552 if (hslot->count < hslot2->count)
553 goto begin;
554
555 result = udp4_lib_lookup2(net, saddr, sport,
556 daddr, hnum, dif,
557 hslot2, slot2, skb);
558 if (!result) {
559 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
560 slot2 = hash2 & udptable->mask;
561 hslot2 = &udptable->hash2[slot2];
562 if (hslot->count < hslot2->count)
563 goto begin;
564
565 result = udp4_lib_lookup2(net, saddr, sport,
566 htonl(INADDR_ANY), hnum, dif,
567 hslot2, slot2, skb);
568 }
569 return result;
570 }
571 begin:
572 result = NULL;
573 badness = 0;
574 sk_for_each_rcu(sk, &hslot->head) {
575 score = compute_score(sk, net, saddr, hnum, sport,
576 daddr, dport, dif);
577 if (score > badness) {
578 reuseport = sk->sk_reuseport;
579 if (reuseport) {
580 hash = udp_ehashfn(net, daddr, hnum,
581 saddr, sport);
582 result = reuseport_select_sock(sk, hash, skb,
583 sizeof(struct udphdr));
584 if (result)
585 return result;
586 matches = 1;
587 }
588 result = sk;
589 badness = score;
590 } else if (score == badness && reuseport) {
591 matches++;
592 if (reciprocal_scale(hash, matches) == 0)
593 result = sk;
594 hash = next_pseudo_random32(hash);
595 }
596 }
597 return result;
598 }
599 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
600
601 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
602 __be16 sport, __be16 dport,
603 struct udp_table *udptable)
604 {
605 const struct iphdr *iph = ip_hdr(skb);
606
607 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
608 iph->daddr, dport, inet_iif(skb),
609 udptable, skb);
610 }
611
612 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
613 __be16 sport, __be16 dport)
614 {
615 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
616 }
617 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
618
619 /* Must be called under rcu_read_lock().
620 * Does increment socket refcount.
621 */
622 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
623 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY)
624 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
625 __be32 daddr, __be16 dport, int dif)
626 {
627 struct sock *sk;
628
629 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
630 dif, &udp_table, NULL);
631 if (sk && !atomic_inc_not_zero(&sk->sk_refcnt))
632 sk = NULL;
633 return sk;
634 }
635 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
636 #endif
637
638 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
639 __be16 loc_port, __be32 loc_addr,
640 __be16 rmt_port, __be32 rmt_addr,
641 int dif, unsigned short hnum)
642 {
643 struct inet_sock *inet = inet_sk(sk);
644
645 if (!net_eq(sock_net(sk), net) ||
646 udp_sk(sk)->udp_port_hash != hnum ||
647 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
648 (inet->inet_dport != rmt_port && inet->inet_dport) ||
649 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
650 ipv6_only_sock(sk) ||
651 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
652 return false;
653 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
654 return false;
655 return true;
656 }
657
658 /*
659 * This routine is called by the ICMP module when it gets some
660 * sort of error condition. If err < 0 then the socket should
661 * be closed and the error returned to the user. If err > 0
662 * it's just the icmp type << 8 | icmp code.
663 * Header points to the ip header of the error packet. We move
664 * on past this. Then (as it used to claim before adjustment)
665 * header points to the first 8 bytes of the udp header. We need
666 * to find the appropriate port.
667 */
668
669 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
670 {
671 struct inet_sock *inet;
672 const struct iphdr *iph = (const struct iphdr *)skb->data;
673 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
674 const int type = icmp_hdr(skb)->type;
675 const int code = icmp_hdr(skb)->code;
676 struct sock *sk;
677 int harderr;
678 int err;
679 struct net *net = dev_net(skb->dev);
680
681 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
682 iph->saddr, uh->source, skb->dev->ifindex, udptable,
683 NULL);
684 if (!sk) {
685 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
686 return; /* No socket for error */
687 }
688
689 err = 0;
690 harderr = 0;
691 inet = inet_sk(sk);
692
693 switch (type) {
694 default:
695 case ICMP_TIME_EXCEEDED:
696 err = EHOSTUNREACH;
697 break;
698 case ICMP_SOURCE_QUENCH:
699 goto out;
700 case ICMP_PARAMETERPROB:
701 err = EPROTO;
702 harderr = 1;
703 break;
704 case ICMP_DEST_UNREACH:
705 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
706 ipv4_sk_update_pmtu(skb, sk, info);
707 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
708 err = EMSGSIZE;
709 harderr = 1;
710 break;
711 }
712 goto out;
713 }
714 err = EHOSTUNREACH;
715 if (code <= NR_ICMP_UNREACH) {
716 harderr = icmp_err_convert[code].fatal;
717 err = icmp_err_convert[code].errno;
718 }
719 break;
720 case ICMP_REDIRECT:
721 ipv4_sk_redirect(skb, sk);
722 goto out;
723 }
724
725 /*
726 * RFC1122: OK. Passes ICMP errors back to application, as per
727 * 4.1.3.3.
728 */
729 if (!inet->recverr) {
730 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
731 goto out;
732 } else
733 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
734
735 sk->sk_err = err;
736 sk->sk_error_report(sk);
737 out:
738 return;
739 }
740
741 void udp_err(struct sk_buff *skb, u32 info)
742 {
743 __udp4_lib_err(skb, info, &udp_table);
744 }
745
746 /*
747 * Throw away all pending data and cancel the corking. Socket is locked.
748 */
749 void udp_flush_pending_frames(struct sock *sk)
750 {
751 struct udp_sock *up = udp_sk(sk);
752
753 if (up->pending) {
754 up->len = 0;
755 up->pending = 0;
756 ip_flush_pending_frames(sk);
757 }
758 }
759 EXPORT_SYMBOL(udp_flush_pending_frames);
760
761 /**
762 * udp4_hwcsum - handle outgoing HW checksumming
763 * @skb: sk_buff containing the filled-in UDP header
764 * (checksum field must be zeroed out)
765 * @src: source IP address
766 * @dst: destination IP address
767 */
768 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
769 {
770 struct udphdr *uh = udp_hdr(skb);
771 int offset = skb_transport_offset(skb);
772 int len = skb->len - offset;
773 int hlen = len;
774 __wsum csum = 0;
775
776 if (!skb_has_frag_list(skb)) {
777 /*
778 * Only one fragment on the socket.
779 */
780 skb->csum_start = skb_transport_header(skb) - skb->head;
781 skb->csum_offset = offsetof(struct udphdr, check);
782 uh->check = ~csum_tcpudp_magic(src, dst, len,
783 IPPROTO_UDP, 0);
784 } else {
785 struct sk_buff *frags;
786
787 /*
788 * HW-checksum won't work as there are two or more
789 * fragments on the socket so that all csums of sk_buffs
790 * should be together
791 */
792 skb_walk_frags(skb, frags) {
793 csum = csum_add(csum, frags->csum);
794 hlen -= frags->len;
795 }
796
797 csum = skb_checksum(skb, offset, hlen, csum);
798 skb->ip_summed = CHECKSUM_NONE;
799
800 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
801 if (uh->check == 0)
802 uh->check = CSUM_MANGLED_0;
803 }
804 }
805 EXPORT_SYMBOL_GPL(udp4_hwcsum);
806
807 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
808 * for the simple case like when setting the checksum for a UDP tunnel.
809 */
810 void udp_set_csum(bool nocheck, struct sk_buff *skb,
811 __be32 saddr, __be32 daddr, int len)
812 {
813 struct udphdr *uh = udp_hdr(skb);
814
815 if (nocheck) {
816 uh->check = 0;
817 } else if (skb_is_gso(skb)) {
818 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
819 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
820 uh->check = 0;
821 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
822 if (uh->check == 0)
823 uh->check = CSUM_MANGLED_0;
824 } else {
825 skb->ip_summed = CHECKSUM_PARTIAL;
826 skb->csum_start = skb_transport_header(skb) - skb->head;
827 skb->csum_offset = offsetof(struct udphdr, check);
828 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
829 }
830 }
831 EXPORT_SYMBOL(udp_set_csum);
832
833 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
834 {
835 struct sock *sk = skb->sk;
836 struct inet_sock *inet = inet_sk(sk);
837 struct udphdr *uh;
838 int err = 0;
839 int is_udplite = IS_UDPLITE(sk);
840 int offset = skb_transport_offset(skb);
841 int len = skb->len - offset;
842 __wsum csum = 0;
843
844 /*
845 * Create a UDP header
846 */
847 uh = udp_hdr(skb);
848 uh->source = inet->inet_sport;
849 uh->dest = fl4->fl4_dport;
850 uh->len = htons(len);
851 uh->check = 0;
852
853 if (is_udplite) /* UDP-Lite */
854 csum = udplite_csum(skb);
855
856 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
857
858 skb->ip_summed = CHECKSUM_NONE;
859 goto send;
860
861 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
862
863 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
864 goto send;
865
866 } else
867 csum = udp_csum(skb);
868
869 /* add protocol-dependent pseudo-header */
870 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
871 sk->sk_protocol, csum);
872 if (uh->check == 0)
873 uh->check = CSUM_MANGLED_0;
874
875 send:
876 err = ip_send_skb(sock_net(sk), skb);
877 if (err) {
878 if (err == -ENOBUFS && !inet->recverr) {
879 UDP_INC_STATS(sock_net(sk),
880 UDP_MIB_SNDBUFERRORS, is_udplite);
881 err = 0;
882 }
883 } else
884 UDP_INC_STATS(sock_net(sk),
885 UDP_MIB_OUTDATAGRAMS, is_udplite);
886 return err;
887 }
888
889 /*
890 * Push out all pending data as one UDP datagram. Socket is locked.
891 */
892 int udp_push_pending_frames(struct sock *sk)
893 {
894 struct udp_sock *up = udp_sk(sk);
895 struct inet_sock *inet = inet_sk(sk);
896 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
897 struct sk_buff *skb;
898 int err = 0;
899
900 skb = ip_finish_skb(sk, fl4);
901 if (!skb)
902 goto out;
903
904 err = udp_send_skb(skb, fl4);
905
906 out:
907 up->len = 0;
908 up->pending = 0;
909 return err;
910 }
911 EXPORT_SYMBOL(udp_push_pending_frames);
912
913 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
914 {
915 struct inet_sock *inet = inet_sk(sk);
916 struct udp_sock *up = udp_sk(sk);
917 struct flowi4 fl4_stack;
918 struct flowi4 *fl4;
919 int ulen = len;
920 struct ipcm_cookie ipc;
921 struct rtable *rt = NULL;
922 int free = 0;
923 int connected = 0;
924 __be32 daddr, faddr, saddr;
925 __be16 dport;
926 u8 tos;
927 int err, is_udplite = IS_UDPLITE(sk);
928 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
929 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
930 struct sk_buff *skb;
931 struct ip_options_data opt_copy;
932
933 if (len > 0xFFFF)
934 return -EMSGSIZE;
935
936 /*
937 * Check the flags.
938 */
939
940 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
941 return -EOPNOTSUPP;
942
943 ipc.opt = NULL;
944 ipc.tx_flags = 0;
945 ipc.ttl = 0;
946 ipc.tos = -1;
947
948 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
949
950 fl4 = &inet->cork.fl.u.ip4;
951 if (up->pending) {
952 /*
953 * There are pending frames.
954 * The socket lock must be held while it's corked.
955 */
956 lock_sock(sk);
957 if (likely(up->pending)) {
958 if (unlikely(up->pending != AF_INET)) {
959 release_sock(sk);
960 return -EINVAL;
961 }
962 goto do_append_data;
963 }
964 release_sock(sk);
965 }
966 ulen += sizeof(struct udphdr);
967
968 /*
969 * Get and verify the address.
970 */
971 if (msg->msg_name) {
972 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
973 if (msg->msg_namelen < sizeof(*usin))
974 return -EINVAL;
975 if (usin->sin_family != AF_INET) {
976 if (usin->sin_family != AF_UNSPEC)
977 return -EAFNOSUPPORT;
978 }
979
980 daddr = usin->sin_addr.s_addr;
981 dport = usin->sin_port;
982 if (dport == 0)
983 return -EINVAL;
984 } else {
985 if (sk->sk_state != TCP_ESTABLISHED)
986 return -EDESTADDRREQ;
987 daddr = inet->inet_daddr;
988 dport = inet->inet_dport;
989 /* Open fast path for connected socket.
990 Route will not be used, if at least one option is set.
991 */
992 connected = 1;
993 }
994
995 ipc.sockc.tsflags = sk->sk_tsflags;
996 ipc.addr = inet->inet_saddr;
997 ipc.oif = sk->sk_bound_dev_if;
998
999 if (msg->msg_controllen) {
1000 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
1001 if (unlikely(err)) {
1002 kfree(ipc.opt);
1003 return err;
1004 }
1005 if (ipc.opt)
1006 free = 1;
1007 connected = 0;
1008 }
1009 if (!ipc.opt) {
1010 struct ip_options_rcu *inet_opt;
1011
1012 rcu_read_lock();
1013 inet_opt = rcu_dereference(inet->inet_opt);
1014 if (inet_opt) {
1015 memcpy(&opt_copy, inet_opt,
1016 sizeof(*inet_opt) + inet_opt->opt.optlen);
1017 ipc.opt = &opt_copy.opt;
1018 }
1019 rcu_read_unlock();
1020 }
1021
1022 saddr = ipc.addr;
1023 ipc.addr = faddr = daddr;
1024
1025 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1026
1027 if (ipc.opt && ipc.opt->opt.srr) {
1028 if (!daddr)
1029 return -EINVAL;
1030 faddr = ipc.opt->opt.faddr;
1031 connected = 0;
1032 }
1033 tos = get_rttos(&ipc, inet);
1034 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1035 (msg->msg_flags & MSG_DONTROUTE) ||
1036 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1037 tos |= RTO_ONLINK;
1038 connected = 0;
1039 }
1040
1041 if (ipv4_is_multicast(daddr)) {
1042 if (!ipc.oif)
1043 ipc.oif = inet->mc_index;
1044 if (!saddr)
1045 saddr = inet->mc_addr;
1046 connected = 0;
1047 } else if (!ipc.oif)
1048 ipc.oif = inet->uc_index;
1049
1050 if (connected)
1051 rt = (struct rtable *)sk_dst_check(sk, 0);
1052
1053 if (!rt) {
1054 struct net *net = sock_net(sk);
1055 __u8 flow_flags = inet_sk_flowi_flags(sk);
1056
1057 fl4 = &fl4_stack;
1058
1059 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1060 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1061 flow_flags,
1062 faddr, saddr, dport, inet->inet_sport);
1063
1064 if (!saddr && ipc.oif) {
1065 err = l3mdev_get_saddr(net, ipc.oif, fl4);
1066 if (err < 0)
1067 goto out;
1068 }
1069
1070 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1071 rt = ip_route_output_flow(net, fl4, sk);
1072 if (IS_ERR(rt)) {
1073 err = PTR_ERR(rt);
1074 rt = NULL;
1075 if (err == -ENETUNREACH)
1076 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1077 goto out;
1078 }
1079
1080 err = -EACCES;
1081 if ((rt->rt_flags & RTCF_BROADCAST) &&
1082 !sock_flag(sk, SOCK_BROADCAST))
1083 goto out;
1084 if (connected)
1085 sk_dst_set(sk, dst_clone(&rt->dst));
1086 }
1087
1088 if (msg->msg_flags&MSG_CONFIRM)
1089 goto do_confirm;
1090 back_from_confirm:
1091
1092 saddr = fl4->saddr;
1093 if (!ipc.addr)
1094 daddr = ipc.addr = fl4->daddr;
1095
1096 /* Lockless fast path for the non-corking case. */
1097 if (!corkreq) {
1098 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1099 sizeof(struct udphdr), &ipc, &rt,
1100 msg->msg_flags);
1101 err = PTR_ERR(skb);
1102 if (!IS_ERR_OR_NULL(skb))
1103 err = udp_send_skb(skb, fl4);
1104 goto out;
1105 }
1106
1107 lock_sock(sk);
1108 if (unlikely(up->pending)) {
1109 /* The socket is already corked while preparing it. */
1110 /* ... which is an evident application bug. --ANK */
1111 release_sock(sk);
1112
1113 net_dbg_ratelimited("cork app bug 2\n");
1114 err = -EINVAL;
1115 goto out;
1116 }
1117 /*
1118 * Now cork the socket to pend data.
1119 */
1120 fl4 = &inet->cork.fl.u.ip4;
1121 fl4->daddr = daddr;
1122 fl4->saddr = saddr;
1123 fl4->fl4_dport = dport;
1124 fl4->fl4_sport = inet->inet_sport;
1125 up->pending = AF_INET;
1126
1127 do_append_data:
1128 up->len += ulen;
1129 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1130 sizeof(struct udphdr), &ipc, &rt,
1131 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1132 if (err)
1133 udp_flush_pending_frames(sk);
1134 else if (!corkreq)
1135 err = udp_push_pending_frames(sk);
1136 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1137 up->pending = 0;
1138 release_sock(sk);
1139
1140 out:
1141 ip_rt_put(rt);
1142 if (free)
1143 kfree(ipc.opt);
1144 if (!err)
1145 return len;
1146 /*
1147 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1148 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1149 * we don't have a good statistic (IpOutDiscards but it can be too many
1150 * things). We could add another new stat but at least for now that
1151 * seems like overkill.
1152 */
1153 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1154 UDP_INC_STATS(sock_net(sk),
1155 UDP_MIB_SNDBUFERRORS, is_udplite);
1156 }
1157 return err;
1158
1159 do_confirm:
1160 dst_confirm(&rt->dst);
1161 if (!(msg->msg_flags&MSG_PROBE) || len)
1162 goto back_from_confirm;
1163 err = 0;
1164 goto out;
1165 }
1166 EXPORT_SYMBOL(udp_sendmsg);
1167
1168 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1169 size_t size, int flags)
1170 {
1171 struct inet_sock *inet = inet_sk(sk);
1172 struct udp_sock *up = udp_sk(sk);
1173 int ret;
1174
1175 if (flags & MSG_SENDPAGE_NOTLAST)
1176 flags |= MSG_MORE;
1177
1178 if (!up->pending) {
1179 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1180
1181 /* Call udp_sendmsg to specify destination address which
1182 * sendpage interface can't pass.
1183 * This will succeed only when the socket is connected.
1184 */
1185 ret = udp_sendmsg(sk, &msg, 0);
1186 if (ret < 0)
1187 return ret;
1188 }
1189
1190 lock_sock(sk);
1191
1192 if (unlikely(!up->pending)) {
1193 release_sock(sk);
1194
1195 net_dbg_ratelimited("udp cork app bug 3\n");
1196 return -EINVAL;
1197 }
1198
1199 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1200 page, offset, size, flags);
1201 if (ret == -EOPNOTSUPP) {
1202 release_sock(sk);
1203 return sock_no_sendpage(sk->sk_socket, page, offset,
1204 size, flags);
1205 }
1206 if (ret < 0) {
1207 udp_flush_pending_frames(sk);
1208 goto out;
1209 }
1210
1211 up->len += size;
1212 if (!(up->corkflag || (flags&MSG_MORE)))
1213 ret = udp_push_pending_frames(sk);
1214 if (!ret)
1215 ret = size;
1216 out:
1217 release_sock(sk);
1218 return ret;
1219 }
1220
1221 /**
1222 * first_packet_length - return length of first packet in receive queue
1223 * @sk: socket
1224 *
1225 * Drops all bad checksum frames, until a valid one is found.
1226 * Returns the length of found skb, or 0 if none is found.
1227 */
1228 static unsigned int first_packet_length(struct sock *sk)
1229 {
1230 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1231 struct sk_buff *skb;
1232 unsigned int res;
1233
1234 __skb_queue_head_init(&list_kill);
1235
1236 spin_lock_bh(&rcvq->lock);
1237 while ((skb = skb_peek(rcvq)) != NULL &&
1238 udp_lib_checksum_complete(skb)) {
1239 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1240 IS_UDPLITE(sk));
1241 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1242 IS_UDPLITE(sk));
1243 atomic_inc(&sk->sk_drops);
1244 __skb_unlink(skb, rcvq);
1245 __skb_queue_tail(&list_kill, skb);
1246 }
1247 res = skb ? skb->len : 0;
1248 spin_unlock_bh(&rcvq->lock);
1249
1250 if (!skb_queue_empty(&list_kill)) {
1251 bool slow = lock_sock_fast(sk);
1252
1253 __skb_queue_purge(&list_kill);
1254 sk_mem_reclaim_partial(sk);
1255 unlock_sock_fast(sk, slow);
1256 }
1257 return res;
1258 }
1259
1260 /*
1261 * IOCTL requests applicable to the UDP protocol
1262 */
1263
1264 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1265 {
1266 switch (cmd) {
1267 case SIOCOUTQ:
1268 {
1269 int amount = sk_wmem_alloc_get(sk);
1270
1271 return put_user(amount, (int __user *)arg);
1272 }
1273
1274 case SIOCINQ:
1275 {
1276 unsigned int amount = first_packet_length(sk);
1277
1278 return put_user(amount, (int __user *)arg);
1279 }
1280
1281 default:
1282 return -ENOIOCTLCMD;
1283 }
1284
1285 return 0;
1286 }
1287 EXPORT_SYMBOL(udp_ioctl);
1288
1289 /*
1290 * This should be easy, if there is something there we
1291 * return it, otherwise we block.
1292 */
1293
1294 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1295 int flags, int *addr_len)
1296 {
1297 struct inet_sock *inet = inet_sk(sk);
1298 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1299 struct sk_buff *skb;
1300 unsigned int ulen, copied;
1301 int peeked, peeking, off;
1302 int err;
1303 int is_udplite = IS_UDPLITE(sk);
1304 bool checksum_valid = false;
1305 bool slow;
1306
1307 if (flags & MSG_ERRQUEUE)
1308 return ip_recv_error(sk, msg, len, addr_len);
1309
1310 try_again:
1311 peeking = off = sk_peek_offset(sk, flags);
1312 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1313 &peeked, &off, &err);
1314 if (!skb)
1315 return err;
1316
1317 ulen = skb->len;
1318 copied = len;
1319 if (copied > ulen - off)
1320 copied = ulen - off;
1321 else if (copied < ulen)
1322 msg->msg_flags |= MSG_TRUNC;
1323
1324 /*
1325 * If checksum is needed at all, try to do it while copying the
1326 * data. If the data is truncated, or if we only want a partial
1327 * coverage checksum (UDP-Lite), do it before the copy.
1328 */
1329
1330 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov || peeking) {
1331 checksum_valid = !udp_lib_checksum_complete(skb);
1332 if (!checksum_valid)
1333 goto csum_copy_err;
1334 }
1335
1336 if (checksum_valid || skb_csum_unnecessary(skb))
1337 err = skb_copy_datagram_msg(skb, off, msg, copied);
1338 else {
1339 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1340
1341 if (err == -EINVAL)
1342 goto csum_copy_err;
1343 }
1344
1345 if (unlikely(err)) {
1346 trace_kfree_skb(skb, udp_recvmsg);
1347 if (!peeked) {
1348 atomic_inc(&sk->sk_drops);
1349 UDP_INC_STATS(sock_net(sk),
1350 UDP_MIB_INERRORS, is_udplite);
1351 }
1352 skb_free_datagram_locked(sk, skb);
1353 return err;
1354 }
1355
1356 if (!peeked)
1357 UDP_INC_STATS(sock_net(sk),
1358 UDP_MIB_INDATAGRAMS, is_udplite);
1359
1360 sock_recv_ts_and_drops(msg, sk, skb);
1361
1362 /* Copy the address. */
1363 if (sin) {
1364 sin->sin_family = AF_INET;
1365 sin->sin_port = udp_hdr(skb)->source;
1366 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1367 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1368 *addr_len = sizeof(*sin);
1369 }
1370 if (inet->cmsg_flags)
1371 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr) + off);
1372
1373 err = copied;
1374 if (flags & MSG_TRUNC)
1375 err = ulen;
1376
1377 __skb_free_datagram_locked(sk, skb, peeking ? -err : err);
1378 return err;
1379
1380 csum_copy_err:
1381 slow = lock_sock_fast(sk);
1382 if (!skb_kill_datagram(sk, skb, flags)) {
1383 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1384 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1385 }
1386 unlock_sock_fast(sk, slow);
1387
1388 /* starting over for a new packet, but check if we need to yield */
1389 cond_resched();
1390 msg->msg_flags &= ~MSG_TRUNC;
1391 goto try_again;
1392 }
1393
1394 int udp_disconnect(struct sock *sk, int flags)
1395 {
1396 struct inet_sock *inet = inet_sk(sk);
1397 /*
1398 * 1003.1g - break association.
1399 */
1400
1401 sk->sk_state = TCP_CLOSE;
1402 inet->inet_daddr = 0;
1403 inet->inet_dport = 0;
1404 sock_rps_reset_rxhash(sk);
1405 sk->sk_bound_dev_if = 0;
1406 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1407 inet_reset_saddr(sk);
1408
1409 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1410 sk->sk_prot->unhash(sk);
1411 inet->inet_sport = 0;
1412 }
1413 sk_dst_reset(sk);
1414 return 0;
1415 }
1416 EXPORT_SYMBOL(udp_disconnect);
1417
1418 void udp_lib_unhash(struct sock *sk)
1419 {
1420 if (sk_hashed(sk)) {
1421 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1422 struct udp_hslot *hslot, *hslot2;
1423
1424 hslot = udp_hashslot(udptable, sock_net(sk),
1425 udp_sk(sk)->udp_port_hash);
1426 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1427
1428 spin_lock_bh(&hslot->lock);
1429 if (rcu_access_pointer(sk->sk_reuseport_cb))
1430 reuseport_detach_sock(sk);
1431 if (sk_del_node_init_rcu(sk)) {
1432 hslot->count--;
1433 inet_sk(sk)->inet_num = 0;
1434 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1435
1436 spin_lock(&hslot2->lock);
1437 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1438 hslot2->count--;
1439 spin_unlock(&hslot2->lock);
1440 }
1441 spin_unlock_bh(&hslot->lock);
1442 }
1443 }
1444 EXPORT_SYMBOL(udp_lib_unhash);
1445
1446 /*
1447 * inet_rcv_saddr was changed, we must rehash secondary hash
1448 */
1449 void udp_lib_rehash(struct sock *sk, u16 newhash)
1450 {
1451 if (sk_hashed(sk)) {
1452 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1453 struct udp_hslot *hslot, *hslot2, *nhslot2;
1454
1455 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1456 nhslot2 = udp_hashslot2(udptable, newhash);
1457 udp_sk(sk)->udp_portaddr_hash = newhash;
1458
1459 if (hslot2 != nhslot2 ||
1460 rcu_access_pointer(sk->sk_reuseport_cb)) {
1461 hslot = udp_hashslot(udptable, sock_net(sk),
1462 udp_sk(sk)->udp_port_hash);
1463 /* we must lock primary chain too */
1464 spin_lock_bh(&hslot->lock);
1465 if (rcu_access_pointer(sk->sk_reuseport_cb))
1466 reuseport_detach_sock(sk);
1467
1468 if (hslot2 != nhslot2) {
1469 spin_lock(&hslot2->lock);
1470 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1471 hslot2->count--;
1472 spin_unlock(&hslot2->lock);
1473
1474 spin_lock(&nhslot2->lock);
1475 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1476 &nhslot2->head);
1477 nhslot2->count++;
1478 spin_unlock(&nhslot2->lock);
1479 }
1480
1481 spin_unlock_bh(&hslot->lock);
1482 }
1483 }
1484 }
1485 EXPORT_SYMBOL(udp_lib_rehash);
1486
1487 static void udp_v4_rehash(struct sock *sk)
1488 {
1489 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1490 inet_sk(sk)->inet_rcv_saddr,
1491 inet_sk(sk)->inet_num);
1492 udp_lib_rehash(sk, new_hash);
1493 }
1494
1495 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1496 {
1497 int rc;
1498
1499 if (inet_sk(sk)->inet_daddr) {
1500 sock_rps_save_rxhash(sk, skb);
1501 sk_mark_napi_id(sk, skb);
1502 sk_incoming_cpu_update(sk);
1503 }
1504
1505 rc = __sock_queue_rcv_skb(sk, skb);
1506 if (rc < 0) {
1507 int is_udplite = IS_UDPLITE(sk);
1508
1509 /* Note that an ENOMEM error is charged twice */
1510 if (rc == -ENOMEM)
1511 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1512 is_udplite);
1513 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1514 kfree_skb(skb);
1515 trace_udp_fail_queue_rcv_skb(rc, sk);
1516 return -1;
1517 }
1518
1519 return 0;
1520
1521 }
1522
1523 static struct static_key udp_encap_needed __read_mostly;
1524 void udp_encap_enable(void)
1525 {
1526 if (!static_key_enabled(&udp_encap_needed))
1527 static_key_slow_inc(&udp_encap_needed);
1528 }
1529 EXPORT_SYMBOL(udp_encap_enable);
1530
1531 /* returns:
1532 * -1: error
1533 * 0: success
1534 * >0: "udp encap" protocol resubmission
1535 *
1536 * Note that in the success and error cases, the skb is assumed to
1537 * have either been requeued or freed.
1538 */
1539 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1540 {
1541 struct udp_sock *up = udp_sk(sk);
1542 int rc;
1543 int is_udplite = IS_UDPLITE(sk);
1544
1545 /*
1546 * Charge it to the socket, dropping if the queue is full.
1547 */
1548 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1549 goto drop;
1550 nf_reset(skb);
1551
1552 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1553 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1554
1555 /*
1556 * This is an encapsulation socket so pass the skb to
1557 * the socket's udp_encap_rcv() hook. Otherwise, just
1558 * fall through and pass this up the UDP socket.
1559 * up->encap_rcv() returns the following value:
1560 * =0 if skb was successfully passed to the encap
1561 * handler or was discarded by it.
1562 * >0 if skb should be passed on to UDP.
1563 * <0 if skb should be resubmitted as proto -N
1564 */
1565
1566 /* if we're overly short, let UDP handle it */
1567 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1568 if (encap_rcv) {
1569 int ret;
1570
1571 /* Verify checksum before giving to encap */
1572 if (udp_lib_checksum_complete(skb))
1573 goto csum_error;
1574
1575 ret = encap_rcv(sk, skb);
1576 if (ret <= 0) {
1577 __UDP_INC_STATS(sock_net(sk),
1578 UDP_MIB_INDATAGRAMS,
1579 is_udplite);
1580 return -ret;
1581 }
1582 }
1583
1584 /* FALLTHROUGH -- it's a UDP Packet */
1585 }
1586
1587 /*
1588 * UDP-Lite specific tests, ignored on UDP sockets
1589 */
1590 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1591
1592 /*
1593 * MIB statistics other than incrementing the error count are
1594 * disabled for the following two types of errors: these depend
1595 * on the application settings, not on the functioning of the
1596 * protocol stack as such.
1597 *
1598 * RFC 3828 here recommends (sec 3.3): "There should also be a
1599 * way ... to ... at least let the receiving application block
1600 * delivery of packets with coverage values less than a value
1601 * provided by the application."
1602 */
1603 if (up->pcrlen == 0) { /* full coverage was set */
1604 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1605 UDP_SKB_CB(skb)->cscov, skb->len);
1606 goto drop;
1607 }
1608 /* The next case involves violating the min. coverage requested
1609 * by the receiver. This is subtle: if receiver wants x and x is
1610 * greater than the buffersize/MTU then receiver will complain
1611 * that it wants x while sender emits packets of smaller size y.
1612 * Therefore the above ...()->partial_cov statement is essential.
1613 */
1614 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1615 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1616 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1617 goto drop;
1618 }
1619 }
1620
1621 if (rcu_access_pointer(sk->sk_filter) &&
1622 udp_lib_checksum_complete(skb))
1623 goto csum_error;
1624
1625 if (sk_filter(sk, skb))
1626 goto drop;
1627
1628 udp_csum_pull_header(skb);
1629 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1630 __UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1631 is_udplite);
1632 goto drop;
1633 }
1634
1635 rc = 0;
1636
1637 ipv4_pktinfo_prepare(sk, skb);
1638 bh_lock_sock(sk);
1639 if (!sock_owned_by_user(sk))
1640 rc = __udp_queue_rcv_skb(sk, skb);
1641 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1642 bh_unlock_sock(sk);
1643 goto drop;
1644 }
1645 bh_unlock_sock(sk);
1646
1647 return rc;
1648
1649 csum_error:
1650 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1651 drop:
1652 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1653 atomic_inc(&sk->sk_drops);
1654 kfree_skb(skb);
1655 return -1;
1656 }
1657
1658 /* For TCP sockets, sk_rx_dst is protected by socket lock
1659 * For UDP, we use xchg() to guard against concurrent changes.
1660 */
1661 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1662 {
1663 struct dst_entry *old;
1664
1665 dst_hold(dst);
1666 old = xchg(&sk->sk_rx_dst, dst);
1667 dst_release(old);
1668 }
1669
1670 /*
1671 * Multicasts and broadcasts go to each listener.
1672 *
1673 * Note: called only from the BH handler context.
1674 */
1675 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1676 struct udphdr *uh,
1677 __be32 saddr, __be32 daddr,
1678 struct udp_table *udptable,
1679 int proto)
1680 {
1681 struct sock *sk, *first = NULL;
1682 unsigned short hnum = ntohs(uh->dest);
1683 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1684 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1685 unsigned int offset = offsetof(typeof(*sk), sk_node);
1686 int dif = skb->dev->ifindex;
1687 struct hlist_node *node;
1688 struct sk_buff *nskb;
1689
1690 if (use_hash2) {
1691 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1692 udp_table.mask;
1693 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1694 start_lookup:
1695 hslot = &udp_table.hash2[hash2];
1696 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1697 }
1698
1699 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1700 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1701 uh->source, saddr, dif, hnum))
1702 continue;
1703
1704 if (!first) {
1705 first = sk;
1706 continue;
1707 }
1708 nskb = skb_clone(skb, GFP_ATOMIC);
1709
1710 if (unlikely(!nskb)) {
1711 atomic_inc(&sk->sk_drops);
1712 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1713 IS_UDPLITE(sk));
1714 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1715 IS_UDPLITE(sk));
1716 continue;
1717 }
1718 if (udp_queue_rcv_skb(sk, nskb) > 0)
1719 consume_skb(nskb);
1720 }
1721
1722 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1723 if (use_hash2 && hash2 != hash2_any) {
1724 hash2 = hash2_any;
1725 goto start_lookup;
1726 }
1727
1728 if (first) {
1729 if (udp_queue_rcv_skb(first, skb) > 0)
1730 consume_skb(skb);
1731 } else {
1732 kfree_skb(skb);
1733 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
1734 proto == IPPROTO_UDPLITE);
1735 }
1736 return 0;
1737 }
1738
1739 /* Initialize UDP checksum. If exited with zero value (success),
1740 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1741 * Otherwise, csum completion requires chacksumming packet body,
1742 * including udp header and folding it to skb->csum.
1743 */
1744 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1745 int proto)
1746 {
1747 int err;
1748
1749 UDP_SKB_CB(skb)->partial_cov = 0;
1750 UDP_SKB_CB(skb)->cscov = skb->len;
1751
1752 if (proto == IPPROTO_UDPLITE) {
1753 err = udplite_checksum_init(skb, uh);
1754 if (err)
1755 return err;
1756 }
1757
1758 return skb_checksum_init_zero_check(skb, proto, uh->check,
1759 inet_compute_pseudo);
1760 }
1761
1762 /*
1763 * All we need to do is get the socket, and then do a checksum.
1764 */
1765
1766 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1767 int proto)
1768 {
1769 struct sock *sk;
1770 struct udphdr *uh;
1771 unsigned short ulen;
1772 struct rtable *rt = skb_rtable(skb);
1773 __be32 saddr, daddr;
1774 struct net *net = dev_net(skb->dev);
1775
1776 /*
1777 * Validate the packet.
1778 */
1779 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1780 goto drop; /* No space for header. */
1781
1782 uh = udp_hdr(skb);
1783 ulen = ntohs(uh->len);
1784 saddr = ip_hdr(skb)->saddr;
1785 daddr = ip_hdr(skb)->daddr;
1786
1787 if (ulen > skb->len)
1788 goto short_packet;
1789
1790 if (proto == IPPROTO_UDP) {
1791 /* UDP validates ulen. */
1792 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1793 goto short_packet;
1794 uh = udp_hdr(skb);
1795 }
1796
1797 if (udp4_csum_init(skb, uh, proto))
1798 goto csum_error;
1799
1800 sk = skb_steal_sock(skb);
1801 if (sk) {
1802 struct dst_entry *dst = skb_dst(skb);
1803 int ret;
1804
1805 if (unlikely(sk->sk_rx_dst != dst))
1806 udp_sk_rx_dst_set(sk, dst);
1807
1808 ret = udp_queue_rcv_skb(sk, skb);
1809 sock_put(sk);
1810 /* a return value > 0 means to resubmit the input, but
1811 * it wants the return to be -protocol, or 0
1812 */
1813 if (ret > 0)
1814 return -ret;
1815 return 0;
1816 }
1817
1818 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1819 return __udp4_lib_mcast_deliver(net, skb, uh,
1820 saddr, daddr, udptable, proto);
1821
1822 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1823 if (sk) {
1824 int ret;
1825
1826 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1827 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1828 inet_compute_pseudo);
1829
1830 ret = udp_queue_rcv_skb(sk, skb);
1831
1832 /* a return value > 0 means to resubmit the input, but
1833 * it wants the return to be -protocol, or 0
1834 */
1835 if (ret > 0)
1836 return -ret;
1837 return 0;
1838 }
1839
1840 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1841 goto drop;
1842 nf_reset(skb);
1843
1844 /* No socket. Drop packet silently, if checksum is wrong */
1845 if (udp_lib_checksum_complete(skb))
1846 goto csum_error;
1847
1848 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1849 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1850
1851 /*
1852 * Hmm. We got an UDP packet to a port to which we
1853 * don't wanna listen. Ignore it.
1854 */
1855 kfree_skb(skb);
1856 return 0;
1857
1858 short_packet:
1859 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1860 proto == IPPROTO_UDPLITE ? "Lite" : "",
1861 &saddr, ntohs(uh->source),
1862 ulen, skb->len,
1863 &daddr, ntohs(uh->dest));
1864 goto drop;
1865
1866 csum_error:
1867 /*
1868 * RFC1122: OK. Discards the bad packet silently (as far as
1869 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1870 */
1871 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1872 proto == IPPROTO_UDPLITE ? "Lite" : "",
1873 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1874 ulen);
1875 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1876 drop:
1877 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1878 kfree_skb(skb);
1879 return 0;
1880 }
1881
1882 /* We can only early demux multicast if there is a single matching socket.
1883 * If more than one socket found returns NULL
1884 */
1885 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1886 __be16 loc_port, __be32 loc_addr,
1887 __be16 rmt_port, __be32 rmt_addr,
1888 int dif)
1889 {
1890 struct sock *sk, *result;
1891 unsigned short hnum = ntohs(loc_port);
1892 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
1893 struct udp_hslot *hslot = &udp_table.hash[slot];
1894
1895 /* Do not bother scanning a too big list */
1896 if (hslot->count > 10)
1897 return NULL;
1898
1899 result = NULL;
1900 sk_for_each_rcu(sk, &hslot->head) {
1901 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
1902 rmt_port, rmt_addr, dif, hnum)) {
1903 if (result)
1904 return NULL;
1905 result = sk;
1906 }
1907 }
1908
1909 return result;
1910 }
1911
1912 /* For unicast we should only early demux connected sockets or we can
1913 * break forwarding setups. The chains here can be long so only check
1914 * if the first socket is an exact match and if not move on.
1915 */
1916 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1917 __be16 loc_port, __be32 loc_addr,
1918 __be16 rmt_port, __be32 rmt_addr,
1919 int dif)
1920 {
1921 unsigned short hnum = ntohs(loc_port);
1922 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1923 unsigned int slot2 = hash2 & udp_table.mask;
1924 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1925 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1926 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1927 struct sock *sk;
1928
1929 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
1930 if (INET_MATCH(sk, net, acookie, rmt_addr,
1931 loc_addr, ports, dif))
1932 return sk;
1933 /* Only check first socket in chain */
1934 break;
1935 }
1936 return NULL;
1937 }
1938
1939 void udp_v4_early_demux(struct sk_buff *skb)
1940 {
1941 struct net *net = dev_net(skb->dev);
1942 const struct iphdr *iph;
1943 const struct udphdr *uh;
1944 struct sock *sk = NULL;
1945 struct dst_entry *dst;
1946 int dif = skb->dev->ifindex;
1947 int ours;
1948
1949 /* validate the packet */
1950 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1951 return;
1952
1953 iph = ip_hdr(skb);
1954 uh = udp_hdr(skb);
1955
1956 if (skb->pkt_type == PACKET_BROADCAST ||
1957 skb->pkt_type == PACKET_MULTICAST) {
1958 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1959
1960 if (!in_dev)
1961 return;
1962
1963 /* we are supposed to accept bcast packets */
1964 if (skb->pkt_type == PACKET_MULTICAST) {
1965 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1966 iph->protocol);
1967 if (!ours)
1968 return;
1969 }
1970
1971 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1972 uh->source, iph->saddr, dif);
1973 } else if (skb->pkt_type == PACKET_HOST) {
1974 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1975 uh->source, iph->saddr, dif);
1976 }
1977
1978 if (!sk || !atomic_inc_not_zero_hint(&sk->sk_refcnt, 2))
1979 return;
1980
1981 skb->sk = sk;
1982 skb->destructor = sock_efree;
1983 dst = READ_ONCE(sk->sk_rx_dst);
1984
1985 if (dst)
1986 dst = dst_check(dst, 0);
1987 if (dst) {
1988 /* DST_NOCACHE can not be used without taking a reference */
1989 if (dst->flags & DST_NOCACHE) {
1990 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
1991 skb_dst_set(skb, dst);
1992 } else {
1993 skb_dst_set_noref(skb, dst);
1994 }
1995 }
1996 }
1997
1998 int udp_rcv(struct sk_buff *skb)
1999 {
2000 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2001 }
2002
2003 void udp_destroy_sock(struct sock *sk)
2004 {
2005 struct udp_sock *up = udp_sk(sk);
2006 bool slow = lock_sock_fast(sk);
2007 udp_flush_pending_frames(sk);
2008 unlock_sock_fast(sk, slow);
2009 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2010 void (*encap_destroy)(struct sock *sk);
2011 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2012 if (encap_destroy)
2013 encap_destroy(sk);
2014 }
2015 }
2016
2017 /*
2018 * Socket option code for UDP
2019 */
2020 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2021 char __user *optval, unsigned int optlen,
2022 int (*push_pending_frames)(struct sock *))
2023 {
2024 struct udp_sock *up = udp_sk(sk);
2025 int val, valbool;
2026 int err = 0;
2027 int is_udplite = IS_UDPLITE(sk);
2028
2029 if (optlen < sizeof(int))
2030 return -EINVAL;
2031
2032 if (get_user(val, (int __user *)optval))
2033 return -EFAULT;
2034
2035 valbool = val ? 1 : 0;
2036
2037 switch (optname) {
2038 case UDP_CORK:
2039 if (val != 0) {
2040 up->corkflag = 1;
2041 } else {
2042 up->corkflag = 0;
2043 lock_sock(sk);
2044 push_pending_frames(sk);
2045 release_sock(sk);
2046 }
2047 break;
2048
2049 case UDP_ENCAP:
2050 switch (val) {
2051 case 0:
2052 case UDP_ENCAP_ESPINUDP:
2053 case UDP_ENCAP_ESPINUDP_NON_IKE:
2054 up->encap_rcv = xfrm4_udp_encap_rcv;
2055 /* FALLTHROUGH */
2056 case UDP_ENCAP_L2TPINUDP:
2057 up->encap_type = val;
2058 udp_encap_enable();
2059 break;
2060 default:
2061 err = -ENOPROTOOPT;
2062 break;
2063 }
2064 break;
2065
2066 case UDP_NO_CHECK6_TX:
2067 up->no_check6_tx = valbool;
2068 break;
2069
2070 case UDP_NO_CHECK6_RX:
2071 up->no_check6_rx = valbool;
2072 break;
2073
2074 /*
2075 * UDP-Lite's partial checksum coverage (RFC 3828).
2076 */
2077 /* The sender sets actual checksum coverage length via this option.
2078 * The case coverage > packet length is handled by send module. */
2079 case UDPLITE_SEND_CSCOV:
2080 if (!is_udplite) /* Disable the option on UDP sockets */
2081 return -ENOPROTOOPT;
2082 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2083 val = 8;
2084 else if (val > USHRT_MAX)
2085 val = USHRT_MAX;
2086 up->pcslen = val;
2087 up->pcflag |= UDPLITE_SEND_CC;
2088 break;
2089
2090 /* The receiver specifies a minimum checksum coverage value. To make
2091 * sense, this should be set to at least 8 (as done below). If zero is
2092 * used, this again means full checksum coverage. */
2093 case UDPLITE_RECV_CSCOV:
2094 if (!is_udplite) /* Disable the option on UDP sockets */
2095 return -ENOPROTOOPT;
2096 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2097 val = 8;
2098 else if (val > USHRT_MAX)
2099 val = USHRT_MAX;
2100 up->pcrlen = val;
2101 up->pcflag |= UDPLITE_RECV_CC;
2102 break;
2103
2104 default:
2105 err = -ENOPROTOOPT;
2106 break;
2107 }
2108
2109 return err;
2110 }
2111 EXPORT_SYMBOL(udp_lib_setsockopt);
2112
2113 int udp_setsockopt(struct sock *sk, int level, int optname,
2114 char __user *optval, unsigned int optlen)
2115 {
2116 if (level == SOL_UDP || level == SOL_UDPLITE)
2117 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2118 udp_push_pending_frames);
2119 return ip_setsockopt(sk, level, optname, optval, optlen);
2120 }
2121
2122 #ifdef CONFIG_COMPAT
2123 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2124 char __user *optval, unsigned int optlen)
2125 {
2126 if (level == SOL_UDP || level == SOL_UDPLITE)
2127 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2128 udp_push_pending_frames);
2129 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2130 }
2131 #endif
2132
2133 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2134 char __user *optval, int __user *optlen)
2135 {
2136 struct udp_sock *up = udp_sk(sk);
2137 int val, len;
2138
2139 if (get_user(len, optlen))
2140 return -EFAULT;
2141
2142 len = min_t(unsigned int, len, sizeof(int));
2143
2144 if (len < 0)
2145 return -EINVAL;
2146
2147 switch (optname) {
2148 case UDP_CORK:
2149 val = up->corkflag;
2150 break;
2151
2152 case UDP_ENCAP:
2153 val = up->encap_type;
2154 break;
2155
2156 case UDP_NO_CHECK6_TX:
2157 val = up->no_check6_tx;
2158 break;
2159
2160 case UDP_NO_CHECK6_RX:
2161 val = up->no_check6_rx;
2162 break;
2163
2164 /* The following two cannot be changed on UDP sockets, the return is
2165 * always 0 (which corresponds to the full checksum coverage of UDP). */
2166 case UDPLITE_SEND_CSCOV:
2167 val = up->pcslen;
2168 break;
2169
2170 case UDPLITE_RECV_CSCOV:
2171 val = up->pcrlen;
2172 break;
2173
2174 default:
2175 return -ENOPROTOOPT;
2176 }
2177
2178 if (put_user(len, optlen))
2179 return -EFAULT;
2180 if (copy_to_user(optval, &val, len))
2181 return -EFAULT;
2182 return 0;
2183 }
2184 EXPORT_SYMBOL(udp_lib_getsockopt);
2185
2186 int udp_getsockopt(struct sock *sk, int level, int optname,
2187 char __user *optval, int __user *optlen)
2188 {
2189 if (level == SOL_UDP || level == SOL_UDPLITE)
2190 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2191 return ip_getsockopt(sk, level, optname, optval, optlen);
2192 }
2193
2194 #ifdef CONFIG_COMPAT
2195 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2196 char __user *optval, int __user *optlen)
2197 {
2198 if (level == SOL_UDP || level == SOL_UDPLITE)
2199 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2200 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2201 }
2202 #endif
2203 /**
2204 * udp_poll - wait for a UDP event.
2205 * @file - file struct
2206 * @sock - socket
2207 * @wait - poll table
2208 *
2209 * This is same as datagram poll, except for the special case of
2210 * blocking sockets. If application is using a blocking fd
2211 * and a packet with checksum error is in the queue;
2212 * then it could get return from select indicating data available
2213 * but then block when reading it. Add special case code
2214 * to work around these arguably broken applications.
2215 */
2216 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2217 {
2218 unsigned int mask = datagram_poll(file, sock, wait);
2219 struct sock *sk = sock->sk;
2220
2221 sock_rps_record_flow(sk);
2222
2223 /* Check for false positives due to checksum errors */
2224 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2225 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2226 mask &= ~(POLLIN | POLLRDNORM);
2227
2228 return mask;
2229
2230 }
2231 EXPORT_SYMBOL(udp_poll);
2232
2233 struct proto udp_prot = {
2234 .name = "UDP",
2235 .owner = THIS_MODULE,
2236 .close = udp_lib_close,
2237 .connect = ip4_datagram_connect,
2238 .disconnect = udp_disconnect,
2239 .ioctl = udp_ioctl,
2240 .destroy = udp_destroy_sock,
2241 .setsockopt = udp_setsockopt,
2242 .getsockopt = udp_getsockopt,
2243 .sendmsg = udp_sendmsg,
2244 .recvmsg = udp_recvmsg,
2245 .sendpage = udp_sendpage,
2246 .backlog_rcv = __udp_queue_rcv_skb,
2247 .release_cb = ip4_datagram_release_cb,
2248 .hash = udp_lib_hash,
2249 .unhash = udp_lib_unhash,
2250 .rehash = udp_v4_rehash,
2251 .get_port = udp_v4_get_port,
2252 .memory_allocated = &udp_memory_allocated,
2253 .sysctl_mem = sysctl_udp_mem,
2254 .sysctl_wmem = &sysctl_udp_wmem_min,
2255 .sysctl_rmem = &sysctl_udp_rmem_min,
2256 .obj_size = sizeof(struct udp_sock),
2257 .slab_flags = SLAB_DESTROY_BY_RCU,
2258 .h.udp_table = &udp_table,
2259 #ifdef CONFIG_COMPAT
2260 .compat_setsockopt = compat_udp_setsockopt,
2261 .compat_getsockopt = compat_udp_getsockopt,
2262 #endif
2263 .clear_sk = sk_prot_clear_portaddr_nulls,
2264 };
2265 EXPORT_SYMBOL(udp_prot);
2266
2267 /* ------------------------------------------------------------------------ */
2268 #ifdef CONFIG_PROC_FS
2269
2270 static struct sock *udp_get_first(struct seq_file *seq, int start)
2271 {
2272 struct sock *sk;
2273 struct udp_iter_state *state = seq->private;
2274 struct net *net = seq_file_net(seq);
2275
2276 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2277 ++state->bucket) {
2278 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2279
2280 if (hlist_empty(&hslot->head))
2281 continue;
2282
2283 spin_lock_bh(&hslot->lock);
2284 sk_for_each(sk, &hslot->head) {
2285 if (!net_eq(sock_net(sk), net))
2286 continue;
2287 if (sk->sk_family == state->family)
2288 goto found;
2289 }
2290 spin_unlock_bh(&hslot->lock);
2291 }
2292 sk = NULL;
2293 found:
2294 return sk;
2295 }
2296
2297 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2298 {
2299 struct udp_iter_state *state = seq->private;
2300 struct net *net = seq_file_net(seq);
2301
2302 do {
2303 sk = sk_next(sk);
2304 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2305
2306 if (!sk) {
2307 if (state->bucket <= state->udp_table->mask)
2308 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2309 return udp_get_first(seq, state->bucket + 1);
2310 }
2311 return sk;
2312 }
2313
2314 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2315 {
2316 struct sock *sk = udp_get_first(seq, 0);
2317
2318 if (sk)
2319 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2320 --pos;
2321 return pos ? NULL : sk;
2322 }
2323
2324 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2325 {
2326 struct udp_iter_state *state = seq->private;
2327 state->bucket = MAX_UDP_PORTS;
2328
2329 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2330 }
2331
2332 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2333 {
2334 struct sock *sk;
2335
2336 if (v == SEQ_START_TOKEN)
2337 sk = udp_get_idx(seq, 0);
2338 else
2339 sk = udp_get_next(seq, v);
2340
2341 ++*pos;
2342 return sk;
2343 }
2344
2345 static void udp_seq_stop(struct seq_file *seq, void *v)
2346 {
2347 struct udp_iter_state *state = seq->private;
2348
2349 if (state->bucket <= state->udp_table->mask)
2350 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2351 }
2352
2353 int udp_seq_open(struct inode *inode, struct file *file)
2354 {
2355 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2356 struct udp_iter_state *s;
2357 int err;
2358
2359 err = seq_open_net(inode, file, &afinfo->seq_ops,
2360 sizeof(struct udp_iter_state));
2361 if (err < 0)
2362 return err;
2363
2364 s = ((struct seq_file *)file->private_data)->private;
2365 s->family = afinfo->family;
2366 s->udp_table = afinfo->udp_table;
2367 return err;
2368 }
2369 EXPORT_SYMBOL(udp_seq_open);
2370
2371 /* ------------------------------------------------------------------------ */
2372 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2373 {
2374 struct proc_dir_entry *p;
2375 int rc = 0;
2376
2377 afinfo->seq_ops.start = udp_seq_start;
2378 afinfo->seq_ops.next = udp_seq_next;
2379 afinfo->seq_ops.stop = udp_seq_stop;
2380
2381 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2382 afinfo->seq_fops, afinfo);
2383 if (!p)
2384 rc = -ENOMEM;
2385 return rc;
2386 }
2387 EXPORT_SYMBOL(udp_proc_register);
2388
2389 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2390 {
2391 remove_proc_entry(afinfo->name, net->proc_net);
2392 }
2393 EXPORT_SYMBOL(udp_proc_unregister);
2394
2395 /* ------------------------------------------------------------------------ */
2396 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2397 int bucket)
2398 {
2399 struct inet_sock *inet = inet_sk(sp);
2400 __be32 dest = inet->inet_daddr;
2401 __be32 src = inet->inet_rcv_saddr;
2402 __u16 destp = ntohs(inet->inet_dport);
2403 __u16 srcp = ntohs(inet->inet_sport);
2404
2405 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2406 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2407 bucket, src, srcp, dest, destp, sp->sk_state,
2408 sk_wmem_alloc_get(sp),
2409 sk_rmem_alloc_get(sp),
2410 0, 0L, 0,
2411 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2412 0, sock_i_ino(sp),
2413 atomic_read(&sp->sk_refcnt), sp,
2414 atomic_read(&sp->sk_drops));
2415 }
2416
2417 int udp4_seq_show(struct seq_file *seq, void *v)
2418 {
2419 seq_setwidth(seq, 127);
2420 if (v == SEQ_START_TOKEN)
2421 seq_puts(seq, " sl local_address rem_address st tx_queue "
2422 "rx_queue tr tm->when retrnsmt uid timeout "
2423 "inode ref pointer drops");
2424 else {
2425 struct udp_iter_state *state = seq->private;
2426
2427 udp4_format_sock(v, seq, state->bucket);
2428 }
2429 seq_pad(seq, '\n');
2430 return 0;
2431 }
2432
2433 static const struct file_operations udp_afinfo_seq_fops = {
2434 .owner = THIS_MODULE,
2435 .open = udp_seq_open,
2436 .read = seq_read,
2437 .llseek = seq_lseek,
2438 .release = seq_release_net
2439 };
2440
2441 /* ------------------------------------------------------------------------ */
2442 static struct udp_seq_afinfo udp4_seq_afinfo = {
2443 .name = "udp",
2444 .family = AF_INET,
2445 .udp_table = &udp_table,
2446 .seq_fops = &udp_afinfo_seq_fops,
2447 .seq_ops = {
2448 .show = udp4_seq_show,
2449 },
2450 };
2451
2452 static int __net_init udp4_proc_init_net(struct net *net)
2453 {
2454 return udp_proc_register(net, &udp4_seq_afinfo);
2455 }
2456
2457 static void __net_exit udp4_proc_exit_net(struct net *net)
2458 {
2459 udp_proc_unregister(net, &udp4_seq_afinfo);
2460 }
2461
2462 static struct pernet_operations udp4_net_ops = {
2463 .init = udp4_proc_init_net,
2464 .exit = udp4_proc_exit_net,
2465 };
2466
2467 int __init udp4_proc_init(void)
2468 {
2469 return register_pernet_subsys(&udp4_net_ops);
2470 }
2471
2472 void udp4_proc_exit(void)
2473 {
2474 unregister_pernet_subsys(&udp4_net_ops);
2475 }
2476 #endif /* CONFIG_PROC_FS */
2477
2478 static __initdata unsigned long uhash_entries;
2479 static int __init set_uhash_entries(char *str)
2480 {
2481 ssize_t ret;
2482
2483 if (!str)
2484 return 0;
2485
2486 ret = kstrtoul(str, 0, &uhash_entries);
2487 if (ret)
2488 return 0;
2489
2490 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2491 uhash_entries = UDP_HTABLE_SIZE_MIN;
2492 return 1;
2493 }
2494 __setup("uhash_entries=", set_uhash_entries);
2495
2496 void __init udp_table_init(struct udp_table *table, const char *name)
2497 {
2498 unsigned int i;
2499
2500 table->hash = alloc_large_system_hash(name,
2501 2 * sizeof(struct udp_hslot),
2502 uhash_entries,
2503 21, /* one slot per 2 MB */
2504 0,
2505 &table->log,
2506 &table->mask,
2507 UDP_HTABLE_SIZE_MIN,
2508 64 * 1024);
2509
2510 table->hash2 = table->hash + (table->mask + 1);
2511 for (i = 0; i <= table->mask; i++) {
2512 INIT_HLIST_HEAD(&table->hash[i].head);
2513 table->hash[i].count = 0;
2514 spin_lock_init(&table->hash[i].lock);
2515 }
2516 for (i = 0; i <= table->mask; i++) {
2517 INIT_HLIST_HEAD(&table->hash2[i].head);
2518 table->hash2[i].count = 0;
2519 spin_lock_init(&table->hash2[i].lock);
2520 }
2521 }
2522
2523 u32 udp_flow_hashrnd(void)
2524 {
2525 static u32 hashrnd __read_mostly;
2526
2527 net_get_random_once(&hashrnd, sizeof(hashrnd));
2528
2529 return hashrnd;
2530 }
2531 EXPORT_SYMBOL(udp_flow_hashrnd);
2532
2533 void __init udp_init(void)
2534 {
2535 unsigned long limit;
2536
2537 udp_table_init(&udp_table, "UDP");
2538 limit = nr_free_buffer_pages() / 8;
2539 limit = max(limit, 128UL);
2540 sysctl_udp_mem[0] = limit / 4 * 3;
2541 sysctl_udp_mem[1] = limit;
2542 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2543
2544 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2545 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2546 }
This page took 0.088193 seconds and 5 git commands to generate.