Merge branch 'x86/ras' into x86/core, to fix conflicts
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/netdevice.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
119
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
125
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
128
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
131
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 const struct udp_hslot *hslot,
137 unsigned long *bitmap,
138 struct sock *sk,
139 int (*saddr_comp)(const struct sock *sk1,
140 const struct sock *sk2),
141 unsigned int log)
142 {
143 struct sock *sk2;
144 struct hlist_nulls_node *node;
145 kuid_t uid = sock_i_uid(sk);
146
147 sk_nulls_for_each(sk2, node, &hslot->head) {
148 if (net_eq(sock_net(sk2), net) &&
149 sk2 != sk &&
150 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 (!sk2->sk_reuse || !sk->sk_reuse) &&
152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 !uid_eq(uid, sock_i_uid(sk2))) &&
156 saddr_comp(sk, sk2)) {
157 if (!bitmap)
158 return 1;
159 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
160 }
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
174 {
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
179
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 saddr_comp(sk, sk2)) {
191 res = 1;
192 break;
193 }
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
199 /**
200 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
201 *
202 * @sk: socket struct in question
203 * @snum: port number to look up
204 * @saddr_comp: AF-dependent comparison of bound local IP addresses
205 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206 * with NULL address
207 */
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 int (*saddr_comp)(const struct sock *sk1,
210 const struct sock *sk2),
211 unsigned int hash2_nulladdr)
212 {
213 struct udp_hslot *hslot, *hslot2;
214 struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 int error = 1;
216 struct net *net = sock_net(sk);
217
218 if (!snum) {
219 int low, high, remaining;
220 unsigned int rand;
221 unsigned short first, last;
222 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
223
224 inet_get_local_port_range(net, &low, &high);
225 remaining = (high - low) + 1;
226
227 rand = prandom_u32();
228 first = reciprocal_scale(rand, remaining) + low;
229 /*
230 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 */
232 rand = (rand | 1) * (udptable->mask + 1);
233 last = first + udptable->mask + 1;
234 do {
235 hslot = udp_hashslot(udptable, net, first);
236 bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 spin_lock_bh(&hslot->lock);
238 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 saddr_comp, udptable->log);
240
241 snum = first;
242 /*
243 * Iterate on all possible values of snum for this hash.
244 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 * give us randomization and full range coverage.
246 */
247 do {
248 if (low <= snum && snum <= high &&
249 !test_bit(snum >> udptable->log, bitmap) &&
250 !inet_is_local_reserved_port(net, snum))
251 goto found;
252 snum += rand;
253 } while (snum != first);
254 spin_unlock_bh(&hslot->lock);
255 } while (++first != last);
256 goto fail;
257 } else {
258 hslot = udp_hashslot(udptable, net, snum);
259 spin_lock_bh(&hslot->lock);
260 if (hslot->count > 10) {
261 int exist;
262 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
263
264 slot2 &= udptable->mask;
265 hash2_nulladdr &= udptable->mask;
266
267 hslot2 = udp_hashslot2(udptable, slot2);
268 if (hslot->count < hslot2->count)
269 goto scan_primary_hash;
270
271 exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 sk, saddr_comp);
273 if (!exist && (hash2_nulladdr != slot2)) {
274 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 sk, saddr_comp);
277 }
278 if (exist)
279 goto fail_unlock;
280 else
281 goto found;
282 }
283 scan_primary_hash:
284 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 saddr_comp, 0))
286 goto fail_unlock;
287 }
288 found:
289 inet_sk(sk)->inet_num = snum;
290 udp_sk(sk)->udp_port_hash = snum;
291 udp_sk(sk)->udp_portaddr_hash ^= snum;
292 if (sk_unhashed(sk)) {
293 sk_nulls_add_node_rcu(sk, &hslot->head);
294 hslot->count++;
295 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
296
297 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 spin_lock(&hslot2->lock);
299 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 &hslot2->head);
301 hslot2->count++;
302 spin_unlock(&hslot2->lock);
303 }
304 error = 0;
305 fail_unlock:
306 spin_unlock_bh(&hslot->lock);
307 fail:
308 return error;
309 }
310 EXPORT_SYMBOL(udp_lib_get_port);
311
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
313 {
314 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
315
316 return (!ipv6_only_sock(sk2) &&
317 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
319 }
320
321 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
322 unsigned int port)
323 {
324 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
325 }
326
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
328 {
329 unsigned int hash2_nulladdr =
330 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 unsigned int hash2_partial =
332 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
333
334 /* precompute partial secondary hash */
335 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
337 }
338
339 static inline int compute_score(struct sock *sk, struct net *net,
340 __be32 saddr, unsigned short hnum, __be16 sport,
341 __be32 daddr, __be16 dport, int dif)
342 {
343 int score;
344 struct inet_sock *inet;
345
346 if (!net_eq(sock_net(sk), net) ||
347 udp_sk(sk)->udp_port_hash != hnum ||
348 ipv6_only_sock(sk))
349 return -1;
350
351 score = (sk->sk_family == PF_INET) ? 2 : 1;
352 inet = inet_sk(sk);
353
354 if (inet->inet_rcv_saddr) {
355 if (inet->inet_rcv_saddr != daddr)
356 return -1;
357 score += 4;
358 }
359
360 if (inet->inet_daddr) {
361 if (inet->inet_daddr != saddr)
362 return -1;
363 score += 4;
364 }
365
366 if (inet->inet_dport) {
367 if (inet->inet_dport != sport)
368 return -1;
369 score += 4;
370 }
371
372 if (sk->sk_bound_dev_if) {
373 if (sk->sk_bound_dev_if != dif)
374 return -1;
375 score += 4;
376 }
377
378 return score;
379 }
380
381 /*
382 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
383 */
384 static inline int compute_score2(struct sock *sk, struct net *net,
385 __be32 saddr, __be16 sport,
386 __be32 daddr, unsigned int hnum, int dif)
387 {
388 int score;
389 struct inet_sock *inet;
390
391 if (!net_eq(sock_net(sk), net) ||
392 ipv6_only_sock(sk))
393 return -1;
394
395 inet = inet_sk(sk);
396
397 if (inet->inet_rcv_saddr != daddr ||
398 inet->inet_num != hnum)
399 return -1;
400
401 score = (sk->sk_family == PF_INET) ? 2 : 1;
402
403 if (inet->inet_daddr) {
404 if (inet->inet_daddr != saddr)
405 return -1;
406 score += 4;
407 }
408
409 if (inet->inet_dport) {
410 if (inet->inet_dport != sport)
411 return -1;
412 score += 4;
413 }
414
415 if (sk->sk_bound_dev_if) {
416 if (sk->sk_bound_dev_if != dif)
417 return -1;
418 score += 4;
419 }
420
421 return score;
422 }
423
424 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
425 const __u16 lport, const __be32 faddr,
426 const __be16 fport)
427 {
428 static u32 udp_ehash_secret __read_mostly;
429
430 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
431
432 return __inet_ehashfn(laddr, lport, faddr, fport,
433 udp_ehash_secret + net_hash_mix(net));
434 }
435
436 /* called with read_rcu_lock() */
437 static struct sock *udp4_lib_lookup2(struct net *net,
438 __be32 saddr, __be16 sport,
439 __be32 daddr, unsigned int hnum, int dif,
440 struct udp_hslot *hslot2, unsigned int slot2)
441 {
442 struct sock *sk, *result;
443 struct hlist_nulls_node *node;
444 int score, badness, matches = 0, reuseport = 0;
445 u32 hash = 0;
446
447 begin:
448 result = NULL;
449 badness = 0;
450 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
451 score = compute_score2(sk, net, saddr, sport,
452 daddr, hnum, dif);
453 if (score > badness) {
454 result = sk;
455 badness = score;
456 reuseport = sk->sk_reuseport;
457 if (reuseport) {
458 hash = udp_ehashfn(net, daddr, hnum,
459 saddr, sport);
460 matches = 1;
461 }
462 } else if (score == badness && reuseport) {
463 matches++;
464 if (reciprocal_scale(hash, matches) == 0)
465 result = sk;
466 hash = next_pseudo_random32(hash);
467 }
468 }
469 /*
470 * if the nulls value we got at the end of this lookup is
471 * not the expected one, we must restart lookup.
472 * We probably met an item that was moved to another chain.
473 */
474 if (get_nulls_value(node) != slot2)
475 goto begin;
476 if (result) {
477 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
478 result = NULL;
479 else if (unlikely(compute_score2(result, net, saddr, sport,
480 daddr, hnum, dif) < badness)) {
481 sock_put(result);
482 goto begin;
483 }
484 }
485 return result;
486 }
487
488 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
489 * harder than this. -DaveM
490 */
491 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
492 __be16 sport, __be32 daddr, __be16 dport,
493 int dif, struct udp_table *udptable)
494 {
495 struct sock *sk, *result;
496 struct hlist_nulls_node *node;
497 unsigned short hnum = ntohs(dport);
498 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
499 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
500 int score, badness, matches = 0, reuseport = 0;
501 u32 hash = 0;
502
503 rcu_read_lock();
504 if (hslot->count > 10) {
505 hash2 = udp4_portaddr_hash(net, daddr, hnum);
506 slot2 = hash2 & udptable->mask;
507 hslot2 = &udptable->hash2[slot2];
508 if (hslot->count < hslot2->count)
509 goto begin;
510
511 result = udp4_lib_lookup2(net, saddr, sport,
512 daddr, hnum, dif,
513 hslot2, slot2);
514 if (!result) {
515 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
516 slot2 = hash2 & udptable->mask;
517 hslot2 = &udptable->hash2[slot2];
518 if (hslot->count < hslot2->count)
519 goto begin;
520
521 result = udp4_lib_lookup2(net, saddr, sport,
522 htonl(INADDR_ANY), hnum, dif,
523 hslot2, slot2);
524 }
525 rcu_read_unlock();
526 return result;
527 }
528 begin:
529 result = NULL;
530 badness = 0;
531 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
532 score = compute_score(sk, net, saddr, hnum, sport,
533 daddr, dport, dif);
534 if (score > badness) {
535 result = sk;
536 badness = score;
537 reuseport = sk->sk_reuseport;
538 if (reuseport) {
539 hash = udp_ehashfn(net, daddr, hnum,
540 saddr, sport);
541 matches = 1;
542 }
543 } else if (score == badness && reuseport) {
544 matches++;
545 if (reciprocal_scale(hash, matches) == 0)
546 result = sk;
547 hash = next_pseudo_random32(hash);
548 }
549 }
550 /*
551 * if the nulls value we got at the end of this lookup is
552 * not the expected one, we must restart lookup.
553 * We probably met an item that was moved to another chain.
554 */
555 if (get_nulls_value(node) != slot)
556 goto begin;
557
558 if (result) {
559 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
560 result = NULL;
561 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
562 daddr, dport, dif) < badness)) {
563 sock_put(result);
564 goto begin;
565 }
566 }
567 rcu_read_unlock();
568 return result;
569 }
570 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
571
572 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
573 __be16 sport, __be16 dport,
574 struct udp_table *udptable)
575 {
576 const struct iphdr *iph = ip_hdr(skb);
577
578 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
579 iph->daddr, dport, inet_iif(skb),
580 udptable);
581 }
582
583 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
584 __be32 daddr, __be16 dport, int dif)
585 {
586 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
587 }
588 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
589
590 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
591 __be16 loc_port, __be32 loc_addr,
592 __be16 rmt_port, __be32 rmt_addr,
593 int dif, unsigned short hnum)
594 {
595 struct inet_sock *inet = inet_sk(sk);
596
597 if (!net_eq(sock_net(sk), net) ||
598 udp_sk(sk)->udp_port_hash != hnum ||
599 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
600 (inet->inet_dport != rmt_port && inet->inet_dport) ||
601 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
602 ipv6_only_sock(sk) ||
603 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
604 return false;
605 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
606 return false;
607 return true;
608 }
609
610 /*
611 * This routine is called by the ICMP module when it gets some
612 * sort of error condition. If err < 0 then the socket should
613 * be closed and the error returned to the user. If err > 0
614 * it's just the icmp type << 8 | icmp code.
615 * Header points to the ip header of the error packet. We move
616 * on past this. Then (as it used to claim before adjustment)
617 * header points to the first 8 bytes of the udp header. We need
618 * to find the appropriate port.
619 */
620
621 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
622 {
623 struct inet_sock *inet;
624 const struct iphdr *iph = (const struct iphdr *)skb->data;
625 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
626 const int type = icmp_hdr(skb)->type;
627 const int code = icmp_hdr(skb)->code;
628 struct sock *sk;
629 int harderr;
630 int err;
631 struct net *net = dev_net(skb->dev);
632
633 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
634 iph->saddr, uh->source, skb->dev->ifindex, udptable);
635 if (!sk) {
636 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
637 return; /* No socket for error */
638 }
639
640 err = 0;
641 harderr = 0;
642 inet = inet_sk(sk);
643
644 switch (type) {
645 default:
646 case ICMP_TIME_EXCEEDED:
647 err = EHOSTUNREACH;
648 break;
649 case ICMP_SOURCE_QUENCH:
650 goto out;
651 case ICMP_PARAMETERPROB:
652 err = EPROTO;
653 harderr = 1;
654 break;
655 case ICMP_DEST_UNREACH:
656 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
657 ipv4_sk_update_pmtu(skb, sk, info);
658 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
659 err = EMSGSIZE;
660 harderr = 1;
661 break;
662 }
663 goto out;
664 }
665 err = EHOSTUNREACH;
666 if (code <= NR_ICMP_UNREACH) {
667 harderr = icmp_err_convert[code].fatal;
668 err = icmp_err_convert[code].errno;
669 }
670 break;
671 case ICMP_REDIRECT:
672 ipv4_sk_redirect(skb, sk);
673 goto out;
674 }
675
676 /*
677 * RFC1122: OK. Passes ICMP errors back to application, as per
678 * 4.1.3.3.
679 */
680 if (!inet->recverr) {
681 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
682 goto out;
683 } else
684 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
685
686 sk->sk_err = err;
687 sk->sk_error_report(sk);
688 out:
689 sock_put(sk);
690 }
691
692 void udp_err(struct sk_buff *skb, u32 info)
693 {
694 __udp4_lib_err(skb, info, &udp_table);
695 }
696
697 /*
698 * Throw away all pending data and cancel the corking. Socket is locked.
699 */
700 void udp_flush_pending_frames(struct sock *sk)
701 {
702 struct udp_sock *up = udp_sk(sk);
703
704 if (up->pending) {
705 up->len = 0;
706 up->pending = 0;
707 ip_flush_pending_frames(sk);
708 }
709 }
710 EXPORT_SYMBOL(udp_flush_pending_frames);
711
712 /**
713 * udp4_hwcsum - handle outgoing HW checksumming
714 * @skb: sk_buff containing the filled-in UDP header
715 * (checksum field must be zeroed out)
716 * @src: source IP address
717 * @dst: destination IP address
718 */
719 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
720 {
721 struct udphdr *uh = udp_hdr(skb);
722 int offset = skb_transport_offset(skb);
723 int len = skb->len - offset;
724 int hlen = len;
725 __wsum csum = 0;
726
727 if (!skb_has_frag_list(skb)) {
728 /*
729 * Only one fragment on the socket.
730 */
731 skb->csum_start = skb_transport_header(skb) - skb->head;
732 skb->csum_offset = offsetof(struct udphdr, check);
733 uh->check = ~csum_tcpudp_magic(src, dst, len,
734 IPPROTO_UDP, 0);
735 } else {
736 struct sk_buff *frags;
737
738 /*
739 * HW-checksum won't work as there are two or more
740 * fragments on the socket so that all csums of sk_buffs
741 * should be together
742 */
743 skb_walk_frags(skb, frags) {
744 csum = csum_add(csum, frags->csum);
745 hlen -= frags->len;
746 }
747
748 csum = skb_checksum(skb, offset, hlen, csum);
749 skb->ip_summed = CHECKSUM_NONE;
750
751 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
752 if (uh->check == 0)
753 uh->check = CSUM_MANGLED_0;
754 }
755 }
756 EXPORT_SYMBOL_GPL(udp4_hwcsum);
757
758 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
759 * for the simple case like when setting the checksum for a UDP tunnel.
760 */
761 void udp_set_csum(bool nocheck, struct sk_buff *skb,
762 __be32 saddr, __be32 daddr, int len)
763 {
764 struct udphdr *uh = udp_hdr(skb);
765
766 if (nocheck)
767 uh->check = 0;
768 else if (skb_is_gso(skb))
769 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
770 else if (skb_dst(skb) && skb_dst(skb)->dev &&
771 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
772
773 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
774
775 skb->ip_summed = CHECKSUM_PARTIAL;
776 skb->csum_start = skb_transport_header(skb) - skb->head;
777 skb->csum_offset = offsetof(struct udphdr, check);
778 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
779 } else {
780 __wsum csum;
781
782 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
783
784 uh->check = 0;
785 csum = skb_checksum(skb, 0, len, 0);
786 uh->check = udp_v4_check(len, saddr, daddr, csum);
787 if (uh->check == 0)
788 uh->check = CSUM_MANGLED_0;
789
790 skb->ip_summed = CHECKSUM_UNNECESSARY;
791 }
792 }
793 EXPORT_SYMBOL(udp_set_csum);
794
795 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
796 {
797 struct sock *sk = skb->sk;
798 struct inet_sock *inet = inet_sk(sk);
799 struct udphdr *uh;
800 int err = 0;
801 int is_udplite = IS_UDPLITE(sk);
802 int offset = skb_transport_offset(skb);
803 int len = skb->len - offset;
804 __wsum csum = 0;
805
806 /*
807 * Create a UDP header
808 */
809 uh = udp_hdr(skb);
810 uh->source = inet->inet_sport;
811 uh->dest = fl4->fl4_dport;
812 uh->len = htons(len);
813 uh->check = 0;
814
815 if (is_udplite) /* UDP-Lite */
816 csum = udplite_csum(skb);
817
818 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
819
820 skb->ip_summed = CHECKSUM_NONE;
821 goto send;
822
823 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
824
825 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
826 goto send;
827
828 } else
829 csum = udp_csum(skb);
830
831 /* add protocol-dependent pseudo-header */
832 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
833 sk->sk_protocol, csum);
834 if (uh->check == 0)
835 uh->check = CSUM_MANGLED_0;
836
837 send:
838 err = ip_send_skb(sock_net(sk), skb);
839 if (err) {
840 if (err == -ENOBUFS && !inet->recverr) {
841 UDP_INC_STATS_USER(sock_net(sk),
842 UDP_MIB_SNDBUFERRORS, is_udplite);
843 err = 0;
844 }
845 } else
846 UDP_INC_STATS_USER(sock_net(sk),
847 UDP_MIB_OUTDATAGRAMS, is_udplite);
848 return err;
849 }
850
851 /*
852 * Push out all pending data as one UDP datagram. Socket is locked.
853 */
854 int udp_push_pending_frames(struct sock *sk)
855 {
856 struct udp_sock *up = udp_sk(sk);
857 struct inet_sock *inet = inet_sk(sk);
858 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
859 struct sk_buff *skb;
860 int err = 0;
861
862 skb = ip_finish_skb(sk, fl4);
863 if (!skb)
864 goto out;
865
866 err = udp_send_skb(skb, fl4);
867
868 out:
869 up->len = 0;
870 up->pending = 0;
871 return err;
872 }
873 EXPORT_SYMBOL(udp_push_pending_frames);
874
875 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
876 {
877 struct inet_sock *inet = inet_sk(sk);
878 struct udp_sock *up = udp_sk(sk);
879 struct flowi4 fl4_stack;
880 struct flowi4 *fl4;
881 int ulen = len;
882 struct ipcm_cookie ipc;
883 struct rtable *rt = NULL;
884 int free = 0;
885 int connected = 0;
886 __be32 daddr, faddr, saddr;
887 __be16 dport;
888 u8 tos;
889 int err, is_udplite = IS_UDPLITE(sk);
890 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
891 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
892 struct sk_buff *skb;
893 struct ip_options_data opt_copy;
894
895 if (len > 0xFFFF)
896 return -EMSGSIZE;
897
898 /*
899 * Check the flags.
900 */
901
902 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
903 return -EOPNOTSUPP;
904
905 ipc.opt = NULL;
906 ipc.tx_flags = 0;
907 ipc.ttl = 0;
908 ipc.tos = -1;
909
910 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
911
912 fl4 = &inet->cork.fl.u.ip4;
913 if (up->pending) {
914 /*
915 * There are pending frames.
916 * The socket lock must be held while it's corked.
917 */
918 lock_sock(sk);
919 if (likely(up->pending)) {
920 if (unlikely(up->pending != AF_INET)) {
921 release_sock(sk);
922 return -EINVAL;
923 }
924 goto do_append_data;
925 }
926 release_sock(sk);
927 }
928 ulen += sizeof(struct udphdr);
929
930 /*
931 * Get and verify the address.
932 */
933 if (msg->msg_name) {
934 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
935 if (msg->msg_namelen < sizeof(*usin))
936 return -EINVAL;
937 if (usin->sin_family != AF_INET) {
938 if (usin->sin_family != AF_UNSPEC)
939 return -EAFNOSUPPORT;
940 }
941
942 daddr = usin->sin_addr.s_addr;
943 dport = usin->sin_port;
944 if (dport == 0)
945 return -EINVAL;
946 } else {
947 if (sk->sk_state != TCP_ESTABLISHED)
948 return -EDESTADDRREQ;
949 daddr = inet->inet_daddr;
950 dport = inet->inet_dport;
951 /* Open fast path for connected socket.
952 Route will not be used, if at least one option is set.
953 */
954 connected = 1;
955 }
956 ipc.addr = inet->inet_saddr;
957
958 ipc.oif = sk->sk_bound_dev_if;
959
960 sock_tx_timestamp(sk, &ipc.tx_flags);
961
962 if (msg->msg_controllen) {
963 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
964 sk->sk_family == AF_INET6);
965 if (err)
966 return err;
967 if (ipc.opt)
968 free = 1;
969 connected = 0;
970 }
971 if (!ipc.opt) {
972 struct ip_options_rcu *inet_opt;
973
974 rcu_read_lock();
975 inet_opt = rcu_dereference(inet->inet_opt);
976 if (inet_opt) {
977 memcpy(&opt_copy, inet_opt,
978 sizeof(*inet_opt) + inet_opt->opt.optlen);
979 ipc.opt = &opt_copy.opt;
980 }
981 rcu_read_unlock();
982 }
983
984 saddr = ipc.addr;
985 ipc.addr = faddr = daddr;
986
987 if (ipc.opt && ipc.opt->opt.srr) {
988 if (!daddr)
989 return -EINVAL;
990 faddr = ipc.opt->opt.faddr;
991 connected = 0;
992 }
993 tos = get_rttos(&ipc, inet);
994 if (sock_flag(sk, SOCK_LOCALROUTE) ||
995 (msg->msg_flags & MSG_DONTROUTE) ||
996 (ipc.opt && ipc.opt->opt.is_strictroute)) {
997 tos |= RTO_ONLINK;
998 connected = 0;
999 }
1000
1001 if (ipv4_is_multicast(daddr)) {
1002 if (!ipc.oif)
1003 ipc.oif = inet->mc_index;
1004 if (!saddr)
1005 saddr = inet->mc_addr;
1006 connected = 0;
1007 } else if (!ipc.oif)
1008 ipc.oif = inet->uc_index;
1009
1010 if (connected)
1011 rt = (struct rtable *)sk_dst_check(sk, 0);
1012
1013 if (!rt) {
1014 struct net *net = sock_net(sk);
1015
1016 fl4 = &fl4_stack;
1017 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1018 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1019 inet_sk_flowi_flags(sk),
1020 faddr, saddr, dport, inet->inet_sport);
1021
1022 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1023 rt = ip_route_output_flow(net, fl4, sk);
1024 if (IS_ERR(rt)) {
1025 err = PTR_ERR(rt);
1026 rt = NULL;
1027 if (err == -ENETUNREACH)
1028 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1029 goto out;
1030 }
1031
1032 err = -EACCES;
1033 if ((rt->rt_flags & RTCF_BROADCAST) &&
1034 !sock_flag(sk, SOCK_BROADCAST))
1035 goto out;
1036 if (connected)
1037 sk_dst_set(sk, dst_clone(&rt->dst));
1038 }
1039
1040 if (msg->msg_flags&MSG_CONFIRM)
1041 goto do_confirm;
1042 back_from_confirm:
1043
1044 saddr = fl4->saddr;
1045 if (!ipc.addr)
1046 daddr = ipc.addr = fl4->daddr;
1047
1048 /* Lockless fast path for the non-corking case. */
1049 if (!corkreq) {
1050 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1051 sizeof(struct udphdr), &ipc, &rt,
1052 msg->msg_flags);
1053 err = PTR_ERR(skb);
1054 if (!IS_ERR_OR_NULL(skb))
1055 err = udp_send_skb(skb, fl4);
1056 goto out;
1057 }
1058
1059 lock_sock(sk);
1060 if (unlikely(up->pending)) {
1061 /* The socket is already corked while preparing it. */
1062 /* ... which is an evident application bug. --ANK */
1063 release_sock(sk);
1064
1065 net_dbg_ratelimited("cork app bug 2\n");
1066 err = -EINVAL;
1067 goto out;
1068 }
1069 /*
1070 * Now cork the socket to pend data.
1071 */
1072 fl4 = &inet->cork.fl.u.ip4;
1073 fl4->daddr = daddr;
1074 fl4->saddr = saddr;
1075 fl4->fl4_dport = dport;
1076 fl4->fl4_sport = inet->inet_sport;
1077 up->pending = AF_INET;
1078
1079 do_append_data:
1080 up->len += ulen;
1081 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1082 sizeof(struct udphdr), &ipc, &rt,
1083 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1084 if (err)
1085 udp_flush_pending_frames(sk);
1086 else if (!corkreq)
1087 err = udp_push_pending_frames(sk);
1088 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1089 up->pending = 0;
1090 release_sock(sk);
1091
1092 out:
1093 ip_rt_put(rt);
1094 if (free)
1095 kfree(ipc.opt);
1096 if (!err)
1097 return len;
1098 /*
1099 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1100 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1101 * we don't have a good statistic (IpOutDiscards but it can be too many
1102 * things). We could add another new stat but at least for now that
1103 * seems like overkill.
1104 */
1105 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1106 UDP_INC_STATS_USER(sock_net(sk),
1107 UDP_MIB_SNDBUFERRORS, is_udplite);
1108 }
1109 return err;
1110
1111 do_confirm:
1112 dst_confirm(&rt->dst);
1113 if (!(msg->msg_flags&MSG_PROBE) || len)
1114 goto back_from_confirm;
1115 err = 0;
1116 goto out;
1117 }
1118 EXPORT_SYMBOL(udp_sendmsg);
1119
1120 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1121 size_t size, int flags)
1122 {
1123 struct inet_sock *inet = inet_sk(sk);
1124 struct udp_sock *up = udp_sk(sk);
1125 int ret;
1126
1127 if (flags & MSG_SENDPAGE_NOTLAST)
1128 flags |= MSG_MORE;
1129
1130 if (!up->pending) {
1131 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1132
1133 /* Call udp_sendmsg to specify destination address which
1134 * sendpage interface can't pass.
1135 * This will succeed only when the socket is connected.
1136 */
1137 ret = udp_sendmsg(sk, &msg, 0);
1138 if (ret < 0)
1139 return ret;
1140 }
1141
1142 lock_sock(sk);
1143
1144 if (unlikely(!up->pending)) {
1145 release_sock(sk);
1146
1147 net_dbg_ratelimited("udp cork app bug 3\n");
1148 return -EINVAL;
1149 }
1150
1151 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1152 page, offset, size, flags);
1153 if (ret == -EOPNOTSUPP) {
1154 release_sock(sk);
1155 return sock_no_sendpage(sk->sk_socket, page, offset,
1156 size, flags);
1157 }
1158 if (ret < 0) {
1159 udp_flush_pending_frames(sk);
1160 goto out;
1161 }
1162
1163 up->len += size;
1164 if (!(up->corkflag || (flags&MSG_MORE)))
1165 ret = udp_push_pending_frames(sk);
1166 if (!ret)
1167 ret = size;
1168 out:
1169 release_sock(sk);
1170 return ret;
1171 }
1172
1173 /**
1174 * first_packet_length - return length of first packet in receive queue
1175 * @sk: socket
1176 *
1177 * Drops all bad checksum frames, until a valid one is found.
1178 * Returns the length of found skb, or 0 if none is found.
1179 */
1180 static unsigned int first_packet_length(struct sock *sk)
1181 {
1182 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1183 struct sk_buff *skb;
1184 unsigned int res;
1185
1186 __skb_queue_head_init(&list_kill);
1187
1188 spin_lock_bh(&rcvq->lock);
1189 while ((skb = skb_peek(rcvq)) != NULL &&
1190 udp_lib_checksum_complete(skb)) {
1191 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1192 IS_UDPLITE(sk));
1193 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1194 IS_UDPLITE(sk));
1195 atomic_inc(&sk->sk_drops);
1196 __skb_unlink(skb, rcvq);
1197 __skb_queue_tail(&list_kill, skb);
1198 }
1199 res = skb ? skb->len : 0;
1200 spin_unlock_bh(&rcvq->lock);
1201
1202 if (!skb_queue_empty(&list_kill)) {
1203 bool slow = lock_sock_fast(sk);
1204
1205 __skb_queue_purge(&list_kill);
1206 sk_mem_reclaim_partial(sk);
1207 unlock_sock_fast(sk, slow);
1208 }
1209 return res;
1210 }
1211
1212 /*
1213 * IOCTL requests applicable to the UDP protocol
1214 */
1215
1216 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1217 {
1218 switch (cmd) {
1219 case SIOCOUTQ:
1220 {
1221 int amount = sk_wmem_alloc_get(sk);
1222
1223 return put_user(amount, (int __user *)arg);
1224 }
1225
1226 case SIOCINQ:
1227 {
1228 unsigned int amount = first_packet_length(sk);
1229
1230 if (amount)
1231 /*
1232 * We will only return the amount
1233 * of this packet since that is all
1234 * that will be read.
1235 */
1236 amount -= sizeof(struct udphdr);
1237
1238 return put_user(amount, (int __user *)arg);
1239 }
1240
1241 default:
1242 return -ENOIOCTLCMD;
1243 }
1244
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(udp_ioctl);
1248
1249 /*
1250 * This should be easy, if there is something there we
1251 * return it, otherwise we block.
1252 */
1253
1254 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1255 int flags, int *addr_len)
1256 {
1257 struct inet_sock *inet = inet_sk(sk);
1258 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1259 struct sk_buff *skb;
1260 unsigned int ulen, copied;
1261 int peeked, off = 0;
1262 int err;
1263 int is_udplite = IS_UDPLITE(sk);
1264 bool slow;
1265
1266 if (flags & MSG_ERRQUEUE)
1267 return ip_recv_error(sk, msg, len, addr_len);
1268
1269 try_again:
1270 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1271 &peeked, &off, &err);
1272 if (!skb)
1273 goto out;
1274
1275 ulen = skb->len - sizeof(struct udphdr);
1276 copied = len;
1277 if (copied > ulen)
1278 copied = ulen;
1279 else if (copied < ulen)
1280 msg->msg_flags |= MSG_TRUNC;
1281
1282 /*
1283 * If checksum is needed at all, try to do it while copying the
1284 * data. If the data is truncated, or if we only want a partial
1285 * coverage checksum (UDP-Lite), do it before the copy.
1286 */
1287
1288 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1289 if (udp_lib_checksum_complete(skb))
1290 goto csum_copy_err;
1291 }
1292
1293 if (skb_csum_unnecessary(skb))
1294 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1295 msg, copied);
1296 else {
1297 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1298 msg);
1299
1300 if (err == -EINVAL)
1301 goto csum_copy_err;
1302 }
1303
1304 if (unlikely(err)) {
1305 trace_kfree_skb(skb, udp_recvmsg);
1306 if (!peeked) {
1307 atomic_inc(&sk->sk_drops);
1308 UDP_INC_STATS_USER(sock_net(sk),
1309 UDP_MIB_INERRORS, is_udplite);
1310 }
1311 goto out_free;
1312 }
1313
1314 if (!peeked)
1315 UDP_INC_STATS_USER(sock_net(sk),
1316 UDP_MIB_INDATAGRAMS, is_udplite);
1317
1318 sock_recv_ts_and_drops(msg, sk, skb);
1319
1320 /* Copy the address. */
1321 if (sin) {
1322 sin->sin_family = AF_INET;
1323 sin->sin_port = udp_hdr(skb)->source;
1324 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1325 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1326 *addr_len = sizeof(*sin);
1327 }
1328 if (inet->cmsg_flags)
1329 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1330
1331 err = copied;
1332 if (flags & MSG_TRUNC)
1333 err = ulen;
1334
1335 out_free:
1336 skb_free_datagram_locked(sk, skb);
1337 out:
1338 return err;
1339
1340 csum_copy_err:
1341 slow = lock_sock_fast(sk);
1342 if (!skb_kill_datagram(sk, skb, flags)) {
1343 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1344 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1345 }
1346 unlock_sock_fast(sk, slow);
1347
1348 /* starting over for a new packet, but check if we need to yield */
1349 cond_resched();
1350 msg->msg_flags &= ~MSG_TRUNC;
1351 goto try_again;
1352 }
1353
1354 int udp_disconnect(struct sock *sk, int flags)
1355 {
1356 struct inet_sock *inet = inet_sk(sk);
1357 /*
1358 * 1003.1g - break association.
1359 */
1360
1361 sk->sk_state = TCP_CLOSE;
1362 inet->inet_daddr = 0;
1363 inet->inet_dport = 0;
1364 sock_rps_reset_rxhash(sk);
1365 sk->sk_bound_dev_if = 0;
1366 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1367 inet_reset_saddr(sk);
1368
1369 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1370 sk->sk_prot->unhash(sk);
1371 inet->inet_sport = 0;
1372 }
1373 sk_dst_reset(sk);
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(udp_disconnect);
1377
1378 void udp_lib_unhash(struct sock *sk)
1379 {
1380 if (sk_hashed(sk)) {
1381 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1382 struct udp_hslot *hslot, *hslot2;
1383
1384 hslot = udp_hashslot(udptable, sock_net(sk),
1385 udp_sk(sk)->udp_port_hash);
1386 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1387
1388 spin_lock_bh(&hslot->lock);
1389 if (sk_nulls_del_node_init_rcu(sk)) {
1390 hslot->count--;
1391 inet_sk(sk)->inet_num = 0;
1392 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1393
1394 spin_lock(&hslot2->lock);
1395 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1396 hslot2->count--;
1397 spin_unlock(&hslot2->lock);
1398 }
1399 spin_unlock_bh(&hslot->lock);
1400 }
1401 }
1402 EXPORT_SYMBOL(udp_lib_unhash);
1403
1404 /*
1405 * inet_rcv_saddr was changed, we must rehash secondary hash
1406 */
1407 void udp_lib_rehash(struct sock *sk, u16 newhash)
1408 {
1409 if (sk_hashed(sk)) {
1410 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1411 struct udp_hslot *hslot, *hslot2, *nhslot2;
1412
1413 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1414 nhslot2 = udp_hashslot2(udptable, newhash);
1415 udp_sk(sk)->udp_portaddr_hash = newhash;
1416 if (hslot2 != nhslot2) {
1417 hslot = udp_hashslot(udptable, sock_net(sk),
1418 udp_sk(sk)->udp_port_hash);
1419 /* we must lock primary chain too */
1420 spin_lock_bh(&hslot->lock);
1421
1422 spin_lock(&hslot2->lock);
1423 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1424 hslot2->count--;
1425 spin_unlock(&hslot2->lock);
1426
1427 spin_lock(&nhslot2->lock);
1428 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1429 &nhslot2->head);
1430 nhslot2->count++;
1431 spin_unlock(&nhslot2->lock);
1432
1433 spin_unlock_bh(&hslot->lock);
1434 }
1435 }
1436 }
1437 EXPORT_SYMBOL(udp_lib_rehash);
1438
1439 static void udp_v4_rehash(struct sock *sk)
1440 {
1441 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1442 inet_sk(sk)->inet_rcv_saddr,
1443 inet_sk(sk)->inet_num);
1444 udp_lib_rehash(sk, new_hash);
1445 }
1446
1447 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1448 {
1449 int rc;
1450
1451 if (inet_sk(sk)->inet_daddr) {
1452 sock_rps_save_rxhash(sk, skb);
1453 sk_mark_napi_id(sk, skb);
1454 sk_incoming_cpu_update(sk);
1455 }
1456
1457 rc = sock_queue_rcv_skb(sk, skb);
1458 if (rc < 0) {
1459 int is_udplite = IS_UDPLITE(sk);
1460
1461 /* Note that an ENOMEM error is charged twice */
1462 if (rc == -ENOMEM)
1463 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1464 is_udplite);
1465 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1466 kfree_skb(skb);
1467 trace_udp_fail_queue_rcv_skb(rc, sk);
1468 return -1;
1469 }
1470
1471 return 0;
1472
1473 }
1474
1475 static struct static_key udp_encap_needed __read_mostly;
1476 void udp_encap_enable(void)
1477 {
1478 if (!static_key_enabled(&udp_encap_needed))
1479 static_key_slow_inc(&udp_encap_needed);
1480 }
1481 EXPORT_SYMBOL(udp_encap_enable);
1482
1483 /* returns:
1484 * -1: error
1485 * 0: success
1486 * >0: "udp encap" protocol resubmission
1487 *
1488 * Note that in the success and error cases, the skb is assumed to
1489 * have either been requeued or freed.
1490 */
1491 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1492 {
1493 struct udp_sock *up = udp_sk(sk);
1494 int rc;
1495 int is_udplite = IS_UDPLITE(sk);
1496
1497 /*
1498 * Charge it to the socket, dropping if the queue is full.
1499 */
1500 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1501 goto drop;
1502 nf_reset(skb);
1503
1504 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1505 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1506
1507 /*
1508 * This is an encapsulation socket so pass the skb to
1509 * the socket's udp_encap_rcv() hook. Otherwise, just
1510 * fall through and pass this up the UDP socket.
1511 * up->encap_rcv() returns the following value:
1512 * =0 if skb was successfully passed to the encap
1513 * handler or was discarded by it.
1514 * >0 if skb should be passed on to UDP.
1515 * <0 if skb should be resubmitted as proto -N
1516 */
1517
1518 /* if we're overly short, let UDP handle it */
1519 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1520 if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1521 int ret;
1522
1523 /* Verify checksum before giving to encap */
1524 if (udp_lib_checksum_complete(skb))
1525 goto csum_error;
1526
1527 ret = encap_rcv(sk, skb);
1528 if (ret <= 0) {
1529 UDP_INC_STATS_BH(sock_net(sk),
1530 UDP_MIB_INDATAGRAMS,
1531 is_udplite);
1532 return -ret;
1533 }
1534 }
1535
1536 /* FALLTHROUGH -- it's a UDP Packet */
1537 }
1538
1539 /*
1540 * UDP-Lite specific tests, ignored on UDP sockets
1541 */
1542 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1543
1544 /*
1545 * MIB statistics other than incrementing the error count are
1546 * disabled for the following two types of errors: these depend
1547 * on the application settings, not on the functioning of the
1548 * protocol stack as such.
1549 *
1550 * RFC 3828 here recommends (sec 3.3): "There should also be a
1551 * way ... to ... at least let the receiving application block
1552 * delivery of packets with coverage values less than a value
1553 * provided by the application."
1554 */
1555 if (up->pcrlen == 0) { /* full coverage was set */
1556 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1557 UDP_SKB_CB(skb)->cscov, skb->len);
1558 goto drop;
1559 }
1560 /* The next case involves violating the min. coverage requested
1561 * by the receiver. This is subtle: if receiver wants x and x is
1562 * greater than the buffersize/MTU then receiver will complain
1563 * that it wants x while sender emits packets of smaller size y.
1564 * Therefore the above ...()->partial_cov statement is essential.
1565 */
1566 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1567 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1568 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1569 goto drop;
1570 }
1571 }
1572
1573 if (rcu_access_pointer(sk->sk_filter) &&
1574 udp_lib_checksum_complete(skb))
1575 goto csum_error;
1576
1577 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1578 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1579 is_udplite);
1580 goto drop;
1581 }
1582
1583 rc = 0;
1584
1585 ipv4_pktinfo_prepare(sk, skb);
1586 bh_lock_sock(sk);
1587 if (!sock_owned_by_user(sk))
1588 rc = __udp_queue_rcv_skb(sk, skb);
1589 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1590 bh_unlock_sock(sk);
1591 goto drop;
1592 }
1593 bh_unlock_sock(sk);
1594
1595 return rc;
1596
1597 csum_error:
1598 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1599 drop:
1600 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1601 atomic_inc(&sk->sk_drops);
1602 kfree_skb(skb);
1603 return -1;
1604 }
1605
1606 static void flush_stack(struct sock **stack, unsigned int count,
1607 struct sk_buff *skb, unsigned int final)
1608 {
1609 unsigned int i;
1610 struct sk_buff *skb1 = NULL;
1611 struct sock *sk;
1612
1613 for (i = 0; i < count; i++) {
1614 sk = stack[i];
1615 if (likely(!skb1))
1616 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1617
1618 if (!skb1) {
1619 atomic_inc(&sk->sk_drops);
1620 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1621 IS_UDPLITE(sk));
1622 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1623 IS_UDPLITE(sk));
1624 }
1625
1626 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1627 skb1 = NULL;
1628
1629 sock_put(sk);
1630 }
1631 if (unlikely(skb1))
1632 kfree_skb(skb1);
1633 }
1634
1635 /* For TCP sockets, sk_rx_dst is protected by socket lock
1636 * For UDP, we use xchg() to guard against concurrent changes.
1637 */
1638 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1639 {
1640 struct dst_entry *old;
1641
1642 dst_hold(dst);
1643 old = xchg(&sk->sk_rx_dst, dst);
1644 dst_release(old);
1645 }
1646
1647 /*
1648 * Multicasts and broadcasts go to each listener.
1649 *
1650 * Note: called only from the BH handler context.
1651 */
1652 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1653 struct udphdr *uh,
1654 __be32 saddr, __be32 daddr,
1655 struct udp_table *udptable,
1656 int proto)
1657 {
1658 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1659 struct hlist_nulls_node *node;
1660 unsigned short hnum = ntohs(uh->dest);
1661 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1662 int dif = skb->dev->ifindex;
1663 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1664 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1665 bool inner_flushed = false;
1666
1667 if (use_hash2) {
1668 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1669 udp_table.mask;
1670 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1671 start_lookup:
1672 hslot = &udp_table.hash2[hash2];
1673 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1674 }
1675
1676 spin_lock(&hslot->lock);
1677 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1678 if (__udp_is_mcast_sock(net, sk,
1679 uh->dest, daddr,
1680 uh->source, saddr,
1681 dif, hnum)) {
1682 if (unlikely(count == ARRAY_SIZE(stack))) {
1683 flush_stack(stack, count, skb, ~0);
1684 inner_flushed = true;
1685 count = 0;
1686 }
1687 stack[count++] = sk;
1688 sock_hold(sk);
1689 }
1690 }
1691
1692 spin_unlock(&hslot->lock);
1693
1694 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1695 if (use_hash2 && hash2 != hash2_any) {
1696 hash2 = hash2_any;
1697 goto start_lookup;
1698 }
1699
1700 /*
1701 * do the slow work with no lock held
1702 */
1703 if (count) {
1704 flush_stack(stack, count, skb, count - 1);
1705 } else {
1706 if (!inner_flushed)
1707 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1708 proto == IPPROTO_UDPLITE);
1709 consume_skb(skb);
1710 }
1711 return 0;
1712 }
1713
1714 /* Initialize UDP checksum. If exited with zero value (success),
1715 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1716 * Otherwise, csum completion requires chacksumming packet body,
1717 * including udp header and folding it to skb->csum.
1718 */
1719 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1720 int proto)
1721 {
1722 int err;
1723
1724 UDP_SKB_CB(skb)->partial_cov = 0;
1725 UDP_SKB_CB(skb)->cscov = skb->len;
1726
1727 if (proto == IPPROTO_UDPLITE) {
1728 err = udplite_checksum_init(skb, uh);
1729 if (err)
1730 return err;
1731 }
1732
1733 return skb_checksum_init_zero_check(skb, proto, uh->check,
1734 inet_compute_pseudo);
1735 }
1736
1737 /*
1738 * All we need to do is get the socket, and then do a checksum.
1739 */
1740
1741 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1742 int proto)
1743 {
1744 struct sock *sk;
1745 struct udphdr *uh;
1746 unsigned short ulen;
1747 struct rtable *rt = skb_rtable(skb);
1748 __be32 saddr, daddr;
1749 struct net *net = dev_net(skb->dev);
1750
1751 /*
1752 * Validate the packet.
1753 */
1754 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1755 goto drop; /* No space for header. */
1756
1757 uh = udp_hdr(skb);
1758 ulen = ntohs(uh->len);
1759 saddr = ip_hdr(skb)->saddr;
1760 daddr = ip_hdr(skb)->daddr;
1761
1762 if (ulen > skb->len)
1763 goto short_packet;
1764
1765 if (proto == IPPROTO_UDP) {
1766 /* UDP validates ulen. */
1767 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1768 goto short_packet;
1769 uh = udp_hdr(skb);
1770 }
1771
1772 if (udp4_csum_init(skb, uh, proto))
1773 goto csum_error;
1774
1775 sk = skb_steal_sock(skb);
1776 if (sk) {
1777 struct dst_entry *dst = skb_dst(skb);
1778 int ret;
1779
1780 if (unlikely(sk->sk_rx_dst != dst))
1781 udp_sk_rx_dst_set(sk, dst);
1782
1783 ret = udp_queue_rcv_skb(sk, skb);
1784 sock_put(sk);
1785 /* a return value > 0 means to resubmit the input, but
1786 * it wants the return to be -protocol, or 0
1787 */
1788 if (ret > 0)
1789 return -ret;
1790 return 0;
1791 }
1792
1793 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1794 return __udp4_lib_mcast_deliver(net, skb, uh,
1795 saddr, daddr, udptable, proto);
1796
1797 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1798 if (sk) {
1799 int ret;
1800
1801 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1802 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1803 inet_compute_pseudo);
1804
1805 ret = udp_queue_rcv_skb(sk, skb);
1806 sock_put(sk);
1807
1808 /* a return value > 0 means to resubmit the input, but
1809 * it wants the return to be -protocol, or 0
1810 */
1811 if (ret > 0)
1812 return -ret;
1813 return 0;
1814 }
1815
1816 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1817 goto drop;
1818 nf_reset(skb);
1819
1820 /* No socket. Drop packet silently, if checksum is wrong */
1821 if (udp_lib_checksum_complete(skb))
1822 goto csum_error;
1823
1824 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1825 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1826
1827 /*
1828 * Hmm. We got an UDP packet to a port to which we
1829 * don't wanna listen. Ignore it.
1830 */
1831 kfree_skb(skb);
1832 return 0;
1833
1834 short_packet:
1835 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1836 proto == IPPROTO_UDPLITE ? "Lite" : "",
1837 &saddr, ntohs(uh->source),
1838 ulen, skb->len,
1839 &daddr, ntohs(uh->dest));
1840 goto drop;
1841
1842 csum_error:
1843 /*
1844 * RFC1122: OK. Discards the bad packet silently (as far as
1845 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1846 */
1847 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1848 proto == IPPROTO_UDPLITE ? "Lite" : "",
1849 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1850 ulen);
1851 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1852 drop:
1853 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1854 kfree_skb(skb);
1855 return 0;
1856 }
1857
1858 /* We can only early demux multicast if there is a single matching socket.
1859 * If more than one socket found returns NULL
1860 */
1861 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1862 __be16 loc_port, __be32 loc_addr,
1863 __be16 rmt_port, __be32 rmt_addr,
1864 int dif)
1865 {
1866 struct sock *sk, *result;
1867 struct hlist_nulls_node *node;
1868 unsigned short hnum = ntohs(loc_port);
1869 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1870 struct udp_hslot *hslot = &udp_table.hash[slot];
1871
1872 /* Do not bother scanning a too big list */
1873 if (hslot->count > 10)
1874 return NULL;
1875
1876 rcu_read_lock();
1877 begin:
1878 count = 0;
1879 result = NULL;
1880 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1881 if (__udp_is_mcast_sock(net, sk,
1882 loc_port, loc_addr,
1883 rmt_port, rmt_addr,
1884 dif, hnum)) {
1885 result = sk;
1886 ++count;
1887 }
1888 }
1889 /*
1890 * if the nulls value we got at the end of this lookup is
1891 * not the expected one, we must restart lookup.
1892 * We probably met an item that was moved to another chain.
1893 */
1894 if (get_nulls_value(node) != slot)
1895 goto begin;
1896
1897 if (result) {
1898 if (count != 1 ||
1899 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1900 result = NULL;
1901 else if (unlikely(!__udp_is_mcast_sock(net, result,
1902 loc_port, loc_addr,
1903 rmt_port, rmt_addr,
1904 dif, hnum))) {
1905 sock_put(result);
1906 result = NULL;
1907 }
1908 }
1909 rcu_read_unlock();
1910 return result;
1911 }
1912
1913 /* For unicast we should only early demux connected sockets or we can
1914 * break forwarding setups. The chains here can be long so only check
1915 * if the first socket is an exact match and if not move on.
1916 */
1917 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1918 __be16 loc_port, __be32 loc_addr,
1919 __be16 rmt_port, __be32 rmt_addr,
1920 int dif)
1921 {
1922 struct sock *sk, *result;
1923 struct hlist_nulls_node *node;
1924 unsigned short hnum = ntohs(loc_port);
1925 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1926 unsigned int slot2 = hash2 & udp_table.mask;
1927 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1928 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1929 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1930
1931 rcu_read_lock();
1932 result = NULL;
1933 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1934 if (INET_MATCH(sk, net, acookie,
1935 rmt_addr, loc_addr, ports, dif))
1936 result = sk;
1937 /* Only check first socket in chain */
1938 break;
1939 }
1940
1941 if (result) {
1942 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1943 result = NULL;
1944 else if (unlikely(!INET_MATCH(sk, net, acookie,
1945 rmt_addr, loc_addr,
1946 ports, dif))) {
1947 sock_put(result);
1948 result = NULL;
1949 }
1950 }
1951 rcu_read_unlock();
1952 return result;
1953 }
1954
1955 void udp_v4_early_demux(struct sk_buff *skb)
1956 {
1957 struct net *net = dev_net(skb->dev);
1958 const struct iphdr *iph;
1959 const struct udphdr *uh;
1960 struct sock *sk;
1961 struct dst_entry *dst;
1962 int dif = skb->dev->ifindex;
1963
1964 /* validate the packet */
1965 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1966 return;
1967
1968 iph = ip_hdr(skb);
1969 uh = udp_hdr(skb);
1970
1971 if (skb->pkt_type == PACKET_BROADCAST ||
1972 skb->pkt_type == PACKET_MULTICAST)
1973 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1974 uh->source, iph->saddr, dif);
1975 else if (skb->pkt_type == PACKET_HOST)
1976 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1977 uh->source, iph->saddr, dif);
1978 else
1979 return;
1980
1981 if (!sk)
1982 return;
1983
1984 skb->sk = sk;
1985 skb->destructor = sock_efree;
1986 dst = sk->sk_rx_dst;
1987
1988 if (dst)
1989 dst = dst_check(dst, 0);
1990 if (dst)
1991 skb_dst_set_noref(skb, dst);
1992 }
1993
1994 int udp_rcv(struct sk_buff *skb)
1995 {
1996 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1997 }
1998
1999 void udp_destroy_sock(struct sock *sk)
2000 {
2001 struct udp_sock *up = udp_sk(sk);
2002 bool slow = lock_sock_fast(sk);
2003 udp_flush_pending_frames(sk);
2004 unlock_sock_fast(sk, slow);
2005 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2006 void (*encap_destroy)(struct sock *sk);
2007 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2008 if (encap_destroy)
2009 encap_destroy(sk);
2010 }
2011 }
2012
2013 /*
2014 * Socket option code for UDP
2015 */
2016 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2017 char __user *optval, unsigned int optlen,
2018 int (*push_pending_frames)(struct sock *))
2019 {
2020 struct udp_sock *up = udp_sk(sk);
2021 int val, valbool;
2022 int err = 0;
2023 int is_udplite = IS_UDPLITE(sk);
2024
2025 if (optlen < sizeof(int))
2026 return -EINVAL;
2027
2028 if (get_user(val, (int __user *)optval))
2029 return -EFAULT;
2030
2031 valbool = val ? 1 : 0;
2032
2033 switch (optname) {
2034 case UDP_CORK:
2035 if (val != 0) {
2036 up->corkflag = 1;
2037 } else {
2038 up->corkflag = 0;
2039 lock_sock(sk);
2040 push_pending_frames(sk);
2041 release_sock(sk);
2042 }
2043 break;
2044
2045 case UDP_ENCAP:
2046 switch (val) {
2047 case 0:
2048 case UDP_ENCAP_ESPINUDP:
2049 case UDP_ENCAP_ESPINUDP_NON_IKE:
2050 up->encap_rcv = xfrm4_udp_encap_rcv;
2051 /* FALLTHROUGH */
2052 case UDP_ENCAP_L2TPINUDP:
2053 up->encap_type = val;
2054 udp_encap_enable();
2055 break;
2056 default:
2057 err = -ENOPROTOOPT;
2058 break;
2059 }
2060 break;
2061
2062 case UDP_NO_CHECK6_TX:
2063 up->no_check6_tx = valbool;
2064 break;
2065
2066 case UDP_NO_CHECK6_RX:
2067 up->no_check6_rx = valbool;
2068 break;
2069
2070 /*
2071 * UDP-Lite's partial checksum coverage (RFC 3828).
2072 */
2073 /* The sender sets actual checksum coverage length via this option.
2074 * The case coverage > packet length is handled by send module. */
2075 case UDPLITE_SEND_CSCOV:
2076 if (!is_udplite) /* Disable the option on UDP sockets */
2077 return -ENOPROTOOPT;
2078 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2079 val = 8;
2080 else if (val > USHRT_MAX)
2081 val = USHRT_MAX;
2082 up->pcslen = val;
2083 up->pcflag |= UDPLITE_SEND_CC;
2084 break;
2085
2086 /* The receiver specifies a minimum checksum coverage value. To make
2087 * sense, this should be set to at least 8 (as done below). If zero is
2088 * used, this again means full checksum coverage. */
2089 case UDPLITE_RECV_CSCOV:
2090 if (!is_udplite) /* Disable the option on UDP sockets */
2091 return -ENOPROTOOPT;
2092 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2093 val = 8;
2094 else if (val > USHRT_MAX)
2095 val = USHRT_MAX;
2096 up->pcrlen = val;
2097 up->pcflag |= UDPLITE_RECV_CC;
2098 break;
2099
2100 default:
2101 err = -ENOPROTOOPT;
2102 break;
2103 }
2104
2105 return err;
2106 }
2107 EXPORT_SYMBOL(udp_lib_setsockopt);
2108
2109 int udp_setsockopt(struct sock *sk, int level, int optname,
2110 char __user *optval, unsigned int optlen)
2111 {
2112 if (level == SOL_UDP || level == SOL_UDPLITE)
2113 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2114 udp_push_pending_frames);
2115 return ip_setsockopt(sk, level, optname, optval, optlen);
2116 }
2117
2118 #ifdef CONFIG_COMPAT
2119 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2120 char __user *optval, unsigned int optlen)
2121 {
2122 if (level == SOL_UDP || level == SOL_UDPLITE)
2123 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2124 udp_push_pending_frames);
2125 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2126 }
2127 #endif
2128
2129 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2130 char __user *optval, int __user *optlen)
2131 {
2132 struct udp_sock *up = udp_sk(sk);
2133 int val, len;
2134
2135 if (get_user(len, optlen))
2136 return -EFAULT;
2137
2138 len = min_t(unsigned int, len, sizeof(int));
2139
2140 if (len < 0)
2141 return -EINVAL;
2142
2143 switch (optname) {
2144 case UDP_CORK:
2145 val = up->corkflag;
2146 break;
2147
2148 case UDP_ENCAP:
2149 val = up->encap_type;
2150 break;
2151
2152 case UDP_NO_CHECK6_TX:
2153 val = up->no_check6_tx;
2154 break;
2155
2156 case UDP_NO_CHECK6_RX:
2157 val = up->no_check6_rx;
2158 break;
2159
2160 /* The following two cannot be changed on UDP sockets, the return is
2161 * always 0 (which corresponds to the full checksum coverage of UDP). */
2162 case UDPLITE_SEND_CSCOV:
2163 val = up->pcslen;
2164 break;
2165
2166 case UDPLITE_RECV_CSCOV:
2167 val = up->pcrlen;
2168 break;
2169
2170 default:
2171 return -ENOPROTOOPT;
2172 }
2173
2174 if (put_user(len, optlen))
2175 return -EFAULT;
2176 if (copy_to_user(optval, &val, len))
2177 return -EFAULT;
2178 return 0;
2179 }
2180 EXPORT_SYMBOL(udp_lib_getsockopt);
2181
2182 int udp_getsockopt(struct sock *sk, int level, int optname,
2183 char __user *optval, int __user *optlen)
2184 {
2185 if (level == SOL_UDP || level == SOL_UDPLITE)
2186 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2187 return ip_getsockopt(sk, level, optname, optval, optlen);
2188 }
2189
2190 #ifdef CONFIG_COMPAT
2191 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2192 char __user *optval, int __user *optlen)
2193 {
2194 if (level == SOL_UDP || level == SOL_UDPLITE)
2195 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2196 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2197 }
2198 #endif
2199 /**
2200 * udp_poll - wait for a UDP event.
2201 * @file - file struct
2202 * @sock - socket
2203 * @wait - poll table
2204 *
2205 * This is same as datagram poll, except for the special case of
2206 * blocking sockets. If application is using a blocking fd
2207 * and a packet with checksum error is in the queue;
2208 * then it could get return from select indicating data available
2209 * but then block when reading it. Add special case code
2210 * to work around these arguably broken applications.
2211 */
2212 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2213 {
2214 unsigned int mask = datagram_poll(file, sock, wait);
2215 struct sock *sk = sock->sk;
2216
2217 sock_rps_record_flow(sk);
2218
2219 /* Check for false positives due to checksum errors */
2220 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2221 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2222 mask &= ~(POLLIN | POLLRDNORM);
2223
2224 return mask;
2225
2226 }
2227 EXPORT_SYMBOL(udp_poll);
2228
2229 struct proto udp_prot = {
2230 .name = "UDP",
2231 .owner = THIS_MODULE,
2232 .close = udp_lib_close,
2233 .connect = ip4_datagram_connect,
2234 .disconnect = udp_disconnect,
2235 .ioctl = udp_ioctl,
2236 .destroy = udp_destroy_sock,
2237 .setsockopt = udp_setsockopt,
2238 .getsockopt = udp_getsockopt,
2239 .sendmsg = udp_sendmsg,
2240 .recvmsg = udp_recvmsg,
2241 .sendpage = udp_sendpage,
2242 .backlog_rcv = __udp_queue_rcv_skb,
2243 .release_cb = ip4_datagram_release_cb,
2244 .hash = udp_lib_hash,
2245 .unhash = udp_lib_unhash,
2246 .rehash = udp_v4_rehash,
2247 .get_port = udp_v4_get_port,
2248 .memory_allocated = &udp_memory_allocated,
2249 .sysctl_mem = sysctl_udp_mem,
2250 .sysctl_wmem = &sysctl_udp_wmem_min,
2251 .sysctl_rmem = &sysctl_udp_rmem_min,
2252 .obj_size = sizeof(struct udp_sock),
2253 .slab_flags = SLAB_DESTROY_BY_RCU,
2254 .h.udp_table = &udp_table,
2255 #ifdef CONFIG_COMPAT
2256 .compat_setsockopt = compat_udp_setsockopt,
2257 .compat_getsockopt = compat_udp_getsockopt,
2258 #endif
2259 .clear_sk = sk_prot_clear_portaddr_nulls,
2260 };
2261 EXPORT_SYMBOL(udp_prot);
2262
2263 /* ------------------------------------------------------------------------ */
2264 #ifdef CONFIG_PROC_FS
2265
2266 static struct sock *udp_get_first(struct seq_file *seq, int start)
2267 {
2268 struct sock *sk;
2269 struct udp_iter_state *state = seq->private;
2270 struct net *net = seq_file_net(seq);
2271
2272 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2273 ++state->bucket) {
2274 struct hlist_nulls_node *node;
2275 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2276
2277 if (hlist_nulls_empty(&hslot->head))
2278 continue;
2279
2280 spin_lock_bh(&hslot->lock);
2281 sk_nulls_for_each(sk, node, &hslot->head) {
2282 if (!net_eq(sock_net(sk), net))
2283 continue;
2284 if (sk->sk_family == state->family)
2285 goto found;
2286 }
2287 spin_unlock_bh(&hslot->lock);
2288 }
2289 sk = NULL;
2290 found:
2291 return sk;
2292 }
2293
2294 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2295 {
2296 struct udp_iter_state *state = seq->private;
2297 struct net *net = seq_file_net(seq);
2298
2299 do {
2300 sk = sk_nulls_next(sk);
2301 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2302
2303 if (!sk) {
2304 if (state->bucket <= state->udp_table->mask)
2305 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2306 return udp_get_first(seq, state->bucket + 1);
2307 }
2308 return sk;
2309 }
2310
2311 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2312 {
2313 struct sock *sk = udp_get_first(seq, 0);
2314
2315 if (sk)
2316 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2317 --pos;
2318 return pos ? NULL : sk;
2319 }
2320
2321 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2322 {
2323 struct udp_iter_state *state = seq->private;
2324 state->bucket = MAX_UDP_PORTS;
2325
2326 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2327 }
2328
2329 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2330 {
2331 struct sock *sk;
2332
2333 if (v == SEQ_START_TOKEN)
2334 sk = udp_get_idx(seq, 0);
2335 else
2336 sk = udp_get_next(seq, v);
2337
2338 ++*pos;
2339 return sk;
2340 }
2341
2342 static void udp_seq_stop(struct seq_file *seq, void *v)
2343 {
2344 struct udp_iter_state *state = seq->private;
2345
2346 if (state->bucket <= state->udp_table->mask)
2347 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2348 }
2349
2350 int udp_seq_open(struct inode *inode, struct file *file)
2351 {
2352 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2353 struct udp_iter_state *s;
2354 int err;
2355
2356 err = seq_open_net(inode, file, &afinfo->seq_ops,
2357 sizeof(struct udp_iter_state));
2358 if (err < 0)
2359 return err;
2360
2361 s = ((struct seq_file *)file->private_data)->private;
2362 s->family = afinfo->family;
2363 s->udp_table = afinfo->udp_table;
2364 return err;
2365 }
2366 EXPORT_SYMBOL(udp_seq_open);
2367
2368 /* ------------------------------------------------------------------------ */
2369 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2370 {
2371 struct proc_dir_entry *p;
2372 int rc = 0;
2373
2374 afinfo->seq_ops.start = udp_seq_start;
2375 afinfo->seq_ops.next = udp_seq_next;
2376 afinfo->seq_ops.stop = udp_seq_stop;
2377
2378 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2379 afinfo->seq_fops, afinfo);
2380 if (!p)
2381 rc = -ENOMEM;
2382 return rc;
2383 }
2384 EXPORT_SYMBOL(udp_proc_register);
2385
2386 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2387 {
2388 remove_proc_entry(afinfo->name, net->proc_net);
2389 }
2390 EXPORT_SYMBOL(udp_proc_unregister);
2391
2392 /* ------------------------------------------------------------------------ */
2393 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2394 int bucket)
2395 {
2396 struct inet_sock *inet = inet_sk(sp);
2397 __be32 dest = inet->inet_daddr;
2398 __be32 src = inet->inet_rcv_saddr;
2399 __u16 destp = ntohs(inet->inet_dport);
2400 __u16 srcp = ntohs(inet->inet_sport);
2401
2402 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2403 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2404 bucket, src, srcp, dest, destp, sp->sk_state,
2405 sk_wmem_alloc_get(sp),
2406 sk_rmem_alloc_get(sp),
2407 0, 0L, 0,
2408 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2409 0, sock_i_ino(sp),
2410 atomic_read(&sp->sk_refcnt), sp,
2411 atomic_read(&sp->sk_drops));
2412 }
2413
2414 int udp4_seq_show(struct seq_file *seq, void *v)
2415 {
2416 seq_setwidth(seq, 127);
2417 if (v == SEQ_START_TOKEN)
2418 seq_puts(seq, " sl local_address rem_address st tx_queue "
2419 "rx_queue tr tm->when retrnsmt uid timeout "
2420 "inode ref pointer drops");
2421 else {
2422 struct udp_iter_state *state = seq->private;
2423
2424 udp4_format_sock(v, seq, state->bucket);
2425 }
2426 seq_pad(seq, '\n');
2427 return 0;
2428 }
2429
2430 static const struct file_operations udp_afinfo_seq_fops = {
2431 .owner = THIS_MODULE,
2432 .open = udp_seq_open,
2433 .read = seq_read,
2434 .llseek = seq_lseek,
2435 .release = seq_release_net
2436 };
2437
2438 /* ------------------------------------------------------------------------ */
2439 static struct udp_seq_afinfo udp4_seq_afinfo = {
2440 .name = "udp",
2441 .family = AF_INET,
2442 .udp_table = &udp_table,
2443 .seq_fops = &udp_afinfo_seq_fops,
2444 .seq_ops = {
2445 .show = udp4_seq_show,
2446 },
2447 };
2448
2449 static int __net_init udp4_proc_init_net(struct net *net)
2450 {
2451 return udp_proc_register(net, &udp4_seq_afinfo);
2452 }
2453
2454 static void __net_exit udp4_proc_exit_net(struct net *net)
2455 {
2456 udp_proc_unregister(net, &udp4_seq_afinfo);
2457 }
2458
2459 static struct pernet_operations udp4_net_ops = {
2460 .init = udp4_proc_init_net,
2461 .exit = udp4_proc_exit_net,
2462 };
2463
2464 int __init udp4_proc_init(void)
2465 {
2466 return register_pernet_subsys(&udp4_net_ops);
2467 }
2468
2469 void udp4_proc_exit(void)
2470 {
2471 unregister_pernet_subsys(&udp4_net_ops);
2472 }
2473 #endif /* CONFIG_PROC_FS */
2474
2475 static __initdata unsigned long uhash_entries;
2476 static int __init set_uhash_entries(char *str)
2477 {
2478 ssize_t ret;
2479
2480 if (!str)
2481 return 0;
2482
2483 ret = kstrtoul(str, 0, &uhash_entries);
2484 if (ret)
2485 return 0;
2486
2487 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2488 uhash_entries = UDP_HTABLE_SIZE_MIN;
2489 return 1;
2490 }
2491 __setup("uhash_entries=", set_uhash_entries);
2492
2493 void __init udp_table_init(struct udp_table *table, const char *name)
2494 {
2495 unsigned int i;
2496
2497 table->hash = alloc_large_system_hash(name,
2498 2 * sizeof(struct udp_hslot),
2499 uhash_entries,
2500 21, /* one slot per 2 MB */
2501 0,
2502 &table->log,
2503 &table->mask,
2504 UDP_HTABLE_SIZE_MIN,
2505 64 * 1024);
2506
2507 table->hash2 = table->hash + (table->mask + 1);
2508 for (i = 0; i <= table->mask; i++) {
2509 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2510 table->hash[i].count = 0;
2511 spin_lock_init(&table->hash[i].lock);
2512 }
2513 for (i = 0; i <= table->mask; i++) {
2514 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2515 table->hash2[i].count = 0;
2516 spin_lock_init(&table->hash2[i].lock);
2517 }
2518 }
2519
2520 u32 udp_flow_hashrnd(void)
2521 {
2522 static u32 hashrnd __read_mostly;
2523
2524 net_get_random_once(&hashrnd, sizeof(hashrnd));
2525
2526 return hashrnd;
2527 }
2528 EXPORT_SYMBOL(udp_flow_hashrnd);
2529
2530 void __init udp_init(void)
2531 {
2532 unsigned long limit;
2533
2534 udp_table_init(&udp_table, "UDP");
2535 limit = nr_free_buffer_pages() / 8;
2536 limit = max(limit, 128UL);
2537 sysctl_udp_mem[0] = limit / 4 * 3;
2538 sysctl_udp_mem[1] = limit;
2539 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2540
2541 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2542 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2543 }
This page took 0.115018 seconds and 5 git commands to generate.