ipv4/udp: Verify multicast group is ours in upd_v4_early_demux()
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/netdevice.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <net/net_namespace.h>
107 #include <net/icmp.h>
108 #include <net/inet_hashtables.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 const struct udp_hslot *hslot,
138 unsigned long *bitmap,
139 struct sock *sk,
140 int (*saddr_comp)(const struct sock *sk1,
141 const struct sock *sk2),
142 unsigned int log)
143 {
144 struct sock *sk2;
145 struct hlist_nulls_node *node;
146 kuid_t uid = sock_i_uid(sk);
147
148 sk_nulls_for_each(sk2, node, &hslot->head) {
149 if (net_eq(sock_net(sk2), net) &&
150 sk2 != sk &&
151 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 (!sk2->sk_reuse || !sk->sk_reuse) &&
153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 !uid_eq(uid, sock_i_uid(sk2))) &&
157 saddr_comp(sk, sk2)) {
158 if (!bitmap)
159 return 1;
160 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
161 }
162 }
163 return 0;
164 }
165
166 /*
167 * Note: we still hold spinlock of primary hash chain, so no other writer
168 * can insert/delete a socket with local_port == num
169 */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 struct udp_hslot *hslot2,
172 struct sock *sk,
173 int (*saddr_comp)(const struct sock *sk1,
174 const struct sock *sk2))
175 {
176 struct sock *sk2;
177 struct hlist_nulls_node *node;
178 kuid_t uid = sock_i_uid(sk);
179 int res = 0;
180
181 spin_lock(&hslot2->lock);
182 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183 if (net_eq(sock_net(sk2), net) &&
184 sk2 != sk &&
185 (udp_sk(sk2)->udp_port_hash == num) &&
186 (!sk2->sk_reuse || !sk->sk_reuse) &&
187 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 !uid_eq(uid, sock_i_uid(sk2))) &&
191 saddr_comp(sk, sk2)) {
192 res = 1;
193 break;
194 }
195 }
196 spin_unlock(&hslot2->lock);
197 return res;
198 }
199
200 /**
201 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
202 *
203 * @sk: socket struct in question
204 * @snum: port number to look up
205 * @saddr_comp: AF-dependent comparison of bound local IP addresses
206 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207 * with NULL address
208 */
209 int udp_lib_get_port(struct sock *sk, unsigned short snum,
210 int (*saddr_comp)(const struct sock *sk1,
211 const struct sock *sk2),
212 unsigned int hash2_nulladdr)
213 {
214 struct udp_hslot *hslot, *hslot2;
215 struct udp_table *udptable = sk->sk_prot->h.udp_table;
216 int error = 1;
217 struct net *net = sock_net(sk);
218
219 if (!snum) {
220 int low, high, remaining;
221 unsigned int rand;
222 unsigned short first, last;
223 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
224
225 inet_get_local_port_range(net, &low, &high);
226 remaining = (high - low) + 1;
227
228 rand = prandom_u32();
229 first = reciprocal_scale(rand, remaining) + low;
230 /*
231 * force rand to be an odd multiple of UDP_HTABLE_SIZE
232 */
233 rand = (rand | 1) * (udptable->mask + 1);
234 last = first + udptable->mask + 1;
235 do {
236 hslot = udp_hashslot(udptable, net, first);
237 bitmap_zero(bitmap, PORTS_PER_CHAIN);
238 spin_lock_bh(&hslot->lock);
239 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240 saddr_comp, udptable->log);
241
242 snum = first;
243 /*
244 * Iterate on all possible values of snum for this hash.
245 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246 * give us randomization and full range coverage.
247 */
248 do {
249 if (low <= snum && snum <= high &&
250 !test_bit(snum >> udptable->log, bitmap) &&
251 !inet_is_local_reserved_port(net, snum))
252 goto found;
253 snum += rand;
254 } while (snum != first);
255 spin_unlock_bh(&hslot->lock);
256 } while (++first != last);
257 goto fail;
258 } else {
259 hslot = udp_hashslot(udptable, net, snum);
260 spin_lock_bh(&hslot->lock);
261 if (hslot->count > 10) {
262 int exist;
263 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
264
265 slot2 &= udptable->mask;
266 hash2_nulladdr &= udptable->mask;
267
268 hslot2 = udp_hashslot2(udptable, slot2);
269 if (hslot->count < hslot2->count)
270 goto scan_primary_hash;
271
272 exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 sk, saddr_comp);
274 if (!exist && (hash2_nulladdr != slot2)) {
275 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276 exist = udp_lib_lport_inuse2(net, snum, hslot2,
277 sk, saddr_comp);
278 }
279 if (exist)
280 goto fail_unlock;
281 else
282 goto found;
283 }
284 scan_primary_hash:
285 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286 saddr_comp, 0))
287 goto fail_unlock;
288 }
289 found:
290 inet_sk(sk)->inet_num = snum;
291 udp_sk(sk)->udp_port_hash = snum;
292 udp_sk(sk)->udp_portaddr_hash ^= snum;
293 if (sk_unhashed(sk)) {
294 sk_nulls_add_node_rcu(sk, &hslot->head);
295 hslot->count++;
296 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
297
298 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299 spin_lock(&hslot2->lock);
300 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301 &hslot2->head);
302 hslot2->count++;
303 spin_unlock(&hslot2->lock);
304 }
305 error = 0;
306 fail_unlock:
307 spin_unlock_bh(&hslot->lock);
308 fail:
309 return error;
310 }
311 EXPORT_SYMBOL(udp_lib_get_port);
312
313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
314 {
315 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
316
317 return (!ipv6_only_sock(sk2) &&
318 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
320 }
321
322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323 unsigned int port)
324 {
325 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
326 }
327
328 int udp_v4_get_port(struct sock *sk, unsigned short snum)
329 {
330 unsigned int hash2_nulladdr =
331 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332 unsigned int hash2_partial =
333 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
334
335 /* precompute partial secondary hash */
336 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
338 }
339
340 static inline int compute_score(struct sock *sk, struct net *net,
341 __be32 saddr, unsigned short hnum, __be16 sport,
342 __be32 daddr, __be16 dport, int dif)
343 {
344 int score;
345 struct inet_sock *inet;
346
347 if (!net_eq(sock_net(sk), net) ||
348 udp_sk(sk)->udp_port_hash != hnum ||
349 ipv6_only_sock(sk))
350 return -1;
351
352 score = (sk->sk_family == PF_INET) ? 2 : 1;
353 inet = inet_sk(sk);
354
355 if (inet->inet_rcv_saddr) {
356 if (inet->inet_rcv_saddr != daddr)
357 return -1;
358 score += 4;
359 }
360
361 if (inet->inet_daddr) {
362 if (inet->inet_daddr != saddr)
363 return -1;
364 score += 4;
365 }
366
367 if (inet->inet_dport) {
368 if (inet->inet_dport != sport)
369 return -1;
370 score += 4;
371 }
372
373 if (sk->sk_bound_dev_if) {
374 if (sk->sk_bound_dev_if != dif)
375 return -1;
376 score += 4;
377 }
378
379 return score;
380 }
381
382 /*
383 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
384 */
385 static inline int compute_score2(struct sock *sk, struct net *net,
386 __be32 saddr, __be16 sport,
387 __be32 daddr, unsigned int hnum, int dif)
388 {
389 int score;
390 struct inet_sock *inet;
391
392 if (!net_eq(sock_net(sk), net) ||
393 ipv6_only_sock(sk))
394 return -1;
395
396 inet = inet_sk(sk);
397
398 if (inet->inet_rcv_saddr != daddr ||
399 inet->inet_num != hnum)
400 return -1;
401
402 score = (sk->sk_family == PF_INET) ? 2 : 1;
403
404 if (inet->inet_daddr) {
405 if (inet->inet_daddr != saddr)
406 return -1;
407 score += 4;
408 }
409
410 if (inet->inet_dport) {
411 if (inet->inet_dport != sport)
412 return -1;
413 score += 4;
414 }
415
416 if (sk->sk_bound_dev_if) {
417 if (sk->sk_bound_dev_if != dif)
418 return -1;
419 score += 4;
420 }
421
422 return score;
423 }
424
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 const __u16 lport, const __be32 faddr,
427 const __be16 fport)
428 {
429 static u32 udp_ehash_secret __read_mostly;
430
431 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432
433 return __inet_ehashfn(laddr, lport, faddr, fport,
434 udp_ehash_secret + net_hash_mix(net));
435 }
436
437 /* called with read_rcu_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 __be32 saddr, __be16 sport,
440 __be32 daddr, unsigned int hnum, int dif,
441 struct udp_hslot *hslot2, unsigned int slot2)
442 {
443 struct sock *sk, *result;
444 struct hlist_nulls_node *node;
445 int score, badness, matches = 0, reuseport = 0;
446 u32 hash = 0;
447
448 begin:
449 result = NULL;
450 badness = 0;
451 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452 score = compute_score2(sk, net, saddr, sport,
453 daddr, hnum, dif);
454 if (score > badness) {
455 result = sk;
456 badness = score;
457 reuseport = sk->sk_reuseport;
458 if (reuseport) {
459 hash = udp_ehashfn(net, daddr, hnum,
460 saddr, sport);
461 matches = 1;
462 }
463 } else if (score == badness && reuseport) {
464 matches++;
465 if (reciprocal_scale(hash, matches) == 0)
466 result = sk;
467 hash = next_pseudo_random32(hash);
468 }
469 }
470 /*
471 * if the nulls value we got at the end of this lookup is
472 * not the expected one, we must restart lookup.
473 * We probably met an item that was moved to another chain.
474 */
475 if (get_nulls_value(node) != slot2)
476 goto begin;
477 if (result) {
478 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479 result = NULL;
480 else if (unlikely(compute_score2(result, net, saddr, sport,
481 daddr, hnum, dif) < badness)) {
482 sock_put(result);
483 goto begin;
484 }
485 }
486 return result;
487 }
488
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490 * harder than this. -DaveM
491 */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 __be16 sport, __be32 daddr, __be16 dport,
494 int dif, struct udp_table *udptable)
495 {
496 struct sock *sk, *result;
497 struct hlist_nulls_node *node;
498 unsigned short hnum = ntohs(dport);
499 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501 int score, badness, matches = 0, reuseport = 0;
502 u32 hash = 0;
503
504 rcu_read_lock();
505 if (hslot->count > 10) {
506 hash2 = udp4_portaddr_hash(net, daddr, hnum);
507 slot2 = hash2 & udptable->mask;
508 hslot2 = &udptable->hash2[slot2];
509 if (hslot->count < hslot2->count)
510 goto begin;
511
512 result = udp4_lib_lookup2(net, saddr, sport,
513 daddr, hnum, dif,
514 hslot2, slot2);
515 if (!result) {
516 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517 slot2 = hash2 & udptable->mask;
518 hslot2 = &udptable->hash2[slot2];
519 if (hslot->count < hslot2->count)
520 goto begin;
521
522 result = udp4_lib_lookup2(net, saddr, sport,
523 htonl(INADDR_ANY), hnum, dif,
524 hslot2, slot2);
525 }
526 rcu_read_unlock();
527 return result;
528 }
529 begin:
530 result = NULL;
531 badness = 0;
532 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533 score = compute_score(sk, net, saddr, hnum, sport,
534 daddr, dport, dif);
535 if (score > badness) {
536 result = sk;
537 badness = score;
538 reuseport = sk->sk_reuseport;
539 if (reuseport) {
540 hash = udp_ehashfn(net, daddr, hnum,
541 saddr, sport);
542 matches = 1;
543 }
544 } else if (score == badness && reuseport) {
545 matches++;
546 if (reciprocal_scale(hash, matches) == 0)
547 result = sk;
548 hash = next_pseudo_random32(hash);
549 }
550 }
551 /*
552 * if the nulls value we got at the end of this lookup is
553 * not the expected one, we must restart lookup.
554 * We probably met an item that was moved to another chain.
555 */
556 if (get_nulls_value(node) != slot)
557 goto begin;
558
559 if (result) {
560 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561 result = NULL;
562 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563 daddr, dport, dif) < badness)) {
564 sock_put(result);
565 goto begin;
566 }
567 }
568 rcu_read_unlock();
569 return result;
570 }
571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
572
573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574 __be16 sport, __be16 dport,
575 struct udp_table *udptable)
576 {
577 const struct iphdr *iph = ip_hdr(skb);
578
579 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580 iph->daddr, dport, inet_iif(skb),
581 udptable);
582 }
583
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 __be32 daddr, __be16 dport, int dif)
586 {
587 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
588 }
589 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
590
591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592 __be16 loc_port, __be32 loc_addr,
593 __be16 rmt_port, __be32 rmt_addr,
594 int dif, unsigned short hnum)
595 {
596 struct inet_sock *inet = inet_sk(sk);
597
598 if (!net_eq(sock_net(sk), net) ||
599 udp_sk(sk)->udp_port_hash != hnum ||
600 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601 (inet->inet_dport != rmt_port && inet->inet_dport) ||
602 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603 ipv6_only_sock(sk) ||
604 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605 return false;
606 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607 return false;
608 return true;
609 }
610
611 /*
612 * This routine is called by the ICMP module when it gets some
613 * sort of error condition. If err < 0 then the socket should
614 * be closed and the error returned to the user. If err > 0
615 * it's just the icmp type << 8 | icmp code.
616 * Header points to the ip header of the error packet. We move
617 * on past this. Then (as it used to claim before adjustment)
618 * header points to the first 8 bytes of the udp header. We need
619 * to find the appropriate port.
620 */
621
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 struct inet_sock *inet;
625 const struct iphdr *iph = (const struct iphdr *)skb->data;
626 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 const int type = icmp_hdr(skb)->type;
628 const int code = icmp_hdr(skb)->code;
629 struct sock *sk;
630 int harderr;
631 int err;
632 struct net *net = dev_net(skb->dev);
633
634 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 iph->saddr, uh->source, skb->dev->ifindex, udptable);
636 if (!sk) {
637 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638 return; /* No socket for error */
639 }
640
641 err = 0;
642 harderr = 0;
643 inet = inet_sk(sk);
644
645 switch (type) {
646 default:
647 case ICMP_TIME_EXCEEDED:
648 err = EHOSTUNREACH;
649 break;
650 case ICMP_SOURCE_QUENCH:
651 goto out;
652 case ICMP_PARAMETERPROB:
653 err = EPROTO;
654 harderr = 1;
655 break;
656 case ICMP_DEST_UNREACH:
657 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658 ipv4_sk_update_pmtu(skb, sk, info);
659 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660 err = EMSGSIZE;
661 harderr = 1;
662 break;
663 }
664 goto out;
665 }
666 err = EHOSTUNREACH;
667 if (code <= NR_ICMP_UNREACH) {
668 harderr = icmp_err_convert[code].fatal;
669 err = icmp_err_convert[code].errno;
670 }
671 break;
672 case ICMP_REDIRECT:
673 ipv4_sk_redirect(skb, sk);
674 goto out;
675 }
676
677 /*
678 * RFC1122: OK. Passes ICMP errors back to application, as per
679 * 4.1.3.3.
680 */
681 if (!inet->recverr) {
682 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683 goto out;
684 } else
685 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
686
687 sk->sk_err = err;
688 sk->sk_error_report(sk);
689 out:
690 sock_put(sk);
691 }
692
693 void udp_err(struct sk_buff *skb, u32 info)
694 {
695 __udp4_lib_err(skb, info, &udp_table);
696 }
697
698 /*
699 * Throw away all pending data and cancel the corking. Socket is locked.
700 */
701 void udp_flush_pending_frames(struct sock *sk)
702 {
703 struct udp_sock *up = udp_sk(sk);
704
705 if (up->pending) {
706 up->len = 0;
707 up->pending = 0;
708 ip_flush_pending_frames(sk);
709 }
710 }
711 EXPORT_SYMBOL(udp_flush_pending_frames);
712
713 /**
714 * udp4_hwcsum - handle outgoing HW checksumming
715 * @skb: sk_buff containing the filled-in UDP header
716 * (checksum field must be zeroed out)
717 * @src: source IP address
718 * @dst: destination IP address
719 */
720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
721 {
722 struct udphdr *uh = udp_hdr(skb);
723 int offset = skb_transport_offset(skb);
724 int len = skb->len - offset;
725 int hlen = len;
726 __wsum csum = 0;
727
728 if (!skb_has_frag_list(skb)) {
729 /*
730 * Only one fragment on the socket.
731 */
732 skb->csum_start = skb_transport_header(skb) - skb->head;
733 skb->csum_offset = offsetof(struct udphdr, check);
734 uh->check = ~csum_tcpudp_magic(src, dst, len,
735 IPPROTO_UDP, 0);
736 } else {
737 struct sk_buff *frags;
738
739 /*
740 * HW-checksum won't work as there are two or more
741 * fragments on the socket so that all csums of sk_buffs
742 * should be together
743 */
744 skb_walk_frags(skb, frags) {
745 csum = csum_add(csum, frags->csum);
746 hlen -= frags->len;
747 }
748
749 csum = skb_checksum(skb, offset, hlen, csum);
750 skb->ip_summed = CHECKSUM_NONE;
751
752 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753 if (uh->check == 0)
754 uh->check = CSUM_MANGLED_0;
755 }
756 }
757 EXPORT_SYMBOL_GPL(udp4_hwcsum);
758
759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760 * for the simple case like when setting the checksum for a UDP tunnel.
761 */
762 void udp_set_csum(bool nocheck, struct sk_buff *skb,
763 __be32 saddr, __be32 daddr, int len)
764 {
765 struct udphdr *uh = udp_hdr(skb);
766
767 if (nocheck)
768 uh->check = 0;
769 else if (skb_is_gso(skb))
770 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771 else if (skb_dst(skb) && skb_dst(skb)->dev &&
772 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
773
774 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
775
776 skb->ip_summed = CHECKSUM_PARTIAL;
777 skb->csum_start = skb_transport_header(skb) - skb->head;
778 skb->csum_offset = offsetof(struct udphdr, check);
779 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 } else {
781 __wsum csum;
782
783 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
784
785 uh->check = 0;
786 csum = skb_checksum(skb, 0, len, 0);
787 uh->check = udp_v4_check(len, saddr, daddr, csum);
788 if (uh->check == 0)
789 uh->check = CSUM_MANGLED_0;
790
791 skb->ip_summed = CHECKSUM_UNNECESSARY;
792 }
793 }
794 EXPORT_SYMBOL(udp_set_csum);
795
796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
797 {
798 struct sock *sk = skb->sk;
799 struct inet_sock *inet = inet_sk(sk);
800 struct udphdr *uh;
801 int err = 0;
802 int is_udplite = IS_UDPLITE(sk);
803 int offset = skb_transport_offset(skb);
804 int len = skb->len - offset;
805 __wsum csum = 0;
806
807 /*
808 * Create a UDP header
809 */
810 uh = udp_hdr(skb);
811 uh->source = inet->inet_sport;
812 uh->dest = fl4->fl4_dport;
813 uh->len = htons(len);
814 uh->check = 0;
815
816 if (is_udplite) /* UDP-Lite */
817 csum = udplite_csum(skb);
818
819 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
820
821 skb->ip_summed = CHECKSUM_NONE;
822 goto send;
823
824 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
825
826 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827 goto send;
828
829 } else
830 csum = udp_csum(skb);
831
832 /* add protocol-dependent pseudo-header */
833 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834 sk->sk_protocol, csum);
835 if (uh->check == 0)
836 uh->check = CSUM_MANGLED_0;
837
838 send:
839 err = ip_send_skb(sock_net(sk), skb);
840 if (err) {
841 if (err == -ENOBUFS && !inet->recverr) {
842 UDP_INC_STATS_USER(sock_net(sk),
843 UDP_MIB_SNDBUFERRORS, is_udplite);
844 err = 0;
845 }
846 } else
847 UDP_INC_STATS_USER(sock_net(sk),
848 UDP_MIB_OUTDATAGRAMS, is_udplite);
849 return err;
850 }
851
852 /*
853 * Push out all pending data as one UDP datagram. Socket is locked.
854 */
855 int udp_push_pending_frames(struct sock *sk)
856 {
857 struct udp_sock *up = udp_sk(sk);
858 struct inet_sock *inet = inet_sk(sk);
859 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860 struct sk_buff *skb;
861 int err = 0;
862
863 skb = ip_finish_skb(sk, fl4);
864 if (!skb)
865 goto out;
866
867 err = udp_send_skb(skb, fl4);
868
869 out:
870 up->len = 0;
871 up->pending = 0;
872 return err;
873 }
874 EXPORT_SYMBOL(udp_push_pending_frames);
875
876 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
877 {
878 struct inet_sock *inet = inet_sk(sk);
879 struct udp_sock *up = udp_sk(sk);
880 struct flowi4 fl4_stack;
881 struct flowi4 *fl4;
882 int ulen = len;
883 struct ipcm_cookie ipc;
884 struct rtable *rt = NULL;
885 int free = 0;
886 int connected = 0;
887 __be32 daddr, faddr, saddr;
888 __be16 dport;
889 u8 tos;
890 int err, is_udplite = IS_UDPLITE(sk);
891 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
892 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
893 struct sk_buff *skb;
894 struct ip_options_data opt_copy;
895
896 if (len > 0xFFFF)
897 return -EMSGSIZE;
898
899 /*
900 * Check the flags.
901 */
902
903 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
904 return -EOPNOTSUPP;
905
906 ipc.opt = NULL;
907 ipc.tx_flags = 0;
908 ipc.ttl = 0;
909 ipc.tos = -1;
910
911 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
912
913 fl4 = &inet->cork.fl.u.ip4;
914 if (up->pending) {
915 /*
916 * There are pending frames.
917 * The socket lock must be held while it's corked.
918 */
919 lock_sock(sk);
920 if (likely(up->pending)) {
921 if (unlikely(up->pending != AF_INET)) {
922 release_sock(sk);
923 return -EINVAL;
924 }
925 goto do_append_data;
926 }
927 release_sock(sk);
928 }
929 ulen += sizeof(struct udphdr);
930
931 /*
932 * Get and verify the address.
933 */
934 if (msg->msg_name) {
935 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 if (msg->msg_namelen < sizeof(*usin))
937 return -EINVAL;
938 if (usin->sin_family != AF_INET) {
939 if (usin->sin_family != AF_UNSPEC)
940 return -EAFNOSUPPORT;
941 }
942
943 daddr = usin->sin_addr.s_addr;
944 dport = usin->sin_port;
945 if (dport == 0)
946 return -EINVAL;
947 } else {
948 if (sk->sk_state != TCP_ESTABLISHED)
949 return -EDESTADDRREQ;
950 daddr = inet->inet_daddr;
951 dport = inet->inet_dport;
952 /* Open fast path for connected socket.
953 Route will not be used, if at least one option is set.
954 */
955 connected = 1;
956 }
957 ipc.addr = inet->inet_saddr;
958
959 ipc.oif = sk->sk_bound_dev_if;
960
961 sock_tx_timestamp(sk, &ipc.tx_flags);
962
963 if (msg->msg_controllen) {
964 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
965 sk->sk_family == AF_INET6);
966 if (err)
967 return err;
968 if (ipc.opt)
969 free = 1;
970 connected = 0;
971 }
972 if (!ipc.opt) {
973 struct ip_options_rcu *inet_opt;
974
975 rcu_read_lock();
976 inet_opt = rcu_dereference(inet->inet_opt);
977 if (inet_opt) {
978 memcpy(&opt_copy, inet_opt,
979 sizeof(*inet_opt) + inet_opt->opt.optlen);
980 ipc.opt = &opt_copy.opt;
981 }
982 rcu_read_unlock();
983 }
984
985 saddr = ipc.addr;
986 ipc.addr = faddr = daddr;
987
988 if (ipc.opt && ipc.opt->opt.srr) {
989 if (!daddr)
990 return -EINVAL;
991 faddr = ipc.opt->opt.faddr;
992 connected = 0;
993 }
994 tos = get_rttos(&ipc, inet);
995 if (sock_flag(sk, SOCK_LOCALROUTE) ||
996 (msg->msg_flags & MSG_DONTROUTE) ||
997 (ipc.opt && ipc.opt->opt.is_strictroute)) {
998 tos |= RTO_ONLINK;
999 connected = 0;
1000 }
1001
1002 if (ipv4_is_multicast(daddr)) {
1003 if (!ipc.oif)
1004 ipc.oif = inet->mc_index;
1005 if (!saddr)
1006 saddr = inet->mc_addr;
1007 connected = 0;
1008 } else if (!ipc.oif)
1009 ipc.oif = inet->uc_index;
1010
1011 if (connected)
1012 rt = (struct rtable *)sk_dst_check(sk, 0);
1013
1014 if (!rt) {
1015 struct net *net = sock_net(sk);
1016
1017 fl4 = &fl4_stack;
1018 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1019 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1020 inet_sk_flowi_flags(sk),
1021 faddr, saddr, dport, inet->inet_sport);
1022
1023 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1024 rt = ip_route_output_flow(net, fl4, sk);
1025 if (IS_ERR(rt)) {
1026 err = PTR_ERR(rt);
1027 rt = NULL;
1028 if (err == -ENETUNREACH)
1029 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1030 goto out;
1031 }
1032
1033 err = -EACCES;
1034 if ((rt->rt_flags & RTCF_BROADCAST) &&
1035 !sock_flag(sk, SOCK_BROADCAST))
1036 goto out;
1037 if (connected)
1038 sk_dst_set(sk, dst_clone(&rt->dst));
1039 }
1040
1041 if (msg->msg_flags&MSG_CONFIRM)
1042 goto do_confirm;
1043 back_from_confirm:
1044
1045 saddr = fl4->saddr;
1046 if (!ipc.addr)
1047 daddr = ipc.addr = fl4->daddr;
1048
1049 /* Lockless fast path for the non-corking case. */
1050 if (!corkreq) {
1051 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1052 sizeof(struct udphdr), &ipc, &rt,
1053 msg->msg_flags);
1054 err = PTR_ERR(skb);
1055 if (!IS_ERR_OR_NULL(skb))
1056 err = udp_send_skb(skb, fl4);
1057 goto out;
1058 }
1059
1060 lock_sock(sk);
1061 if (unlikely(up->pending)) {
1062 /* The socket is already corked while preparing it. */
1063 /* ... which is an evident application bug. --ANK */
1064 release_sock(sk);
1065
1066 net_dbg_ratelimited("cork app bug 2\n");
1067 err = -EINVAL;
1068 goto out;
1069 }
1070 /*
1071 * Now cork the socket to pend data.
1072 */
1073 fl4 = &inet->cork.fl.u.ip4;
1074 fl4->daddr = daddr;
1075 fl4->saddr = saddr;
1076 fl4->fl4_dport = dport;
1077 fl4->fl4_sport = inet->inet_sport;
1078 up->pending = AF_INET;
1079
1080 do_append_data:
1081 up->len += ulen;
1082 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1083 sizeof(struct udphdr), &ipc, &rt,
1084 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1085 if (err)
1086 udp_flush_pending_frames(sk);
1087 else if (!corkreq)
1088 err = udp_push_pending_frames(sk);
1089 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1090 up->pending = 0;
1091 release_sock(sk);
1092
1093 out:
1094 ip_rt_put(rt);
1095 if (free)
1096 kfree(ipc.opt);
1097 if (!err)
1098 return len;
1099 /*
1100 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1101 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1102 * we don't have a good statistic (IpOutDiscards but it can be too many
1103 * things). We could add another new stat but at least for now that
1104 * seems like overkill.
1105 */
1106 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1107 UDP_INC_STATS_USER(sock_net(sk),
1108 UDP_MIB_SNDBUFERRORS, is_udplite);
1109 }
1110 return err;
1111
1112 do_confirm:
1113 dst_confirm(&rt->dst);
1114 if (!(msg->msg_flags&MSG_PROBE) || len)
1115 goto back_from_confirm;
1116 err = 0;
1117 goto out;
1118 }
1119 EXPORT_SYMBOL(udp_sendmsg);
1120
1121 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1122 size_t size, int flags)
1123 {
1124 struct inet_sock *inet = inet_sk(sk);
1125 struct udp_sock *up = udp_sk(sk);
1126 int ret;
1127
1128 if (flags & MSG_SENDPAGE_NOTLAST)
1129 flags |= MSG_MORE;
1130
1131 if (!up->pending) {
1132 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1133
1134 /* Call udp_sendmsg to specify destination address which
1135 * sendpage interface can't pass.
1136 * This will succeed only when the socket is connected.
1137 */
1138 ret = udp_sendmsg(sk, &msg, 0);
1139 if (ret < 0)
1140 return ret;
1141 }
1142
1143 lock_sock(sk);
1144
1145 if (unlikely(!up->pending)) {
1146 release_sock(sk);
1147
1148 net_dbg_ratelimited("udp cork app bug 3\n");
1149 return -EINVAL;
1150 }
1151
1152 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1153 page, offset, size, flags);
1154 if (ret == -EOPNOTSUPP) {
1155 release_sock(sk);
1156 return sock_no_sendpage(sk->sk_socket, page, offset,
1157 size, flags);
1158 }
1159 if (ret < 0) {
1160 udp_flush_pending_frames(sk);
1161 goto out;
1162 }
1163
1164 up->len += size;
1165 if (!(up->corkflag || (flags&MSG_MORE)))
1166 ret = udp_push_pending_frames(sk);
1167 if (!ret)
1168 ret = size;
1169 out:
1170 release_sock(sk);
1171 return ret;
1172 }
1173
1174 /**
1175 * first_packet_length - return length of first packet in receive queue
1176 * @sk: socket
1177 *
1178 * Drops all bad checksum frames, until a valid one is found.
1179 * Returns the length of found skb, or 0 if none is found.
1180 */
1181 static unsigned int first_packet_length(struct sock *sk)
1182 {
1183 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1184 struct sk_buff *skb;
1185 unsigned int res;
1186
1187 __skb_queue_head_init(&list_kill);
1188
1189 spin_lock_bh(&rcvq->lock);
1190 while ((skb = skb_peek(rcvq)) != NULL &&
1191 udp_lib_checksum_complete(skb)) {
1192 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1193 IS_UDPLITE(sk));
1194 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1195 IS_UDPLITE(sk));
1196 atomic_inc(&sk->sk_drops);
1197 __skb_unlink(skb, rcvq);
1198 __skb_queue_tail(&list_kill, skb);
1199 }
1200 res = skb ? skb->len : 0;
1201 spin_unlock_bh(&rcvq->lock);
1202
1203 if (!skb_queue_empty(&list_kill)) {
1204 bool slow = lock_sock_fast(sk);
1205
1206 __skb_queue_purge(&list_kill);
1207 sk_mem_reclaim_partial(sk);
1208 unlock_sock_fast(sk, slow);
1209 }
1210 return res;
1211 }
1212
1213 /*
1214 * IOCTL requests applicable to the UDP protocol
1215 */
1216
1217 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1218 {
1219 switch (cmd) {
1220 case SIOCOUTQ:
1221 {
1222 int amount = sk_wmem_alloc_get(sk);
1223
1224 return put_user(amount, (int __user *)arg);
1225 }
1226
1227 case SIOCINQ:
1228 {
1229 unsigned int amount = first_packet_length(sk);
1230
1231 if (amount)
1232 /*
1233 * We will only return the amount
1234 * of this packet since that is all
1235 * that will be read.
1236 */
1237 amount -= sizeof(struct udphdr);
1238
1239 return put_user(amount, (int __user *)arg);
1240 }
1241
1242 default:
1243 return -ENOIOCTLCMD;
1244 }
1245
1246 return 0;
1247 }
1248 EXPORT_SYMBOL(udp_ioctl);
1249
1250 /*
1251 * This should be easy, if there is something there we
1252 * return it, otherwise we block.
1253 */
1254
1255 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1256 int flags, int *addr_len)
1257 {
1258 struct inet_sock *inet = inet_sk(sk);
1259 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1260 struct sk_buff *skb;
1261 unsigned int ulen, copied;
1262 int peeked, off = 0;
1263 int err;
1264 int is_udplite = IS_UDPLITE(sk);
1265 bool slow;
1266
1267 if (flags & MSG_ERRQUEUE)
1268 return ip_recv_error(sk, msg, len, addr_len);
1269
1270 try_again:
1271 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1272 &peeked, &off, &err);
1273 if (!skb)
1274 goto out;
1275
1276 ulen = skb->len - sizeof(struct udphdr);
1277 copied = len;
1278 if (copied > ulen)
1279 copied = ulen;
1280 else if (copied < ulen)
1281 msg->msg_flags |= MSG_TRUNC;
1282
1283 /*
1284 * If checksum is needed at all, try to do it while copying the
1285 * data. If the data is truncated, or if we only want a partial
1286 * coverage checksum (UDP-Lite), do it before the copy.
1287 */
1288
1289 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1290 if (udp_lib_checksum_complete(skb))
1291 goto csum_copy_err;
1292 }
1293
1294 if (skb_csum_unnecessary(skb))
1295 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1296 msg, copied);
1297 else {
1298 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1299 msg);
1300
1301 if (err == -EINVAL)
1302 goto csum_copy_err;
1303 }
1304
1305 if (unlikely(err)) {
1306 trace_kfree_skb(skb, udp_recvmsg);
1307 if (!peeked) {
1308 atomic_inc(&sk->sk_drops);
1309 UDP_INC_STATS_USER(sock_net(sk),
1310 UDP_MIB_INERRORS, is_udplite);
1311 }
1312 goto out_free;
1313 }
1314
1315 if (!peeked)
1316 UDP_INC_STATS_USER(sock_net(sk),
1317 UDP_MIB_INDATAGRAMS, is_udplite);
1318
1319 sock_recv_ts_and_drops(msg, sk, skb);
1320
1321 /* Copy the address. */
1322 if (sin) {
1323 sin->sin_family = AF_INET;
1324 sin->sin_port = udp_hdr(skb)->source;
1325 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1326 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1327 *addr_len = sizeof(*sin);
1328 }
1329 if (inet->cmsg_flags)
1330 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1331
1332 err = copied;
1333 if (flags & MSG_TRUNC)
1334 err = ulen;
1335
1336 out_free:
1337 skb_free_datagram_locked(sk, skb);
1338 out:
1339 return err;
1340
1341 csum_copy_err:
1342 slow = lock_sock_fast(sk);
1343 if (!skb_kill_datagram(sk, skb, flags)) {
1344 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1345 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1346 }
1347 unlock_sock_fast(sk, slow);
1348
1349 /* starting over for a new packet, but check if we need to yield */
1350 cond_resched();
1351 msg->msg_flags &= ~MSG_TRUNC;
1352 goto try_again;
1353 }
1354
1355 int udp_disconnect(struct sock *sk, int flags)
1356 {
1357 struct inet_sock *inet = inet_sk(sk);
1358 /*
1359 * 1003.1g - break association.
1360 */
1361
1362 sk->sk_state = TCP_CLOSE;
1363 inet->inet_daddr = 0;
1364 inet->inet_dport = 0;
1365 sock_rps_reset_rxhash(sk);
1366 sk->sk_bound_dev_if = 0;
1367 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1368 inet_reset_saddr(sk);
1369
1370 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1371 sk->sk_prot->unhash(sk);
1372 inet->inet_sport = 0;
1373 }
1374 sk_dst_reset(sk);
1375 return 0;
1376 }
1377 EXPORT_SYMBOL(udp_disconnect);
1378
1379 void udp_lib_unhash(struct sock *sk)
1380 {
1381 if (sk_hashed(sk)) {
1382 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1383 struct udp_hslot *hslot, *hslot2;
1384
1385 hslot = udp_hashslot(udptable, sock_net(sk),
1386 udp_sk(sk)->udp_port_hash);
1387 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1388
1389 spin_lock_bh(&hslot->lock);
1390 if (sk_nulls_del_node_init_rcu(sk)) {
1391 hslot->count--;
1392 inet_sk(sk)->inet_num = 0;
1393 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1394
1395 spin_lock(&hslot2->lock);
1396 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1397 hslot2->count--;
1398 spin_unlock(&hslot2->lock);
1399 }
1400 spin_unlock_bh(&hslot->lock);
1401 }
1402 }
1403 EXPORT_SYMBOL(udp_lib_unhash);
1404
1405 /*
1406 * inet_rcv_saddr was changed, we must rehash secondary hash
1407 */
1408 void udp_lib_rehash(struct sock *sk, u16 newhash)
1409 {
1410 if (sk_hashed(sk)) {
1411 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1412 struct udp_hslot *hslot, *hslot2, *nhslot2;
1413
1414 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1415 nhslot2 = udp_hashslot2(udptable, newhash);
1416 udp_sk(sk)->udp_portaddr_hash = newhash;
1417 if (hslot2 != nhslot2) {
1418 hslot = udp_hashslot(udptable, sock_net(sk),
1419 udp_sk(sk)->udp_port_hash);
1420 /* we must lock primary chain too */
1421 spin_lock_bh(&hslot->lock);
1422
1423 spin_lock(&hslot2->lock);
1424 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1425 hslot2->count--;
1426 spin_unlock(&hslot2->lock);
1427
1428 spin_lock(&nhslot2->lock);
1429 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1430 &nhslot2->head);
1431 nhslot2->count++;
1432 spin_unlock(&nhslot2->lock);
1433
1434 spin_unlock_bh(&hslot->lock);
1435 }
1436 }
1437 }
1438 EXPORT_SYMBOL(udp_lib_rehash);
1439
1440 static void udp_v4_rehash(struct sock *sk)
1441 {
1442 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1443 inet_sk(sk)->inet_rcv_saddr,
1444 inet_sk(sk)->inet_num);
1445 udp_lib_rehash(sk, new_hash);
1446 }
1447
1448 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1449 {
1450 int rc;
1451
1452 if (inet_sk(sk)->inet_daddr) {
1453 sock_rps_save_rxhash(sk, skb);
1454 sk_mark_napi_id(sk, skb);
1455 sk_incoming_cpu_update(sk);
1456 }
1457
1458 rc = sock_queue_rcv_skb(sk, skb);
1459 if (rc < 0) {
1460 int is_udplite = IS_UDPLITE(sk);
1461
1462 /* Note that an ENOMEM error is charged twice */
1463 if (rc == -ENOMEM)
1464 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1465 is_udplite);
1466 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1467 kfree_skb(skb);
1468 trace_udp_fail_queue_rcv_skb(rc, sk);
1469 return -1;
1470 }
1471
1472 return 0;
1473
1474 }
1475
1476 static struct static_key udp_encap_needed __read_mostly;
1477 void udp_encap_enable(void)
1478 {
1479 if (!static_key_enabled(&udp_encap_needed))
1480 static_key_slow_inc(&udp_encap_needed);
1481 }
1482 EXPORT_SYMBOL(udp_encap_enable);
1483
1484 /* returns:
1485 * -1: error
1486 * 0: success
1487 * >0: "udp encap" protocol resubmission
1488 *
1489 * Note that in the success and error cases, the skb is assumed to
1490 * have either been requeued or freed.
1491 */
1492 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1493 {
1494 struct udp_sock *up = udp_sk(sk);
1495 int rc;
1496 int is_udplite = IS_UDPLITE(sk);
1497
1498 /*
1499 * Charge it to the socket, dropping if the queue is full.
1500 */
1501 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1502 goto drop;
1503 nf_reset(skb);
1504
1505 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1506 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1507
1508 /*
1509 * This is an encapsulation socket so pass the skb to
1510 * the socket's udp_encap_rcv() hook. Otherwise, just
1511 * fall through and pass this up the UDP socket.
1512 * up->encap_rcv() returns the following value:
1513 * =0 if skb was successfully passed to the encap
1514 * handler or was discarded by it.
1515 * >0 if skb should be passed on to UDP.
1516 * <0 if skb should be resubmitted as proto -N
1517 */
1518
1519 /* if we're overly short, let UDP handle it */
1520 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1521 if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1522 int ret;
1523
1524 /* Verify checksum before giving to encap */
1525 if (udp_lib_checksum_complete(skb))
1526 goto csum_error;
1527
1528 ret = encap_rcv(sk, skb);
1529 if (ret <= 0) {
1530 UDP_INC_STATS_BH(sock_net(sk),
1531 UDP_MIB_INDATAGRAMS,
1532 is_udplite);
1533 return -ret;
1534 }
1535 }
1536
1537 /* FALLTHROUGH -- it's a UDP Packet */
1538 }
1539
1540 /*
1541 * UDP-Lite specific tests, ignored on UDP sockets
1542 */
1543 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1544
1545 /*
1546 * MIB statistics other than incrementing the error count are
1547 * disabled for the following two types of errors: these depend
1548 * on the application settings, not on the functioning of the
1549 * protocol stack as such.
1550 *
1551 * RFC 3828 here recommends (sec 3.3): "There should also be a
1552 * way ... to ... at least let the receiving application block
1553 * delivery of packets with coverage values less than a value
1554 * provided by the application."
1555 */
1556 if (up->pcrlen == 0) { /* full coverage was set */
1557 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1558 UDP_SKB_CB(skb)->cscov, skb->len);
1559 goto drop;
1560 }
1561 /* The next case involves violating the min. coverage requested
1562 * by the receiver. This is subtle: if receiver wants x and x is
1563 * greater than the buffersize/MTU then receiver will complain
1564 * that it wants x while sender emits packets of smaller size y.
1565 * Therefore the above ...()->partial_cov statement is essential.
1566 */
1567 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1568 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1569 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1570 goto drop;
1571 }
1572 }
1573
1574 if (rcu_access_pointer(sk->sk_filter) &&
1575 udp_lib_checksum_complete(skb))
1576 goto csum_error;
1577
1578 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1579 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1580 is_udplite);
1581 goto drop;
1582 }
1583
1584 rc = 0;
1585
1586 ipv4_pktinfo_prepare(sk, skb);
1587 bh_lock_sock(sk);
1588 if (!sock_owned_by_user(sk))
1589 rc = __udp_queue_rcv_skb(sk, skb);
1590 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1591 bh_unlock_sock(sk);
1592 goto drop;
1593 }
1594 bh_unlock_sock(sk);
1595
1596 return rc;
1597
1598 csum_error:
1599 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1600 drop:
1601 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1602 atomic_inc(&sk->sk_drops);
1603 kfree_skb(skb);
1604 return -1;
1605 }
1606
1607 static void flush_stack(struct sock **stack, unsigned int count,
1608 struct sk_buff *skb, unsigned int final)
1609 {
1610 unsigned int i;
1611 struct sk_buff *skb1 = NULL;
1612 struct sock *sk;
1613
1614 for (i = 0; i < count; i++) {
1615 sk = stack[i];
1616 if (likely(!skb1))
1617 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1618
1619 if (!skb1) {
1620 atomic_inc(&sk->sk_drops);
1621 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1622 IS_UDPLITE(sk));
1623 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1624 IS_UDPLITE(sk));
1625 }
1626
1627 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1628 skb1 = NULL;
1629
1630 sock_put(sk);
1631 }
1632 if (unlikely(skb1))
1633 kfree_skb(skb1);
1634 }
1635
1636 /* For TCP sockets, sk_rx_dst is protected by socket lock
1637 * For UDP, we use xchg() to guard against concurrent changes.
1638 */
1639 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1640 {
1641 struct dst_entry *old;
1642
1643 dst_hold(dst);
1644 old = xchg(&sk->sk_rx_dst, dst);
1645 dst_release(old);
1646 }
1647
1648 /*
1649 * Multicasts and broadcasts go to each listener.
1650 *
1651 * Note: called only from the BH handler context.
1652 */
1653 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1654 struct udphdr *uh,
1655 __be32 saddr, __be32 daddr,
1656 struct udp_table *udptable,
1657 int proto)
1658 {
1659 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1660 struct hlist_nulls_node *node;
1661 unsigned short hnum = ntohs(uh->dest);
1662 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1663 int dif = skb->dev->ifindex;
1664 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1665 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1666 bool inner_flushed = false;
1667
1668 if (use_hash2) {
1669 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1670 udp_table.mask;
1671 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1672 start_lookup:
1673 hslot = &udp_table.hash2[hash2];
1674 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1675 }
1676
1677 spin_lock(&hslot->lock);
1678 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1679 if (__udp_is_mcast_sock(net, sk,
1680 uh->dest, daddr,
1681 uh->source, saddr,
1682 dif, hnum)) {
1683 if (unlikely(count == ARRAY_SIZE(stack))) {
1684 flush_stack(stack, count, skb, ~0);
1685 inner_flushed = true;
1686 count = 0;
1687 }
1688 stack[count++] = sk;
1689 sock_hold(sk);
1690 }
1691 }
1692
1693 spin_unlock(&hslot->lock);
1694
1695 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1696 if (use_hash2 && hash2 != hash2_any) {
1697 hash2 = hash2_any;
1698 goto start_lookup;
1699 }
1700
1701 /*
1702 * do the slow work with no lock held
1703 */
1704 if (count) {
1705 flush_stack(stack, count, skb, count - 1);
1706 } else {
1707 if (!inner_flushed)
1708 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1709 proto == IPPROTO_UDPLITE);
1710 consume_skb(skb);
1711 }
1712 return 0;
1713 }
1714
1715 /* Initialize UDP checksum. If exited with zero value (success),
1716 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1717 * Otherwise, csum completion requires chacksumming packet body,
1718 * including udp header and folding it to skb->csum.
1719 */
1720 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1721 int proto)
1722 {
1723 int err;
1724
1725 UDP_SKB_CB(skb)->partial_cov = 0;
1726 UDP_SKB_CB(skb)->cscov = skb->len;
1727
1728 if (proto == IPPROTO_UDPLITE) {
1729 err = udplite_checksum_init(skb, uh);
1730 if (err)
1731 return err;
1732 }
1733
1734 return skb_checksum_init_zero_check(skb, proto, uh->check,
1735 inet_compute_pseudo);
1736 }
1737
1738 /*
1739 * All we need to do is get the socket, and then do a checksum.
1740 */
1741
1742 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1743 int proto)
1744 {
1745 struct sock *sk;
1746 struct udphdr *uh;
1747 unsigned short ulen;
1748 struct rtable *rt = skb_rtable(skb);
1749 __be32 saddr, daddr;
1750 struct net *net = dev_net(skb->dev);
1751
1752 /*
1753 * Validate the packet.
1754 */
1755 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1756 goto drop; /* No space for header. */
1757
1758 uh = udp_hdr(skb);
1759 ulen = ntohs(uh->len);
1760 saddr = ip_hdr(skb)->saddr;
1761 daddr = ip_hdr(skb)->daddr;
1762
1763 if (ulen > skb->len)
1764 goto short_packet;
1765
1766 if (proto == IPPROTO_UDP) {
1767 /* UDP validates ulen. */
1768 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1769 goto short_packet;
1770 uh = udp_hdr(skb);
1771 }
1772
1773 if (udp4_csum_init(skb, uh, proto))
1774 goto csum_error;
1775
1776 sk = skb_steal_sock(skb);
1777 if (sk) {
1778 struct dst_entry *dst = skb_dst(skb);
1779 int ret;
1780
1781 if (unlikely(sk->sk_rx_dst != dst))
1782 udp_sk_rx_dst_set(sk, dst);
1783
1784 ret = udp_queue_rcv_skb(sk, skb);
1785 sock_put(sk);
1786 /* a return value > 0 means to resubmit the input, but
1787 * it wants the return to be -protocol, or 0
1788 */
1789 if (ret > 0)
1790 return -ret;
1791 return 0;
1792 }
1793
1794 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1795 return __udp4_lib_mcast_deliver(net, skb, uh,
1796 saddr, daddr, udptable, proto);
1797
1798 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1799 if (sk) {
1800 int ret;
1801
1802 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1803 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1804 inet_compute_pseudo);
1805
1806 ret = udp_queue_rcv_skb(sk, skb);
1807 sock_put(sk);
1808
1809 /* a return value > 0 means to resubmit the input, but
1810 * it wants the return to be -protocol, or 0
1811 */
1812 if (ret > 0)
1813 return -ret;
1814 return 0;
1815 }
1816
1817 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1818 goto drop;
1819 nf_reset(skb);
1820
1821 /* No socket. Drop packet silently, if checksum is wrong */
1822 if (udp_lib_checksum_complete(skb))
1823 goto csum_error;
1824
1825 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1826 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1827
1828 /*
1829 * Hmm. We got an UDP packet to a port to which we
1830 * don't wanna listen. Ignore it.
1831 */
1832 kfree_skb(skb);
1833 return 0;
1834
1835 short_packet:
1836 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1837 proto == IPPROTO_UDPLITE ? "Lite" : "",
1838 &saddr, ntohs(uh->source),
1839 ulen, skb->len,
1840 &daddr, ntohs(uh->dest));
1841 goto drop;
1842
1843 csum_error:
1844 /*
1845 * RFC1122: OK. Discards the bad packet silently (as far as
1846 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1847 */
1848 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1849 proto == IPPROTO_UDPLITE ? "Lite" : "",
1850 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1851 ulen);
1852 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1853 drop:
1854 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1855 kfree_skb(skb);
1856 return 0;
1857 }
1858
1859 /* We can only early demux multicast if there is a single matching socket.
1860 * If more than one socket found returns NULL
1861 */
1862 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1863 __be16 loc_port, __be32 loc_addr,
1864 __be16 rmt_port, __be32 rmt_addr,
1865 int dif)
1866 {
1867 struct sock *sk, *result;
1868 struct hlist_nulls_node *node;
1869 unsigned short hnum = ntohs(loc_port);
1870 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1871 struct udp_hslot *hslot = &udp_table.hash[slot];
1872
1873 /* Do not bother scanning a too big list */
1874 if (hslot->count > 10)
1875 return NULL;
1876
1877 rcu_read_lock();
1878 begin:
1879 count = 0;
1880 result = NULL;
1881 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1882 if (__udp_is_mcast_sock(net, sk,
1883 loc_port, loc_addr,
1884 rmt_port, rmt_addr,
1885 dif, hnum)) {
1886 result = sk;
1887 ++count;
1888 }
1889 }
1890 /*
1891 * if the nulls value we got at the end of this lookup is
1892 * not the expected one, we must restart lookup.
1893 * We probably met an item that was moved to another chain.
1894 */
1895 if (get_nulls_value(node) != slot)
1896 goto begin;
1897
1898 if (result) {
1899 if (count != 1 ||
1900 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1901 result = NULL;
1902 else if (unlikely(!__udp_is_mcast_sock(net, result,
1903 loc_port, loc_addr,
1904 rmt_port, rmt_addr,
1905 dif, hnum))) {
1906 sock_put(result);
1907 result = NULL;
1908 }
1909 }
1910 rcu_read_unlock();
1911 return result;
1912 }
1913
1914 /* For unicast we should only early demux connected sockets or we can
1915 * break forwarding setups. The chains here can be long so only check
1916 * if the first socket is an exact match and if not move on.
1917 */
1918 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1919 __be16 loc_port, __be32 loc_addr,
1920 __be16 rmt_port, __be32 rmt_addr,
1921 int dif)
1922 {
1923 struct sock *sk, *result;
1924 struct hlist_nulls_node *node;
1925 unsigned short hnum = ntohs(loc_port);
1926 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1927 unsigned int slot2 = hash2 & udp_table.mask;
1928 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1929 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1930 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1931
1932 rcu_read_lock();
1933 result = NULL;
1934 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1935 if (INET_MATCH(sk, net, acookie,
1936 rmt_addr, loc_addr, ports, dif))
1937 result = sk;
1938 /* Only check first socket in chain */
1939 break;
1940 }
1941
1942 if (result) {
1943 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1944 result = NULL;
1945 else if (unlikely(!INET_MATCH(sk, net, acookie,
1946 rmt_addr, loc_addr,
1947 ports, dif))) {
1948 sock_put(result);
1949 result = NULL;
1950 }
1951 }
1952 rcu_read_unlock();
1953 return result;
1954 }
1955
1956 void udp_v4_early_demux(struct sk_buff *skb)
1957 {
1958 struct net *net = dev_net(skb->dev);
1959 const struct iphdr *iph;
1960 const struct udphdr *uh;
1961 struct sock *sk;
1962 struct dst_entry *dst;
1963 int dif = skb->dev->ifindex;
1964 int ours;
1965
1966 /* validate the packet */
1967 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1968 return;
1969
1970 iph = ip_hdr(skb);
1971 uh = udp_hdr(skb);
1972
1973 if (skb->pkt_type == PACKET_BROADCAST ||
1974 skb->pkt_type == PACKET_MULTICAST) {
1975 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1976
1977 if (!in_dev)
1978 return;
1979
1980 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1981 iph->protocol);
1982 if (!ours)
1983 return;
1984 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1985 uh->source, iph->saddr, dif);
1986 } else if (skb->pkt_type == PACKET_HOST) {
1987 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1988 uh->source, iph->saddr, dif);
1989 } else {
1990 return;
1991 }
1992
1993 if (!sk)
1994 return;
1995
1996 skb->sk = sk;
1997 skb->destructor = sock_efree;
1998 dst = sk->sk_rx_dst;
1999
2000 if (dst)
2001 dst = dst_check(dst, 0);
2002 if (dst)
2003 skb_dst_set_noref(skb, dst);
2004 }
2005
2006 int udp_rcv(struct sk_buff *skb)
2007 {
2008 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2009 }
2010
2011 void udp_destroy_sock(struct sock *sk)
2012 {
2013 struct udp_sock *up = udp_sk(sk);
2014 bool slow = lock_sock_fast(sk);
2015 udp_flush_pending_frames(sk);
2016 unlock_sock_fast(sk, slow);
2017 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2018 void (*encap_destroy)(struct sock *sk);
2019 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2020 if (encap_destroy)
2021 encap_destroy(sk);
2022 }
2023 }
2024
2025 /*
2026 * Socket option code for UDP
2027 */
2028 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2029 char __user *optval, unsigned int optlen,
2030 int (*push_pending_frames)(struct sock *))
2031 {
2032 struct udp_sock *up = udp_sk(sk);
2033 int val, valbool;
2034 int err = 0;
2035 int is_udplite = IS_UDPLITE(sk);
2036
2037 if (optlen < sizeof(int))
2038 return -EINVAL;
2039
2040 if (get_user(val, (int __user *)optval))
2041 return -EFAULT;
2042
2043 valbool = val ? 1 : 0;
2044
2045 switch (optname) {
2046 case UDP_CORK:
2047 if (val != 0) {
2048 up->corkflag = 1;
2049 } else {
2050 up->corkflag = 0;
2051 lock_sock(sk);
2052 push_pending_frames(sk);
2053 release_sock(sk);
2054 }
2055 break;
2056
2057 case UDP_ENCAP:
2058 switch (val) {
2059 case 0:
2060 case UDP_ENCAP_ESPINUDP:
2061 case UDP_ENCAP_ESPINUDP_NON_IKE:
2062 up->encap_rcv = xfrm4_udp_encap_rcv;
2063 /* FALLTHROUGH */
2064 case UDP_ENCAP_L2TPINUDP:
2065 up->encap_type = val;
2066 udp_encap_enable();
2067 break;
2068 default:
2069 err = -ENOPROTOOPT;
2070 break;
2071 }
2072 break;
2073
2074 case UDP_NO_CHECK6_TX:
2075 up->no_check6_tx = valbool;
2076 break;
2077
2078 case UDP_NO_CHECK6_RX:
2079 up->no_check6_rx = valbool;
2080 break;
2081
2082 /*
2083 * UDP-Lite's partial checksum coverage (RFC 3828).
2084 */
2085 /* The sender sets actual checksum coverage length via this option.
2086 * The case coverage > packet length is handled by send module. */
2087 case UDPLITE_SEND_CSCOV:
2088 if (!is_udplite) /* Disable the option on UDP sockets */
2089 return -ENOPROTOOPT;
2090 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2091 val = 8;
2092 else if (val > USHRT_MAX)
2093 val = USHRT_MAX;
2094 up->pcslen = val;
2095 up->pcflag |= UDPLITE_SEND_CC;
2096 break;
2097
2098 /* The receiver specifies a minimum checksum coverage value. To make
2099 * sense, this should be set to at least 8 (as done below). If zero is
2100 * used, this again means full checksum coverage. */
2101 case UDPLITE_RECV_CSCOV:
2102 if (!is_udplite) /* Disable the option on UDP sockets */
2103 return -ENOPROTOOPT;
2104 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2105 val = 8;
2106 else if (val > USHRT_MAX)
2107 val = USHRT_MAX;
2108 up->pcrlen = val;
2109 up->pcflag |= UDPLITE_RECV_CC;
2110 break;
2111
2112 default:
2113 err = -ENOPROTOOPT;
2114 break;
2115 }
2116
2117 return err;
2118 }
2119 EXPORT_SYMBOL(udp_lib_setsockopt);
2120
2121 int udp_setsockopt(struct sock *sk, int level, int optname,
2122 char __user *optval, unsigned int optlen)
2123 {
2124 if (level == SOL_UDP || level == SOL_UDPLITE)
2125 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2126 udp_push_pending_frames);
2127 return ip_setsockopt(sk, level, optname, optval, optlen);
2128 }
2129
2130 #ifdef CONFIG_COMPAT
2131 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2132 char __user *optval, unsigned int optlen)
2133 {
2134 if (level == SOL_UDP || level == SOL_UDPLITE)
2135 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2136 udp_push_pending_frames);
2137 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2138 }
2139 #endif
2140
2141 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2142 char __user *optval, int __user *optlen)
2143 {
2144 struct udp_sock *up = udp_sk(sk);
2145 int val, len;
2146
2147 if (get_user(len, optlen))
2148 return -EFAULT;
2149
2150 len = min_t(unsigned int, len, sizeof(int));
2151
2152 if (len < 0)
2153 return -EINVAL;
2154
2155 switch (optname) {
2156 case UDP_CORK:
2157 val = up->corkflag;
2158 break;
2159
2160 case UDP_ENCAP:
2161 val = up->encap_type;
2162 break;
2163
2164 case UDP_NO_CHECK6_TX:
2165 val = up->no_check6_tx;
2166 break;
2167
2168 case UDP_NO_CHECK6_RX:
2169 val = up->no_check6_rx;
2170 break;
2171
2172 /* The following two cannot be changed on UDP sockets, the return is
2173 * always 0 (which corresponds to the full checksum coverage of UDP). */
2174 case UDPLITE_SEND_CSCOV:
2175 val = up->pcslen;
2176 break;
2177
2178 case UDPLITE_RECV_CSCOV:
2179 val = up->pcrlen;
2180 break;
2181
2182 default:
2183 return -ENOPROTOOPT;
2184 }
2185
2186 if (put_user(len, optlen))
2187 return -EFAULT;
2188 if (copy_to_user(optval, &val, len))
2189 return -EFAULT;
2190 return 0;
2191 }
2192 EXPORT_SYMBOL(udp_lib_getsockopt);
2193
2194 int udp_getsockopt(struct sock *sk, int level, int optname,
2195 char __user *optval, int __user *optlen)
2196 {
2197 if (level == SOL_UDP || level == SOL_UDPLITE)
2198 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2199 return ip_getsockopt(sk, level, optname, optval, optlen);
2200 }
2201
2202 #ifdef CONFIG_COMPAT
2203 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2204 char __user *optval, int __user *optlen)
2205 {
2206 if (level == SOL_UDP || level == SOL_UDPLITE)
2207 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2208 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2209 }
2210 #endif
2211 /**
2212 * udp_poll - wait for a UDP event.
2213 * @file - file struct
2214 * @sock - socket
2215 * @wait - poll table
2216 *
2217 * This is same as datagram poll, except for the special case of
2218 * blocking sockets. If application is using a blocking fd
2219 * and a packet with checksum error is in the queue;
2220 * then it could get return from select indicating data available
2221 * but then block when reading it. Add special case code
2222 * to work around these arguably broken applications.
2223 */
2224 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2225 {
2226 unsigned int mask = datagram_poll(file, sock, wait);
2227 struct sock *sk = sock->sk;
2228
2229 sock_rps_record_flow(sk);
2230
2231 /* Check for false positives due to checksum errors */
2232 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2233 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2234 mask &= ~(POLLIN | POLLRDNORM);
2235
2236 return mask;
2237
2238 }
2239 EXPORT_SYMBOL(udp_poll);
2240
2241 struct proto udp_prot = {
2242 .name = "UDP",
2243 .owner = THIS_MODULE,
2244 .close = udp_lib_close,
2245 .connect = ip4_datagram_connect,
2246 .disconnect = udp_disconnect,
2247 .ioctl = udp_ioctl,
2248 .destroy = udp_destroy_sock,
2249 .setsockopt = udp_setsockopt,
2250 .getsockopt = udp_getsockopt,
2251 .sendmsg = udp_sendmsg,
2252 .recvmsg = udp_recvmsg,
2253 .sendpage = udp_sendpage,
2254 .backlog_rcv = __udp_queue_rcv_skb,
2255 .release_cb = ip4_datagram_release_cb,
2256 .hash = udp_lib_hash,
2257 .unhash = udp_lib_unhash,
2258 .rehash = udp_v4_rehash,
2259 .get_port = udp_v4_get_port,
2260 .memory_allocated = &udp_memory_allocated,
2261 .sysctl_mem = sysctl_udp_mem,
2262 .sysctl_wmem = &sysctl_udp_wmem_min,
2263 .sysctl_rmem = &sysctl_udp_rmem_min,
2264 .obj_size = sizeof(struct udp_sock),
2265 .slab_flags = SLAB_DESTROY_BY_RCU,
2266 .h.udp_table = &udp_table,
2267 #ifdef CONFIG_COMPAT
2268 .compat_setsockopt = compat_udp_setsockopt,
2269 .compat_getsockopt = compat_udp_getsockopt,
2270 #endif
2271 .clear_sk = sk_prot_clear_portaddr_nulls,
2272 };
2273 EXPORT_SYMBOL(udp_prot);
2274
2275 /* ------------------------------------------------------------------------ */
2276 #ifdef CONFIG_PROC_FS
2277
2278 static struct sock *udp_get_first(struct seq_file *seq, int start)
2279 {
2280 struct sock *sk;
2281 struct udp_iter_state *state = seq->private;
2282 struct net *net = seq_file_net(seq);
2283
2284 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2285 ++state->bucket) {
2286 struct hlist_nulls_node *node;
2287 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2288
2289 if (hlist_nulls_empty(&hslot->head))
2290 continue;
2291
2292 spin_lock_bh(&hslot->lock);
2293 sk_nulls_for_each(sk, node, &hslot->head) {
2294 if (!net_eq(sock_net(sk), net))
2295 continue;
2296 if (sk->sk_family == state->family)
2297 goto found;
2298 }
2299 spin_unlock_bh(&hslot->lock);
2300 }
2301 sk = NULL;
2302 found:
2303 return sk;
2304 }
2305
2306 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2307 {
2308 struct udp_iter_state *state = seq->private;
2309 struct net *net = seq_file_net(seq);
2310
2311 do {
2312 sk = sk_nulls_next(sk);
2313 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2314
2315 if (!sk) {
2316 if (state->bucket <= state->udp_table->mask)
2317 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2318 return udp_get_first(seq, state->bucket + 1);
2319 }
2320 return sk;
2321 }
2322
2323 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2324 {
2325 struct sock *sk = udp_get_first(seq, 0);
2326
2327 if (sk)
2328 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2329 --pos;
2330 return pos ? NULL : sk;
2331 }
2332
2333 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2334 {
2335 struct udp_iter_state *state = seq->private;
2336 state->bucket = MAX_UDP_PORTS;
2337
2338 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2339 }
2340
2341 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2342 {
2343 struct sock *sk;
2344
2345 if (v == SEQ_START_TOKEN)
2346 sk = udp_get_idx(seq, 0);
2347 else
2348 sk = udp_get_next(seq, v);
2349
2350 ++*pos;
2351 return sk;
2352 }
2353
2354 static void udp_seq_stop(struct seq_file *seq, void *v)
2355 {
2356 struct udp_iter_state *state = seq->private;
2357
2358 if (state->bucket <= state->udp_table->mask)
2359 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2360 }
2361
2362 int udp_seq_open(struct inode *inode, struct file *file)
2363 {
2364 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2365 struct udp_iter_state *s;
2366 int err;
2367
2368 err = seq_open_net(inode, file, &afinfo->seq_ops,
2369 sizeof(struct udp_iter_state));
2370 if (err < 0)
2371 return err;
2372
2373 s = ((struct seq_file *)file->private_data)->private;
2374 s->family = afinfo->family;
2375 s->udp_table = afinfo->udp_table;
2376 return err;
2377 }
2378 EXPORT_SYMBOL(udp_seq_open);
2379
2380 /* ------------------------------------------------------------------------ */
2381 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2382 {
2383 struct proc_dir_entry *p;
2384 int rc = 0;
2385
2386 afinfo->seq_ops.start = udp_seq_start;
2387 afinfo->seq_ops.next = udp_seq_next;
2388 afinfo->seq_ops.stop = udp_seq_stop;
2389
2390 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2391 afinfo->seq_fops, afinfo);
2392 if (!p)
2393 rc = -ENOMEM;
2394 return rc;
2395 }
2396 EXPORT_SYMBOL(udp_proc_register);
2397
2398 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2399 {
2400 remove_proc_entry(afinfo->name, net->proc_net);
2401 }
2402 EXPORT_SYMBOL(udp_proc_unregister);
2403
2404 /* ------------------------------------------------------------------------ */
2405 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2406 int bucket)
2407 {
2408 struct inet_sock *inet = inet_sk(sp);
2409 __be32 dest = inet->inet_daddr;
2410 __be32 src = inet->inet_rcv_saddr;
2411 __u16 destp = ntohs(inet->inet_dport);
2412 __u16 srcp = ntohs(inet->inet_sport);
2413
2414 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2415 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2416 bucket, src, srcp, dest, destp, sp->sk_state,
2417 sk_wmem_alloc_get(sp),
2418 sk_rmem_alloc_get(sp),
2419 0, 0L, 0,
2420 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2421 0, sock_i_ino(sp),
2422 atomic_read(&sp->sk_refcnt), sp,
2423 atomic_read(&sp->sk_drops));
2424 }
2425
2426 int udp4_seq_show(struct seq_file *seq, void *v)
2427 {
2428 seq_setwidth(seq, 127);
2429 if (v == SEQ_START_TOKEN)
2430 seq_puts(seq, " sl local_address rem_address st tx_queue "
2431 "rx_queue tr tm->when retrnsmt uid timeout "
2432 "inode ref pointer drops");
2433 else {
2434 struct udp_iter_state *state = seq->private;
2435
2436 udp4_format_sock(v, seq, state->bucket);
2437 }
2438 seq_pad(seq, '\n');
2439 return 0;
2440 }
2441
2442 static const struct file_operations udp_afinfo_seq_fops = {
2443 .owner = THIS_MODULE,
2444 .open = udp_seq_open,
2445 .read = seq_read,
2446 .llseek = seq_lseek,
2447 .release = seq_release_net
2448 };
2449
2450 /* ------------------------------------------------------------------------ */
2451 static struct udp_seq_afinfo udp4_seq_afinfo = {
2452 .name = "udp",
2453 .family = AF_INET,
2454 .udp_table = &udp_table,
2455 .seq_fops = &udp_afinfo_seq_fops,
2456 .seq_ops = {
2457 .show = udp4_seq_show,
2458 },
2459 };
2460
2461 static int __net_init udp4_proc_init_net(struct net *net)
2462 {
2463 return udp_proc_register(net, &udp4_seq_afinfo);
2464 }
2465
2466 static void __net_exit udp4_proc_exit_net(struct net *net)
2467 {
2468 udp_proc_unregister(net, &udp4_seq_afinfo);
2469 }
2470
2471 static struct pernet_operations udp4_net_ops = {
2472 .init = udp4_proc_init_net,
2473 .exit = udp4_proc_exit_net,
2474 };
2475
2476 int __init udp4_proc_init(void)
2477 {
2478 return register_pernet_subsys(&udp4_net_ops);
2479 }
2480
2481 void udp4_proc_exit(void)
2482 {
2483 unregister_pernet_subsys(&udp4_net_ops);
2484 }
2485 #endif /* CONFIG_PROC_FS */
2486
2487 static __initdata unsigned long uhash_entries;
2488 static int __init set_uhash_entries(char *str)
2489 {
2490 ssize_t ret;
2491
2492 if (!str)
2493 return 0;
2494
2495 ret = kstrtoul(str, 0, &uhash_entries);
2496 if (ret)
2497 return 0;
2498
2499 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2500 uhash_entries = UDP_HTABLE_SIZE_MIN;
2501 return 1;
2502 }
2503 __setup("uhash_entries=", set_uhash_entries);
2504
2505 void __init udp_table_init(struct udp_table *table, const char *name)
2506 {
2507 unsigned int i;
2508
2509 table->hash = alloc_large_system_hash(name,
2510 2 * sizeof(struct udp_hslot),
2511 uhash_entries,
2512 21, /* one slot per 2 MB */
2513 0,
2514 &table->log,
2515 &table->mask,
2516 UDP_HTABLE_SIZE_MIN,
2517 64 * 1024);
2518
2519 table->hash2 = table->hash + (table->mask + 1);
2520 for (i = 0; i <= table->mask; i++) {
2521 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2522 table->hash[i].count = 0;
2523 spin_lock_init(&table->hash[i].lock);
2524 }
2525 for (i = 0; i <= table->mask; i++) {
2526 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2527 table->hash2[i].count = 0;
2528 spin_lock_init(&table->hash2[i].lock);
2529 }
2530 }
2531
2532 u32 udp_flow_hashrnd(void)
2533 {
2534 static u32 hashrnd __read_mostly;
2535
2536 net_get_random_once(&hashrnd, sizeof(hashrnd));
2537
2538 return hashrnd;
2539 }
2540 EXPORT_SYMBOL(udp_flow_hashrnd);
2541
2542 void __init udp_init(void)
2543 {
2544 unsigned long limit;
2545
2546 udp_table_init(&udp_table, "UDP");
2547 limit = nr_free_buffer_pages() / 8;
2548 limit = max(limit, 128UL);
2549 sysctl_udp_mem[0] = limit / 4 * 3;
2550 sysctl_udp_mem[1] = limit;
2551 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2552
2553 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2554 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2555 }
This page took 0.081897 seconds and 5 git commands to generate.