ipv4: gso: make inet_gso_segment() stackable
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 const struct udp_hslot *hslot,
136 unsigned long *bitmap,
137 struct sock *sk,
138 int (*saddr_comp)(const struct sock *sk1,
139 const struct sock *sk2),
140 unsigned int log)
141 {
142 struct sock *sk2;
143 struct hlist_nulls_node *node;
144 kuid_t uid = sock_i_uid(sk);
145
146 sk_nulls_for_each(sk2, node, &hslot->head)
147 if (net_eq(sock_net(sk2), net) &&
148 sk2 != sk &&
149 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 (!sk2->sk_reuse || !sk->sk_reuse) &&
151 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 !uid_eq(uid, sock_i_uid(sk2))) &&
155 (*saddr_comp)(sk, sk2)) {
156 if (bitmap)
157 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 bitmap);
159 else
160 return 1;
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
174 {
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
179
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 (*saddr_comp)(sk, sk2)) {
191 res = 1;
192 break;
193 }
194 spin_unlock(&hslot2->lock);
195 return res;
196 }
197
198 /**
199 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
200 *
201 * @sk: socket struct in question
202 * @snum: port number to look up
203 * @saddr_comp: AF-dependent comparison of bound local IP addresses
204 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205 * with NULL address
206 */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 int (*saddr_comp)(const struct sock *sk1,
209 const struct sock *sk2),
210 unsigned int hash2_nulladdr)
211 {
212 struct udp_hslot *hslot, *hslot2;
213 struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 int error = 1;
215 struct net *net = sock_net(sk);
216
217 if (!snum) {
218 int low, high, remaining;
219 unsigned int rand;
220 unsigned short first, last;
221 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222
223 inet_get_local_port_range(net, &low, &high);
224 remaining = (high - low) + 1;
225
226 rand = net_random();
227 first = (((u64)rand * remaining) >> 32) + low;
228 /*
229 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 */
231 rand = (rand | 1) * (udptable->mask + 1);
232 last = first + udptable->mask + 1;
233 do {
234 hslot = udp_hashslot(udptable, net, first);
235 bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 spin_lock_bh(&hslot->lock);
237 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 saddr_comp, udptable->log);
239
240 snum = first;
241 /*
242 * Iterate on all possible values of snum for this hash.
243 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 * give us randomization and full range coverage.
245 */
246 do {
247 if (low <= snum && snum <= high &&
248 !test_bit(snum >> udptable->log, bitmap) &&
249 !inet_is_reserved_local_port(snum))
250 goto found;
251 snum += rand;
252 } while (snum != first);
253 spin_unlock_bh(&hslot->lock);
254 } while (++first != last);
255 goto fail;
256 } else {
257 hslot = udp_hashslot(udptable, net, snum);
258 spin_lock_bh(&hslot->lock);
259 if (hslot->count > 10) {
260 int exist;
261 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262
263 slot2 &= udptable->mask;
264 hash2_nulladdr &= udptable->mask;
265
266 hslot2 = udp_hashslot2(udptable, slot2);
267 if (hslot->count < hslot2->count)
268 goto scan_primary_hash;
269
270 exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 sk, saddr_comp);
272 if (!exist && (hash2_nulladdr != slot2)) {
273 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 sk, saddr_comp);
276 }
277 if (exist)
278 goto fail_unlock;
279 else
280 goto found;
281 }
282 scan_primary_hash:
283 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 saddr_comp, 0))
285 goto fail_unlock;
286 }
287 found:
288 inet_sk(sk)->inet_num = snum;
289 udp_sk(sk)->udp_port_hash = snum;
290 udp_sk(sk)->udp_portaddr_hash ^= snum;
291 if (sk_unhashed(sk)) {
292 sk_nulls_add_node_rcu(sk, &hslot->head);
293 hslot->count++;
294 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295
296 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 spin_lock(&hslot2->lock);
298 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 &hslot2->head);
300 hslot2->count++;
301 spin_unlock(&hslot2->lock);
302 }
303 error = 0;
304 fail_unlock:
305 spin_unlock_bh(&hslot->lock);
306 fail:
307 return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314
315 return (!ipv6_only_sock(sk2) &&
316 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 unsigned int port)
322 {
323 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 unsigned int hash2_nulladdr =
329 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 unsigned int hash2_partial =
331 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332
333 /* precompute partial secondary hash */
334 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 unsigned short hnum,
340 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 int score = -1;
343
344 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 !ipv6_only_sock(sk)) {
346 struct inet_sock *inet = inet_sk(sk);
347
348 score = (sk->sk_family == PF_INET ? 2 : 1);
349 if (inet->inet_rcv_saddr) {
350 if (inet->inet_rcv_saddr != daddr)
351 return -1;
352 score += 4;
353 }
354 if (inet->inet_daddr) {
355 if (inet->inet_daddr != saddr)
356 return -1;
357 score += 4;
358 }
359 if (inet->inet_dport) {
360 if (inet->inet_dport != sport)
361 return -1;
362 score += 4;
363 }
364 if (sk->sk_bound_dev_if) {
365 if (sk->sk_bound_dev_if != dif)
366 return -1;
367 score += 4;
368 }
369 }
370 return score;
371 }
372
373 /*
374 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375 */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 __be32 saddr, __be16 sport,
378 __be32 daddr, unsigned int hnum, int dif)
379 {
380 int score = -1;
381
382 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 struct inet_sock *inet = inet_sk(sk);
384
385 if (inet->inet_rcv_saddr != daddr)
386 return -1;
387 if (inet->inet_num != hnum)
388 return -1;
389
390 score = (sk->sk_family == PF_INET ? 2 : 1);
391 if (inet->inet_daddr) {
392 if (inet->inet_daddr != saddr)
393 return -1;
394 score += 4;
395 }
396 if (inet->inet_dport) {
397 if (inet->inet_dport != sport)
398 return -1;
399 score += 4;
400 }
401 if (sk->sk_bound_dev_if) {
402 if (sk->sk_bound_dev_if != dif)
403 return -1;
404 score += 4;
405 }
406 }
407 return score;
408 }
409
410
411 /* called with read_rcu_lock() */
412 static struct sock *udp4_lib_lookup2(struct net *net,
413 __be32 saddr, __be16 sport,
414 __be32 daddr, unsigned int hnum, int dif,
415 struct udp_hslot *hslot2, unsigned int slot2)
416 {
417 struct sock *sk, *result;
418 struct hlist_nulls_node *node;
419 int score, badness, matches = 0, reuseport = 0;
420 u32 hash = 0;
421
422 begin:
423 result = NULL;
424 badness = 0;
425 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
426 score = compute_score2(sk, net, saddr, sport,
427 daddr, hnum, dif);
428 if (score > badness) {
429 result = sk;
430 badness = score;
431 reuseport = sk->sk_reuseport;
432 if (reuseport) {
433 hash = inet_ehashfn(net, daddr, hnum,
434 saddr, sport);
435 matches = 1;
436 }
437 } else if (score == badness && reuseport) {
438 matches++;
439 if (((u64)hash * matches) >> 32 == 0)
440 result = sk;
441 hash = next_pseudo_random32(hash);
442 }
443 }
444 /*
445 * if the nulls value we got at the end of this lookup is
446 * not the expected one, we must restart lookup.
447 * We probably met an item that was moved to another chain.
448 */
449 if (get_nulls_value(node) != slot2)
450 goto begin;
451 if (result) {
452 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
453 result = NULL;
454 else if (unlikely(compute_score2(result, net, saddr, sport,
455 daddr, hnum, dif) < badness)) {
456 sock_put(result);
457 goto begin;
458 }
459 }
460 return result;
461 }
462
463 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
464 * harder than this. -DaveM
465 */
466 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
467 __be16 sport, __be32 daddr, __be16 dport,
468 int dif, struct udp_table *udptable)
469 {
470 struct sock *sk, *result;
471 struct hlist_nulls_node *node;
472 unsigned short hnum = ntohs(dport);
473 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
474 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
475 int score, badness, matches = 0, reuseport = 0;
476 u32 hash = 0;
477
478 rcu_read_lock();
479 if (hslot->count > 10) {
480 hash2 = udp4_portaddr_hash(net, daddr, hnum);
481 slot2 = hash2 & udptable->mask;
482 hslot2 = &udptable->hash2[slot2];
483 if (hslot->count < hslot2->count)
484 goto begin;
485
486 result = udp4_lib_lookup2(net, saddr, sport,
487 daddr, hnum, dif,
488 hslot2, slot2);
489 if (!result) {
490 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
491 slot2 = hash2 & udptable->mask;
492 hslot2 = &udptable->hash2[slot2];
493 if (hslot->count < hslot2->count)
494 goto begin;
495
496 result = udp4_lib_lookup2(net, saddr, sport,
497 htonl(INADDR_ANY), hnum, dif,
498 hslot2, slot2);
499 }
500 rcu_read_unlock();
501 return result;
502 }
503 begin:
504 result = NULL;
505 badness = 0;
506 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
507 score = compute_score(sk, net, saddr, hnum, sport,
508 daddr, dport, dif);
509 if (score > badness) {
510 result = sk;
511 badness = score;
512 reuseport = sk->sk_reuseport;
513 if (reuseport) {
514 hash = inet_ehashfn(net, daddr, hnum,
515 saddr, sport);
516 matches = 1;
517 }
518 } else if (score == badness && reuseport) {
519 matches++;
520 if (((u64)hash * matches) >> 32 == 0)
521 result = sk;
522 hash = next_pseudo_random32(hash);
523 }
524 }
525 /*
526 * if the nulls value we got at the end of this lookup is
527 * not the expected one, we must restart lookup.
528 * We probably met an item that was moved to another chain.
529 */
530 if (get_nulls_value(node) != slot)
531 goto begin;
532
533 if (result) {
534 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
535 result = NULL;
536 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
537 daddr, dport, dif) < badness)) {
538 sock_put(result);
539 goto begin;
540 }
541 }
542 rcu_read_unlock();
543 return result;
544 }
545 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
546
547 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
548 __be16 sport, __be16 dport,
549 struct udp_table *udptable)
550 {
551 struct sock *sk;
552 const struct iphdr *iph = ip_hdr(skb);
553
554 if (unlikely(sk = skb_steal_sock(skb)))
555 return sk;
556 else
557 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
558 iph->daddr, dport, inet_iif(skb),
559 udptable);
560 }
561
562 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
563 __be32 daddr, __be16 dport, int dif)
564 {
565 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
566 }
567 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
568
569 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
570 __be16 loc_port, __be32 loc_addr,
571 __be16 rmt_port, __be32 rmt_addr,
572 int dif, unsigned short hnum)
573 {
574 struct inet_sock *inet = inet_sk(sk);
575
576 if (!net_eq(sock_net(sk), net) ||
577 udp_sk(sk)->udp_port_hash != hnum ||
578 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
579 (inet->inet_dport != rmt_port && inet->inet_dport) ||
580 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
581 ipv6_only_sock(sk) ||
582 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
583 return false;
584 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
585 return false;
586 return true;
587 }
588
589 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
590 __be16 loc_port, __be32 loc_addr,
591 __be16 rmt_port, __be32 rmt_addr,
592 int dif)
593 {
594 struct hlist_nulls_node *node;
595 struct sock *s = sk;
596 unsigned short hnum = ntohs(loc_port);
597
598 sk_nulls_for_each_from(s, node) {
599 if (__udp_is_mcast_sock(net, s,
600 loc_port, loc_addr,
601 rmt_port, rmt_addr,
602 dif, hnum))
603 goto found;
604 }
605 s = NULL;
606 found:
607 return s;
608 }
609
610 /*
611 * This routine is called by the ICMP module when it gets some
612 * sort of error condition. If err < 0 then the socket should
613 * be closed and the error returned to the user. If err > 0
614 * it's just the icmp type << 8 | icmp code.
615 * Header points to the ip header of the error packet. We move
616 * on past this. Then (as it used to claim before adjustment)
617 * header points to the first 8 bytes of the udp header. We need
618 * to find the appropriate port.
619 */
620
621 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
622 {
623 struct inet_sock *inet;
624 const struct iphdr *iph = (const struct iphdr *)skb->data;
625 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
626 const int type = icmp_hdr(skb)->type;
627 const int code = icmp_hdr(skb)->code;
628 struct sock *sk;
629 int harderr;
630 int err;
631 struct net *net = dev_net(skb->dev);
632
633 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
634 iph->saddr, uh->source, skb->dev->ifindex, udptable);
635 if (sk == NULL) {
636 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
637 return; /* No socket for error */
638 }
639
640 err = 0;
641 harderr = 0;
642 inet = inet_sk(sk);
643
644 switch (type) {
645 default:
646 case ICMP_TIME_EXCEEDED:
647 err = EHOSTUNREACH;
648 break;
649 case ICMP_SOURCE_QUENCH:
650 goto out;
651 case ICMP_PARAMETERPROB:
652 err = EPROTO;
653 harderr = 1;
654 break;
655 case ICMP_DEST_UNREACH:
656 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
657 ipv4_sk_update_pmtu(skb, sk, info);
658 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
659 err = EMSGSIZE;
660 harderr = 1;
661 break;
662 }
663 goto out;
664 }
665 err = EHOSTUNREACH;
666 if (code <= NR_ICMP_UNREACH) {
667 harderr = icmp_err_convert[code].fatal;
668 err = icmp_err_convert[code].errno;
669 }
670 break;
671 case ICMP_REDIRECT:
672 ipv4_sk_redirect(skb, sk);
673 goto out;
674 }
675
676 /*
677 * RFC1122: OK. Passes ICMP errors back to application, as per
678 * 4.1.3.3.
679 */
680 if (!inet->recverr) {
681 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
682 goto out;
683 } else
684 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
685
686 sk->sk_err = err;
687 sk->sk_error_report(sk);
688 out:
689 sock_put(sk);
690 }
691
692 void udp_err(struct sk_buff *skb, u32 info)
693 {
694 __udp4_lib_err(skb, info, &udp_table);
695 }
696
697 /*
698 * Throw away all pending data and cancel the corking. Socket is locked.
699 */
700 void udp_flush_pending_frames(struct sock *sk)
701 {
702 struct udp_sock *up = udp_sk(sk);
703
704 if (up->pending) {
705 up->len = 0;
706 up->pending = 0;
707 ip_flush_pending_frames(sk);
708 }
709 }
710 EXPORT_SYMBOL(udp_flush_pending_frames);
711
712 /**
713 * udp4_hwcsum - handle outgoing HW checksumming
714 * @skb: sk_buff containing the filled-in UDP header
715 * (checksum field must be zeroed out)
716 * @src: source IP address
717 * @dst: destination IP address
718 */
719 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
720 {
721 struct udphdr *uh = udp_hdr(skb);
722 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
723 int offset = skb_transport_offset(skb);
724 int len = skb->len - offset;
725 int hlen = len;
726 __wsum csum = 0;
727
728 if (!frags) {
729 /*
730 * Only one fragment on the socket.
731 */
732 skb->csum_start = skb_transport_header(skb) - skb->head;
733 skb->csum_offset = offsetof(struct udphdr, check);
734 uh->check = ~csum_tcpudp_magic(src, dst, len,
735 IPPROTO_UDP, 0);
736 } else {
737 /*
738 * HW-checksum won't work as there are two or more
739 * fragments on the socket so that all csums of sk_buffs
740 * should be together
741 */
742 do {
743 csum = csum_add(csum, frags->csum);
744 hlen -= frags->len;
745 } while ((frags = frags->next));
746
747 csum = skb_checksum(skb, offset, hlen, csum);
748 skb->ip_summed = CHECKSUM_NONE;
749
750 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
751 if (uh->check == 0)
752 uh->check = CSUM_MANGLED_0;
753 }
754 }
755 EXPORT_SYMBOL_GPL(udp4_hwcsum);
756
757 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
758 {
759 struct sock *sk = skb->sk;
760 struct inet_sock *inet = inet_sk(sk);
761 struct udphdr *uh;
762 int err = 0;
763 int is_udplite = IS_UDPLITE(sk);
764 int offset = skb_transport_offset(skb);
765 int len = skb->len - offset;
766 __wsum csum = 0;
767
768 /*
769 * Create a UDP header
770 */
771 uh = udp_hdr(skb);
772 uh->source = inet->inet_sport;
773 uh->dest = fl4->fl4_dport;
774 uh->len = htons(len);
775 uh->check = 0;
776
777 if (is_udplite) /* UDP-Lite */
778 csum = udplite_csum(skb);
779
780 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
781
782 skb->ip_summed = CHECKSUM_NONE;
783 goto send;
784
785 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
786
787 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
788 goto send;
789
790 } else
791 csum = udp_csum(skb);
792
793 /* add protocol-dependent pseudo-header */
794 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
795 sk->sk_protocol, csum);
796 if (uh->check == 0)
797 uh->check = CSUM_MANGLED_0;
798
799 send:
800 err = ip_send_skb(sock_net(sk), skb);
801 if (err) {
802 if (err == -ENOBUFS && !inet->recverr) {
803 UDP_INC_STATS_USER(sock_net(sk),
804 UDP_MIB_SNDBUFERRORS, is_udplite);
805 err = 0;
806 }
807 } else
808 UDP_INC_STATS_USER(sock_net(sk),
809 UDP_MIB_OUTDATAGRAMS, is_udplite);
810 return err;
811 }
812
813 /*
814 * Push out all pending data as one UDP datagram. Socket is locked.
815 */
816 int udp_push_pending_frames(struct sock *sk)
817 {
818 struct udp_sock *up = udp_sk(sk);
819 struct inet_sock *inet = inet_sk(sk);
820 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
821 struct sk_buff *skb;
822 int err = 0;
823
824 skb = ip_finish_skb(sk, fl4);
825 if (!skb)
826 goto out;
827
828 err = udp_send_skb(skb, fl4);
829
830 out:
831 up->len = 0;
832 up->pending = 0;
833 return err;
834 }
835 EXPORT_SYMBOL(udp_push_pending_frames);
836
837 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
838 size_t len)
839 {
840 struct inet_sock *inet = inet_sk(sk);
841 struct udp_sock *up = udp_sk(sk);
842 struct flowi4 fl4_stack;
843 struct flowi4 *fl4;
844 int ulen = len;
845 struct ipcm_cookie ipc;
846 struct rtable *rt = NULL;
847 int free = 0;
848 int connected = 0;
849 __be32 daddr, faddr, saddr;
850 __be16 dport;
851 u8 tos;
852 int err, is_udplite = IS_UDPLITE(sk);
853 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
854 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
855 struct sk_buff *skb;
856 struct ip_options_data opt_copy;
857
858 if (len > 0xFFFF)
859 return -EMSGSIZE;
860
861 /*
862 * Check the flags.
863 */
864
865 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
866 return -EOPNOTSUPP;
867
868 ipc.opt = NULL;
869 ipc.tx_flags = 0;
870 ipc.ttl = 0;
871 ipc.tos = -1;
872
873 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
874
875 fl4 = &inet->cork.fl.u.ip4;
876 if (up->pending) {
877 /*
878 * There are pending frames.
879 * The socket lock must be held while it's corked.
880 */
881 lock_sock(sk);
882 if (likely(up->pending)) {
883 if (unlikely(up->pending != AF_INET)) {
884 release_sock(sk);
885 return -EINVAL;
886 }
887 goto do_append_data;
888 }
889 release_sock(sk);
890 }
891 ulen += sizeof(struct udphdr);
892
893 /*
894 * Get and verify the address.
895 */
896 if (msg->msg_name) {
897 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
898 if (msg->msg_namelen < sizeof(*usin))
899 return -EINVAL;
900 if (usin->sin_family != AF_INET) {
901 if (usin->sin_family != AF_UNSPEC)
902 return -EAFNOSUPPORT;
903 }
904
905 daddr = usin->sin_addr.s_addr;
906 dport = usin->sin_port;
907 if (dport == 0)
908 return -EINVAL;
909 } else {
910 if (sk->sk_state != TCP_ESTABLISHED)
911 return -EDESTADDRREQ;
912 daddr = inet->inet_daddr;
913 dport = inet->inet_dport;
914 /* Open fast path for connected socket.
915 Route will not be used, if at least one option is set.
916 */
917 connected = 1;
918 }
919 ipc.addr = inet->inet_saddr;
920
921 ipc.oif = sk->sk_bound_dev_if;
922
923 sock_tx_timestamp(sk, &ipc.tx_flags);
924
925 if (msg->msg_controllen) {
926 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
927 if (err)
928 return err;
929 if (ipc.opt)
930 free = 1;
931 connected = 0;
932 }
933 if (!ipc.opt) {
934 struct ip_options_rcu *inet_opt;
935
936 rcu_read_lock();
937 inet_opt = rcu_dereference(inet->inet_opt);
938 if (inet_opt) {
939 memcpy(&opt_copy, inet_opt,
940 sizeof(*inet_opt) + inet_opt->opt.optlen);
941 ipc.opt = &opt_copy.opt;
942 }
943 rcu_read_unlock();
944 }
945
946 saddr = ipc.addr;
947 ipc.addr = faddr = daddr;
948
949 if (ipc.opt && ipc.opt->opt.srr) {
950 if (!daddr)
951 return -EINVAL;
952 faddr = ipc.opt->opt.faddr;
953 connected = 0;
954 }
955 tos = get_rttos(&ipc, inet);
956 if (sock_flag(sk, SOCK_LOCALROUTE) ||
957 (msg->msg_flags & MSG_DONTROUTE) ||
958 (ipc.opt && ipc.opt->opt.is_strictroute)) {
959 tos |= RTO_ONLINK;
960 connected = 0;
961 }
962
963 if (ipv4_is_multicast(daddr)) {
964 if (!ipc.oif)
965 ipc.oif = inet->mc_index;
966 if (!saddr)
967 saddr = inet->mc_addr;
968 connected = 0;
969 } else if (!ipc.oif)
970 ipc.oif = inet->uc_index;
971
972 if (connected)
973 rt = (struct rtable *)sk_dst_check(sk, 0);
974
975 if (rt == NULL) {
976 struct net *net = sock_net(sk);
977
978 fl4 = &fl4_stack;
979 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
980 RT_SCOPE_UNIVERSE, sk->sk_protocol,
981 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
982 faddr, saddr, dport, inet->inet_sport);
983
984 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
985 rt = ip_route_output_flow(net, fl4, sk);
986 if (IS_ERR(rt)) {
987 err = PTR_ERR(rt);
988 rt = NULL;
989 if (err == -ENETUNREACH)
990 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
991 goto out;
992 }
993
994 err = -EACCES;
995 if ((rt->rt_flags & RTCF_BROADCAST) &&
996 !sock_flag(sk, SOCK_BROADCAST))
997 goto out;
998 if (connected)
999 sk_dst_set(sk, dst_clone(&rt->dst));
1000 }
1001
1002 if (msg->msg_flags&MSG_CONFIRM)
1003 goto do_confirm;
1004 back_from_confirm:
1005
1006 saddr = fl4->saddr;
1007 if (!ipc.addr)
1008 daddr = ipc.addr = fl4->daddr;
1009
1010 /* Lockless fast path for the non-corking case. */
1011 if (!corkreq) {
1012 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1013 sizeof(struct udphdr), &ipc, &rt,
1014 msg->msg_flags);
1015 err = PTR_ERR(skb);
1016 if (!IS_ERR_OR_NULL(skb))
1017 err = udp_send_skb(skb, fl4);
1018 goto out;
1019 }
1020
1021 lock_sock(sk);
1022 if (unlikely(up->pending)) {
1023 /* The socket is already corked while preparing it. */
1024 /* ... which is an evident application bug. --ANK */
1025 release_sock(sk);
1026
1027 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1028 err = -EINVAL;
1029 goto out;
1030 }
1031 /*
1032 * Now cork the socket to pend data.
1033 */
1034 fl4 = &inet->cork.fl.u.ip4;
1035 fl4->daddr = daddr;
1036 fl4->saddr = saddr;
1037 fl4->fl4_dport = dport;
1038 fl4->fl4_sport = inet->inet_sport;
1039 up->pending = AF_INET;
1040
1041 do_append_data:
1042 up->len += ulen;
1043 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1044 sizeof(struct udphdr), &ipc, &rt,
1045 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1046 if (err)
1047 udp_flush_pending_frames(sk);
1048 else if (!corkreq)
1049 err = udp_push_pending_frames(sk);
1050 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1051 up->pending = 0;
1052 release_sock(sk);
1053
1054 out:
1055 ip_rt_put(rt);
1056 if (free)
1057 kfree(ipc.opt);
1058 if (!err)
1059 return len;
1060 /*
1061 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1062 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1063 * we don't have a good statistic (IpOutDiscards but it can be too many
1064 * things). We could add another new stat but at least for now that
1065 * seems like overkill.
1066 */
1067 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1068 UDP_INC_STATS_USER(sock_net(sk),
1069 UDP_MIB_SNDBUFERRORS, is_udplite);
1070 }
1071 return err;
1072
1073 do_confirm:
1074 dst_confirm(&rt->dst);
1075 if (!(msg->msg_flags&MSG_PROBE) || len)
1076 goto back_from_confirm;
1077 err = 0;
1078 goto out;
1079 }
1080 EXPORT_SYMBOL(udp_sendmsg);
1081
1082 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1083 size_t size, int flags)
1084 {
1085 struct inet_sock *inet = inet_sk(sk);
1086 struct udp_sock *up = udp_sk(sk);
1087 int ret;
1088
1089 if (!up->pending) {
1090 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1091
1092 /* Call udp_sendmsg to specify destination address which
1093 * sendpage interface can't pass.
1094 * This will succeed only when the socket is connected.
1095 */
1096 ret = udp_sendmsg(NULL, sk, &msg, 0);
1097 if (ret < 0)
1098 return ret;
1099 }
1100
1101 lock_sock(sk);
1102
1103 if (unlikely(!up->pending)) {
1104 release_sock(sk);
1105
1106 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1107 return -EINVAL;
1108 }
1109
1110 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1111 page, offset, size, flags);
1112 if (ret == -EOPNOTSUPP) {
1113 release_sock(sk);
1114 return sock_no_sendpage(sk->sk_socket, page, offset,
1115 size, flags);
1116 }
1117 if (ret < 0) {
1118 udp_flush_pending_frames(sk);
1119 goto out;
1120 }
1121
1122 up->len += size;
1123 if (!(up->corkflag || (flags&MSG_MORE)))
1124 ret = udp_push_pending_frames(sk);
1125 if (!ret)
1126 ret = size;
1127 out:
1128 release_sock(sk);
1129 return ret;
1130 }
1131
1132
1133 /**
1134 * first_packet_length - return length of first packet in receive queue
1135 * @sk: socket
1136 *
1137 * Drops all bad checksum frames, until a valid one is found.
1138 * Returns the length of found skb, or 0 if none is found.
1139 */
1140 static unsigned int first_packet_length(struct sock *sk)
1141 {
1142 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1143 struct sk_buff *skb;
1144 unsigned int res;
1145
1146 __skb_queue_head_init(&list_kill);
1147
1148 spin_lock_bh(&rcvq->lock);
1149 while ((skb = skb_peek(rcvq)) != NULL &&
1150 udp_lib_checksum_complete(skb)) {
1151 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1152 IS_UDPLITE(sk));
1153 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1154 IS_UDPLITE(sk));
1155 atomic_inc(&sk->sk_drops);
1156 __skb_unlink(skb, rcvq);
1157 __skb_queue_tail(&list_kill, skb);
1158 }
1159 res = skb ? skb->len : 0;
1160 spin_unlock_bh(&rcvq->lock);
1161
1162 if (!skb_queue_empty(&list_kill)) {
1163 bool slow = lock_sock_fast(sk);
1164
1165 __skb_queue_purge(&list_kill);
1166 sk_mem_reclaim_partial(sk);
1167 unlock_sock_fast(sk, slow);
1168 }
1169 return res;
1170 }
1171
1172 /*
1173 * IOCTL requests applicable to the UDP protocol
1174 */
1175
1176 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1177 {
1178 switch (cmd) {
1179 case SIOCOUTQ:
1180 {
1181 int amount = sk_wmem_alloc_get(sk);
1182
1183 return put_user(amount, (int __user *)arg);
1184 }
1185
1186 case SIOCINQ:
1187 {
1188 unsigned int amount = first_packet_length(sk);
1189
1190 if (amount)
1191 /*
1192 * We will only return the amount
1193 * of this packet since that is all
1194 * that will be read.
1195 */
1196 amount -= sizeof(struct udphdr);
1197
1198 return put_user(amount, (int __user *)arg);
1199 }
1200
1201 default:
1202 return -ENOIOCTLCMD;
1203 }
1204
1205 return 0;
1206 }
1207 EXPORT_SYMBOL(udp_ioctl);
1208
1209 /*
1210 * This should be easy, if there is something there we
1211 * return it, otherwise we block.
1212 */
1213
1214 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1215 size_t len, int noblock, int flags, int *addr_len)
1216 {
1217 struct inet_sock *inet = inet_sk(sk);
1218 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1219 struct sk_buff *skb;
1220 unsigned int ulen, copied;
1221 int peeked, off = 0;
1222 int err;
1223 int is_udplite = IS_UDPLITE(sk);
1224 bool slow;
1225
1226 /*
1227 * Check any passed addresses
1228 */
1229 if (addr_len)
1230 *addr_len = sizeof(*sin);
1231
1232 if (flags & MSG_ERRQUEUE)
1233 return ip_recv_error(sk, msg, len);
1234
1235 try_again:
1236 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1237 &peeked, &off, &err);
1238 if (!skb)
1239 goto out;
1240
1241 ulen = skb->len - sizeof(struct udphdr);
1242 copied = len;
1243 if (copied > ulen)
1244 copied = ulen;
1245 else if (copied < ulen)
1246 msg->msg_flags |= MSG_TRUNC;
1247
1248 /*
1249 * If checksum is needed at all, try to do it while copying the
1250 * data. If the data is truncated, or if we only want a partial
1251 * coverage checksum (UDP-Lite), do it before the copy.
1252 */
1253
1254 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1255 if (udp_lib_checksum_complete(skb))
1256 goto csum_copy_err;
1257 }
1258
1259 if (skb_csum_unnecessary(skb))
1260 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1261 msg->msg_iov, copied);
1262 else {
1263 err = skb_copy_and_csum_datagram_iovec(skb,
1264 sizeof(struct udphdr),
1265 msg->msg_iov);
1266
1267 if (err == -EINVAL)
1268 goto csum_copy_err;
1269 }
1270
1271 if (unlikely(err)) {
1272 trace_kfree_skb(skb, udp_recvmsg);
1273 if (!peeked) {
1274 atomic_inc(&sk->sk_drops);
1275 UDP_INC_STATS_USER(sock_net(sk),
1276 UDP_MIB_INERRORS, is_udplite);
1277 }
1278 goto out_free;
1279 }
1280
1281 if (!peeked)
1282 UDP_INC_STATS_USER(sock_net(sk),
1283 UDP_MIB_INDATAGRAMS, is_udplite);
1284
1285 sock_recv_ts_and_drops(msg, sk, skb);
1286
1287 /* Copy the address. */
1288 if (sin) {
1289 sin->sin_family = AF_INET;
1290 sin->sin_port = udp_hdr(skb)->source;
1291 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1292 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1293 }
1294 if (inet->cmsg_flags)
1295 ip_cmsg_recv(msg, skb);
1296
1297 err = copied;
1298 if (flags & MSG_TRUNC)
1299 err = ulen;
1300
1301 out_free:
1302 skb_free_datagram_locked(sk, skb);
1303 out:
1304 return err;
1305
1306 csum_copy_err:
1307 slow = lock_sock_fast(sk);
1308 if (!skb_kill_datagram(sk, skb, flags)) {
1309 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1310 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1311 }
1312 unlock_sock_fast(sk, slow);
1313
1314 if (noblock)
1315 return -EAGAIN;
1316
1317 /* starting over for a new packet */
1318 msg->msg_flags &= ~MSG_TRUNC;
1319 goto try_again;
1320 }
1321
1322
1323 int udp_disconnect(struct sock *sk, int flags)
1324 {
1325 struct inet_sock *inet = inet_sk(sk);
1326 /*
1327 * 1003.1g - break association.
1328 */
1329
1330 sk->sk_state = TCP_CLOSE;
1331 inet->inet_daddr = 0;
1332 inet->inet_dport = 0;
1333 sock_rps_reset_rxhash(sk);
1334 sk->sk_bound_dev_if = 0;
1335 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1336 inet_reset_saddr(sk);
1337
1338 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1339 sk->sk_prot->unhash(sk);
1340 inet->inet_sport = 0;
1341 }
1342 sk_dst_reset(sk);
1343 return 0;
1344 }
1345 EXPORT_SYMBOL(udp_disconnect);
1346
1347 void udp_lib_unhash(struct sock *sk)
1348 {
1349 if (sk_hashed(sk)) {
1350 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1351 struct udp_hslot *hslot, *hslot2;
1352
1353 hslot = udp_hashslot(udptable, sock_net(sk),
1354 udp_sk(sk)->udp_port_hash);
1355 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1356
1357 spin_lock_bh(&hslot->lock);
1358 if (sk_nulls_del_node_init_rcu(sk)) {
1359 hslot->count--;
1360 inet_sk(sk)->inet_num = 0;
1361 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1362
1363 spin_lock(&hslot2->lock);
1364 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1365 hslot2->count--;
1366 spin_unlock(&hslot2->lock);
1367 }
1368 spin_unlock_bh(&hslot->lock);
1369 }
1370 }
1371 EXPORT_SYMBOL(udp_lib_unhash);
1372
1373 /*
1374 * inet_rcv_saddr was changed, we must rehash secondary hash
1375 */
1376 void udp_lib_rehash(struct sock *sk, u16 newhash)
1377 {
1378 if (sk_hashed(sk)) {
1379 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1380 struct udp_hslot *hslot, *hslot2, *nhslot2;
1381
1382 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1383 nhslot2 = udp_hashslot2(udptable, newhash);
1384 udp_sk(sk)->udp_portaddr_hash = newhash;
1385 if (hslot2 != nhslot2) {
1386 hslot = udp_hashslot(udptable, sock_net(sk),
1387 udp_sk(sk)->udp_port_hash);
1388 /* we must lock primary chain too */
1389 spin_lock_bh(&hslot->lock);
1390
1391 spin_lock(&hslot2->lock);
1392 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1393 hslot2->count--;
1394 spin_unlock(&hslot2->lock);
1395
1396 spin_lock(&nhslot2->lock);
1397 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1398 &nhslot2->head);
1399 nhslot2->count++;
1400 spin_unlock(&nhslot2->lock);
1401
1402 spin_unlock_bh(&hslot->lock);
1403 }
1404 }
1405 }
1406 EXPORT_SYMBOL(udp_lib_rehash);
1407
1408 static void udp_v4_rehash(struct sock *sk)
1409 {
1410 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1411 inet_sk(sk)->inet_rcv_saddr,
1412 inet_sk(sk)->inet_num);
1413 udp_lib_rehash(sk, new_hash);
1414 }
1415
1416 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1417 {
1418 int rc;
1419
1420 if (inet_sk(sk)->inet_daddr) {
1421 sock_rps_save_rxhash(sk, skb);
1422 sk_mark_napi_id(sk, skb);
1423 }
1424
1425 rc = sock_queue_rcv_skb(sk, skb);
1426 if (rc < 0) {
1427 int is_udplite = IS_UDPLITE(sk);
1428
1429 /* Note that an ENOMEM error is charged twice */
1430 if (rc == -ENOMEM)
1431 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1432 is_udplite);
1433 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1434 kfree_skb(skb);
1435 trace_udp_fail_queue_rcv_skb(rc, sk);
1436 return -1;
1437 }
1438
1439 return 0;
1440
1441 }
1442
1443 static struct static_key udp_encap_needed __read_mostly;
1444 void udp_encap_enable(void)
1445 {
1446 if (!static_key_enabled(&udp_encap_needed))
1447 static_key_slow_inc(&udp_encap_needed);
1448 }
1449 EXPORT_SYMBOL(udp_encap_enable);
1450
1451 /* returns:
1452 * -1: error
1453 * 0: success
1454 * >0: "udp encap" protocol resubmission
1455 *
1456 * Note that in the success and error cases, the skb is assumed to
1457 * have either been requeued or freed.
1458 */
1459 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1460 {
1461 struct udp_sock *up = udp_sk(sk);
1462 int rc;
1463 int is_udplite = IS_UDPLITE(sk);
1464
1465 /*
1466 * Charge it to the socket, dropping if the queue is full.
1467 */
1468 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1469 goto drop;
1470 nf_reset(skb);
1471
1472 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1473 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1474
1475 /*
1476 * This is an encapsulation socket so pass the skb to
1477 * the socket's udp_encap_rcv() hook. Otherwise, just
1478 * fall through and pass this up the UDP socket.
1479 * up->encap_rcv() returns the following value:
1480 * =0 if skb was successfully passed to the encap
1481 * handler or was discarded by it.
1482 * >0 if skb should be passed on to UDP.
1483 * <0 if skb should be resubmitted as proto -N
1484 */
1485
1486 /* if we're overly short, let UDP handle it */
1487 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1488 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1489 int ret;
1490
1491 ret = encap_rcv(sk, skb);
1492 if (ret <= 0) {
1493 UDP_INC_STATS_BH(sock_net(sk),
1494 UDP_MIB_INDATAGRAMS,
1495 is_udplite);
1496 return -ret;
1497 }
1498 }
1499
1500 /* FALLTHROUGH -- it's a UDP Packet */
1501 }
1502
1503 /*
1504 * UDP-Lite specific tests, ignored on UDP sockets
1505 */
1506 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1507
1508 /*
1509 * MIB statistics other than incrementing the error count are
1510 * disabled for the following two types of errors: these depend
1511 * on the application settings, not on the functioning of the
1512 * protocol stack as such.
1513 *
1514 * RFC 3828 here recommends (sec 3.3): "There should also be a
1515 * way ... to ... at least let the receiving application block
1516 * delivery of packets with coverage values less than a value
1517 * provided by the application."
1518 */
1519 if (up->pcrlen == 0) { /* full coverage was set */
1520 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1521 UDP_SKB_CB(skb)->cscov, skb->len);
1522 goto drop;
1523 }
1524 /* The next case involves violating the min. coverage requested
1525 * by the receiver. This is subtle: if receiver wants x and x is
1526 * greater than the buffersize/MTU then receiver will complain
1527 * that it wants x while sender emits packets of smaller size y.
1528 * Therefore the above ...()->partial_cov statement is essential.
1529 */
1530 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1531 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1532 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1533 goto drop;
1534 }
1535 }
1536
1537 if (rcu_access_pointer(sk->sk_filter) &&
1538 udp_lib_checksum_complete(skb))
1539 goto csum_error;
1540
1541
1542 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1543 goto drop;
1544
1545 rc = 0;
1546
1547 ipv4_pktinfo_prepare(sk, skb);
1548 bh_lock_sock(sk);
1549 if (!sock_owned_by_user(sk))
1550 rc = __udp_queue_rcv_skb(sk, skb);
1551 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1552 bh_unlock_sock(sk);
1553 goto drop;
1554 }
1555 bh_unlock_sock(sk);
1556
1557 return rc;
1558
1559 csum_error:
1560 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1561 drop:
1562 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1563 atomic_inc(&sk->sk_drops);
1564 kfree_skb(skb);
1565 return -1;
1566 }
1567
1568
1569 static void flush_stack(struct sock **stack, unsigned int count,
1570 struct sk_buff *skb, unsigned int final)
1571 {
1572 unsigned int i;
1573 struct sk_buff *skb1 = NULL;
1574 struct sock *sk;
1575
1576 for (i = 0; i < count; i++) {
1577 sk = stack[i];
1578 if (likely(skb1 == NULL))
1579 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1580
1581 if (!skb1) {
1582 atomic_inc(&sk->sk_drops);
1583 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1584 IS_UDPLITE(sk));
1585 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1586 IS_UDPLITE(sk));
1587 }
1588
1589 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1590 skb1 = NULL;
1591 }
1592 if (unlikely(skb1))
1593 kfree_skb(skb1);
1594 }
1595
1596 static void udp_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1597 {
1598 struct dst_entry *dst = skb_dst(skb);
1599
1600 dst_hold(dst);
1601 sk->sk_rx_dst = dst;
1602 }
1603
1604 /*
1605 * Multicasts and broadcasts go to each listener.
1606 *
1607 * Note: called only from the BH handler context.
1608 */
1609 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1610 struct udphdr *uh,
1611 __be32 saddr, __be32 daddr,
1612 struct udp_table *udptable)
1613 {
1614 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1615 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1616 int dif;
1617 unsigned int i, count = 0;
1618
1619 spin_lock(&hslot->lock);
1620 sk = sk_nulls_head(&hslot->head);
1621 dif = skb->dev->ifindex;
1622 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1623 while (sk) {
1624 stack[count++] = sk;
1625 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1626 daddr, uh->source, saddr, dif);
1627 if (unlikely(count == ARRAY_SIZE(stack))) {
1628 if (!sk)
1629 break;
1630 flush_stack(stack, count, skb, ~0);
1631 count = 0;
1632 }
1633 }
1634 /*
1635 * before releasing chain lock, we must take a reference on sockets
1636 */
1637 for (i = 0; i < count; i++)
1638 sock_hold(stack[i]);
1639
1640 spin_unlock(&hslot->lock);
1641
1642 /*
1643 * do the slow work with no lock held
1644 */
1645 if (count) {
1646 flush_stack(stack, count, skb, count - 1);
1647
1648 for (i = 0; i < count; i++)
1649 sock_put(stack[i]);
1650 } else {
1651 kfree_skb(skb);
1652 }
1653 return 0;
1654 }
1655
1656 /* Initialize UDP checksum. If exited with zero value (success),
1657 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1658 * Otherwise, csum completion requires chacksumming packet body,
1659 * including udp header and folding it to skb->csum.
1660 */
1661 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1662 int proto)
1663 {
1664 const struct iphdr *iph;
1665 int err;
1666
1667 UDP_SKB_CB(skb)->partial_cov = 0;
1668 UDP_SKB_CB(skb)->cscov = skb->len;
1669
1670 if (proto == IPPROTO_UDPLITE) {
1671 err = udplite_checksum_init(skb, uh);
1672 if (err)
1673 return err;
1674 }
1675
1676 iph = ip_hdr(skb);
1677 if (uh->check == 0) {
1678 skb->ip_summed = CHECKSUM_UNNECESSARY;
1679 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1680 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1681 proto, skb->csum))
1682 skb->ip_summed = CHECKSUM_UNNECESSARY;
1683 }
1684 if (!skb_csum_unnecessary(skb))
1685 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1686 skb->len, proto, 0);
1687 /* Probably, we should checksum udp header (it should be in cache
1688 * in any case) and data in tiny packets (< rx copybreak).
1689 */
1690
1691 return 0;
1692 }
1693
1694 /*
1695 * All we need to do is get the socket, and then do a checksum.
1696 */
1697
1698 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1699 int proto)
1700 {
1701 struct sock *sk;
1702 struct udphdr *uh;
1703 unsigned short ulen;
1704 struct rtable *rt = skb_rtable(skb);
1705 __be32 saddr, daddr;
1706 struct net *net = dev_net(skb->dev);
1707
1708 /*
1709 * Validate the packet.
1710 */
1711 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1712 goto drop; /* No space for header. */
1713
1714 uh = udp_hdr(skb);
1715 ulen = ntohs(uh->len);
1716 saddr = ip_hdr(skb)->saddr;
1717 daddr = ip_hdr(skb)->daddr;
1718
1719 if (ulen > skb->len)
1720 goto short_packet;
1721
1722 if (proto == IPPROTO_UDP) {
1723 /* UDP validates ulen. */
1724 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1725 goto short_packet;
1726 uh = udp_hdr(skb);
1727 }
1728
1729 if (udp4_csum_init(skb, uh, proto))
1730 goto csum_error;
1731
1732 if (skb->sk) {
1733 int ret;
1734 sk = skb->sk;
1735
1736 if (unlikely(sk->sk_rx_dst == NULL))
1737 udp_sk_rx_dst_set(sk, skb);
1738
1739 ret = udp_queue_rcv_skb(sk, skb);
1740
1741 /* a return value > 0 means to resubmit the input, but
1742 * it wants the return to be -protocol, or 0
1743 */
1744 if (ret > 0)
1745 return -ret;
1746 return 0;
1747 } else {
1748 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1749 return __udp4_lib_mcast_deliver(net, skb, uh,
1750 saddr, daddr, udptable);
1751
1752 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1753 }
1754
1755 if (sk != NULL) {
1756 int ret;
1757
1758 ret = udp_queue_rcv_skb(sk, skb);
1759 sock_put(sk);
1760
1761 /* a return value > 0 means to resubmit the input, but
1762 * it wants the return to be -protocol, or 0
1763 */
1764 if (ret > 0)
1765 return -ret;
1766 return 0;
1767 }
1768
1769 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1770 goto drop;
1771 nf_reset(skb);
1772
1773 /* No socket. Drop packet silently, if checksum is wrong */
1774 if (udp_lib_checksum_complete(skb))
1775 goto csum_error;
1776
1777 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1778 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1779
1780 /*
1781 * Hmm. We got an UDP packet to a port to which we
1782 * don't wanna listen. Ignore it.
1783 */
1784 kfree_skb(skb);
1785 return 0;
1786
1787 short_packet:
1788 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1789 proto == IPPROTO_UDPLITE ? "Lite" : "",
1790 &saddr, ntohs(uh->source),
1791 ulen, skb->len,
1792 &daddr, ntohs(uh->dest));
1793 goto drop;
1794
1795 csum_error:
1796 /*
1797 * RFC1122: OK. Discards the bad packet silently (as far as
1798 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1799 */
1800 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1801 proto == IPPROTO_UDPLITE ? "Lite" : "",
1802 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1803 ulen);
1804 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1805 drop:
1806 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1807 kfree_skb(skb);
1808 return 0;
1809 }
1810
1811 /* We can only early demux multicast if there is a single matching socket.
1812 * If more than one socket found returns NULL
1813 */
1814 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1815 __be16 loc_port, __be32 loc_addr,
1816 __be16 rmt_port, __be32 rmt_addr,
1817 int dif)
1818 {
1819 struct sock *sk, *result;
1820 struct hlist_nulls_node *node;
1821 unsigned short hnum = ntohs(loc_port);
1822 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1823 struct udp_hslot *hslot = &udp_table.hash[slot];
1824
1825 rcu_read_lock();
1826 begin:
1827 count = 0;
1828 result = NULL;
1829 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1830 if (__udp_is_mcast_sock(net, sk,
1831 loc_port, loc_addr,
1832 rmt_port, rmt_addr,
1833 dif, hnum)) {
1834 result = sk;
1835 ++count;
1836 }
1837 }
1838 /*
1839 * if the nulls value we got at the end of this lookup is
1840 * not the expected one, we must restart lookup.
1841 * We probably met an item that was moved to another chain.
1842 */
1843 if (get_nulls_value(node) != slot)
1844 goto begin;
1845
1846 if (result) {
1847 if (count != 1 ||
1848 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1849 result = NULL;
1850 else if (unlikely(!__udp_is_mcast_sock(net, result,
1851 loc_port, loc_addr,
1852 rmt_port, rmt_addr,
1853 dif, hnum))) {
1854 sock_put(result);
1855 result = NULL;
1856 }
1857 }
1858 rcu_read_unlock();
1859 return result;
1860 }
1861
1862 /* For unicast we should only early demux connected sockets or we can
1863 * break forwarding setups. The chains here can be long so only check
1864 * if the first socket is an exact match and if not move on.
1865 */
1866 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1867 __be16 loc_port, __be32 loc_addr,
1868 __be16 rmt_port, __be32 rmt_addr,
1869 int dif)
1870 {
1871 struct sock *sk, *result;
1872 struct hlist_nulls_node *node;
1873 unsigned short hnum = ntohs(loc_port);
1874 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1875 unsigned int slot2 = hash2 & udp_table.mask;
1876 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1877 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr)
1878 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1879
1880 rcu_read_lock();
1881 result = NULL;
1882 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1883 if (INET_MATCH(sk, net, acookie,
1884 rmt_addr, loc_addr, ports, dif))
1885 result = sk;
1886 /* Only check first socket in chain */
1887 break;
1888 }
1889
1890 if (result) {
1891 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1892 result = NULL;
1893 else if (unlikely(!INET_MATCH(sk, net, acookie,
1894 rmt_addr, loc_addr,
1895 ports, dif))) {
1896 sock_put(result);
1897 result = NULL;
1898 }
1899 }
1900 rcu_read_unlock();
1901 return result;
1902 }
1903
1904 void udp_v4_early_demux(struct sk_buff *skb)
1905 {
1906 const struct iphdr *iph = ip_hdr(skb);
1907 const struct udphdr *uh = udp_hdr(skb);
1908 struct sock *sk;
1909 struct dst_entry *dst;
1910 struct net *net = dev_net(skb->dev);
1911 int dif = skb->dev->ifindex;
1912
1913 /* validate the packet */
1914 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1915 return;
1916
1917 if (skb->pkt_type == PACKET_BROADCAST ||
1918 skb->pkt_type == PACKET_MULTICAST)
1919 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1920 uh->source, iph->saddr, dif);
1921 else if (skb->pkt_type == PACKET_HOST)
1922 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1923 uh->source, iph->saddr, dif);
1924 else
1925 return;
1926
1927 if (!sk)
1928 return;
1929
1930 skb->sk = sk;
1931 skb->destructor = sock_edemux;
1932 dst = sk->sk_rx_dst;
1933
1934 if (dst)
1935 dst = dst_check(dst, 0);
1936 if (dst)
1937 skb_dst_set_noref(skb, dst);
1938 }
1939
1940 int udp_rcv(struct sk_buff *skb)
1941 {
1942 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1943 }
1944
1945 void udp_destroy_sock(struct sock *sk)
1946 {
1947 struct udp_sock *up = udp_sk(sk);
1948 bool slow = lock_sock_fast(sk);
1949 udp_flush_pending_frames(sk);
1950 unlock_sock_fast(sk, slow);
1951 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1952 void (*encap_destroy)(struct sock *sk);
1953 encap_destroy = ACCESS_ONCE(up->encap_destroy);
1954 if (encap_destroy)
1955 encap_destroy(sk);
1956 }
1957 }
1958
1959 /*
1960 * Socket option code for UDP
1961 */
1962 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1963 char __user *optval, unsigned int optlen,
1964 int (*push_pending_frames)(struct sock *))
1965 {
1966 struct udp_sock *up = udp_sk(sk);
1967 int val;
1968 int err = 0;
1969 int is_udplite = IS_UDPLITE(sk);
1970
1971 if (optlen < sizeof(int))
1972 return -EINVAL;
1973
1974 if (get_user(val, (int __user *)optval))
1975 return -EFAULT;
1976
1977 switch (optname) {
1978 case UDP_CORK:
1979 if (val != 0) {
1980 up->corkflag = 1;
1981 } else {
1982 up->corkflag = 0;
1983 lock_sock(sk);
1984 (*push_pending_frames)(sk);
1985 release_sock(sk);
1986 }
1987 break;
1988
1989 case UDP_ENCAP:
1990 switch (val) {
1991 case 0:
1992 case UDP_ENCAP_ESPINUDP:
1993 case UDP_ENCAP_ESPINUDP_NON_IKE:
1994 up->encap_rcv = xfrm4_udp_encap_rcv;
1995 /* FALLTHROUGH */
1996 case UDP_ENCAP_L2TPINUDP:
1997 up->encap_type = val;
1998 udp_encap_enable();
1999 break;
2000 default:
2001 err = -ENOPROTOOPT;
2002 break;
2003 }
2004 break;
2005
2006 /*
2007 * UDP-Lite's partial checksum coverage (RFC 3828).
2008 */
2009 /* The sender sets actual checksum coverage length via this option.
2010 * The case coverage > packet length is handled by send module. */
2011 case UDPLITE_SEND_CSCOV:
2012 if (!is_udplite) /* Disable the option on UDP sockets */
2013 return -ENOPROTOOPT;
2014 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2015 val = 8;
2016 else if (val > USHRT_MAX)
2017 val = USHRT_MAX;
2018 up->pcslen = val;
2019 up->pcflag |= UDPLITE_SEND_CC;
2020 break;
2021
2022 /* The receiver specifies a minimum checksum coverage value. To make
2023 * sense, this should be set to at least 8 (as done below). If zero is
2024 * used, this again means full checksum coverage. */
2025 case UDPLITE_RECV_CSCOV:
2026 if (!is_udplite) /* Disable the option on UDP sockets */
2027 return -ENOPROTOOPT;
2028 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2029 val = 8;
2030 else if (val > USHRT_MAX)
2031 val = USHRT_MAX;
2032 up->pcrlen = val;
2033 up->pcflag |= UDPLITE_RECV_CC;
2034 break;
2035
2036 default:
2037 err = -ENOPROTOOPT;
2038 break;
2039 }
2040
2041 return err;
2042 }
2043 EXPORT_SYMBOL(udp_lib_setsockopt);
2044
2045 int udp_setsockopt(struct sock *sk, int level, int optname,
2046 char __user *optval, unsigned int optlen)
2047 {
2048 if (level == SOL_UDP || level == SOL_UDPLITE)
2049 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2050 udp_push_pending_frames);
2051 return ip_setsockopt(sk, level, optname, optval, optlen);
2052 }
2053
2054 #ifdef CONFIG_COMPAT
2055 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2056 char __user *optval, unsigned int optlen)
2057 {
2058 if (level == SOL_UDP || level == SOL_UDPLITE)
2059 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2060 udp_push_pending_frames);
2061 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2062 }
2063 #endif
2064
2065 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2066 char __user *optval, int __user *optlen)
2067 {
2068 struct udp_sock *up = udp_sk(sk);
2069 int val, len;
2070
2071 if (get_user(len, optlen))
2072 return -EFAULT;
2073
2074 len = min_t(unsigned int, len, sizeof(int));
2075
2076 if (len < 0)
2077 return -EINVAL;
2078
2079 switch (optname) {
2080 case UDP_CORK:
2081 val = up->corkflag;
2082 break;
2083
2084 case UDP_ENCAP:
2085 val = up->encap_type;
2086 break;
2087
2088 /* The following two cannot be changed on UDP sockets, the return is
2089 * always 0 (which corresponds to the full checksum coverage of UDP). */
2090 case UDPLITE_SEND_CSCOV:
2091 val = up->pcslen;
2092 break;
2093
2094 case UDPLITE_RECV_CSCOV:
2095 val = up->pcrlen;
2096 break;
2097
2098 default:
2099 return -ENOPROTOOPT;
2100 }
2101
2102 if (put_user(len, optlen))
2103 return -EFAULT;
2104 if (copy_to_user(optval, &val, len))
2105 return -EFAULT;
2106 return 0;
2107 }
2108 EXPORT_SYMBOL(udp_lib_getsockopt);
2109
2110 int udp_getsockopt(struct sock *sk, int level, int optname,
2111 char __user *optval, int __user *optlen)
2112 {
2113 if (level == SOL_UDP || level == SOL_UDPLITE)
2114 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2115 return ip_getsockopt(sk, level, optname, optval, optlen);
2116 }
2117
2118 #ifdef CONFIG_COMPAT
2119 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2120 char __user *optval, int __user *optlen)
2121 {
2122 if (level == SOL_UDP || level == SOL_UDPLITE)
2123 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2124 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2125 }
2126 #endif
2127 /**
2128 * udp_poll - wait for a UDP event.
2129 * @file - file struct
2130 * @sock - socket
2131 * @wait - poll table
2132 *
2133 * This is same as datagram poll, except for the special case of
2134 * blocking sockets. If application is using a blocking fd
2135 * and a packet with checksum error is in the queue;
2136 * then it could get return from select indicating data available
2137 * but then block when reading it. Add special case code
2138 * to work around these arguably broken applications.
2139 */
2140 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2141 {
2142 unsigned int mask = datagram_poll(file, sock, wait);
2143 struct sock *sk = sock->sk;
2144
2145 sock_rps_record_flow(sk);
2146
2147 /* Check for false positives due to checksum errors */
2148 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2149 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2150 mask &= ~(POLLIN | POLLRDNORM);
2151
2152 return mask;
2153
2154 }
2155 EXPORT_SYMBOL(udp_poll);
2156
2157 struct proto udp_prot = {
2158 .name = "UDP",
2159 .owner = THIS_MODULE,
2160 .close = udp_lib_close,
2161 .connect = ip4_datagram_connect,
2162 .disconnect = udp_disconnect,
2163 .ioctl = udp_ioctl,
2164 .destroy = udp_destroy_sock,
2165 .setsockopt = udp_setsockopt,
2166 .getsockopt = udp_getsockopt,
2167 .sendmsg = udp_sendmsg,
2168 .recvmsg = udp_recvmsg,
2169 .sendpage = udp_sendpage,
2170 .backlog_rcv = __udp_queue_rcv_skb,
2171 .release_cb = ip4_datagram_release_cb,
2172 .hash = udp_lib_hash,
2173 .unhash = udp_lib_unhash,
2174 .rehash = udp_v4_rehash,
2175 .get_port = udp_v4_get_port,
2176 .memory_allocated = &udp_memory_allocated,
2177 .sysctl_mem = sysctl_udp_mem,
2178 .sysctl_wmem = &sysctl_udp_wmem_min,
2179 .sysctl_rmem = &sysctl_udp_rmem_min,
2180 .obj_size = sizeof(struct udp_sock),
2181 .slab_flags = SLAB_DESTROY_BY_RCU,
2182 .h.udp_table = &udp_table,
2183 #ifdef CONFIG_COMPAT
2184 .compat_setsockopt = compat_udp_setsockopt,
2185 .compat_getsockopt = compat_udp_getsockopt,
2186 #endif
2187 .clear_sk = sk_prot_clear_portaddr_nulls,
2188 };
2189 EXPORT_SYMBOL(udp_prot);
2190
2191 /* ------------------------------------------------------------------------ */
2192 #ifdef CONFIG_PROC_FS
2193
2194 static struct sock *udp_get_first(struct seq_file *seq, int start)
2195 {
2196 struct sock *sk;
2197 struct udp_iter_state *state = seq->private;
2198 struct net *net = seq_file_net(seq);
2199
2200 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2201 ++state->bucket) {
2202 struct hlist_nulls_node *node;
2203 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2204
2205 if (hlist_nulls_empty(&hslot->head))
2206 continue;
2207
2208 spin_lock_bh(&hslot->lock);
2209 sk_nulls_for_each(sk, node, &hslot->head) {
2210 if (!net_eq(sock_net(sk), net))
2211 continue;
2212 if (sk->sk_family == state->family)
2213 goto found;
2214 }
2215 spin_unlock_bh(&hslot->lock);
2216 }
2217 sk = NULL;
2218 found:
2219 return sk;
2220 }
2221
2222 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2223 {
2224 struct udp_iter_state *state = seq->private;
2225 struct net *net = seq_file_net(seq);
2226
2227 do {
2228 sk = sk_nulls_next(sk);
2229 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2230
2231 if (!sk) {
2232 if (state->bucket <= state->udp_table->mask)
2233 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2234 return udp_get_first(seq, state->bucket + 1);
2235 }
2236 return sk;
2237 }
2238
2239 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2240 {
2241 struct sock *sk = udp_get_first(seq, 0);
2242
2243 if (sk)
2244 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2245 --pos;
2246 return pos ? NULL : sk;
2247 }
2248
2249 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2250 {
2251 struct udp_iter_state *state = seq->private;
2252 state->bucket = MAX_UDP_PORTS;
2253
2254 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2255 }
2256
2257 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2258 {
2259 struct sock *sk;
2260
2261 if (v == SEQ_START_TOKEN)
2262 sk = udp_get_idx(seq, 0);
2263 else
2264 sk = udp_get_next(seq, v);
2265
2266 ++*pos;
2267 return sk;
2268 }
2269
2270 static void udp_seq_stop(struct seq_file *seq, void *v)
2271 {
2272 struct udp_iter_state *state = seq->private;
2273
2274 if (state->bucket <= state->udp_table->mask)
2275 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2276 }
2277
2278 int udp_seq_open(struct inode *inode, struct file *file)
2279 {
2280 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2281 struct udp_iter_state *s;
2282 int err;
2283
2284 err = seq_open_net(inode, file, &afinfo->seq_ops,
2285 sizeof(struct udp_iter_state));
2286 if (err < 0)
2287 return err;
2288
2289 s = ((struct seq_file *)file->private_data)->private;
2290 s->family = afinfo->family;
2291 s->udp_table = afinfo->udp_table;
2292 return err;
2293 }
2294 EXPORT_SYMBOL(udp_seq_open);
2295
2296 /* ------------------------------------------------------------------------ */
2297 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2298 {
2299 struct proc_dir_entry *p;
2300 int rc = 0;
2301
2302 afinfo->seq_ops.start = udp_seq_start;
2303 afinfo->seq_ops.next = udp_seq_next;
2304 afinfo->seq_ops.stop = udp_seq_stop;
2305
2306 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2307 afinfo->seq_fops, afinfo);
2308 if (!p)
2309 rc = -ENOMEM;
2310 return rc;
2311 }
2312 EXPORT_SYMBOL(udp_proc_register);
2313
2314 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2315 {
2316 remove_proc_entry(afinfo->name, net->proc_net);
2317 }
2318 EXPORT_SYMBOL(udp_proc_unregister);
2319
2320 /* ------------------------------------------------------------------------ */
2321 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2322 int bucket, int *len)
2323 {
2324 struct inet_sock *inet = inet_sk(sp);
2325 __be32 dest = inet->inet_daddr;
2326 __be32 src = inet->inet_rcv_saddr;
2327 __u16 destp = ntohs(inet->inet_dport);
2328 __u16 srcp = ntohs(inet->inet_sport);
2329
2330 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2331 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d%n",
2332 bucket, src, srcp, dest, destp, sp->sk_state,
2333 sk_wmem_alloc_get(sp),
2334 sk_rmem_alloc_get(sp),
2335 0, 0L, 0,
2336 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2337 0, sock_i_ino(sp),
2338 atomic_read(&sp->sk_refcnt), sp,
2339 atomic_read(&sp->sk_drops), len);
2340 }
2341
2342 int udp4_seq_show(struct seq_file *seq, void *v)
2343 {
2344 if (v == SEQ_START_TOKEN)
2345 seq_printf(seq, "%-127s\n",
2346 " sl local_address rem_address st tx_queue "
2347 "rx_queue tr tm->when retrnsmt uid timeout "
2348 "inode ref pointer drops");
2349 else {
2350 struct udp_iter_state *state = seq->private;
2351 int len;
2352
2353 udp4_format_sock(v, seq, state->bucket, &len);
2354 seq_printf(seq, "%*s\n", 127 - len, "");
2355 }
2356 return 0;
2357 }
2358
2359 static const struct file_operations udp_afinfo_seq_fops = {
2360 .owner = THIS_MODULE,
2361 .open = udp_seq_open,
2362 .read = seq_read,
2363 .llseek = seq_lseek,
2364 .release = seq_release_net
2365 };
2366
2367 /* ------------------------------------------------------------------------ */
2368 static struct udp_seq_afinfo udp4_seq_afinfo = {
2369 .name = "udp",
2370 .family = AF_INET,
2371 .udp_table = &udp_table,
2372 .seq_fops = &udp_afinfo_seq_fops,
2373 .seq_ops = {
2374 .show = udp4_seq_show,
2375 },
2376 };
2377
2378 static int __net_init udp4_proc_init_net(struct net *net)
2379 {
2380 return udp_proc_register(net, &udp4_seq_afinfo);
2381 }
2382
2383 static void __net_exit udp4_proc_exit_net(struct net *net)
2384 {
2385 udp_proc_unregister(net, &udp4_seq_afinfo);
2386 }
2387
2388 static struct pernet_operations udp4_net_ops = {
2389 .init = udp4_proc_init_net,
2390 .exit = udp4_proc_exit_net,
2391 };
2392
2393 int __init udp4_proc_init(void)
2394 {
2395 return register_pernet_subsys(&udp4_net_ops);
2396 }
2397
2398 void udp4_proc_exit(void)
2399 {
2400 unregister_pernet_subsys(&udp4_net_ops);
2401 }
2402 #endif /* CONFIG_PROC_FS */
2403
2404 static __initdata unsigned long uhash_entries;
2405 static int __init set_uhash_entries(char *str)
2406 {
2407 ssize_t ret;
2408
2409 if (!str)
2410 return 0;
2411
2412 ret = kstrtoul(str, 0, &uhash_entries);
2413 if (ret)
2414 return 0;
2415
2416 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2417 uhash_entries = UDP_HTABLE_SIZE_MIN;
2418 return 1;
2419 }
2420 __setup("uhash_entries=", set_uhash_entries);
2421
2422 void __init udp_table_init(struct udp_table *table, const char *name)
2423 {
2424 unsigned int i;
2425
2426 table->hash = alloc_large_system_hash(name,
2427 2 * sizeof(struct udp_hslot),
2428 uhash_entries,
2429 21, /* one slot per 2 MB */
2430 0,
2431 &table->log,
2432 &table->mask,
2433 UDP_HTABLE_SIZE_MIN,
2434 64 * 1024);
2435
2436 table->hash2 = table->hash + (table->mask + 1);
2437 for (i = 0; i <= table->mask; i++) {
2438 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2439 table->hash[i].count = 0;
2440 spin_lock_init(&table->hash[i].lock);
2441 }
2442 for (i = 0; i <= table->mask; i++) {
2443 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2444 table->hash2[i].count = 0;
2445 spin_lock_init(&table->hash2[i].lock);
2446 }
2447 }
2448
2449 void __init udp_init(void)
2450 {
2451 unsigned long limit;
2452
2453 udp_table_init(&udp_table, "UDP");
2454 limit = nr_free_buffer_pages() / 8;
2455 limit = max(limit, 128UL);
2456 sysctl_udp_mem[0] = limit / 4 * 3;
2457 sysctl_udp_mem[1] = limit;
2458 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2459
2460 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2461 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2462 }
2463
2464 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2465 netdev_features_t features)
2466 {
2467 struct sk_buff *segs = ERR_PTR(-EINVAL);
2468 int mac_len = skb->mac_len;
2469 int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2470 __be16 protocol = skb->protocol;
2471 netdev_features_t enc_features;
2472 int outer_hlen;
2473
2474 if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2475 goto out;
2476
2477 skb->encapsulation = 0;
2478 __skb_pull(skb, tnl_hlen);
2479 skb_reset_mac_header(skb);
2480 skb_set_network_header(skb, skb_inner_network_offset(skb));
2481 skb->mac_len = skb_inner_network_offset(skb);
2482 skb->protocol = htons(ETH_P_TEB);
2483
2484 /* segment inner packet. */
2485 enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2486 segs = skb_mac_gso_segment(skb, enc_features);
2487 if (!segs || IS_ERR(segs))
2488 goto out;
2489
2490 outer_hlen = skb_tnl_header_len(skb);
2491 skb = segs;
2492 do {
2493 struct udphdr *uh;
2494 int udp_offset = outer_hlen - tnl_hlen;
2495
2496 skb_reset_inner_headers(skb);
2497 skb->encapsulation = 1;
2498
2499 skb->mac_len = mac_len;
2500
2501 skb_push(skb, outer_hlen);
2502 skb_reset_mac_header(skb);
2503 skb_set_network_header(skb, mac_len);
2504 skb_set_transport_header(skb, udp_offset);
2505 uh = udp_hdr(skb);
2506 uh->len = htons(skb->len - udp_offset);
2507
2508 /* csum segment if tunnel sets skb with csum. */
2509 if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
2510 struct iphdr *iph = ip_hdr(skb);
2511
2512 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2513 skb->len - udp_offset,
2514 IPPROTO_UDP, 0);
2515 uh->check = csum_fold(skb_checksum(skb, udp_offset,
2516 skb->len - udp_offset, 0));
2517 if (uh->check == 0)
2518 uh->check = CSUM_MANGLED_0;
2519
2520 } else if (protocol == htons(ETH_P_IPV6)) {
2521 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2522 u32 len = skb->len - udp_offset;
2523
2524 uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2525 len, IPPROTO_UDP, 0);
2526 uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
2527 if (uh->check == 0)
2528 uh->check = CSUM_MANGLED_0;
2529 skb->ip_summed = CHECKSUM_NONE;
2530 }
2531
2532 skb->protocol = protocol;
2533 } while ((skb = skb->next));
2534 out:
2535 return segs;
2536 }
This page took 0.124858 seconds and 5 git commands to generate.