Merge remote-tracking branches 'asoc/topic/es8328', 'asoc/topic/find-dai', 'asoc...
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 const struct udp_hslot *hslot,
138 unsigned long *bitmap,
139 struct sock *sk,
140 int (*saddr_comp)(const struct sock *sk1,
141 const struct sock *sk2,
142 bool match_wildcard),
143 unsigned int log)
144 {
145 struct sock *sk2;
146 struct hlist_nulls_node *node;
147 kuid_t uid = sock_i_uid(sk);
148
149 sk_nulls_for_each(sk2, node, &hslot->head) {
150 if (net_eq(sock_net(sk2), net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 rcu_access_pointer(sk->sk_reuseport_cb) ||
158 !uid_eq(uid, sock_i_uid(sk2))) &&
159 saddr_comp(sk, sk2, true)) {
160 if (!bitmap)
161 return 1;
162 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 }
164 }
165 return 0;
166 }
167
168 /*
169 * Note: we still hold spinlock of primary hash chain, so no other writer
170 * can insert/delete a socket with local_port == num
171 */
172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 struct udp_hslot *hslot2,
174 struct sock *sk,
175 int (*saddr_comp)(const struct sock *sk1,
176 const struct sock *sk2,
177 bool match_wildcard))
178 {
179 struct sock *sk2;
180 struct hlist_nulls_node *node;
181 kuid_t uid = sock_i_uid(sk);
182 int res = 0;
183
184 spin_lock(&hslot2->lock);
185 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
186 if (net_eq(sock_net(sk2), net) &&
187 sk2 != sk &&
188 (udp_sk(sk2)->udp_port_hash == num) &&
189 (!sk2->sk_reuse || !sk->sk_reuse) &&
190 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
191 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
192 (!sk2->sk_reuseport || !sk->sk_reuseport ||
193 rcu_access_pointer(sk->sk_reuseport_cb) ||
194 !uid_eq(uid, sock_i_uid(sk2))) &&
195 saddr_comp(sk, sk2, true)) {
196 res = 1;
197 break;
198 }
199 }
200 spin_unlock(&hslot2->lock);
201 return res;
202 }
203
204 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
205 int (*saddr_same)(const struct sock *sk1,
206 const struct sock *sk2,
207 bool match_wildcard))
208 {
209 struct net *net = sock_net(sk);
210 struct hlist_nulls_node *node;
211 kuid_t uid = sock_i_uid(sk);
212 struct sock *sk2;
213
214 sk_nulls_for_each(sk2, node, &hslot->head) {
215 if (net_eq(sock_net(sk2), net) &&
216 sk2 != sk &&
217 sk2->sk_family == sk->sk_family &&
218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 (*saddr_same)(sk, sk2, false)) {
223 return reuseport_add_sock(sk, sk2);
224 }
225 }
226
227 /* Initial allocation may have already happened via setsockopt */
228 if (!rcu_access_pointer(sk->sk_reuseport_cb))
229 return reuseport_alloc(sk);
230 return 0;
231 }
232
233 /**
234 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
235 *
236 * @sk: socket struct in question
237 * @snum: port number to look up
238 * @saddr_comp: AF-dependent comparison of bound local IP addresses
239 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
240 * with NULL address
241 */
242 int udp_lib_get_port(struct sock *sk, unsigned short snum,
243 int (*saddr_comp)(const struct sock *sk1,
244 const struct sock *sk2,
245 bool match_wildcard),
246 unsigned int hash2_nulladdr)
247 {
248 struct udp_hslot *hslot, *hslot2;
249 struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 int error = 1;
251 struct net *net = sock_net(sk);
252
253 if (!snum) {
254 int low, high, remaining;
255 unsigned int rand;
256 unsigned short first, last;
257 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258
259 inet_get_local_port_range(net, &low, &high);
260 remaining = (high - low) + 1;
261
262 rand = prandom_u32();
263 first = reciprocal_scale(rand, remaining) + low;
264 /*
265 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 */
267 rand = (rand | 1) * (udptable->mask + 1);
268 last = first + udptable->mask + 1;
269 do {
270 hslot = udp_hashslot(udptable, net, first);
271 bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 spin_lock_bh(&hslot->lock);
273 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 saddr_comp, udptable->log);
275
276 snum = first;
277 /*
278 * Iterate on all possible values of snum for this hash.
279 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 * give us randomization and full range coverage.
281 */
282 do {
283 if (low <= snum && snum <= high &&
284 !test_bit(snum >> udptable->log, bitmap) &&
285 !inet_is_local_reserved_port(net, snum))
286 goto found;
287 snum += rand;
288 } while (snum != first);
289 spin_unlock_bh(&hslot->lock);
290 } while (++first != last);
291 goto fail;
292 } else {
293 hslot = udp_hashslot(udptable, net, snum);
294 spin_lock_bh(&hslot->lock);
295 if (hslot->count > 10) {
296 int exist;
297 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
298
299 slot2 &= udptable->mask;
300 hash2_nulladdr &= udptable->mask;
301
302 hslot2 = udp_hashslot2(udptable, slot2);
303 if (hslot->count < hslot2->count)
304 goto scan_primary_hash;
305
306 exist = udp_lib_lport_inuse2(net, snum, hslot2,
307 sk, saddr_comp);
308 if (!exist && (hash2_nulladdr != slot2)) {
309 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 sk, saddr_comp);
312 }
313 if (exist)
314 goto fail_unlock;
315 else
316 goto found;
317 }
318 scan_primary_hash:
319 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
320 saddr_comp, 0))
321 goto fail_unlock;
322 }
323 found:
324 inet_sk(sk)->inet_num = snum;
325 udp_sk(sk)->udp_port_hash = snum;
326 udp_sk(sk)->udp_portaddr_hash ^= snum;
327 if (sk_unhashed(sk)) {
328 if (sk->sk_reuseport &&
329 udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
330 inet_sk(sk)->inet_num = 0;
331 udp_sk(sk)->udp_port_hash = 0;
332 udp_sk(sk)->udp_portaddr_hash ^= snum;
333 goto fail_unlock;
334 }
335
336 sk_nulls_add_node_rcu(sk, &hslot->head);
337 hslot->count++;
338 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
339
340 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
341 spin_lock(&hslot2->lock);
342 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
343 sk->sk_family == AF_INET6)
344 hlist_nulls_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
345 &hslot2->head);
346 else
347 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
348 &hslot2->head);
349 hslot2->count++;
350 spin_unlock(&hslot2->lock);
351 }
352 error = 0;
353 fail_unlock:
354 spin_unlock_bh(&hslot->lock);
355 fail:
356 return error;
357 }
358 EXPORT_SYMBOL(udp_lib_get_port);
359
360 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
361 * match_wildcard == false: addresses must be exactly the same, i.e.
362 * 0.0.0.0 only equals to 0.0.0.0
363 */
364 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
365 bool match_wildcard)
366 {
367 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
368
369 if (!ipv6_only_sock(sk2)) {
370 if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
371 return 1;
372 if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
373 return match_wildcard;
374 }
375 return 0;
376 }
377
378 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
379 unsigned int port)
380 {
381 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
382 }
383
384 int udp_v4_get_port(struct sock *sk, unsigned short snum)
385 {
386 unsigned int hash2_nulladdr =
387 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
388 unsigned int hash2_partial =
389 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
390
391 /* precompute partial secondary hash */
392 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
393 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
394 }
395
396 static inline int compute_score(struct sock *sk, struct net *net,
397 __be32 saddr, unsigned short hnum, __be16 sport,
398 __be32 daddr, __be16 dport, int dif)
399 {
400 int score;
401 struct inet_sock *inet;
402
403 if (!net_eq(sock_net(sk), net) ||
404 udp_sk(sk)->udp_port_hash != hnum ||
405 ipv6_only_sock(sk))
406 return -1;
407
408 score = (sk->sk_family == PF_INET) ? 2 : 1;
409 inet = inet_sk(sk);
410
411 if (inet->inet_rcv_saddr) {
412 if (inet->inet_rcv_saddr != daddr)
413 return -1;
414 score += 4;
415 }
416
417 if (inet->inet_daddr) {
418 if (inet->inet_daddr != saddr)
419 return -1;
420 score += 4;
421 }
422
423 if (inet->inet_dport) {
424 if (inet->inet_dport != sport)
425 return -1;
426 score += 4;
427 }
428
429 if (sk->sk_bound_dev_if) {
430 if (sk->sk_bound_dev_if != dif)
431 return -1;
432 score += 4;
433 }
434 if (sk->sk_incoming_cpu == raw_smp_processor_id())
435 score++;
436 return score;
437 }
438
439 /*
440 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
441 */
442 static inline int compute_score2(struct sock *sk, struct net *net,
443 __be32 saddr, __be16 sport,
444 __be32 daddr, unsigned int hnum, int dif)
445 {
446 int score;
447 struct inet_sock *inet;
448
449 if (!net_eq(sock_net(sk), net) ||
450 ipv6_only_sock(sk))
451 return -1;
452
453 inet = inet_sk(sk);
454
455 if (inet->inet_rcv_saddr != daddr ||
456 inet->inet_num != hnum)
457 return -1;
458
459 score = (sk->sk_family == PF_INET) ? 2 : 1;
460
461 if (inet->inet_daddr) {
462 if (inet->inet_daddr != saddr)
463 return -1;
464 score += 4;
465 }
466
467 if (inet->inet_dport) {
468 if (inet->inet_dport != sport)
469 return -1;
470 score += 4;
471 }
472
473 if (sk->sk_bound_dev_if) {
474 if (sk->sk_bound_dev_if != dif)
475 return -1;
476 score += 4;
477 }
478
479 if (sk->sk_incoming_cpu == raw_smp_processor_id())
480 score++;
481
482 return score;
483 }
484
485 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
486 const __u16 lport, const __be32 faddr,
487 const __be16 fport)
488 {
489 static u32 udp_ehash_secret __read_mostly;
490
491 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
492
493 return __inet_ehashfn(laddr, lport, faddr, fport,
494 udp_ehash_secret + net_hash_mix(net));
495 }
496
497 /* called with read_rcu_lock() */
498 static struct sock *udp4_lib_lookup2(struct net *net,
499 __be32 saddr, __be16 sport,
500 __be32 daddr, unsigned int hnum, int dif,
501 struct udp_hslot *hslot2, unsigned int slot2,
502 struct sk_buff *skb)
503 {
504 struct sock *sk, *result;
505 struct hlist_nulls_node *node;
506 int score, badness, matches = 0, reuseport = 0;
507 bool select_ok = true;
508 u32 hash = 0;
509
510 begin:
511 result = NULL;
512 badness = 0;
513 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
514 score = compute_score2(sk, net, saddr, sport,
515 daddr, hnum, dif);
516 if (score > badness) {
517 result = sk;
518 badness = score;
519 reuseport = sk->sk_reuseport;
520 if (reuseport) {
521 hash = udp_ehashfn(net, daddr, hnum,
522 saddr, sport);
523 if (select_ok) {
524 struct sock *sk2;
525
526 sk2 = reuseport_select_sock(sk, hash, skb,
527 sizeof(struct udphdr));
528 if (sk2) {
529 result = sk2;
530 select_ok = false;
531 goto found;
532 }
533 }
534 matches = 1;
535 }
536 } else if (score == badness && reuseport) {
537 matches++;
538 if (reciprocal_scale(hash, matches) == 0)
539 result = sk;
540 hash = next_pseudo_random32(hash);
541 }
542 }
543 /*
544 * if the nulls value we got at the end of this lookup is
545 * not the expected one, we must restart lookup.
546 * We probably met an item that was moved to another chain.
547 */
548 if (get_nulls_value(node) != slot2)
549 goto begin;
550 if (result) {
551 found:
552 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
553 result = NULL;
554 else if (unlikely(compute_score2(result, net, saddr, sport,
555 daddr, hnum, dif) < badness)) {
556 sock_put(result);
557 goto begin;
558 }
559 }
560 return result;
561 }
562
563 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
564 * harder than this. -DaveM
565 */
566 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
567 __be16 sport, __be32 daddr, __be16 dport,
568 int dif, struct udp_table *udptable, struct sk_buff *skb)
569 {
570 struct sock *sk, *result;
571 struct hlist_nulls_node *node;
572 unsigned short hnum = ntohs(dport);
573 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
574 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
575 int score, badness, matches = 0, reuseport = 0;
576 bool select_ok = true;
577 u32 hash = 0;
578
579 rcu_read_lock();
580 if (hslot->count > 10) {
581 hash2 = udp4_portaddr_hash(net, daddr, hnum);
582 slot2 = hash2 & udptable->mask;
583 hslot2 = &udptable->hash2[slot2];
584 if (hslot->count < hslot2->count)
585 goto begin;
586
587 result = udp4_lib_lookup2(net, saddr, sport,
588 daddr, hnum, dif,
589 hslot2, slot2, skb);
590 if (!result) {
591 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
592 slot2 = hash2 & udptable->mask;
593 hslot2 = &udptable->hash2[slot2];
594 if (hslot->count < hslot2->count)
595 goto begin;
596
597 result = udp4_lib_lookup2(net, saddr, sport,
598 htonl(INADDR_ANY), hnum, dif,
599 hslot2, slot2, skb);
600 }
601 rcu_read_unlock();
602 return result;
603 }
604 begin:
605 result = NULL;
606 badness = 0;
607 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
608 score = compute_score(sk, net, saddr, hnum, sport,
609 daddr, dport, dif);
610 if (score > badness) {
611 result = sk;
612 badness = score;
613 reuseport = sk->sk_reuseport;
614 if (reuseport) {
615 hash = udp_ehashfn(net, daddr, hnum,
616 saddr, sport);
617 if (select_ok) {
618 struct sock *sk2;
619
620 sk2 = reuseport_select_sock(sk, hash, skb,
621 sizeof(struct udphdr));
622 if (sk2) {
623 result = sk2;
624 select_ok = false;
625 goto found;
626 }
627 }
628 matches = 1;
629 }
630 } else if (score == badness && reuseport) {
631 matches++;
632 if (reciprocal_scale(hash, matches) == 0)
633 result = sk;
634 hash = next_pseudo_random32(hash);
635 }
636 }
637 /*
638 * if the nulls value we got at the end of this lookup is
639 * not the expected one, we must restart lookup.
640 * We probably met an item that was moved to another chain.
641 */
642 if (get_nulls_value(node) != slot)
643 goto begin;
644
645 if (result) {
646 found:
647 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
648 result = NULL;
649 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
650 daddr, dport, dif) < badness)) {
651 sock_put(result);
652 goto begin;
653 }
654 }
655 rcu_read_unlock();
656 return result;
657 }
658 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
659
660 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
661 __be16 sport, __be16 dport,
662 struct udp_table *udptable)
663 {
664 const struct iphdr *iph = ip_hdr(skb);
665
666 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
667 iph->daddr, dport, inet_iif(skb),
668 udptable, skb);
669 }
670
671 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
672 __be32 daddr, __be16 dport, int dif)
673 {
674 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif,
675 &udp_table, NULL);
676 }
677 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
678
679 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
680 __be16 loc_port, __be32 loc_addr,
681 __be16 rmt_port, __be32 rmt_addr,
682 int dif, unsigned short hnum)
683 {
684 struct inet_sock *inet = inet_sk(sk);
685
686 if (!net_eq(sock_net(sk), net) ||
687 udp_sk(sk)->udp_port_hash != hnum ||
688 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
689 (inet->inet_dport != rmt_port && inet->inet_dport) ||
690 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
691 ipv6_only_sock(sk) ||
692 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
693 return false;
694 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
695 return false;
696 return true;
697 }
698
699 /*
700 * This routine is called by the ICMP module when it gets some
701 * sort of error condition. If err < 0 then the socket should
702 * be closed and the error returned to the user. If err > 0
703 * it's just the icmp type << 8 | icmp code.
704 * Header points to the ip header of the error packet. We move
705 * on past this. Then (as it used to claim before adjustment)
706 * header points to the first 8 bytes of the udp header. We need
707 * to find the appropriate port.
708 */
709
710 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
711 {
712 struct inet_sock *inet;
713 const struct iphdr *iph = (const struct iphdr *)skb->data;
714 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
715 const int type = icmp_hdr(skb)->type;
716 const int code = icmp_hdr(skb)->code;
717 struct sock *sk;
718 int harderr;
719 int err;
720 struct net *net = dev_net(skb->dev);
721
722 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
723 iph->saddr, uh->source, skb->dev->ifindex, udptable,
724 NULL);
725 if (!sk) {
726 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
727 return; /* No socket for error */
728 }
729
730 err = 0;
731 harderr = 0;
732 inet = inet_sk(sk);
733
734 switch (type) {
735 default:
736 case ICMP_TIME_EXCEEDED:
737 err = EHOSTUNREACH;
738 break;
739 case ICMP_SOURCE_QUENCH:
740 goto out;
741 case ICMP_PARAMETERPROB:
742 err = EPROTO;
743 harderr = 1;
744 break;
745 case ICMP_DEST_UNREACH:
746 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
747 ipv4_sk_update_pmtu(skb, sk, info);
748 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
749 err = EMSGSIZE;
750 harderr = 1;
751 break;
752 }
753 goto out;
754 }
755 err = EHOSTUNREACH;
756 if (code <= NR_ICMP_UNREACH) {
757 harderr = icmp_err_convert[code].fatal;
758 err = icmp_err_convert[code].errno;
759 }
760 break;
761 case ICMP_REDIRECT:
762 ipv4_sk_redirect(skb, sk);
763 goto out;
764 }
765
766 /*
767 * RFC1122: OK. Passes ICMP errors back to application, as per
768 * 4.1.3.3.
769 */
770 if (!inet->recverr) {
771 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
772 goto out;
773 } else
774 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
775
776 sk->sk_err = err;
777 sk->sk_error_report(sk);
778 out:
779 sock_put(sk);
780 }
781
782 void udp_err(struct sk_buff *skb, u32 info)
783 {
784 __udp4_lib_err(skb, info, &udp_table);
785 }
786
787 /*
788 * Throw away all pending data and cancel the corking. Socket is locked.
789 */
790 void udp_flush_pending_frames(struct sock *sk)
791 {
792 struct udp_sock *up = udp_sk(sk);
793
794 if (up->pending) {
795 up->len = 0;
796 up->pending = 0;
797 ip_flush_pending_frames(sk);
798 }
799 }
800 EXPORT_SYMBOL(udp_flush_pending_frames);
801
802 /**
803 * udp4_hwcsum - handle outgoing HW checksumming
804 * @skb: sk_buff containing the filled-in UDP header
805 * (checksum field must be zeroed out)
806 * @src: source IP address
807 * @dst: destination IP address
808 */
809 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
810 {
811 struct udphdr *uh = udp_hdr(skb);
812 int offset = skb_transport_offset(skb);
813 int len = skb->len - offset;
814 int hlen = len;
815 __wsum csum = 0;
816
817 if (!skb_has_frag_list(skb)) {
818 /*
819 * Only one fragment on the socket.
820 */
821 skb->csum_start = skb_transport_header(skb) - skb->head;
822 skb->csum_offset = offsetof(struct udphdr, check);
823 uh->check = ~csum_tcpudp_magic(src, dst, len,
824 IPPROTO_UDP, 0);
825 } else {
826 struct sk_buff *frags;
827
828 /*
829 * HW-checksum won't work as there are two or more
830 * fragments on the socket so that all csums of sk_buffs
831 * should be together
832 */
833 skb_walk_frags(skb, frags) {
834 csum = csum_add(csum, frags->csum);
835 hlen -= frags->len;
836 }
837
838 csum = skb_checksum(skb, offset, hlen, csum);
839 skb->ip_summed = CHECKSUM_NONE;
840
841 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
842 if (uh->check == 0)
843 uh->check = CSUM_MANGLED_0;
844 }
845 }
846 EXPORT_SYMBOL_GPL(udp4_hwcsum);
847
848 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
849 * for the simple case like when setting the checksum for a UDP tunnel.
850 */
851 void udp_set_csum(bool nocheck, struct sk_buff *skb,
852 __be32 saddr, __be32 daddr, int len)
853 {
854 struct udphdr *uh = udp_hdr(skb);
855
856 if (nocheck) {
857 uh->check = 0;
858 } else if (skb_is_gso(skb)) {
859 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
860 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
861 uh->check = 0;
862 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
863 if (uh->check == 0)
864 uh->check = CSUM_MANGLED_0;
865 } else {
866 skb->ip_summed = CHECKSUM_PARTIAL;
867 skb->csum_start = skb_transport_header(skb) - skb->head;
868 skb->csum_offset = offsetof(struct udphdr, check);
869 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
870 }
871 }
872 EXPORT_SYMBOL(udp_set_csum);
873
874 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
875 {
876 struct sock *sk = skb->sk;
877 struct inet_sock *inet = inet_sk(sk);
878 struct udphdr *uh;
879 int err = 0;
880 int is_udplite = IS_UDPLITE(sk);
881 int offset = skb_transport_offset(skb);
882 int len = skb->len - offset;
883 __wsum csum = 0;
884
885 /*
886 * Create a UDP header
887 */
888 uh = udp_hdr(skb);
889 uh->source = inet->inet_sport;
890 uh->dest = fl4->fl4_dport;
891 uh->len = htons(len);
892 uh->check = 0;
893
894 if (is_udplite) /* UDP-Lite */
895 csum = udplite_csum(skb);
896
897 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
898
899 skb->ip_summed = CHECKSUM_NONE;
900 goto send;
901
902 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
903
904 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
905 goto send;
906
907 } else
908 csum = udp_csum(skb);
909
910 /* add protocol-dependent pseudo-header */
911 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
912 sk->sk_protocol, csum);
913 if (uh->check == 0)
914 uh->check = CSUM_MANGLED_0;
915
916 send:
917 err = ip_send_skb(sock_net(sk), skb);
918 if (err) {
919 if (err == -ENOBUFS && !inet->recverr) {
920 UDP_INC_STATS_USER(sock_net(sk),
921 UDP_MIB_SNDBUFERRORS, is_udplite);
922 err = 0;
923 }
924 } else
925 UDP_INC_STATS_USER(sock_net(sk),
926 UDP_MIB_OUTDATAGRAMS, is_udplite);
927 return err;
928 }
929
930 /*
931 * Push out all pending data as one UDP datagram. Socket is locked.
932 */
933 int udp_push_pending_frames(struct sock *sk)
934 {
935 struct udp_sock *up = udp_sk(sk);
936 struct inet_sock *inet = inet_sk(sk);
937 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
938 struct sk_buff *skb;
939 int err = 0;
940
941 skb = ip_finish_skb(sk, fl4);
942 if (!skb)
943 goto out;
944
945 err = udp_send_skb(skb, fl4);
946
947 out:
948 up->len = 0;
949 up->pending = 0;
950 return err;
951 }
952 EXPORT_SYMBOL(udp_push_pending_frames);
953
954 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
955 {
956 struct inet_sock *inet = inet_sk(sk);
957 struct udp_sock *up = udp_sk(sk);
958 struct flowi4 fl4_stack;
959 struct flowi4 *fl4;
960 int ulen = len;
961 struct ipcm_cookie ipc;
962 struct rtable *rt = NULL;
963 int free = 0;
964 int connected = 0;
965 __be32 daddr, faddr, saddr;
966 __be16 dport;
967 u8 tos;
968 int err, is_udplite = IS_UDPLITE(sk);
969 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
970 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
971 struct sk_buff *skb;
972 struct ip_options_data opt_copy;
973
974 if (len > 0xFFFF)
975 return -EMSGSIZE;
976
977 /*
978 * Check the flags.
979 */
980
981 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
982 return -EOPNOTSUPP;
983
984 ipc.opt = NULL;
985 ipc.tx_flags = 0;
986 ipc.ttl = 0;
987 ipc.tos = -1;
988
989 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
990
991 fl4 = &inet->cork.fl.u.ip4;
992 if (up->pending) {
993 /*
994 * There are pending frames.
995 * The socket lock must be held while it's corked.
996 */
997 lock_sock(sk);
998 if (likely(up->pending)) {
999 if (unlikely(up->pending != AF_INET)) {
1000 release_sock(sk);
1001 return -EINVAL;
1002 }
1003 goto do_append_data;
1004 }
1005 release_sock(sk);
1006 }
1007 ulen += sizeof(struct udphdr);
1008
1009 /*
1010 * Get and verify the address.
1011 */
1012 if (msg->msg_name) {
1013 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1014 if (msg->msg_namelen < sizeof(*usin))
1015 return -EINVAL;
1016 if (usin->sin_family != AF_INET) {
1017 if (usin->sin_family != AF_UNSPEC)
1018 return -EAFNOSUPPORT;
1019 }
1020
1021 daddr = usin->sin_addr.s_addr;
1022 dport = usin->sin_port;
1023 if (dport == 0)
1024 return -EINVAL;
1025 } else {
1026 if (sk->sk_state != TCP_ESTABLISHED)
1027 return -EDESTADDRREQ;
1028 daddr = inet->inet_daddr;
1029 dport = inet->inet_dport;
1030 /* Open fast path for connected socket.
1031 Route will not be used, if at least one option is set.
1032 */
1033 connected = 1;
1034 }
1035 ipc.addr = inet->inet_saddr;
1036
1037 ipc.oif = sk->sk_bound_dev_if;
1038
1039 sock_tx_timestamp(sk, &ipc.tx_flags);
1040
1041 if (msg->msg_controllen) {
1042 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
1043 sk->sk_family == AF_INET6);
1044 if (unlikely(err)) {
1045 kfree(ipc.opt);
1046 return err;
1047 }
1048 if (ipc.opt)
1049 free = 1;
1050 connected = 0;
1051 }
1052 if (!ipc.opt) {
1053 struct ip_options_rcu *inet_opt;
1054
1055 rcu_read_lock();
1056 inet_opt = rcu_dereference(inet->inet_opt);
1057 if (inet_opt) {
1058 memcpy(&opt_copy, inet_opt,
1059 sizeof(*inet_opt) + inet_opt->opt.optlen);
1060 ipc.opt = &opt_copy.opt;
1061 }
1062 rcu_read_unlock();
1063 }
1064
1065 saddr = ipc.addr;
1066 ipc.addr = faddr = daddr;
1067
1068 if (ipc.opt && ipc.opt->opt.srr) {
1069 if (!daddr)
1070 return -EINVAL;
1071 faddr = ipc.opt->opt.faddr;
1072 connected = 0;
1073 }
1074 tos = get_rttos(&ipc, inet);
1075 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1076 (msg->msg_flags & MSG_DONTROUTE) ||
1077 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1078 tos |= RTO_ONLINK;
1079 connected = 0;
1080 }
1081
1082 if (ipv4_is_multicast(daddr)) {
1083 if (!ipc.oif)
1084 ipc.oif = inet->mc_index;
1085 if (!saddr)
1086 saddr = inet->mc_addr;
1087 connected = 0;
1088 } else if (!ipc.oif)
1089 ipc.oif = inet->uc_index;
1090
1091 if (connected)
1092 rt = (struct rtable *)sk_dst_check(sk, 0);
1093
1094 if (!rt) {
1095 struct net *net = sock_net(sk);
1096 __u8 flow_flags = inet_sk_flowi_flags(sk);
1097
1098 fl4 = &fl4_stack;
1099
1100 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1101 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1102 flow_flags,
1103 faddr, saddr, dport, inet->inet_sport);
1104
1105 if (!saddr && ipc.oif) {
1106 err = l3mdev_get_saddr(net, ipc.oif, fl4);
1107 if (err < 0)
1108 goto out;
1109 }
1110
1111 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1112 rt = ip_route_output_flow(net, fl4, sk);
1113 if (IS_ERR(rt)) {
1114 err = PTR_ERR(rt);
1115 rt = NULL;
1116 if (err == -ENETUNREACH)
1117 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1118 goto out;
1119 }
1120
1121 err = -EACCES;
1122 if ((rt->rt_flags & RTCF_BROADCAST) &&
1123 !sock_flag(sk, SOCK_BROADCAST))
1124 goto out;
1125 if (connected)
1126 sk_dst_set(sk, dst_clone(&rt->dst));
1127 }
1128
1129 if (msg->msg_flags&MSG_CONFIRM)
1130 goto do_confirm;
1131 back_from_confirm:
1132
1133 saddr = fl4->saddr;
1134 if (!ipc.addr)
1135 daddr = ipc.addr = fl4->daddr;
1136
1137 /* Lockless fast path for the non-corking case. */
1138 if (!corkreq) {
1139 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1140 sizeof(struct udphdr), &ipc, &rt,
1141 msg->msg_flags);
1142 err = PTR_ERR(skb);
1143 if (!IS_ERR_OR_NULL(skb))
1144 err = udp_send_skb(skb, fl4);
1145 goto out;
1146 }
1147
1148 lock_sock(sk);
1149 if (unlikely(up->pending)) {
1150 /* The socket is already corked while preparing it. */
1151 /* ... which is an evident application bug. --ANK */
1152 release_sock(sk);
1153
1154 net_dbg_ratelimited("cork app bug 2\n");
1155 err = -EINVAL;
1156 goto out;
1157 }
1158 /*
1159 * Now cork the socket to pend data.
1160 */
1161 fl4 = &inet->cork.fl.u.ip4;
1162 fl4->daddr = daddr;
1163 fl4->saddr = saddr;
1164 fl4->fl4_dport = dport;
1165 fl4->fl4_sport = inet->inet_sport;
1166 up->pending = AF_INET;
1167
1168 do_append_data:
1169 up->len += ulen;
1170 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1171 sizeof(struct udphdr), &ipc, &rt,
1172 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1173 if (err)
1174 udp_flush_pending_frames(sk);
1175 else if (!corkreq)
1176 err = udp_push_pending_frames(sk);
1177 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1178 up->pending = 0;
1179 release_sock(sk);
1180
1181 out:
1182 ip_rt_put(rt);
1183 if (free)
1184 kfree(ipc.opt);
1185 if (!err)
1186 return len;
1187 /*
1188 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1189 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1190 * we don't have a good statistic (IpOutDiscards but it can be too many
1191 * things). We could add another new stat but at least for now that
1192 * seems like overkill.
1193 */
1194 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1195 UDP_INC_STATS_USER(sock_net(sk),
1196 UDP_MIB_SNDBUFERRORS, is_udplite);
1197 }
1198 return err;
1199
1200 do_confirm:
1201 dst_confirm(&rt->dst);
1202 if (!(msg->msg_flags&MSG_PROBE) || len)
1203 goto back_from_confirm;
1204 err = 0;
1205 goto out;
1206 }
1207 EXPORT_SYMBOL(udp_sendmsg);
1208
1209 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1210 size_t size, int flags)
1211 {
1212 struct inet_sock *inet = inet_sk(sk);
1213 struct udp_sock *up = udp_sk(sk);
1214 int ret;
1215
1216 if (flags & MSG_SENDPAGE_NOTLAST)
1217 flags |= MSG_MORE;
1218
1219 if (!up->pending) {
1220 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1221
1222 /* Call udp_sendmsg to specify destination address which
1223 * sendpage interface can't pass.
1224 * This will succeed only when the socket is connected.
1225 */
1226 ret = udp_sendmsg(sk, &msg, 0);
1227 if (ret < 0)
1228 return ret;
1229 }
1230
1231 lock_sock(sk);
1232
1233 if (unlikely(!up->pending)) {
1234 release_sock(sk);
1235
1236 net_dbg_ratelimited("udp cork app bug 3\n");
1237 return -EINVAL;
1238 }
1239
1240 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1241 page, offset, size, flags);
1242 if (ret == -EOPNOTSUPP) {
1243 release_sock(sk);
1244 return sock_no_sendpage(sk->sk_socket, page, offset,
1245 size, flags);
1246 }
1247 if (ret < 0) {
1248 udp_flush_pending_frames(sk);
1249 goto out;
1250 }
1251
1252 up->len += size;
1253 if (!(up->corkflag || (flags&MSG_MORE)))
1254 ret = udp_push_pending_frames(sk);
1255 if (!ret)
1256 ret = size;
1257 out:
1258 release_sock(sk);
1259 return ret;
1260 }
1261
1262 /**
1263 * first_packet_length - return length of first packet in receive queue
1264 * @sk: socket
1265 *
1266 * Drops all bad checksum frames, until a valid one is found.
1267 * Returns the length of found skb, or 0 if none is found.
1268 */
1269 static unsigned int first_packet_length(struct sock *sk)
1270 {
1271 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1272 struct sk_buff *skb;
1273 unsigned int res;
1274
1275 __skb_queue_head_init(&list_kill);
1276
1277 spin_lock_bh(&rcvq->lock);
1278 while ((skb = skb_peek(rcvq)) != NULL &&
1279 udp_lib_checksum_complete(skb)) {
1280 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1281 IS_UDPLITE(sk));
1282 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1283 IS_UDPLITE(sk));
1284 atomic_inc(&sk->sk_drops);
1285 __skb_unlink(skb, rcvq);
1286 __skb_queue_tail(&list_kill, skb);
1287 }
1288 res = skb ? skb->len : 0;
1289 spin_unlock_bh(&rcvq->lock);
1290
1291 if (!skb_queue_empty(&list_kill)) {
1292 bool slow = lock_sock_fast(sk);
1293
1294 __skb_queue_purge(&list_kill);
1295 sk_mem_reclaim_partial(sk);
1296 unlock_sock_fast(sk, slow);
1297 }
1298 return res;
1299 }
1300
1301 /*
1302 * IOCTL requests applicable to the UDP protocol
1303 */
1304
1305 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1306 {
1307 switch (cmd) {
1308 case SIOCOUTQ:
1309 {
1310 int amount = sk_wmem_alloc_get(sk);
1311
1312 return put_user(amount, (int __user *)arg);
1313 }
1314
1315 case SIOCINQ:
1316 {
1317 unsigned int amount = first_packet_length(sk);
1318
1319 if (amount)
1320 /*
1321 * We will only return the amount
1322 * of this packet since that is all
1323 * that will be read.
1324 */
1325 amount -= sizeof(struct udphdr);
1326
1327 return put_user(amount, (int __user *)arg);
1328 }
1329
1330 default:
1331 return -ENOIOCTLCMD;
1332 }
1333
1334 return 0;
1335 }
1336 EXPORT_SYMBOL(udp_ioctl);
1337
1338 /*
1339 * This should be easy, if there is something there we
1340 * return it, otherwise we block.
1341 */
1342
1343 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1344 int flags, int *addr_len)
1345 {
1346 struct inet_sock *inet = inet_sk(sk);
1347 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1348 struct sk_buff *skb;
1349 unsigned int ulen, copied;
1350 int peeked, off = 0;
1351 int err;
1352 int is_udplite = IS_UDPLITE(sk);
1353 bool checksum_valid = false;
1354 bool slow;
1355
1356 if (flags & MSG_ERRQUEUE)
1357 return ip_recv_error(sk, msg, len, addr_len);
1358
1359 try_again:
1360 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1361 &peeked, &off, &err);
1362 if (!skb)
1363 goto out;
1364
1365 ulen = skb->len - sizeof(struct udphdr);
1366 copied = len;
1367 if (copied > ulen)
1368 copied = ulen;
1369 else if (copied < ulen)
1370 msg->msg_flags |= MSG_TRUNC;
1371
1372 /*
1373 * If checksum is needed at all, try to do it while copying the
1374 * data. If the data is truncated, or if we only want a partial
1375 * coverage checksum (UDP-Lite), do it before the copy.
1376 */
1377
1378 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1379 checksum_valid = !udp_lib_checksum_complete(skb);
1380 if (!checksum_valid)
1381 goto csum_copy_err;
1382 }
1383
1384 if (checksum_valid || skb_csum_unnecessary(skb))
1385 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1386 msg, copied);
1387 else {
1388 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1389 msg);
1390
1391 if (err == -EINVAL)
1392 goto csum_copy_err;
1393 }
1394
1395 if (unlikely(err)) {
1396 trace_kfree_skb(skb, udp_recvmsg);
1397 if (!peeked) {
1398 atomic_inc(&sk->sk_drops);
1399 UDP_INC_STATS_USER(sock_net(sk),
1400 UDP_MIB_INERRORS, is_udplite);
1401 }
1402 goto out_free;
1403 }
1404
1405 if (!peeked)
1406 UDP_INC_STATS_USER(sock_net(sk),
1407 UDP_MIB_INDATAGRAMS, is_udplite);
1408
1409 sock_recv_ts_and_drops(msg, sk, skb);
1410
1411 /* Copy the address. */
1412 if (sin) {
1413 sin->sin_family = AF_INET;
1414 sin->sin_port = udp_hdr(skb)->source;
1415 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1416 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1417 *addr_len = sizeof(*sin);
1418 }
1419 if (inet->cmsg_flags)
1420 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1421
1422 err = copied;
1423 if (flags & MSG_TRUNC)
1424 err = ulen;
1425
1426 out_free:
1427 skb_free_datagram_locked(sk, skb);
1428 out:
1429 return err;
1430
1431 csum_copy_err:
1432 slow = lock_sock_fast(sk);
1433 if (!skb_kill_datagram(sk, skb, flags)) {
1434 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1435 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1436 }
1437 unlock_sock_fast(sk, slow);
1438
1439 /* starting over for a new packet, but check if we need to yield */
1440 cond_resched();
1441 msg->msg_flags &= ~MSG_TRUNC;
1442 goto try_again;
1443 }
1444
1445 int udp_disconnect(struct sock *sk, int flags)
1446 {
1447 struct inet_sock *inet = inet_sk(sk);
1448 /*
1449 * 1003.1g - break association.
1450 */
1451
1452 sk->sk_state = TCP_CLOSE;
1453 inet->inet_daddr = 0;
1454 inet->inet_dport = 0;
1455 sock_rps_reset_rxhash(sk);
1456 sk->sk_bound_dev_if = 0;
1457 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1458 inet_reset_saddr(sk);
1459
1460 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1461 sk->sk_prot->unhash(sk);
1462 inet->inet_sport = 0;
1463 }
1464 sk_dst_reset(sk);
1465 return 0;
1466 }
1467 EXPORT_SYMBOL(udp_disconnect);
1468
1469 void udp_lib_unhash(struct sock *sk)
1470 {
1471 if (sk_hashed(sk)) {
1472 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1473 struct udp_hslot *hslot, *hslot2;
1474
1475 hslot = udp_hashslot(udptable, sock_net(sk),
1476 udp_sk(sk)->udp_port_hash);
1477 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1478
1479 spin_lock_bh(&hslot->lock);
1480 if (rcu_access_pointer(sk->sk_reuseport_cb))
1481 reuseport_detach_sock(sk);
1482 if (sk_nulls_del_node_init_rcu(sk)) {
1483 hslot->count--;
1484 inet_sk(sk)->inet_num = 0;
1485 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1486
1487 spin_lock(&hslot2->lock);
1488 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1489 hslot2->count--;
1490 spin_unlock(&hslot2->lock);
1491 }
1492 spin_unlock_bh(&hslot->lock);
1493 }
1494 }
1495 EXPORT_SYMBOL(udp_lib_unhash);
1496
1497 /*
1498 * inet_rcv_saddr was changed, we must rehash secondary hash
1499 */
1500 void udp_lib_rehash(struct sock *sk, u16 newhash)
1501 {
1502 if (sk_hashed(sk)) {
1503 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1504 struct udp_hslot *hslot, *hslot2, *nhslot2;
1505
1506 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1507 nhslot2 = udp_hashslot2(udptable, newhash);
1508 udp_sk(sk)->udp_portaddr_hash = newhash;
1509
1510 if (hslot2 != nhslot2 ||
1511 rcu_access_pointer(sk->sk_reuseport_cb)) {
1512 hslot = udp_hashslot(udptable, sock_net(sk),
1513 udp_sk(sk)->udp_port_hash);
1514 /* we must lock primary chain too */
1515 spin_lock_bh(&hslot->lock);
1516 if (rcu_access_pointer(sk->sk_reuseport_cb))
1517 reuseport_detach_sock(sk);
1518
1519 if (hslot2 != nhslot2) {
1520 spin_lock(&hslot2->lock);
1521 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1522 hslot2->count--;
1523 spin_unlock(&hslot2->lock);
1524
1525 spin_lock(&nhslot2->lock);
1526 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1527 &nhslot2->head);
1528 nhslot2->count++;
1529 spin_unlock(&nhslot2->lock);
1530 }
1531
1532 spin_unlock_bh(&hslot->lock);
1533 }
1534 }
1535 }
1536 EXPORT_SYMBOL(udp_lib_rehash);
1537
1538 static void udp_v4_rehash(struct sock *sk)
1539 {
1540 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1541 inet_sk(sk)->inet_rcv_saddr,
1542 inet_sk(sk)->inet_num);
1543 udp_lib_rehash(sk, new_hash);
1544 }
1545
1546 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1547 {
1548 int rc;
1549
1550 if (inet_sk(sk)->inet_daddr) {
1551 sock_rps_save_rxhash(sk, skb);
1552 sk_mark_napi_id(sk, skb);
1553 sk_incoming_cpu_update(sk);
1554 }
1555
1556 rc = sock_queue_rcv_skb(sk, skb);
1557 if (rc < 0) {
1558 int is_udplite = IS_UDPLITE(sk);
1559
1560 /* Note that an ENOMEM error is charged twice */
1561 if (rc == -ENOMEM)
1562 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1563 is_udplite);
1564 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1565 kfree_skb(skb);
1566 trace_udp_fail_queue_rcv_skb(rc, sk);
1567 return -1;
1568 }
1569
1570 return 0;
1571
1572 }
1573
1574 static struct static_key udp_encap_needed __read_mostly;
1575 void udp_encap_enable(void)
1576 {
1577 if (!static_key_enabled(&udp_encap_needed))
1578 static_key_slow_inc(&udp_encap_needed);
1579 }
1580 EXPORT_SYMBOL(udp_encap_enable);
1581
1582 /* returns:
1583 * -1: error
1584 * 0: success
1585 * >0: "udp encap" protocol resubmission
1586 *
1587 * Note that in the success and error cases, the skb is assumed to
1588 * have either been requeued or freed.
1589 */
1590 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1591 {
1592 struct udp_sock *up = udp_sk(sk);
1593 int rc;
1594 int is_udplite = IS_UDPLITE(sk);
1595
1596 /*
1597 * Charge it to the socket, dropping if the queue is full.
1598 */
1599 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1600 goto drop;
1601 nf_reset(skb);
1602
1603 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1604 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1605
1606 /*
1607 * This is an encapsulation socket so pass the skb to
1608 * the socket's udp_encap_rcv() hook. Otherwise, just
1609 * fall through and pass this up the UDP socket.
1610 * up->encap_rcv() returns the following value:
1611 * =0 if skb was successfully passed to the encap
1612 * handler or was discarded by it.
1613 * >0 if skb should be passed on to UDP.
1614 * <0 if skb should be resubmitted as proto -N
1615 */
1616
1617 /* if we're overly short, let UDP handle it */
1618 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1619 if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1620 int ret;
1621
1622 /* Verify checksum before giving to encap */
1623 if (udp_lib_checksum_complete(skb))
1624 goto csum_error;
1625
1626 ret = encap_rcv(sk, skb);
1627 if (ret <= 0) {
1628 UDP_INC_STATS_BH(sock_net(sk),
1629 UDP_MIB_INDATAGRAMS,
1630 is_udplite);
1631 return -ret;
1632 }
1633 }
1634
1635 /* FALLTHROUGH -- it's a UDP Packet */
1636 }
1637
1638 /*
1639 * UDP-Lite specific tests, ignored on UDP sockets
1640 */
1641 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1642
1643 /*
1644 * MIB statistics other than incrementing the error count are
1645 * disabled for the following two types of errors: these depend
1646 * on the application settings, not on the functioning of the
1647 * protocol stack as such.
1648 *
1649 * RFC 3828 here recommends (sec 3.3): "There should also be a
1650 * way ... to ... at least let the receiving application block
1651 * delivery of packets with coverage values less than a value
1652 * provided by the application."
1653 */
1654 if (up->pcrlen == 0) { /* full coverage was set */
1655 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1656 UDP_SKB_CB(skb)->cscov, skb->len);
1657 goto drop;
1658 }
1659 /* The next case involves violating the min. coverage requested
1660 * by the receiver. This is subtle: if receiver wants x and x is
1661 * greater than the buffersize/MTU then receiver will complain
1662 * that it wants x while sender emits packets of smaller size y.
1663 * Therefore the above ...()->partial_cov statement is essential.
1664 */
1665 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1666 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1667 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1668 goto drop;
1669 }
1670 }
1671
1672 if (rcu_access_pointer(sk->sk_filter) &&
1673 udp_lib_checksum_complete(skb))
1674 goto csum_error;
1675
1676 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1677 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1678 is_udplite);
1679 goto drop;
1680 }
1681
1682 rc = 0;
1683
1684 ipv4_pktinfo_prepare(sk, skb);
1685 bh_lock_sock(sk);
1686 if (!sock_owned_by_user(sk))
1687 rc = __udp_queue_rcv_skb(sk, skb);
1688 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1689 bh_unlock_sock(sk);
1690 goto drop;
1691 }
1692 bh_unlock_sock(sk);
1693
1694 return rc;
1695
1696 csum_error:
1697 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1698 drop:
1699 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1700 atomic_inc(&sk->sk_drops);
1701 kfree_skb(skb);
1702 return -1;
1703 }
1704
1705 static void flush_stack(struct sock **stack, unsigned int count,
1706 struct sk_buff *skb, unsigned int final)
1707 {
1708 unsigned int i;
1709 struct sk_buff *skb1 = NULL;
1710 struct sock *sk;
1711
1712 for (i = 0; i < count; i++) {
1713 sk = stack[i];
1714 if (likely(!skb1))
1715 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1716
1717 if (!skb1) {
1718 atomic_inc(&sk->sk_drops);
1719 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1720 IS_UDPLITE(sk));
1721 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1722 IS_UDPLITE(sk));
1723 }
1724
1725 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1726 skb1 = NULL;
1727
1728 sock_put(sk);
1729 }
1730 if (unlikely(skb1))
1731 kfree_skb(skb1);
1732 }
1733
1734 /* For TCP sockets, sk_rx_dst is protected by socket lock
1735 * For UDP, we use xchg() to guard against concurrent changes.
1736 */
1737 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1738 {
1739 struct dst_entry *old;
1740
1741 dst_hold(dst);
1742 old = xchg(&sk->sk_rx_dst, dst);
1743 dst_release(old);
1744 }
1745
1746 /*
1747 * Multicasts and broadcasts go to each listener.
1748 *
1749 * Note: called only from the BH handler context.
1750 */
1751 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1752 struct udphdr *uh,
1753 __be32 saddr, __be32 daddr,
1754 struct udp_table *udptable,
1755 int proto)
1756 {
1757 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1758 struct hlist_nulls_node *node;
1759 unsigned short hnum = ntohs(uh->dest);
1760 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1761 int dif = skb->dev->ifindex;
1762 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1763 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1764 bool inner_flushed = false;
1765
1766 if (use_hash2) {
1767 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1768 udp_table.mask;
1769 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1770 start_lookup:
1771 hslot = &udp_table.hash2[hash2];
1772 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1773 }
1774
1775 spin_lock(&hslot->lock);
1776 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1777 if (__udp_is_mcast_sock(net, sk,
1778 uh->dest, daddr,
1779 uh->source, saddr,
1780 dif, hnum)) {
1781 if (unlikely(count == ARRAY_SIZE(stack))) {
1782 flush_stack(stack, count, skb, ~0);
1783 inner_flushed = true;
1784 count = 0;
1785 }
1786 stack[count++] = sk;
1787 sock_hold(sk);
1788 }
1789 }
1790
1791 spin_unlock(&hslot->lock);
1792
1793 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1794 if (use_hash2 && hash2 != hash2_any) {
1795 hash2 = hash2_any;
1796 goto start_lookup;
1797 }
1798
1799 /*
1800 * do the slow work with no lock held
1801 */
1802 if (count) {
1803 flush_stack(stack, count, skb, count - 1);
1804 } else {
1805 if (!inner_flushed)
1806 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1807 proto == IPPROTO_UDPLITE);
1808 consume_skb(skb);
1809 }
1810 return 0;
1811 }
1812
1813 /* Initialize UDP checksum. If exited with zero value (success),
1814 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1815 * Otherwise, csum completion requires chacksumming packet body,
1816 * including udp header and folding it to skb->csum.
1817 */
1818 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1819 int proto)
1820 {
1821 int err;
1822
1823 UDP_SKB_CB(skb)->partial_cov = 0;
1824 UDP_SKB_CB(skb)->cscov = skb->len;
1825
1826 if (proto == IPPROTO_UDPLITE) {
1827 err = udplite_checksum_init(skb, uh);
1828 if (err)
1829 return err;
1830 }
1831
1832 return skb_checksum_init_zero_check(skb, proto, uh->check,
1833 inet_compute_pseudo);
1834 }
1835
1836 /*
1837 * All we need to do is get the socket, and then do a checksum.
1838 */
1839
1840 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1841 int proto)
1842 {
1843 struct sock *sk;
1844 struct udphdr *uh;
1845 unsigned short ulen;
1846 struct rtable *rt = skb_rtable(skb);
1847 __be32 saddr, daddr;
1848 struct net *net = dev_net(skb->dev);
1849
1850 /*
1851 * Validate the packet.
1852 */
1853 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1854 goto drop; /* No space for header. */
1855
1856 uh = udp_hdr(skb);
1857 ulen = ntohs(uh->len);
1858 saddr = ip_hdr(skb)->saddr;
1859 daddr = ip_hdr(skb)->daddr;
1860
1861 if (ulen > skb->len)
1862 goto short_packet;
1863
1864 if (proto == IPPROTO_UDP) {
1865 /* UDP validates ulen. */
1866 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1867 goto short_packet;
1868 uh = udp_hdr(skb);
1869 }
1870
1871 if (udp4_csum_init(skb, uh, proto))
1872 goto csum_error;
1873
1874 sk = skb_steal_sock(skb);
1875 if (sk) {
1876 struct dst_entry *dst = skb_dst(skb);
1877 int ret;
1878
1879 if (unlikely(sk->sk_rx_dst != dst))
1880 udp_sk_rx_dst_set(sk, dst);
1881
1882 ret = udp_queue_rcv_skb(sk, skb);
1883 sock_put(sk);
1884 /* a return value > 0 means to resubmit the input, but
1885 * it wants the return to be -protocol, or 0
1886 */
1887 if (ret > 0)
1888 return -ret;
1889 return 0;
1890 }
1891
1892 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1893 return __udp4_lib_mcast_deliver(net, skb, uh,
1894 saddr, daddr, udptable, proto);
1895
1896 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1897 if (sk) {
1898 int ret;
1899
1900 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1901 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1902 inet_compute_pseudo);
1903
1904 ret = udp_queue_rcv_skb(sk, skb);
1905 sock_put(sk);
1906
1907 /* a return value > 0 means to resubmit the input, but
1908 * it wants the return to be -protocol, or 0
1909 */
1910 if (ret > 0)
1911 return -ret;
1912 return 0;
1913 }
1914
1915 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1916 goto drop;
1917 nf_reset(skb);
1918
1919 /* No socket. Drop packet silently, if checksum is wrong */
1920 if (udp_lib_checksum_complete(skb))
1921 goto csum_error;
1922
1923 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1924 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1925
1926 /*
1927 * Hmm. We got an UDP packet to a port to which we
1928 * don't wanna listen. Ignore it.
1929 */
1930 kfree_skb(skb);
1931 return 0;
1932
1933 short_packet:
1934 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1935 proto == IPPROTO_UDPLITE ? "Lite" : "",
1936 &saddr, ntohs(uh->source),
1937 ulen, skb->len,
1938 &daddr, ntohs(uh->dest));
1939 goto drop;
1940
1941 csum_error:
1942 /*
1943 * RFC1122: OK. Discards the bad packet silently (as far as
1944 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1945 */
1946 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1947 proto == IPPROTO_UDPLITE ? "Lite" : "",
1948 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1949 ulen);
1950 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1951 drop:
1952 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1953 kfree_skb(skb);
1954 return 0;
1955 }
1956
1957 /* We can only early demux multicast if there is a single matching socket.
1958 * If more than one socket found returns NULL
1959 */
1960 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1961 __be16 loc_port, __be32 loc_addr,
1962 __be16 rmt_port, __be32 rmt_addr,
1963 int dif)
1964 {
1965 struct sock *sk, *result;
1966 struct hlist_nulls_node *node;
1967 unsigned short hnum = ntohs(loc_port);
1968 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1969 struct udp_hslot *hslot = &udp_table.hash[slot];
1970
1971 /* Do not bother scanning a too big list */
1972 if (hslot->count > 10)
1973 return NULL;
1974
1975 rcu_read_lock();
1976 begin:
1977 count = 0;
1978 result = NULL;
1979 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1980 if (__udp_is_mcast_sock(net, sk,
1981 loc_port, loc_addr,
1982 rmt_port, rmt_addr,
1983 dif, hnum)) {
1984 result = sk;
1985 ++count;
1986 }
1987 }
1988 /*
1989 * if the nulls value we got at the end of this lookup is
1990 * not the expected one, we must restart lookup.
1991 * We probably met an item that was moved to another chain.
1992 */
1993 if (get_nulls_value(node) != slot)
1994 goto begin;
1995
1996 if (result) {
1997 if (count != 1 ||
1998 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1999 result = NULL;
2000 else if (unlikely(!__udp_is_mcast_sock(net, result,
2001 loc_port, loc_addr,
2002 rmt_port, rmt_addr,
2003 dif, hnum))) {
2004 sock_put(result);
2005 result = NULL;
2006 }
2007 }
2008 rcu_read_unlock();
2009 return result;
2010 }
2011
2012 /* For unicast we should only early demux connected sockets or we can
2013 * break forwarding setups. The chains here can be long so only check
2014 * if the first socket is an exact match and if not move on.
2015 */
2016 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2017 __be16 loc_port, __be32 loc_addr,
2018 __be16 rmt_port, __be32 rmt_addr,
2019 int dif)
2020 {
2021 struct sock *sk, *result;
2022 struct hlist_nulls_node *node;
2023 unsigned short hnum = ntohs(loc_port);
2024 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2025 unsigned int slot2 = hash2 & udp_table.mask;
2026 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2027 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2028 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2029
2030 rcu_read_lock();
2031 result = NULL;
2032 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
2033 if (INET_MATCH(sk, net, acookie,
2034 rmt_addr, loc_addr, ports, dif))
2035 result = sk;
2036 /* Only check first socket in chain */
2037 break;
2038 }
2039
2040 if (result) {
2041 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
2042 result = NULL;
2043 else if (unlikely(!INET_MATCH(sk, net, acookie,
2044 rmt_addr, loc_addr,
2045 ports, dif))) {
2046 sock_put(result);
2047 result = NULL;
2048 }
2049 }
2050 rcu_read_unlock();
2051 return result;
2052 }
2053
2054 void udp_v4_early_demux(struct sk_buff *skb)
2055 {
2056 struct net *net = dev_net(skb->dev);
2057 const struct iphdr *iph;
2058 const struct udphdr *uh;
2059 struct sock *sk;
2060 struct dst_entry *dst;
2061 int dif = skb->dev->ifindex;
2062 int ours;
2063
2064 /* validate the packet */
2065 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2066 return;
2067
2068 iph = ip_hdr(skb);
2069 uh = udp_hdr(skb);
2070
2071 if (skb->pkt_type == PACKET_BROADCAST ||
2072 skb->pkt_type == PACKET_MULTICAST) {
2073 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2074
2075 if (!in_dev)
2076 return;
2077
2078 /* we are supposed to accept bcast packets */
2079 if (skb->pkt_type == PACKET_MULTICAST) {
2080 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2081 iph->protocol);
2082 if (!ours)
2083 return;
2084 }
2085
2086 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2087 uh->source, iph->saddr, dif);
2088 } else if (skb->pkt_type == PACKET_HOST) {
2089 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2090 uh->source, iph->saddr, dif);
2091 } else {
2092 return;
2093 }
2094
2095 if (!sk)
2096 return;
2097
2098 skb->sk = sk;
2099 skb->destructor = sock_efree;
2100 dst = READ_ONCE(sk->sk_rx_dst);
2101
2102 if (dst)
2103 dst = dst_check(dst, 0);
2104 if (dst) {
2105 /* DST_NOCACHE can not be used without taking a reference */
2106 if (dst->flags & DST_NOCACHE) {
2107 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2108 skb_dst_set(skb, dst);
2109 } else {
2110 skb_dst_set_noref(skb, dst);
2111 }
2112 }
2113 }
2114
2115 int udp_rcv(struct sk_buff *skb)
2116 {
2117 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2118 }
2119
2120 void udp_destroy_sock(struct sock *sk)
2121 {
2122 struct udp_sock *up = udp_sk(sk);
2123 bool slow = lock_sock_fast(sk);
2124 udp_flush_pending_frames(sk);
2125 unlock_sock_fast(sk, slow);
2126 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2127 void (*encap_destroy)(struct sock *sk);
2128 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2129 if (encap_destroy)
2130 encap_destroy(sk);
2131 }
2132 }
2133
2134 /*
2135 * Socket option code for UDP
2136 */
2137 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2138 char __user *optval, unsigned int optlen,
2139 int (*push_pending_frames)(struct sock *))
2140 {
2141 struct udp_sock *up = udp_sk(sk);
2142 int val, valbool;
2143 int err = 0;
2144 int is_udplite = IS_UDPLITE(sk);
2145
2146 if (optlen < sizeof(int))
2147 return -EINVAL;
2148
2149 if (get_user(val, (int __user *)optval))
2150 return -EFAULT;
2151
2152 valbool = val ? 1 : 0;
2153
2154 switch (optname) {
2155 case UDP_CORK:
2156 if (val != 0) {
2157 up->corkflag = 1;
2158 } else {
2159 up->corkflag = 0;
2160 lock_sock(sk);
2161 push_pending_frames(sk);
2162 release_sock(sk);
2163 }
2164 break;
2165
2166 case UDP_ENCAP:
2167 switch (val) {
2168 case 0:
2169 case UDP_ENCAP_ESPINUDP:
2170 case UDP_ENCAP_ESPINUDP_NON_IKE:
2171 up->encap_rcv = xfrm4_udp_encap_rcv;
2172 /* FALLTHROUGH */
2173 case UDP_ENCAP_L2TPINUDP:
2174 up->encap_type = val;
2175 udp_encap_enable();
2176 break;
2177 default:
2178 err = -ENOPROTOOPT;
2179 break;
2180 }
2181 break;
2182
2183 case UDP_NO_CHECK6_TX:
2184 up->no_check6_tx = valbool;
2185 break;
2186
2187 case UDP_NO_CHECK6_RX:
2188 up->no_check6_rx = valbool;
2189 break;
2190
2191 /*
2192 * UDP-Lite's partial checksum coverage (RFC 3828).
2193 */
2194 /* The sender sets actual checksum coverage length via this option.
2195 * The case coverage > packet length is handled by send module. */
2196 case UDPLITE_SEND_CSCOV:
2197 if (!is_udplite) /* Disable the option on UDP sockets */
2198 return -ENOPROTOOPT;
2199 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2200 val = 8;
2201 else if (val > USHRT_MAX)
2202 val = USHRT_MAX;
2203 up->pcslen = val;
2204 up->pcflag |= UDPLITE_SEND_CC;
2205 break;
2206
2207 /* The receiver specifies a minimum checksum coverage value. To make
2208 * sense, this should be set to at least 8 (as done below). If zero is
2209 * used, this again means full checksum coverage. */
2210 case UDPLITE_RECV_CSCOV:
2211 if (!is_udplite) /* Disable the option on UDP sockets */
2212 return -ENOPROTOOPT;
2213 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2214 val = 8;
2215 else if (val > USHRT_MAX)
2216 val = USHRT_MAX;
2217 up->pcrlen = val;
2218 up->pcflag |= UDPLITE_RECV_CC;
2219 break;
2220
2221 default:
2222 err = -ENOPROTOOPT;
2223 break;
2224 }
2225
2226 return err;
2227 }
2228 EXPORT_SYMBOL(udp_lib_setsockopt);
2229
2230 int udp_setsockopt(struct sock *sk, int level, int optname,
2231 char __user *optval, unsigned int optlen)
2232 {
2233 if (level == SOL_UDP || level == SOL_UDPLITE)
2234 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2235 udp_push_pending_frames);
2236 return ip_setsockopt(sk, level, optname, optval, optlen);
2237 }
2238
2239 #ifdef CONFIG_COMPAT
2240 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2241 char __user *optval, unsigned int optlen)
2242 {
2243 if (level == SOL_UDP || level == SOL_UDPLITE)
2244 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2245 udp_push_pending_frames);
2246 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2247 }
2248 #endif
2249
2250 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2251 char __user *optval, int __user *optlen)
2252 {
2253 struct udp_sock *up = udp_sk(sk);
2254 int val, len;
2255
2256 if (get_user(len, optlen))
2257 return -EFAULT;
2258
2259 len = min_t(unsigned int, len, sizeof(int));
2260
2261 if (len < 0)
2262 return -EINVAL;
2263
2264 switch (optname) {
2265 case UDP_CORK:
2266 val = up->corkflag;
2267 break;
2268
2269 case UDP_ENCAP:
2270 val = up->encap_type;
2271 break;
2272
2273 case UDP_NO_CHECK6_TX:
2274 val = up->no_check6_tx;
2275 break;
2276
2277 case UDP_NO_CHECK6_RX:
2278 val = up->no_check6_rx;
2279 break;
2280
2281 /* The following two cannot be changed on UDP sockets, the return is
2282 * always 0 (which corresponds to the full checksum coverage of UDP). */
2283 case UDPLITE_SEND_CSCOV:
2284 val = up->pcslen;
2285 break;
2286
2287 case UDPLITE_RECV_CSCOV:
2288 val = up->pcrlen;
2289 break;
2290
2291 default:
2292 return -ENOPROTOOPT;
2293 }
2294
2295 if (put_user(len, optlen))
2296 return -EFAULT;
2297 if (copy_to_user(optval, &val, len))
2298 return -EFAULT;
2299 return 0;
2300 }
2301 EXPORT_SYMBOL(udp_lib_getsockopt);
2302
2303 int udp_getsockopt(struct sock *sk, int level, int optname,
2304 char __user *optval, int __user *optlen)
2305 {
2306 if (level == SOL_UDP || level == SOL_UDPLITE)
2307 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2308 return ip_getsockopt(sk, level, optname, optval, optlen);
2309 }
2310
2311 #ifdef CONFIG_COMPAT
2312 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2313 char __user *optval, int __user *optlen)
2314 {
2315 if (level == SOL_UDP || level == SOL_UDPLITE)
2316 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2317 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2318 }
2319 #endif
2320 /**
2321 * udp_poll - wait for a UDP event.
2322 * @file - file struct
2323 * @sock - socket
2324 * @wait - poll table
2325 *
2326 * This is same as datagram poll, except for the special case of
2327 * blocking sockets. If application is using a blocking fd
2328 * and a packet with checksum error is in the queue;
2329 * then it could get return from select indicating data available
2330 * but then block when reading it. Add special case code
2331 * to work around these arguably broken applications.
2332 */
2333 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2334 {
2335 unsigned int mask = datagram_poll(file, sock, wait);
2336 struct sock *sk = sock->sk;
2337
2338 sock_rps_record_flow(sk);
2339
2340 /* Check for false positives due to checksum errors */
2341 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2342 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2343 mask &= ~(POLLIN | POLLRDNORM);
2344
2345 return mask;
2346
2347 }
2348 EXPORT_SYMBOL(udp_poll);
2349
2350 struct proto udp_prot = {
2351 .name = "UDP",
2352 .owner = THIS_MODULE,
2353 .close = udp_lib_close,
2354 .connect = ip4_datagram_connect,
2355 .disconnect = udp_disconnect,
2356 .ioctl = udp_ioctl,
2357 .destroy = udp_destroy_sock,
2358 .setsockopt = udp_setsockopt,
2359 .getsockopt = udp_getsockopt,
2360 .sendmsg = udp_sendmsg,
2361 .recvmsg = udp_recvmsg,
2362 .sendpage = udp_sendpage,
2363 .backlog_rcv = __udp_queue_rcv_skb,
2364 .release_cb = ip4_datagram_release_cb,
2365 .hash = udp_lib_hash,
2366 .unhash = udp_lib_unhash,
2367 .rehash = udp_v4_rehash,
2368 .get_port = udp_v4_get_port,
2369 .memory_allocated = &udp_memory_allocated,
2370 .sysctl_mem = sysctl_udp_mem,
2371 .sysctl_wmem = &sysctl_udp_wmem_min,
2372 .sysctl_rmem = &sysctl_udp_rmem_min,
2373 .obj_size = sizeof(struct udp_sock),
2374 .slab_flags = SLAB_DESTROY_BY_RCU,
2375 .h.udp_table = &udp_table,
2376 #ifdef CONFIG_COMPAT
2377 .compat_setsockopt = compat_udp_setsockopt,
2378 .compat_getsockopt = compat_udp_getsockopt,
2379 #endif
2380 .clear_sk = sk_prot_clear_portaddr_nulls,
2381 };
2382 EXPORT_SYMBOL(udp_prot);
2383
2384 /* ------------------------------------------------------------------------ */
2385 #ifdef CONFIG_PROC_FS
2386
2387 static struct sock *udp_get_first(struct seq_file *seq, int start)
2388 {
2389 struct sock *sk;
2390 struct udp_iter_state *state = seq->private;
2391 struct net *net = seq_file_net(seq);
2392
2393 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2394 ++state->bucket) {
2395 struct hlist_nulls_node *node;
2396 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2397
2398 if (hlist_nulls_empty(&hslot->head))
2399 continue;
2400
2401 spin_lock_bh(&hslot->lock);
2402 sk_nulls_for_each(sk, node, &hslot->head) {
2403 if (!net_eq(sock_net(sk), net))
2404 continue;
2405 if (sk->sk_family == state->family)
2406 goto found;
2407 }
2408 spin_unlock_bh(&hslot->lock);
2409 }
2410 sk = NULL;
2411 found:
2412 return sk;
2413 }
2414
2415 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2416 {
2417 struct udp_iter_state *state = seq->private;
2418 struct net *net = seq_file_net(seq);
2419
2420 do {
2421 sk = sk_nulls_next(sk);
2422 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2423
2424 if (!sk) {
2425 if (state->bucket <= state->udp_table->mask)
2426 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2427 return udp_get_first(seq, state->bucket + 1);
2428 }
2429 return sk;
2430 }
2431
2432 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2433 {
2434 struct sock *sk = udp_get_first(seq, 0);
2435
2436 if (sk)
2437 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2438 --pos;
2439 return pos ? NULL : sk;
2440 }
2441
2442 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2443 {
2444 struct udp_iter_state *state = seq->private;
2445 state->bucket = MAX_UDP_PORTS;
2446
2447 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2448 }
2449
2450 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2451 {
2452 struct sock *sk;
2453
2454 if (v == SEQ_START_TOKEN)
2455 sk = udp_get_idx(seq, 0);
2456 else
2457 sk = udp_get_next(seq, v);
2458
2459 ++*pos;
2460 return sk;
2461 }
2462
2463 static void udp_seq_stop(struct seq_file *seq, void *v)
2464 {
2465 struct udp_iter_state *state = seq->private;
2466
2467 if (state->bucket <= state->udp_table->mask)
2468 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2469 }
2470
2471 int udp_seq_open(struct inode *inode, struct file *file)
2472 {
2473 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2474 struct udp_iter_state *s;
2475 int err;
2476
2477 err = seq_open_net(inode, file, &afinfo->seq_ops,
2478 sizeof(struct udp_iter_state));
2479 if (err < 0)
2480 return err;
2481
2482 s = ((struct seq_file *)file->private_data)->private;
2483 s->family = afinfo->family;
2484 s->udp_table = afinfo->udp_table;
2485 return err;
2486 }
2487 EXPORT_SYMBOL(udp_seq_open);
2488
2489 /* ------------------------------------------------------------------------ */
2490 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2491 {
2492 struct proc_dir_entry *p;
2493 int rc = 0;
2494
2495 afinfo->seq_ops.start = udp_seq_start;
2496 afinfo->seq_ops.next = udp_seq_next;
2497 afinfo->seq_ops.stop = udp_seq_stop;
2498
2499 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2500 afinfo->seq_fops, afinfo);
2501 if (!p)
2502 rc = -ENOMEM;
2503 return rc;
2504 }
2505 EXPORT_SYMBOL(udp_proc_register);
2506
2507 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2508 {
2509 remove_proc_entry(afinfo->name, net->proc_net);
2510 }
2511 EXPORT_SYMBOL(udp_proc_unregister);
2512
2513 /* ------------------------------------------------------------------------ */
2514 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2515 int bucket)
2516 {
2517 struct inet_sock *inet = inet_sk(sp);
2518 __be32 dest = inet->inet_daddr;
2519 __be32 src = inet->inet_rcv_saddr;
2520 __u16 destp = ntohs(inet->inet_dport);
2521 __u16 srcp = ntohs(inet->inet_sport);
2522
2523 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2524 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2525 bucket, src, srcp, dest, destp, sp->sk_state,
2526 sk_wmem_alloc_get(sp),
2527 sk_rmem_alloc_get(sp),
2528 0, 0L, 0,
2529 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2530 0, sock_i_ino(sp),
2531 atomic_read(&sp->sk_refcnt), sp,
2532 atomic_read(&sp->sk_drops));
2533 }
2534
2535 int udp4_seq_show(struct seq_file *seq, void *v)
2536 {
2537 seq_setwidth(seq, 127);
2538 if (v == SEQ_START_TOKEN)
2539 seq_puts(seq, " sl local_address rem_address st tx_queue "
2540 "rx_queue tr tm->when retrnsmt uid timeout "
2541 "inode ref pointer drops");
2542 else {
2543 struct udp_iter_state *state = seq->private;
2544
2545 udp4_format_sock(v, seq, state->bucket);
2546 }
2547 seq_pad(seq, '\n');
2548 return 0;
2549 }
2550
2551 static const struct file_operations udp_afinfo_seq_fops = {
2552 .owner = THIS_MODULE,
2553 .open = udp_seq_open,
2554 .read = seq_read,
2555 .llseek = seq_lseek,
2556 .release = seq_release_net
2557 };
2558
2559 /* ------------------------------------------------------------------------ */
2560 static struct udp_seq_afinfo udp4_seq_afinfo = {
2561 .name = "udp",
2562 .family = AF_INET,
2563 .udp_table = &udp_table,
2564 .seq_fops = &udp_afinfo_seq_fops,
2565 .seq_ops = {
2566 .show = udp4_seq_show,
2567 },
2568 };
2569
2570 static int __net_init udp4_proc_init_net(struct net *net)
2571 {
2572 return udp_proc_register(net, &udp4_seq_afinfo);
2573 }
2574
2575 static void __net_exit udp4_proc_exit_net(struct net *net)
2576 {
2577 udp_proc_unregister(net, &udp4_seq_afinfo);
2578 }
2579
2580 static struct pernet_operations udp4_net_ops = {
2581 .init = udp4_proc_init_net,
2582 .exit = udp4_proc_exit_net,
2583 };
2584
2585 int __init udp4_proc_init(void)
2586 {
2587 return register_pernet_subsys(&udp4_net_ops);
2588 }
2589
2590 void udp4_proc_exit(void)
2591 {
2592 unregister_pernet_subsys(&udp4_net_ops);
2593 }
2594 #endif /* CONFIG_PROC_FS */
2595
2596 static __initdata unsigned long uhash_entries;
2597 static int __init set_uhash_entries(char *str)
2598 {
2599 ssize_t ret;
2600
2601 if (!str)
2602 return 0;
2603
2604 ret = kstrtoul(str, 0, &uhash_entries);
2605 if (ret)
2606 return 0;
2607
2608 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2609 uhash_entries = UDP_HTABLE_SIZE_MIN;
2610 return 1;
2611 }
2612 __setup("uhash_entries=", set_uhash_entries);
2613
2614 void __init udp_table_init(struct udp_table *table, const char *name)
2615 {
2616 unsigned int i;
2617
2618 table->hash = alloc_large_system_hash(name,
2619 2 * sizeof(struct udp_hslot),
2620 uhash_entries,
2621 21, /* one slot per 2 MB */
2622 0,
2623 &table->log,
2624 &table->mask,
2625 UDP_HTABLE_SIZE_MIN,
2626 64 * 1024);
2627
2628 table->hash2 = table->hash + (table->mask + 1);
2629 for (i = 0; i <= table->mask; i++) {
2630 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2631 table->hash[i].count = 0;
2632 spin_lock_init(&table->hash[i].lock);
2633 }
2634 for (i = 0; i <= table->mask; i++) {
2635 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2636 table->hash2[i].count = 0;
2637 spin_lock_init(&table->hash2[i].lock);
2638 }
2639 }
2640
2641 u32 udp_flow_hashrnd(void)
2642 {
2643 static u32 hashrnd __read_mostly;
2644
2645 net_get_random_once(&hashrnd, sizeof(hashrnd));
2646
2647 return hashrnd;
2648 }
2649 EXPORT_SYMBOL(udp_flow_hashrnd);
2650
2651 void __init udp_init(void)
2652 {
2653 unsigned long limit;
2654
2655 udp_table_init(&udp_table, "UDP");
2656 limit = nr_free_buffer_pages() / 8;
2657 limit = max(limit, 128UL);
2658 sysctl_udp_mem[0] = limit / 4 * 3;
2659 sysctl_udp_mem[1] = limit;
2660 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2661
2662 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2663 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2664 }
This page took 0.116817 seconds and 5 git commands to generate.