net: Add and use skb_copy_datagram_msg() helper.
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/netdevice.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
119
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
125
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
128
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
131
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 const struct udp_hslot *hslot,
137 unsigned long *bitmap,
138 struct sock *sk,
139 int (*saddr_comp)(const struct sock *sk1,
140 const struct sock *sk2),
141 unsigned int log)
142 {
143 struct sock *sk2;
144 struct hlist_nulls_node *node;
145 kuid_t uid = sock_i_uid(sk);
146
147 sk_nulls_for_each(sk2, node, &hslot->head)
148 if (net_eq(sock_net(sk2), net) &&
149 sk2 != sk &&
150 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 (!sk2->sk_reuse || !sk->sk_reuse) &&
152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 !uid_eq(uid, sock_i_uid(sk2))) &&
156 (*saddr_comp)(sk, sk2)) {
157 if (bitmap)
158 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
159 bitmap);
160 else
161 return 1;
162 }
163 return 0;
164 }
165
166 /*
167 * Note: we still hold spinlock of primary hash chain, so no other writer
168 * can insert/delete a socket with local_port == num
169 */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 struct udp_hslot *hslot2,
172 struct sock *sk,
173 int (*saddr_comp)(const struct sock *sk1,
174 const struct sock *sk2))
175 {
176 struct sock *sk2;
177 struct hlist_nulls_node *node;
178 kuid_t uid = sock_i_uid(sk);
179 int res = 0;
180
181 spin_lock(&hslot2->lock);
182 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
183 if (net_eq(sock_net(sk2), net) &&
184 sk2 != sk &&
185 (udp_sk(sk2)->udp_port_hash == num) &&
186 (!sk2->sk_reuse || !sk->sk_reuse) &&
187 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 !uid_eq(uid, sock_i_uid(sk2))) &&
191 (*saddr_comp)(sk, sk2)) {
192 res = 1;
193 break;
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
199 /**
200 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
201 *
202 * @sk: socket struct in question
203 * @snum: port number to look up
204 * @saddr_comp: AF-dependent comparison of bound local IP addresses
205 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206 * with NULL address
207 */
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 int (*saddr_comp)(const struct sock *sk1,
210 const struct sock *sk2),
211 unsigned int hash2_nulladdr)
212 {
213 struct udp_hslot *hslot, *hslot2;
214 struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 int error = 1;
216 struct net *net = sock_net(sk);
217
218 if (!snum) {
219 int low, high, remaining;
220 unsigned int rand;
221 unsigned short first, last;
222 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
223
224 inet_get_local_port_range(net, &low, &high);
225 remaining = (high - low) + 1;
226
227 rand = prandom_u32();
228 first = reciprocal_scale(rand, remaining) + low;
229 /*
230 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 */
232 rand = (rand | 1) * (udptable->mask + 1);
233 last = first + udptable->mask + 1;
234 do {
235 hslot = udp_hashslot(udptable, net, first);
236 bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 spin_lock_bh(&hslot->lock);
238 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 saddr_comp, udptable->log);
240
241 snum = first;
242 /*
243 * Iterate on all possible values of snum for this hash.
244 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 * give us randomization and full range coverage.
246 */
247 do {
248 if (low <= snum && snum <= high &&
249 !test_bit(snum >> udptable->log, bitmap) &&
250 !inet_is_local_reserved_port(net, snum))
251 goto found;
252 snum += rand;
253 } while (snum != first);
254 spin_unlock_bh(&hslot->lock);
255 } while (++first != last);
256 goto fail;
257 } else {
258 hslot = udp_hashslot(udptable, net, snum);
259 spin_lock_bh(&hslot->lock);
260 if (hslot->count > 10) {
261 int exist;
262 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
263
264 slot2 &= udptable->mask;
265 hash2_nulladdr &= udptable->mask;
266
267 hslot2 = udp_hashslot2(udptable, slot2);
268 if (hslot->count < hslot2->count)
269 goto scan_primary_hash;
270
271 exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 sk, saddr_comp);
273 if (!exist && (hash2_nulladdr != slot2)) {
274 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 sk, saddr_comp);
277 }
278 if (exist)
279 goto fail_unlock;
280 else
281 goto found;
282 }
283 scan_primary_hash:
284 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 saddr_comp, 0))
286 goto fail_unlock;
287 }
288 found:
289 inet_sk(sk)->inet_num = snum;
290 udp_sk(sk)->udp_port_hash = snum;
291 udp_sk(sk)->udp_portaddr_hash ^= snum;
292 if (sk_unhashed(sk)) {
293 sk_nulls_add_node_rcu(sk, &hslot->head);
294 hslot->count++;
295 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
296
297 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 spin_lock(&hslot2->lock);
299 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 &hslot2->head);
301 hslot2->count++;
302 spin_unlock(&hslot2->lock);
303 }
304 error = 0;
305 fail_unlock:
306 spin_unlock_bh(&hslot->lock);
307 fail:
308 return error;
309 }
310 EXPORT_SYMBOL(udp_lib_get_port);
311
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
313 {
314 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
315
316 return (!ipv6_only_sock(sk2) &&
317 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
319 }
320
321 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
322 unsigned int port)
323 {
324 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
325 }
326
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
328 {
329 unsigned int hash2_nulladdr =
330 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 unsigned int hash2_partial =
332 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
333
334 /* precompute partial secondary hash */
335 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
337 }
338
339 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
340 unsigned short hnum,
341 __be16 sport, __be32 daddr, __be16 dport, int dif)
342 {
343 int score = -1;
344
345 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
346 !ipv6_only_sock(sk)) {
347 struct inet_sock *inet = inet_sk(sk);
348
349 score = (sk->sk_family == PF_INET ? 2 : 1);
350 if (inet->inet_rcv_saddr) {
351 if (inet->inet_rcv_saddr != daddr)
352 return -1;
353 score += 4;
354 }
355 if (inet->inet_daddr) {
356 if (inet->inet_daddr != saddr)
357 return -1;
358 score += 4;
359 }
360 if (inet->inet_dport) {
361 if (inet->inet_dport != sport)
362 return -1;
363 score += 4;
364 }
365 if (sk->sk_bound_dev_if) {
366 if (sk->sk_bound_dev_if != dif)
367 return -1;
368 score += 4;
369 }
370 }
371 return score;
372 }
373
374 /*
375 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
376 */
377 static inline int compute_score2(struct sock *sk, struct net *net,
378 __be32 saddr, __be16 sport,
379 __be32 daddr, unsigned int hnum, int dif)
380 {
381 int score = -1;
382
383 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
384 struct inet_sock *inet = inet_sk(sk);
385
386 if (inet->inet_rcv_saddr != daddr)
387 return -1;
388 if (inet->inet_num != hnum)
389 return -1;
390
391 score = (sk->sk_family == PF_INET ? 2 : 1);
392 if (inet->inet_daddr) {
393 if (inet->inet_daddr != saddr)
394 return -1;
395 score += 4;
396 }
397 if (inet->inet_dport) {
398 if (inet->inet_dport != sport)
399 return -1;
400 score += 4;
401 }
402 if (sk->sk_bound_dev_if) {
403 if (sk->sk_bound_dev_if != dif)
404 return -1;
405 score += 4;
406 }
407 }
408 return score;
409 }
410
411 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
412 const __u16 lport, const __be32 faddr,
413 const __be16 fport)
414 {
415 static u32 udp_ehash_secret __read_mostly;
416
417 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
418
419 return __inet_ehashfn(laddr, lport, faddr, fport,
420 udp_ehash_secret + net_hash_mix(net));
421 }
422
423
424 /* called with read_rcu_lock() */
425 static struct sock *udp4_lib_lookup2(struct net *net,
426 __be32 saddr, __be16 sport,
427 __be32 daddr, unsigned int hnum, int dif,
428 struct udp_hslot *hslot2, unsigned int slot2)
429 {
430 struct sock *sk, *result;
431 struct hlist_nulls_node *node;
432 int score, badness, matches = 0, reuseport = 0;
433 u32 hash = 0;
434
435 begin:
436 result = NULL;
437 badness = 0;
438 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
439 score = compute_score2(sk, net, saddr, sport,
440 daddr, hnum, dif);
441 if (score > badness) {
442 result = sk;
443 badness = score;
444 reuseport = sk->sk_reuseport;
445 if (reuseport) {
446 hash = udp_ehashfn(net, daddr, hnum,
447 saddr, sport);
448 matches = 1;
449 }
450 } else if (score == badness && reuseport) {
451 matches++;
452 if (reciprocal_scale(hash, matches) == 0)
453 result = sk;
454 hash = next_pseudo_random32(hash);
455 }
456 }
457 /*
458 * if the nulls value we got at the end of this lookup is
459 * not the expected one, we must restart lookup.
460 * We probably met an item that was moved to another chain.
461 */
462 if (get_nulls_value(node) != slot2)
463 goto begin;
464 if (result) {
465 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
466 result = NULL;
467 else if (unlikely(compute_score2(result, net, saddr, sport,
468 daddr, hnum, dif) < badness)) {
469 sock_put(result);
470 goto begin;
471 }
472 }
473 return result;
474 }
475
476 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
477 * harder than this. -DaveM
478 */
479 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
480 __be16 sport, __be32 daddr, __be16 dport,
481 int dif, struct udp_table *udptable)
482 {
483 struct sock *sk, *result;
484 struct hlist_nulls_node *node;
485 unsigned short hnum = ntohs(dport);
486 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
487 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
488 int score, badness, matches = 0, reuseport = 0;
489 u32 hash = 0;
490
491 rcu_read_lock();
492 if (hslot->count > 10) {
493 hash2 = udp4_portaddr_hash(net, daddr, hnum);
494 slot2 = hash2 & udptable->mask;
495 hslot2 = &udptable->hash2[slot2];
496 if (hslot->count < hslot2->count)
497 goto begin;
498
499 result = udp4_lib_lookup2(net, saddr, sport,
500 daddr, hnum, dif,
501 hslot2, slot2);
502 if (!result) {
503 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
504 slot2 = hash2 & udptable->mask;
505 hslot2 = &udptable->hash2[slot2];
506 if (hslot->count < hslot2->count)
507 goto begin;
508
509 result = udp4_lib_lookup2(net, saddr, sport,
510 htonl(INADDR_ANY), hnum, dif,
511 hslot2, slot2);
512 }
513 rcu_read_unlock();
514 return result;
515 }
516 begin:
517 result = NULL;
518 badness = 0;
519 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
520 score = compute_score(sk, net, saddr, hnum, sport,
521 daddr, dport, dif);
522 if (score > badness) {
523 result = sk;
524 badness = score;
525 reuseport = sk->sk_reuseport;
526 if (reuseport) {
527 hash = udp_ehashfn(net, daddr, hnum,
528 saddr, sport);
529 matches = 1;
530 }
531 } else if (score == badness && reuseport) {
532 matches++;
533 if (reciprocal_scale(hash, matches) == 0)
534 result = sk;
535 hash = next_pseudo_random32(hash);
536 }
537 }
538 /*
539 * if the nulls value we got at the end of this lookup is
540 * not the expected one, we must restart lookup.
541 * We probably met an item that was moved to another chain.
542 */
543 if (get_nulls_value(node) != slot)
544 goto begin;
545
546 if (result) {
547 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
548 result = NULL;
549 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
550 daddr, dport, dif) < badness)) {
551 sock_put(result);
552 goto begin;
553 }
554 }
555 rcu_read_unlock();
556 return result;
557 }
558 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
559
560 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
561 __be16 sport, __be16 dport,
562 struct udp_table *udptable)
563 {
564 const struct iphdr *iph = ip_hdr(skb);
565
566 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
567 iph->daddr, dport, inet_iif(skb),
568 udptable);
569 }
570
571 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
572 __be32 daddr, __be16 dport, int dif)
573 {
574 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
575 }
576 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
577
578 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
579 __be16 loc_port, __be32 loc_addr,
580 __be16 rmt_port, __be32 rmt_addr,
581 int dif, unsigned short hnum)
582 {
583 struct inet_sock *inet = inet_sk(sk);
584
585 if (!net_eq(sock_net(sk), net) ||
586 udp_sk(sk)->udp_port_hash != hnum ||
587 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
588 (inet->inet_dport != rmt_port && inet->inet_dport) ||
589 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
590 ipv6_only_sock(sk) ||
591 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
592 return false;
593 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
594 return false;
595 return true;
596 }
597
598 /*
599 * This routine is called by the ICMP module when it gets some
600 * sort of error condition. If err < 0 then the socket should
601 * be closed and the error returned to the user. If err > 0
602 * it's just the icmp type << 8 | icmp code.
603 * Header points to the ip header of the error packet. We move
604 * on past this. Then (as it used to claim before adjustment)
605 * header points to the first 8 bytes of the udp header. We need
606 * to find the appropriate port.
607 */
608
609 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
610 {
611 struct inet_sock *inet;
612 const struct iphdr *iph = (const struct iphdr *)skb->data;
613 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
614 const int type = icmp_hdr(skb)->type;
615 const int code = icmp_hdr(skb)->code;
616 struct sock *sk;
617 int harderr;
618 int err;
619 struct net *net = dev_net(skb->dev);
620
621 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
622 iph->saddr, uh->source, skb->dev->ifindex, udptable);
623 if (sk == NULL) {
624 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
625 return; /* No socket for error */
626 }
627
628 err = 0;
629 harderr = 0;
630 inet = inet_sk(sk);
631
632 switch (type) {
633 default:
634 case ICMP_TIME_EXCEEDED:
635 err = EHOSTUNREACH;
636 break;
637 case ICMP_SOURCE_QUENCH:
638 goto out;
639 case ICMP_PARAMETERPROB:
640 err = EPROTO;
641 harderr = 1;
642 break;
643 case ICMP_DEST_UNREACH:
644 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
645 ipv4_sk_update_pmtu(skb, sk, info);
646 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
647 err = EMSGSIZE;
648 harderr = 1;
649 break;
650 }
651 goto out;
652 }
653 err = EHOSTUNREACH;
654 if (code <= NR_ICMP_UNREACH) {
655 harderr = icmp_err_convert[code].fatal;
656 err = icmp_err_convert[code].errno;
657 }
658 break;
659 case ICMP_REDIRECT:
660 ipv4_sk_redirect(skb, sk);
661 goto out;
662 }
663
664 /*
665 * RFC1122: OK. Passes ICMP errors back to application, as per
666 * 4.1.3.3.
667 */
668 if (!inet->recverr) {
669 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
670 goto out;
671 } else
672 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
673
674 sk->sk_err = err;
675 sk->sk_error_report(sk);
676 out:
677 sock_put(sk);
678 }
679
680 void udp_err(struct sk_buff *skb, u32 info)
681 {
682 __udp4_lib_err(skb, info, &udp_table);
683 }
684
685 /*
686 * Throw away all pending data and cancel the corking. Socket is locked.
687 */
688 void udp_flush_pending_frames(struct sock *sk)
689 {
690 struct udp_sock *up = udp_sk(sk);
691
692 if (up->pending) {
693 up->len = 0;
694 up->pending = 0;
695 ip_flush_pending_frames(sk);
696 }
697 }
698 EXPORT_SYMBOL(udp_flush_pending_frames);
699
700 /**
701 * udp4_hwcsum - handle outgoing HW checksumming
702 * @skb: sk_buff containing the filled-in UDP header
703 * (checksum field must be zeroed out)
704 * @src: source IP address
705 * @dst: destination IP address
706 */
707 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
708 {
709 struct udphdr *uh = udp_hdr(skb);
710 int offset = skb_transport_offset(skb);
711 int len = skb->len - offset;
712 int hlen = len;
713 __wsum csum = 0;
714
715 if (!skb_has_frag_list(skb)) {
716 /*
717 * Only one fragment on the socket.
718 */
719 skb->csum_start = skb_transport_header(skb) - skb->head;
720 skb->csum_offset = offsetof(struct udphdr, check);
721 uh->check = ~csum_tcpudp_magic(src, dst, len,
722 IPPROTO_UDP, 0);
723 } else {
724 struct sk_buff *frags;
725
726 /*
727 * HW-checksum won't work as there are two or more
728 * fragments on the socket so that all csums of sk_buffs
729 * should be together
730 */
731 skb_walk_frags(skb, frags) {
732 csum = csum_add(csum, frags->csum);
733 hlen -= frags->len;
734 }
735
736 csum = skb_checksum(skb, offset, hlen, csum);
737 skb->ip_summed = CHECKSUM_NONE;
738
739 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
740 if (uh->check == 0)
741 uh->check = CSUM_MANGLED_0;
742 }
743 }
744 EXPORT_SYMBOL_GPL(udp4_hwcsum);
745
746 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
747 * for the simple case like when setting the checksum for a UDP tunnel.
748 */
749 void udp_set_csum(bool nocheck, struct sk_buff *skb,
750 __be32 saddr, __be32 daddr, int len)
751 {
752 struct udphdr *uh = udp_hdr(skb);
753
754 if (nocheck)
755 uh->check = 0;
756 else if (skb_is_gso(skb))
757 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
758 else if (skb_dst(skb) && skb_dst(skb)->dev &&
759 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
760
761 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
762
763 skb->ip_summed = CHECKSUM_PARTIAL;
764 skb->csum_start = skb_transport_header(skb) - skb->head;
765 skb->csum_offset = offsetof(struct udphdr, check);
766 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
767 } else {
768 __wsum csum;
769
770 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
771
772 uh->check = 0;
773 csum = skb_checksum(skb, 0, len, 0);
774 uh->check = udp_v4_check(len, saddr, daddr, csum);
775 if (uh->check == 0)
776 uh->check = CSUM_MANGLED_0;
777
778 skb->ip_summed = CHECKSUM_UNNECESSARY;
779 }
780 }
781 EXPORT_SYMBOL(udp_set_csum);
782
783 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
784 {
785 struct sock *sk = skb->sk;
786 struct inet_sock *inet = inet_sk(sk);
787 struct udphdr *uh;
788 int err = 0;
789 int is_udplite = IS_UDPLITE(sk);
790 int offset = skb_transport_offset(skb);
791 int len = skb->len - offset;
792 __wsum csum = 0;
793
794 /*
795 * Create a UDP header
796 */
797 uh = udp_hdr(skb);
798 uh->source = inet->inet_sport;
799 uh->dest = fl4->fl4_dport;
800 uh->len = htons(len);
801 uh->check = 0;
802
803 if (is_udplite) /* UDP-Lite */
804 csum = udplite_csum(skb);
805
806 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
807
808 skb->ip_summed = CHECKSUM_NONE;
809 goto send;
810
811 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
812
813 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
814 goto send;
815
816 } else
817 csum = udp_csum(skb);
818
819 /* add protocol-dependent pseudo-header */
820 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
821 sk->sk_protocol, csum);
822 if (uh->check == 0)
823 uh->check = CSUM_MANGLED_0;
824
825 send:
826 err = ip_send_skb(sock_net(sk), skb);
827 if (err) {
828 if (err == -ENOBUFS && !inet->recverr) {
829 UDP_INC_STATS_USER(sock_net(sk),
830 UDP_MIB_SNDBUFERRORS, is_udplite);
831 err = 0;
832 }
833 } else
834 UDP_INC_STATS_USER(sock_net(sk),
835 UDP_MIB_OUTDATAGRAMS, is_udplite);
836 return err;
837 }
838
839 /*
840 * Push out all pending data as one UDP datagram. Socket is locked.
841 */
842 int udp_push_pending_frames(struct sock *sk)
843 {
844 struct udp_sock *up = udp_sk(sk);
845 struct inet_sock *inet = inet_sk(sk);
846 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
847 struct sk_buff *skb;
848 int err = 0;
849
850 skb = ip_finish_skb(sk, fl4);
851 if (!skb)
852 goto out;
853
854 err = udp_send_skb(skb, fl4);
855
856 out:
857 up->len = 0;
858 up->pending = 0;
859 return err;
860 }
861 EXPORT_SYMBOL(udp_push_pending_frames);
862
863 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
864 size_t len)
865 {
866 struct inet_sock *inet = inet_sk(sk);
867 struct udp_sock *up = udp_sk(sk);
868 struct flowi4 fl4_stack;
869 struct flowi4 *fl4;
870 int ulen = len;
871 struct ipcm_cookie ipc;
872 struct rtable *rt = NULL;
873 int free = 0;
874 int connected = 0;
875 __be32 daddr, faddr, saddr;
876 __be16 dport;
877 u8 tos;
878 int err, is_udplite = IS_UDPLITE(sk);
879 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
880 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
881 struct sk_buff *skb;
882 struct ip_options_data opt_copy;
883
884 if (len > 0xFFFF)
885 return -EMSGSIZE;
886
887 /*
888 * Check the flags.
889 */
890
891 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
892 return -EOPNOTSUPP;
893
894 ipc.opt = NULL;
895 ipc.tx_flags = 0;
896 ipc.ttl = 0;
897 ipc.tos = -1;
898
899 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
900
901 fl4 = &inet->cork.fl.u.ip4;
902 if (up->pending) {
903 /*
904 * There are pending frames.
905 * The socket lock must be held while it's corked.
906 */
907 lock_sock(sk);
908 if (likely(up->pending)) {
909 if (unlikely(up->pending != AF_INET)) {
910 release_sock(sk);
911 return -EINVAL;
912 }
913 goto do_append_data;
914 }
915 release_sock(sk);
916 }
917 ulen += sizeof(struct udphdr);
918
919 /*
920 * Get and verify the address.
921 */
922 if (msg->msg_name) {
923 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
924 if (msg->msg_namelen < sizeof(*usin))
925 return -EINVAL;
926 if (usin->sin_family != AF_INET) {
927 if (usin->sin_family != AF_UNSPEC)
928 return -EAFNOSUPPORT;
929 }
930
931 daddr = usin->sin_addr.s_addr;
932 dport = usin->sin_port;
933 if (dport == 0)
934 return -EINVAL;
935 } else {
936 if (sk->sk_state != TCP_ESTABLISHED)
937 return -EDESTADDRREQ;
938 daddr = inet->inet_daddr;
939 dport = inet->inet_dport;
940 /* Open fast path for connected socket.
941 Route will not be used, if at least one option is set.
942 */
943 connected = 1;
944 }
945 ipc.addr = inet->inet_saddr;
946
947 ipc.oif = sk->sk_bound_dev_if;
948
949 sock_tx_timestamp(sk, &ipc.tx_flags);
950
951 if (msg->msg_controllen) {
952 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
953 sk->sk_family == AF_INET6);
954 if (err)
955 return err;
956 if (ipc.opt)
957 free = 1;
958 connected = 0;
959 }
960 if (!ipc.opt) {
961 struct ip_options_rcu *inet_opt;
962
963 rcu_read_lock();
964 inet_opt = rcu_dereference(inet->inet_opt);
965 if (inet_opt) {
966 memcpy(&opt_copy, inet_opt,
967 sizeof(*inet_opt) + inet_opt->opt.optlen);
968 ipc.opt = &opt_copy.opt;
969 }
970 rcu_read_unlock();
971 }
972
973 saddr = ipc.addr;
974 ipc.addr = faddr = daddr;
975
976 if (ipc.opt && ipc.opt->opt.srr) {
977 if (!daddr)
978 return -EINVAL;
979 faddr = ipc.opt->opt.faddr;
980 connected = 0;
981 }
982 tos = get_rttos(&ipc, inet);
983 if (sock_flag(sk, SOCK_LOCALROUTE) ||
984 (msg->msg_flags & MSG_DONTROUTE) ||
985 (ipc.opt && ipc.opt->opt.is_strictroute)) {
986 tos |= RTO_ONLINK;
987 connected = 0;
988 }
989
990 if (ipv4_is_multicast(daddr)) {
991 if (!ipc.oif)
992 ipc.oif = inet->mc_index;
993 if (!saddr)
994 saddr = inet->mc_addr;
995 connected = 0;
996 } else if (!ipc.oif)
997 ipc.oif = inet->uc_index;
998
999 if (connected)
1000 rt = (struct rtable *)sk_dst_check(sk, 0);
1001
1002 if (rt == NULL) {
1003 struct net *net = sock_net(sk);
1004
1005 fl4 = &fl4_stack;
1006 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1007 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1008 inet_sk_flowi_flags(sk),
1009 faddr, saddr, dport, inet->inet_sport);
1010
1011 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1012 rt = ip_route_output_flow(net, fl4, sk);
1013 if (IS_ERR(rt)) {
1014 err = PTR_ERR(rt);
1015 rt = NULL;
1016 if (err == -ENETUNREACH)
1017 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1018 goto out;
1019 }
1020
1021 err = -EACCES;
1022 if ((rt->rt_flags & RTCF_BROADCAST) &&
1023 !sock_flag(sk, SOCK_BROADCAST))
1024 goto out;
1025 if (connected)
1026 sk_dst_set(sk, dst_clone(&rt->dst));
1027 }
1028
1029 if (msg->msg_flags&MSG_CONFIRM)
1030 goto do_confirm;
1031 back_from_confirm:
1032
1033 saddr = fl4->saddr;
1034 if (!ipc.addr)
1035 daddr = ipc.addr = fl4->daddr;
1036
1037 /* Lockless fast path for the non-corking case. */
1038 if (!corkreq) {
1039 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1040 sizeof(struct udphdr), &ipc, &rt,
1041 msg->msg_flags);
1042 err = PTR_ERR(skb);
1043 if (!IS_ERR_OR_NULL(skb))
1044 err = udp_send_skb(skb, fl4);
1045 goto out;
1046 }
1047
1048 lock_sock(sk);
1049 if (unlikely(up->pending)) {
1050 /* The socket is already corked while preparing it. */
1051 /* ... which is an evident application bug. --ANK */
1052 release_sock(sk);
1053
1054 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1055 err = -EINVAL;
1056 goto out;
1057 }
1058 /*
1059 * Now cork the socket to pend data.
1060 */
1061 fl4 = &inet->cork.fl.u.ip4;
1062 fl4->daddr = daddr;
1063 fl4->saddr = saddr;
1064 fl4->fl4_dport = dport;
1065 fl4->fl4_sport = inet->inet_sport;
1066 up->pending = AF_INET;
1067
1068 do_append_data:
1069 up->len += ulen;
1070 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1071 sizeof(struct udphdr), &ipc, &rt,
1072 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1073 if (err)
1074 udp_flush_pending_frames(sk);
1075 else if (!corkreq)
1076 err = udp_push_pending_frames(sk);
1077 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1078 up->pending = 0;
1079 release_sock(sk);
1080
1081 out:
1082 ip_rt_put(rt);
1083 if (free)
1084 kfree(ipc.opt);
1085 if (!err)
1086 return len;
1087 /*
1088 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1089 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1090 * we don't have a good statistic (IpOutDiscards but it can be too many
1091 * things). We could add another new stat but at least for now that
1092 * seems like overkill.
1093 */
1094 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1095 UDP_INC_STATS_USER(sock_net(sk),
1096 UDP_MIB_SNDBUFERRORS, is_udplite);
1097 }
1098 return err;
1099
1100 do_confirm:
1101 dst_confirm(&rt->dst);
1102 if (!(msg->msg_flags&MSG_PROBE) || len)
1103 goto back_from_confirm;
1104 err = 0;
1105 goto out;
1106 }
1107 EXPORT_SYMBOL(udp_sendmsg);
1108
1109 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1110 size_t size, int flags)
1111 {
1112 struct inet_sock *inet = inet_sk(sk);
1113 struct udp_sock *up = udp_sk(sk);
1114 int ret;
1115
1116 if (flags & MSG_SENDPAGE_NOTLAST)
1117 flags |= MSG_MORE;
1118
1119 if (!up->pending) {
1120 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1121
1122 /* Call udp_sendmsg to specify destination address which
1123 * sendpage interface can't pass.
1124 * This will succeed only when the socket is connected.
1125 */
1126 ret = udp_sendmsg(NULL, sk, &msg, 0);
1127 if (ret < 0)
1128 return ret;
1129 }
1130
1131 lock_sock(sk);
1132
1133 if (unlikely(!up->pending)) {
1134 release_sock(sk);
1135
1136 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1137 return -EINVAL;
1138 }
1139
1140 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1141 page, offset, size, flags);
1142 if (ret == -EOPNOTSUPP) {
1143 release_sock(sk);
1144 return sock_no_sendpage(sk->sk_socket, page, offset,
1145 size, flags);
1146 }
1147 if (ret < 0) {
1148 udp_flush_pending_frames(sk);
1149 goto out;
1150 }
1151
1152 up->len += size;
1153 if (!(up->corkflag || (flags&MSG_MORE)))
1154 ret = udp_push_pending_frames(sk);
1155 if (!ret)
1156 ret = size;
1157 out:
1158 release_sock(sk);
1159 return ret;
1160 }
1161
1162
1163 /**
1164 * first_packet_length - return length of first packet in receive queue
1165 * @sk: socket
1166 *
1167 * Drops all bad checksum frames, until a valid one is found.
1168 * Returns the length of found skb, or 0 if none is found.
1169 */
1170 static unsigned int first_packet_length(struct sock *sk)
1171 {
1172 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1173 struct sk_buff *skb;
1174 unsigned int res;
1175
1176 __skb_queue_head_init(&list_kill);
1177
1178 spin_lock_bh(&rcvq->lock);
1179 while ((skb = skb_peek(rcvq)) != NULL &&
1180 udp_lib_checksum_complete(skb)) {
1181 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1182 IS_UDPLITE(sk));
1183 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1184 IS_UDPLITE(sk));
1185 atomic_inc(&sk->sk_drops);
1186 __skb_unlink(skb, rcvq);
1187 __skb_queue_tail(&list_kill, skb);
1188 }
1189 res = skb ? skb->len : 0;
1190 spin_unlock_bh(&rcvq->lock);
1191
1192 if (!skb_queue_empty(&list_kill)) {
1193 bool slow = lock_sock_fast(sk);
1194
1195 __skb_queue_purge(&list_kill);
1196 sk_mem_reclaim_partial(sk);
1197 unlock_sock_fast(sk, slow);
1198 }
1199 return res;
1200 }
1201
1202 /*
1203 * IOCTL requests applicable to the UDP protocol
1204 */
1205
1206 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1207 {
1208 switch (cmd) {
1209 case SIOCOUTQ:
1210 {
1211 int amount = sk_wmem_alloc_get(sk);
1212
1213 return put_user(amount, (int __user *)arg);
1214 }
1215
1216 case SIOCINQ:
1217 {
1218 unsigned int amount = first_packet_length(sk);
1219
1220 if (amount)
1221 /*
1222 * We will only return the amount
1223 * of this packet since that is all
1224 * that will be read.
1225 */
1226 amount -= sizeof(struct udphdr);
1227
1228 return put_user(amount, (int __user *)arg);
1229 }
1230
1231 default:
1232 return -ENOIOCTLCMD;
1233 }
1234
1235 return 0;
1236 }
1237 EXPORT_SYMBOL(udp_ioctl);
1238
1239 /*
1240 * This should be easy, if there is something there we
1241 * return it, otherwise we block.
1242 */
1243
1244 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1245 size_t len, int noblock, int flags, int *addr_len)
1246 {
1247 struct inet_sock *inet = inet_sk(sk);
1248 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1249 struct sk_buff *skb;
1250 unsigned int ulen, copied;
1251 int peeked, off = 0;
1252 int err;
1253 int is_udplite = IS_UDPLITE(sk);
1254 bool slow;
1255
1256 if (flags & MSG_ERRQUEUE)
1257 return ip_recv_error(sk, msg, len, addr_len);
1258
1259 try_again:
1260 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1261 &peeked, &off, &err);
1262 if (!skb)
1263 goto out;
1264
1265 ulen = skb->len - sizeof(struct udphdr);
1266 copied = len;
1267 if (copied > ulen)
1268 copied = ulen;
1269 else if (copied < ulen)
1270 msg->msg_flags |= MSG_TRUNC;
1271
1272 /*
1273 * If checksum is needed at all, try to do it while copying the
1274 * data. If the data is truncated, or if we only want a partial
1275 * coverage checksum (UDP-Lite), do it before the copy.
1276 */
1277
1278 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1279 if (udp_lib_checksum_complete(skb))
1280 goto csum_copy_err;
1281 }
1282
1283 if (skb_csum_unnecessary(skb))
1284 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1285 msg, copied);
1286 else {
1287 err = skb_copy_and_csum_datagram_iovec(skb,
1288 sizeof(struct udphdr),
1289 msg->msg_iov);
1290
1291 if (err == -EINVAL)
1292 goto csum_copy_err;
1293 }
1294
1295 if (unlikely(err)) {
1296 trace_kfree_skb(skb, udp_recvmsg);
1297 if (!peeked) {
1298 atomic_inc(&sk->sk_drops);
1299 UDP_INC_STATS_USER(sock_net(sk),
1300 UDP_MIB_INERRORS, is_udplite);
1301 }
1302 goto out_free;
1303 }
1304
1305 if (!peeked)
1306 UDP_INC_STATS_USER(sock_net(sk),
1307 UDP_MIB_INDATAGRAMS, is_udplite);
1308
1309 sock_recv_ts_and_drops(msg, sk, skb);
1310
1311 /* Copy the address. */
1312 if (sin) {
1313 sin->sin_family = AF_INET;
1314 sin->sin_port = udp_hdr(skb)->source;
1315 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1316 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1317 *addr_len = sizeof(*sin);
1318 }
1319 if (inet->cmsg_flags)
1320 ip_cmsg_recv(msg, skb);
1321
1322 err = copied;
1323 if (flags & MSG_TRUNC)
1324 err = ulen;
1325
1326 out_free:
1327 skb_free_datagram_locked(sk, skb);
1328 out:
1329 return err;
1330
1331 csum_copy_err:
1332 slow = lock_sock_fast(sk);
1333 if (!skb_kill_datagram(sk, skb, flags)) {
1334 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1335 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1336 }
1337 unlock_sock_fast(sk, slow);
1338
1339 if (noblock)
1340 return -EAGAIN;
1341
1342 /* starting over for a new packet */
1343 msg->msg_flags &= ~MSG_TRUNC;
1344 goto try_again;
1345 }
1346
1347
1348 int udp_disconnect(struct sock *sk, int flags)
1349 {
1350 struct inet_sock *inet = inet_sk(sk);
1351 /*
1352 * 1003.1g - break association.
1353 */
1354
1355 sk->sk_state = TCP_CLOSE;
1356 inet->inet_daddr = 0;
1357 inet->inet_dport = 0;
1358 sock_rps_reset_rxhash(sk);
1359 sk->sk_bound_dev_if = 0;
1360 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1361 inet_reset_saddr(sk);
1362
1363 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1364 sk->sk_prot->unhash(sk);
1365 inet->inet_sport = 0;
1366 }
1367 sk_dst_reset(sk);
1368 return 0;
1369 }
1370 EXPORT_SYMBOL(udp_disconnect);
1371
1372 void udp_lib_unhash(struct sock *sk)
1373 {
1374 if (sk_hashed(sk)) {
1375 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1376 struct udp_hslot *hslot, *hslot2;
1377
1378 hslot = udp_hashslot(udptable, sock_net(sk),
1379 udp_sk(sk)->udp_port_hash);
1380 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1381
1382 spin_lock_bh(&hslot->lock);
1383 if (sk_nulls_del_node_init_rcu(sk)) {
1384 hslot->count--;
1385 inet_sk(sk)->inet_num = 0;
1386 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1387
1388 spin_lock(&hslot2->lock);
1389 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1390 hslot2->count--;
1391 spin_unlock(&hslot2->lock);
1392 }
1393 spin_unlock_bh(&hslot->lock);
1394 }
1395 }
1396 EXPORT_SYMBOL(udp_lib_unhash);
1397
1398 /*
1399 * inet_rcv_saddr was changed, we must rehash secondary hash
1400 */
1401 void udp_lib_rehash(struct sock *sk, u16 newhash)
1402 {
1403 if (sk_hashed(sk)) {
1404 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1405 struct udp_hslot *hslot, *hslot2, *nhslot2;
1406
1407 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1408 nhslot2 = udp_hashslot2(udptable, newhash);
1409 udp_sk(sk)->udp_portaddr_hash = newhash;
1410 if (hslot2 != nhslot2) {
1411 hslot = udp_hashslot(udptable, sock_net(sk),
1412 udp_sk(sk)->udp_port_hash);
1413 /* we must lock primary chain too */
1414 spin_lock_bh(&hslot->lock);
1415
1416 spin_lock(&hslot2->lock);
1417 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1418 hslot2->count--;
1419 spin_unlock(&hslot2->lock);
1420
1421 spin_lock(&nhslot2->lock);
1422 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1423 &nhslot2->head);
1424 nhslot2->count++;
1425 spin_unlock(&nhslot2->lock);
1426
1427 spin_unlock_bh(&hslot->lock);
1428 }
1429 }
1430 }
1431 EXPORT_SYMBOL(udp_lib_rehash);
1432
1433 static void udp_v4_rehash(struct sock *sk)
1434 {
1435 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1436 inet_sk(sk)->inet_rcv_saddr,
1437 inet_sk(sk)->inet_num);
1438 udp_lib_rehash(sk, new_hash);
1439 }
1440
1441 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1442 {
1443 int rc;
1444
1445 if (inet_sk(sk)->inet_daddr) {
1446 sock_rps_save_rxhash(sk, skb);
1447 sk_mark_napi_id(sk, skb);
1448 }
1449
1450 rc = sock_queue_rcv_skb(sk, skb);
1451 if (rc < 0) {
1452 int is_udplite = IS_UDPLITE(sk);
1453
1454 /* Note that an ENOMEM error is charged twice */
1455 if (rc == -ENOMEM)
1456 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1457 is_udplite);
1458 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1459 kfree_skb(skb);
1460 trace_udp_fail_queue_rcv_skb(rc, sk);
1461 return -1;
1462 }
1463
1464 return 0;
1465
1466 }
1467
1468 static struct static_key udp_encap_needed __read_mostly;
1469 void udp_encap_enable(void)
1470 {
1471 if (!static_key_enabled(&udp_encap_needed))
1472 static_key_slow_inc(&udp_encap_needed);
1473 }
1474 EXPORT_SYMBOL(udp_encap_enable);
1475
1476 /* returns:
1477 * -1: error
1478 * 0: success
1479 * >0: "udp encap" protocol resubmission
1480 *
1481 * Note that in the success and error cases, the skb is assumed to
1482 * have either been requeued or freed.
1483 */
1484 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1485 {
1486 struct udp_sock *up = udp_sk(sk);
1487 int rc;
1488 int is_udplite = IS_UDPLITE(sk);
1489
1490 /*
1491 * Charge it to the socket, dropping if the queue is full.
1492 */
1493 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1494 goto drop;
1495 nf_reset(skb);
1496
1497 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1498 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1499
1500 /*
1501 * This is an encapsulation socket so pass the skb to
1502 * the socket's udp_encap_rcv() hook. Otherwise, just
1503 * fall through and pass this up the UDP socket.
1504 * up->encap_rcv() returns the following value:
1505 * =0 if skb was successfully passed to the encap
1506 * handler or was discarded by it.
1507 * >0 if skb should be passed on to UDP.
1508 * <0 if skb should be resubmitted as proto -N
1509 */
1510
1511 /* if we're overly short, let UDP handle it */
1512 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1513 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1514 int ret;
1515
1516 /* Verify checksum before giving to encap */
1517 if (udp_lib_checksum_complete(skb))
1518 goto csum_error;
1519
1520 ret = encap_rcv(sk, skb);
1521 if (ret <= 0) {
1522 UDP_INC_STATS_BH(sock_net(sk),
1523 UDP_MIB_INDATAGRAMS,
1524 is_udplite);
1525 return -ret;
1526 }
1527 }
1528
1529 /* FALLTHROUGH -- it's a UDP Packet */
1530 }
1531
1532 /*
1533 * UDP-Lite specific tests, ignored on UDP sockets
1534 */
1535 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1536
1537 /*
1538 * MIB statistics other than incrementing the error count are
1539 * disabled for the following two types of errors: these depend
1540 * on the application settings, not on the functioning of the
1541 * protocol stack as such.
1542 *
1543 * RFC 3828 here recommends (sec 3.3): "There should also be a
1544 * way ... to ... at least let the receiving application block
1545 * delivery of packets with coverage values less than a value
1546 * provided by the application."
1547 */
1548 if (up->pcrlen == 0) { /* full coverage was set */
1549 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1550 UDP_SKB_CB(skb)->cscov, skb->len);
1551 goto drop;
1552 }
1553 /* The next case involves violating the min. coverage requested
1554 * by the receiver. This is subtle: if receiver wants x and x is
1555 * greater than the buffersize/MTU then receiver will complain
1556 * that it wants x while sender emits packets of smaller size y.
1557 * Therefore the above ...()->partial_cov statement is essential.
1558 */
1559 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1560 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1561 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1562 goto drop;
1563 }
1564 }
1565
1566 if (rcu_access_pointer(sk->sk_filter) &&
1567 udp_lib_checksum_complete(skb))
1568 goto csum_error;
1569
1570
1571 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1572 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1573 is_udplite);
1574 goto drop;
1575 }
1576
1577 rc = 0;
1578
1579 ipv4_pktinfo_prepare(sk, skb);
1580 bh_lock_sock(sk);
1581 if (!sock_owned_by_user(sk))
1582 rc = __udp_queue_rcv_skb(sk, skb);
1583 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1584 bh_unlock_sock(sk);
1585 goto drop;
1586 }
1587 bh_unlock_sock(sk);
1588
1589 return rc;
1590
1591 csum_error:
1592 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1593 drop:
1594 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1595 atomic_inc(&sk->sk_drops);
1596 kfree_skb(skb);
1597 return -1;
1598 }
1599
1600
1601 static void flush_stack(struct sock **stack, unsigned int count,
1602 struct sk_buff *skb, unsigned int final)
1603 {
1604 unsigned int i;
1605 struct sk_buff *skb1 = NULL;
1606 struct sock *sk;
1607
1608 for (i = 0; i < count; i++) {
1609 sk = stack[i];
1610 if (likely(skb1 == NULL))
1611 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1612
1613 if (!skb1) {
1614 atomic_inc(&sk->sk_drops);
1615 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1616 IS_UDPLITE(sk));
1617 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1618 IS_UDPLITE(sk));
1619 }
1620
1621 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1622 skb1 = NULL;
1623
1624 sock_put(sk);
1625 }
1626 if (unlikely(skb1))
1627 kfree_skb(skb1);
1628 }
1629
1630 /* For TCP sockets, sk_rx_dst is protected by socket lock
1631 * For UDP, we use xchg() to guard against concurrent changes.
1632 */
1633 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1634 {
1635 struct dst_entry *old;
1636
1637 dst_hold(dst);
1638 old = xchg(&sk->sk_rx_dst, dst);
1639 dst_release(old);
1640 }
1641
1642 /*
1643 * Multicasts and broadcasts go to each listener.
1644 *
1645 * Note: called only from the BH handler context.
1646 */
1647 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1648 struct udphdr *uh,
1649 __be32 saddr, __be32 daddr,
1650 struct udp_table *udptable)
1651 {
1652 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1653 struct hlist_nulls_node *node;
1654 unsigned short hnum = ntohs(uh->dest);
1655 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1656 int dif = skb->dev->ifindex;
1657 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1658 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1659
1660 if (use_hash2) {
1661 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1662 udp_table.mask;
1663 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1664 start_lookup:
1665 hslot = &udp_table.hash2[hash2];
1666 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1667 }
1668
1669 spin_lock(&hslot->lock);
1670 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1671 if (__udp_is_mcast_sock(net, sk,
1672 uh->dest, daddr,
1673 uh->source, saddr,
1674 dif, hnum)) {
1675 if (unlikely(count == ARRAY_SIZE(stack))) {
1676 flush_stack(stack, count, skb, ~0);
1677 count = 0;
1678 }
1679 stack[count++] = sk;
1680 sock_hold(sk);
1681 }
1682 }
1683
1684 spin_unlock(&hslot->lock);
1685
1686 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1687 if (use_hash2 && hash2 != hash2_any) {
1688 hash2 = hash2_any;
1689 goto start_lookup;
1690 }
1691
1692 /*
1693 * do the slow work with no lock held
1694 */
1695 if (count) {
1696 flush_stack(stack, count, skb, count - 1);
1697 } else {
1698 kfree_skb(skb);
1699 }
1700 return 0;
1701 }
1702
1703 /* Initialize UDP checksum. If exited with zero value (success),
1704 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1705 * Otherwise, csum completion requires chacksumming packet body,
1706 * including udp header and folding it to skb->csum.
1707 */
1708 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1709 int proto)
1710 {
1711 int err;
1712
1713 UDP_SKB_CB(skb)->partial_cov = 0;
1714 UDP_SKB_CB(skb)->cscov = skb->len;
1715
1716 if (proto == IPPROTO_UDPLITE) {
1717 err = udplite_checksum_init(skb, uh);
1718 if (err)
1719 return err;
1720 }
1721
1722 return skb_checksum_init_zero_check(skb, proto, uh->check,
1723 inet_compute_pseudo);
1724 }
1725
1726 /*
1727 * All we need to do is get the socket, and then do a checksum.
1728 */
1729
1730 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1731 int proto)
1732 {
1733 struct sock *sk;
1734 struct udphdr *uh;
1735 unsigned short ulen;
1736 struct rtable *rt = skb_rtable(skb);
1737 __be32 saddr, daddr;
1738 struct net *net = dev_net(skb->dev);
1739
1740 /*
1741 * Validate the packet.
1742 */
1743 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1744 goto drop; /* No space for header. */
1745
1746 uh = udp_hdr(skb);
1747 ulen = ntohs(uh->len);
1748 saddr = ip_hdr(skb)->saddr;
1749 daddr = ip_hdr(skb)->daddr;
1750
1751 if (ulen > skb->len)
1752 goto short_packet;
1753
1754 if (proto == IPPROTO_UDP) {
1755 /* UDP validates ulen. */
1756 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1757 goto short_packet;
1758 uh = udp_hdr(skb);
1759 }
1760
1761 if (udp4_csum_init(skb, uh, proto))
1762 goto csum_error;
1763
1764 sk = skb_steal_sock(skb);
1765 if (sk) {
1766 struct dst_entry *dst = skb_dst(skb);
1767 int ret;
1768
1769 if (unlikely(sk->sk_rx_dst != dst))
1770 udp_sk_rx_dst_set(sk, dst);
1771
1772 ret = udp_queue_rcv_skb(sk, skb);
1773 sock_put(sk);
1774 /* a return value > 0 means to resubmit the input, but
1775 * it wants the return to be -protocol, or 0
1776 */
1777 if (ret > 0)
1778 return -ret;
1779 return 0;
1780 }
1781
1782 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1783 return __udp4_lib_mcast_deliver(net, skb, uh,
1784 saddr, daddr, udptable);
1785
1786 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1787 if (sk != NULL) {
1788 int ret;
1789
1790 if (udp_sk(sk)->convert_csum && uh->check && !IS_UDPLITE(sk))
1791 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1792 inet_compute_pseudo);
1793
1794 ret = udp_queue_rcv_skb(sk, skb);
1795 sock_put(sk);
1796
1797 /* a return value > 0 means to resubmit the input, but
1798 * it wants the return to be -protocol, or 0
1799 */
1800 if (ret > 0)
1801 return -ret;
1802 return 0;
1803 }
1804
1805 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1806 goto drop;
1807 nf_reset(skb);
1808
1809 /* No socket. Drop packet silently, if checksum is wrong */
1810 if (udp_lib_checksum_complete(skb))
1811 goto csum_error;
1812
1813 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1814 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1815
1816 /*
1817 * Hmm. We got an UDP packet to a port to which we
1818 * don't wanna listen. Ignore it.
1819 */
1820 kfree_skb(skb);
1821 return 0;
1822
1823 short_packet:
1824 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1825 proto == IPPROTO_UDPLITE ? "Lite" : "",
1826 &saddr, ntohs(uh->source),
1827 ulen, skb->len,
1828 &daddr, ntohs(uh->dest));
1829 goto drop;
1830
1831 csum_error:
1832 /*
1833 * RFC1122: OK. Discards the bad packet silently (as far as
1834 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1835 */
1836 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1837 proto == IPPROTO_UDPLITE ? "Lite" : "",
1838 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1839 ulen);
1840 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1841 drop:
1842 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1843 kfree_skb(skb);
1844 return 0;
1845 }
1846
1847 /* We can only early demux multicast if there is a single matching socket.
1848 * If more than one socket found returns NULL
1849 */
1850 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1851 __be16 loc_port, __be32 loc_addr,
1852 __be16 rmt_port, __be32 rmt_addr,
1853 int dif)
1854 {
1855 struct sock *sk, *result;
1856 struct hlist_nulls_node *node;
1857 unsigned short hnum = ntohs(loc_port);
1858 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1859 struct udp_hslot *hslot = &udp_table.hash[slot];
1860
1861 /* Do not bother scanning a too big list */
1862 if (hslot->count > 10)
1863 return NULL;
1864
1865 rcu_read_lock();
1866 begin:
1867 count = 0;
1868 result = NULL;
1869 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1870 if (__udp_is_mcast_sock(net, sk,
1871 loc_port, loc_addr,
1872 rmt_port, rmt_addr,
1873 dif, hnum)) {
1874 result = sk;
1875 ++count;
1876 }
1877 }
1878 /*
1879 * if the nulls value we got at the end of this lookup is
1880 * not the expected one, we must restart lookup.
1881 * We probably met an item that was moved to another chain.
1882 */
1883 if (get_nulls_value(node) != slot)
1884 goto begin;
1885
1886 if (result) {
1887 if (count != 1 ||
1888 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1889 result = NULL;
1890 else if (unlikely(!__udp_is_mcast_sock(net, result,
1891 loc_port, loc_addr,
1892 rmt_port, rmt_addr,
1893 dif, hnum))) {
1894 sock_put(result);
1895 result = NULL;
1896 }
1897 }
1898 rcu_read_unlock();
1899 return result;
1900 }
1901
1902 /* For unicast we should only early demux connected sockets or we can
1903 * break forwarding setups. The chains here can be long so only check
1904 * if the first socket is an exact match and if not move on.
1905 */
1906 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1907 __be16 loc_port, __be32 loc_addr,
1908 __be16 rmt_port, __be32 rmt_addr,
1909 int dif)
1910 {
1911 struct sock *sk, *result;
1912 struct hlist_nulls_node *node;
1913 unsigned short hnum = ntohs(loc_port);
1914 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1915 unsigned int slot2 = hash2 & udp_table.mask;
1916 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1917 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1918 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1919
1920 rcu_read_lock();
1921 result = NULL;
1922 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1923 if (INET_MATCH(sk, net, acookie,
1924 rmt_addr, loc_addr, ports, dif))
1925 result = sk;
1926 /* Only check first socket in chain */
1927 break;
1928 }
1929
1930 if (result) {
1931 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1932 result = NULL;
1933 else if (unlikely(!INET_MATCH(sk, net, acookie,
1934 rmt_addr, loc_addr,
1935 ports, dif))) {
1936 sock_put(result);
1937 result = NULL;
1938 }
1939 }
1940 rcu_read_unlock();
1941 return result;
1942 }
1943
1944 void udp_v4_early_demux(struct sk_buff *skb)
1945 {
1946 struct net *net = dev_net(skb->dev);
1947 const struct iphdr *iph;
1948 const struct udphdr *uh;
1949 struct sock *sk;
1950 struct dst_entry *dst;
1951 int dif = skb->dev->ifindex;
1952
1953 /* validate the packet */
1954 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1955 return;
1956
1957 iph = ip_hdr(skb);
1958 uh = udp_hdr(skb);
1959
1960 if (skb->pkt_type == PACKET_BROADCAST ||
1961 skb->pkt_type == PACKET_MULTICAST)
1962 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1963 uh->source, iph->saddr, dif);
1964 else if (skb->pkt_type == PACKET_HOST)
1965 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1966 uh->source, iph->saddr, dif);
1967 else
1968 return;
1969
1970 if (!sk)
1971 return;
1972
1973 skb->sk = sk;
1974 skb->destructor = sock_efree;
1975 dst = sk->sk_rx_dst;
1976
1977 if (dst)
1978 dst = dst_check(dst, 0);
1979 if (dst)
1980 skb_dst_set_noref(skb, dst);
1981 }
1982
1983 int udp_rcv(struct sk_buff *skb)
1984 {
1985 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1986 }
1987
1988 void udp_destroy_sock(struct sock *sk)
1989 {
1990 struct udp_sock *up = udp_sk(sk);
1991 bool slow = lock_sock_fast(sk);
1992 udp_flush_pending_frames(sk);
1993 unlock_sock_fast(sk, slow);
1994 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1995 void (*encap_destroy)(struct sock *sk);
1996 encap_destroy = ACCESS_ONCE(up->encap_destroy);
1997 if (encap_destroy)
1998 encap_destroy(sk);
1999 }
2000 }
2001
2002 /*
2003 * Socket option code for UDP
2004 */
2005 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2006 char __user *optval, unsigned int optlen,
2007 int (*push_pending_frames)(struct sock *))
2008 {
2009 struct udp_sock *up = udp_sk(sk);
2010 int val, valbool;
2011 int err = 0;
2012 int is_udplite = IS_UDPLITE(sk);
2013
2014 if (optlen < sizeof(int))
2015 return -EINVAL;
2016
2017 if (get_user(val, (int __user *)optval))
2018 return -EFAULT;
2019
2020 valbool = val ? 1 : 0;
2021
2022 switch (optname) {
2023 case UDP_CORK:
2024 if (val != 0) {
2025 up->corkflag = 1;
2026 } else {
2027 up->corkflag = 0;
2028 lock_sock(sk);
2029 (*push_pending_frames)(sk);
2030 release_sock(sk);
2031 }
2032 break;
2033
2034 case UDP_ENCAP:
2035 switch (val) {
2036 case 0:
2037 case UDP_ENCAP_ESPINUDP:
2038 case UDP_ENCAP_ESPINUDP_NON_IKE:
2039 up->encap_rcv = xfrm4_udp_encap_rcv;
2040 /* FALLTHROUGH */
2041 case UDP_ENCAP_L2TPINUDP:
2042 up->encap_type = val;
2043 udp_encap_enable();
2044 break;
2045 default:
2046 err = -ENOPROTOOPT;
2047 break;
2048 }
2049 break;
2050
2051 case UDP_NO_CHECK6_TX:
2052 up->no_check6_tx = valbool;
2053 break;
2054
2055 case UDP_NO_CHECK6_RX:
2056 up->no_check6_rx = valbool;
2057 break;
2058
2059 /*
2060 * UDP-Lite's partial checksum coverage (RFC 3828).
2061 */
2062 /* The sender sets actual checksum coverage length via this option.
2063 * The case coverage > packet length is handled by send module. */
2064 case UDPLITE_SEND_CSCOV:
2065 if (!is_udplite) /* Disable the option on UDP sockets */
2066 return -ENOPROTOOPT;
2067 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2068 val = 8;
2069 else if (val > USHRT_MAX)
2070 val = USHRT_MAX;
2071 up->pcslen = val;
2072 up->pcflag |= UDPLITE_SEND_CC;
2073 break;
2074
2075 /* The receiver specifies a minimum checksum coverage value. To make
2076 * sense, this should be set to at least 8 (as done below). If zero is
2077 * used, this again means full checksum coverage. */
2078 case UDPLITE_RECV_CSCOV:
2079 if (!is_udplite) /* Disable the option on UDP sockets */
2080 return -ENOPROTOOPT;
2081 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2082 val = 8;
2083 else if (val > USHRT_MAX)
2084 val = USHRT_MAX;
2085 up->pcrlen = val;
2086 up->pcflag |= UDPLITE_RECV_CC;
2087 break;
2088
2089 default:
2090 err = -ENOPROTOOPT;
2091 break;
2092 }
2093
2094 return err;
2095 }
2096 EXPORT_SYMBOL(udp_lib_setsockopt);
2097
2098 int udp_setsockopt(struct sock *sk, int level, int optname,
2099 char __user *optval, unsigned int optlen)
2100 {
2101 if (level == SOL_UDP || level == SOL_UDPLITE)
2102 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2103 udp_push_pending_frames);
2104 return ip_setsockopt(sk, level, optname, optval, optlen);
2105 }
2106
2107 #ifdef CONFIG_COMPAT
2108 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2109 char __user *optval, unsigned int optlen)
2110 {
2111 if (level == SOL_UDP || level == SOL_UDPLITE)
2112 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2113 udp_push_pending_frames);
2114 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2115 }
2116 #endif
2117
2118 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2119 char __user *optval, int __user *optlen)
2120 {
2121 struct udp_sock *up = udp_sk(sk);
2122 int val, len;
2123
2124 if (get_user(len, optlen))
2125 return -EFAULT;
2126
2127 len = min_t(unsigned int, len, sizeof(int));
2128
2129 if (len < 0)
2130 return -EINVAL;
2131
2132 switch (optname) {
2133 case UDP_CORK:
2134 val = up->corkflag;
2135 break;
2136
2137 case UDP_ENCAP:
2138 val = up->encap_type;
2139 break;
2140
2141 case UDP_NO_CHECK6_TX:
2142 val = up->no_check6_tx;
2143 break;
2144
2145 case UDP_NO_CHECK6_RX:
2146 val = up->no_check6_rx;
2147 break;
2148
2149 /* The following two cannot be changed on UDP sockets, the return is
2150 * always 0 (which corresponds to the full checksum coverage of UDP). */
2151 case UDPLITE_SEND_CSCOV:
2152 val = up->pcslen;
2153 break;
2154
2155 case UDPLITE_RECV_CSCOV:
2156 val = up->pcrlen;
2157 break;
2158
2159 default:
2160 return -ENOPROTOOPT;
2161 }
2162
2163 if (put_user(len, optlen))
2164 return -EFAULT;
2165 if (copy_to_user(optval, &val, len))
2166 return -EFAULT;
2167 return 0;
2168 }
2169 EXPORT_SYMBOL(udp_lib_getsockopt);
2170
2171 int udp_getsockopt(struct sock *sk, int level, int optname,
2172 char __user *optval, int __user *optlen)
2173 {
2174 if (level == SOL_UDP || level == SOL_UDPLITE)
2175 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2176 return ip_getsockopt(sk, level, optname, optval, optlen);
2177 }
2178
2179 #ifdef CONFIG_COMPAT
2180 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2181 char __user *optval, int __user *optlen)
2182 {
2183 if (level == SOL_UDP || level == SOL_UDPLITE)
2184 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2185 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2186 }
2187 #endif
2188 /**
2189 * udp_poll - wait for a UDP event.
2190 * @file - file struct
2191 * @sock - socket
2192 * @wait - poll table
2193 *
2194 * This is same as datagram poll, except for the special case of
2195 * blocking sockets. If application is using a blocking fd
2196 * and a packet with checksum error is in the queue;
2197 * then it could get return from select indicating data available
2198 * but then block when reading it. Add special case code
2199 * to work around these arguably broken applications.
2200 */
2201 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2202 {
2203 unsigned int mask = datagram_poll(file, sock, wait);
2204 struct sock *sk = sock->sk;
2205
2206 sock_rps_record_flow(sk);
2207
2208 /* Check for false positives due to checksum errors */
2209 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2210 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2211 mask &= ~(POLLIN | POLLRDNORM);
2212
2213 return mask;
2214
2215 }
2216 EXPORT_SYMBOL(udp_poll);
2217
2218 struct proto udp_prot = {
2219 .name = "UDP",
2220 .owner = THIS_MODULE,
2221 .close = udp_lib_close,
2222 .connect = ip4_datagram_connect,
2223 .disconnect = udp_disconnect,
2224 .ioctl = udp_ioctl,
2225 .destroy = udp_destroy_sock,
2226 .setsockopt = udp_setsockopt,
2227 .getsockopt = udp_getsockopt,
2228 .sendmsg = udp_sendmsg,
2229 .recvmsg = udp_recvmsg,
2230 .sendpage = udp_sendpage,
2231 .backlog_rcv = __udp_queue_rcv_skb,
2232 .release_cb = ip4_datagram_release_cb,
2233 .hash = udp_lib_hash,
2234 .unhash = udp_lib_unhash,
2235 .rehash = udp_v4_rehash,
2236 .get_port = udp_v4_get_port,
2237 .memory_allocated = &udp_memory_allocated,
2238 .sysctl_mem = sysctl_udp_mem,
2239 .sysctl_wmem = &sysctl_udp_wmem_min,
2240 .sysctl_rmem = &sysctl_udp_rmem_min,
2241 .obj_size = sizeof(struct udp_sock),
2242 .slab_flags = SLAB_DESTROY_BY_RCU,
2243 .h.udp_table = &udp_table,
2244 #ifdef CONFIG_COMPAT
2245 .compat_setsockopt = compat_udp_setsockopt,
2246 .compat_getsockopt = compat_udp_getsockopt,
2247 #endif
2248 .clear_sk = sk_prot_clear_portaddr_nulls,
2249 };
2250 EXPORT_SYMBOL(udp_prot);
2251
2252 /* ------------------------------------------------------------------------ */
2253 #ifdef CONFIG_PROC_FS
2254
2255 static struct sock *udp_get_first(struct seq_file *seq, int start)
2256 {
2257 struct sock *sk;
2258 struct udp_iter_state *state = seq->private;
2259 struct net *net = seq_file_net(seq);
2260
2261 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2262 ++state->bucket) {
2263 struct hlist_nulls_node *node;
2264 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2265
2266 if (hlist_nulls_empty(&hslot->head))
2267 continue;
2268
2269 spin_lock_bh(&hslot->lock);
2270 sk_nulls_for_each(sk, node, &hslot->head) {
2271 if (!net_eq(sock_net(sk), net))
2272 continue;
2273 if (sk->sk_family == state->family)
2274 goto found;
2275 }
2276 spin_unlock_bh(&hslot->lock);
2277 }
2278 sk = NULL;
2279 found:
2280 return sk;
2281 }
2282
2283 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2284 {
2285 struct udp_iter_state *state = seq->private;
2286 struct net *net = seq_file_net(seq);
2287
2288 do {
2289 sk = sk_nulls_next(sk);
2290 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2291
2292 if (!sk) {
2293 if (state->bucket <= state->udp_table->mask)
2294 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2295 return udp_get_first(seq, state->bucket + 1);
2296 }
2297 return sk;
2298 }
2299
2300 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2301 {
2302 struct sock *sk = udp_get_first(seq, 0);
2303
2304 if (sk)
2305 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2306 --pos;
2307 return pos ? NULL : sk;
2308 }
2309
2310 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2311 {
2312 struct udp_iter_state *state = seq->private;
2313 state->bucket = MAX_UDP_PORTS;
2314
2315 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2316 }
2317
2318 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2319 {
2320 struct sock *sk;
2321
2322 if (v == SEQ_START_TOKEN)
2323 sk = udp_get_idx(seq, 0);
2324 else
2325 sk = udp_get_next(seq, v);
2326
2327 ++*pos;
2328 return sk;
2329 }
2330
2331 static void udp_seq_stop(struct seq_file *seq, void *v)
2332 {
2333 struct udp_iter_state *state = seq->private;
2334
2335 if (state->bucket <= state->udp_table->mask)
2336 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2337 }
2338
2339 int udp_seq_open(struct inode *inode, struct file *file)
2340 {
2341 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2342 struct udp_iter_state *s;
2343 int err;
2344
2345 err = seq_open_net(inode, file, &afinfo->seq_ops,
2346 sizeof(struct udp_iter_state));
2347 if (err < 0)
2348 return err;
2349
2350 s = ((struct seq_file *)file->private_data)->private;
2351 s->family = afinfo->family;
2352 s->udp_table = afinfo->udp_table;
2353 return err;
2354 }
2355 EXPORT_SYMBOL(udp_seq_open);
2356
2357 /* ------------------------------------------------------------------------ */
2358 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2359 {
2360 struct proc_dir_entry *p;
2361 int rc = 0;
2362
2363 afinfo->seq_ops.start = udp_seq_start;
2364 afinfo->seq_ops.next = udp_seq_next;
2365 afinfo->seq_ops.stop = udp_seq_stop;
2366
2367 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2368 afinfo->seq_fops, afinfo);
2369 if (!p)
2370 rc = -ENOMEM;
2371 return rc;
2372 }
2373 EXPORT_SYMBOL(udp_proc_register);
2374
2375 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2376 {
2377 remove_proc_entry(afinfo->name, net->proc_net);
2378 }
2379 EXPORT_SYMBOL(udp_proc_unregister);
2380
2381 /* ------------------------------------------------------------------------ */
2382 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2383 int bucket)
2384 {
2385 struct inet_sock *inet = inet_sk(sp);
2386 __be32 dest = inet->inet_daddr;
2387 __be32 src = inet->inet_rcv_saddr;
2388 __u16 destp = ntohs(inet->inet_dport);
2389 __u16 srcp = ntohs(inet->inet_sport);
2390
2391 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2392 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2393 bucket, src, srcp, dest, destp, sp->sk_state,
2394 sk_wmem_alloc_get(sp),
2395 sk_rmem_alloc_get(sp),
2396 0, 0L, 0,
2397 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2398 0, sock_i_ino(sp),
2399 atomic_read(&sp->sk_refcnt), sp,
2400 atomic_read(&sp->sk_drops));
2401 }
2402
2403 int udp4_seq_show(struct seq_file *seq, void *v)
2404 {
2405 seq_setwidth(seq, 127);
2406 if (v == SEQ_START_TOKEN)
2407 seq_puts(seq, " sl local_address rem_address st tx_queue "
2408 "rx_queue tr tm->when retrnsmt uid timeout "
2409 "inode ref pointer drops");
2410 else {
2411 struct udp_iter_state *state = seq->private;
2412
2413 udp4_format_sock(v, seq, state->bucket);
2414 }
2415 seq_pad(seq, '\n');
2416 return 0;
2417 }
2418
2419 static const struct file_operations udp_afinfo_seq_fops = {
2420 .owner = THIS_MODULE,
2421 .open = udp_seq_open,
2422 .read = seq_read,
2423 .llseek = seq_lseek,
2424 .release = seq_release_net
2425 };
2426
2427 /* ------------------------------------------------------------------------ */
2428 static struct udp_seq_afinfo udp4_seq_afinfo = {
2429 .name = "udp",
2430 .family = AF_INET,
2431 .udp_table = &udp_table,
2432 .seq_fops = &udp_afinfo_seq_fops,
2433 .seq_ops = {
2434 .show = udp4_seq_show,
2435 },
2436 };
2437
2438 static int __net_init udp4_proc_init_net(struct net *net)
2439 {
2440 return udp_proc_register(net, &udp4_seq_afinfo);
2441 }
2442
2443 static void __net_exit udp4_proc_exit_net(struct net *net)
2444 {
2445 udp_proc_unregister(net, &udp4_seq_afinfo);
2446 }
2447
2448 static struct pernet_operations udp4_net_ops = {
2449 .init = udp4_proc_init_net,
2450 .exit = udp4_proc_exit_net,
2451 };
2452
2453 int __init udp4_proc_init(void)
2454 {
2455 return register_pernet_subsys(&udp4_net_ops);
2456 }
2457
2458 void udp4_proc_exit(void)
2459 {
2460 unregister_pernet_subsys(&udp4_net_ops);
2461 }
2462 #endif /* CONFIG_PROC_FS */
2463
2464 static __initdata unsigned long uhash_entries;
2465 static int __init set_uhash_entries(char *str)
2466 {
2467 ssize_t ret;
2468
2469 if (!str)
2470 return 0;
2471
2472 ret = kstrtoul(str, 0, &uhash_entries);
2473 if (ret)
2474 return 0;
2475
2476 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2477 uhash_entries = UDP_HTABLE_SIZE_MIN;
2478 return 1;
2479 }
2480 __setup("uhash_entries=", set_uhash_entries);
2481
2482 void __init udp_table_init(struct udp_table *table, const char *name)
2483 {
2484 unsigned int i;
2485
2486 table->hash = alloc_large_system_hash(name,
2487 2 * sizeof(struct udp_hslot),
2488 uhash_entries,
2489 21, /* one slot per 2 MB */
2490 0,
2491 &table->log,
2492 &table->mask,
2493 UDP_HTABLE_SIZE_MIN,
2494 64 * 1024);
2495
2496 table->hash2 = table->hash + (table->mask + 1);
2497 for (i = 0; i <= table->mask; i++) {
2498 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2499 table->hash[i].count = 0;
2500 spin_lock_init(&table->hash[i].lock);
2501 }
2502 for (i = 0; i <= table->mask; i++) {
2503 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2504 table->hash2[i].count = 0;
2505 spin_lock_init(&table->hash2[i].lock);
2506 }
2507 }
2508
2509 void __init udp_init(void)
2510 {
2511 unsigned long limit;
2512
2513 udp_table_init(&udp_table, "UDP");
2514 limit = nr_free_buffer_pages() / 8;
2515 limit = max(limit, 128UL);
2516 sysctl_udp_mem[0] = limit / 4 * 3;
2517 sysctl_udp_mem[1] = limit;
2518 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2519
2520 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2521 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2522 }
This page took 0.0836 seconds and 5 git commands to generate.