net: Remove iocb argument from sendmsg and recvmsg
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/netdevice.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
119
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
125
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
128
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
131
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 const struct udp_hslot *hslot,
137 unsigned long *bitmap,
138 struct sock *sk,
139 int (*saddr_comp)(const struct sock *sk1,
140 const struct sock *sk2),
141 unsigned int log)
142 {
143 struct sock *sk2;
144 struct hlist_nulls_node *node;
145 kuid_t uid = sock_i_uid(sk);
146
147 sk_nulls_for_each(sk2, node, &hslot->head) {
148 if (net_eq(sock_net(sk2), net) &&
149 sk2 != sk &&
150 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 (!sk2->sk_reuse || !sk->sk_reuse) &&
152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 !uid_eq(uid, sock_i_uid(sk2))) &&
156 saddr_comp(sk, sk2)) {
157 if (!bitmap)
158 return 1;
159 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
160 }
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
174 {
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
179
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 saddr_comp(sk, sk2)) {
191 res = 1;
192 break;
193 }
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
199 /**
200 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
201 *
202 * @sk: socket struct in question
203 * @snum: port number to look up
204 * @saddr_comp: AF-dependent comparison of bound local IP addresses
205 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206 * with NULL address
207 */
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 int (*saddr_comp)(const struct sock *sk1,
210 const struct sock *sk2),
211 unsigned int hash2_nulladdr)
212 {
213 struct udp_hslot *hslot, *hslot2;
214 struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 int error = 1;
216 struct net *net = sock_net(sk);
217
218 if (!snum) {
219 int low, high, remaining;
220 unsigned int rand;
221 unsigned short first, last;
222 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
223
224 inet_get_local_port_range(net, &low, &high);
225 remaining = (high - low) + 1;
226
227 rand = prandom_u32();
228 first = reciprocal_scale(rand, remaining) + low;
229 /*
230 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 */
232 rand = (rand | 1) * (udptable->mask + 1);
233 last = first + udptable->mask + 1;
234 do {
235 hslot = udp_hashslot(udptable, net, first);
236 bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 spin_lock_bh(&hslot->lock);
238 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 saddr_comp, udptable->log);
240
241 snum = first;
242 /*
243 * Iterate on all possible values of snum for this hash.
244 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 * give us randomization and full range coverage.
246 */
247 do {
248 if (low <= snum && snum <= high &&
249 !test_bit(snum >> udptable->log, bitmap) &&
250 !inet_is_local_reserved_port(net, snum))
251 goto found;
252 snum += rand;
253 } while (snum != first);
254 spin_unlock_bh(&hslot->lock);
255 } while (++first != last);
256 goto fail;
257 } else {
258 hslot = udp_hashslot(udptable, net, snum);
259 spin_lock_bh(&hslot->lock);
260 if (hslot->count > 10) {
261 int exist;
262 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
263
264 slot2 &= udptable->mask;
265 hash2_nulladdr &= udptable->mask;
266
267 hslot2 = udp_hashslot2(udptable, slot2);
268 if (hslot->count < hslot2->count)
269 goto scan_primary_hash;
270
271 exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 sk, saddr_comp);
273 if (!exist && (hash2_nulladdr != slot2)) {
274 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 sk, saddr_comp);
277 }
278 if (exist)
279 goto fail_unlock;
280 else
281 goto found;
282 }
283 scan_primary_hash:
284 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 saddr_comp, 0))
286 goto fail_unlock;
287 }
288 found:
289 inet_sk(sk)->inet_num = snum;
290 udp_sk(sk)->udp_port_hash = snum;
291 udp_sk(sk)->udp_portaddr_hash ^= snum;
292 if (sk_unhashed(sk)) {
293 sk_nulls_add_node_rcu(sk, &hslot->head);
294 hslot->count++;
295 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
296
297 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 spin_lock(&hslot2->lock);
299 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 &hslot2->head);
301 hslot2->count++;
302 spin_unlock(&hslot2->lock);
303 }
304 error = 0;
305 fail_unlock:
306 spin_unlock_bh(&hslot->lock);
307 fail:
308 return error;
309 }
310 EXPORT_SYMBOL(udp_lib_get_port);
311
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
313 {
314 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
315
316 return (!ipv6_only_sock(sk2) &&
317 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
319 }
320
321 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
322 unsigned int port)
323 {
324 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
325 }
326
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
328 {
329 unsigned int hash2_nulladdr =
330 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 unsigned int hash2_partial =
332 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
333
334 /* precompute partial secondary hash */
335 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
337 }
338
339 static inline int compute_score(struct sock *sk, struct net *net,
340 __be32 saddr, unsigned short hnum, __be16 sport,
341 __be32 daddr, __be16 dport, int dif)
342 {
343 int score;
344 struct inet_sock *inet;
345
346 if (!net_eq(sock_net(sk), net) ||
347 udp_sk(sk)->udp_port_hash != hnum ||
348 ipv6_only_sock(sk))
349 return -1;
350
351 score = (sk->sk_family == PF_INET) ? 2 : 1;
352 inet = inet_sk(sk);
353
354 if (inet->inet_rcv_saddr) {
355 if (inet->inet_rcv_saddr != daddr)
356 return -1;
357 score += 4;
358 }
359
360 if (inet->inet_daddr) {
361 if (inet->inet_daddr != saddr)
362 return -1;
363 score += 4;
364 }
365
366 if (inet->inet_dport) {
367 if (inet->inet_dport != sport)
368 return -1;
369 score += 4;
370 }
371
372 if (sk->sk_bound_dev_if) {
373 if (sk->sk_bound_dev_if != dif)
374 return -1;
375 score += 4;
376 }
377
378 return score;
379 }
380
381 /*
382 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
383 */
384 static inline int compute_score2(struct sock *sk, struct net *net,
385 __be32 saddr, __be16 sport,
386 __be32 daddr, unsigned int hnum, int dif)
387 {
388 int score;
389 struct inet_sock *inet;
390
391 if (!net_eq(sock_net(sk), net) ||
392 ipv6_only_sock(sk))
393 return -1;
394
395 inet = inet_sk(sk);
396
397 if (inet->inet_rcv_saddr != daddr ||
398 inet->inet_num != hnum)
399 return -1;
400
401 score = (sk->sk_family == PF_INET) ? 2 : 1;
402
403 if (inet->inet_daddr) {
404 if (inet->inet_daddr != saddr)
405 return -1;
406 score += 4;
407 }
408
409 if (inet->inet_dport) {
410 if (inet->inet_dport != sport)
411 return -1;
412 score += 4;
413 }
414
415 if (sk->sk_bound_dev_if) {
416 if (sk->sk_bound_dev_if != dif)
417 return -1;
418 score += 4;
419 }
420
421 return score;
422 }
423
424 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
425 const __u16 lport, const __be32 faddr,
426 const __be16 fport)
427 {
428 static u32 udp_ehash_secret __read_mostly;
429
430 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
431
432 return __inet_ehashfn(laddr, lport, faddr, fport,
433 udp_ehash_secret + net_hash_mix(net));
434 }
435
436
437 /* called with read_rcu_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 __be32 saddr, __be16 sport,
440 __be32 daddr, unsigned int hnum, int dif,
441 struct udp_hslot *hslot2, unsigned int slot2)
442 {
443 struct sock *sk, *result;
444 struct hlist_nulls_node *node;
445 int score, badness, matches = 0, reuseport = 0;
446 u32 hash = 0;
447
448 begin:
449 result = NULL;
450 badness = 0;
451 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452 score = compute_score2(sk, net, saddr, sport,
453 daddr, hnum, dif);
454 if (score > badness) {
455 result = sk;
456 badness = score;
457 reuseport = sk->sk_reuseport;
458 if (reuseport) {
459 hash = udp_ehashfn(net, daddr, hnum,
460 saddr, sport);
461 matches = 1;
462 }
463 } else if (score == badness && reuseport) {
464 matches++;
465 if (reciprocal_scale(hash, matches) == 0)
466 result = sk;
467 hash = next_pseudo_random32(hash);
468 }
469 }
470 /*
471 * if the nulls value we got at the end of this lookup is
472 * not the expected one, we must restart lookup.
473 * We probably met an item that was moved to another chain.
474 */
475 if (get_nulls_value(node) != slot2)
476 goto begin;
477 if (result) {
478 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479 result = NULL;
480 else if (unlikely(compute_score2(result, net, saddr, sport,
481 daddr, hnum, dif) < badness)) {
482 sock_put(result);
483 goto begin;
484 }
485 }
486 return result;
487 }
488
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490 * harder than this. -DaveM
491 */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 __be16 sport, __be32 daddr, __be16 dport,
494 int dif, struct udp_table *udptable)
495 {
496 struct sock *sk, *result;
497 struct hlist_nulls_node *node;
498 unsigned short hnum = ntohs(dport);
499 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501 int score, badness, matches = 0, reuseport = 0;
502 u32 hash = 0;
503
504 rcu_read_lock();
505 if (hslot->count > 10) {
506 hash2 = udp4_portaddr_hash(net, daddr, hnum);
507 slot2 = hash2 & udptable->mask;
508 hslot2 = &udptable->hash2[slot2];
509 if (hslot->count < hslot2->count)
510 goto begin;
511
512 result = udp4_lib_lookup2(net, saddr, sport,
513 daddr, hnum, dif,
514 hslot2, slot2);
515 if (!result) {
516 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517 slot2 = hash2 & udptable->mask;
518 hslot2 = &udptable->hash2[slot2];
519 if (hslot->count < hslot2->count)
520 goto begin;
521
522 result = udp4_lib_lookup2(net, saddr, sport,
523 htonl(INADDR_ANY), hnum, dif,
524 hslot2, slot2);
525 }
526 rcu_read_unlock();
527 return result;
528 }
529 begin:
530 result = NULL;
531 badness = 0;
532 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533 score = compute_score(sk, net, saddr, hnum, sport,
534 daddr, dport, dif);
535 if (score > badness) {
536 result = sk;
537 badness = score;
538 reuseport = sk->sk_reuseport;
539 if (reuseport) {
540 hash = udp_ehashfn(net, daddr, hnum,
541 saddr, sport);
542 matches = 1;
543 }
544 } else if (score == badness && reuseport) {
545 matches++;
546 if (reciprocal_scale(hash, matches) == 0)
547 result = sk;
548 hash = next_pseudo_random32(hash);
549 }
550 }
551 /*
552 * if the nulls value we got at the end of this lookup is
553 * not the expected one, we must restart lookup.
554 * We probably met an item that was moved to another chain.
555 */
556 if (get_nulls_value(node) != slot)
557 goto begin;
558
559 if (result) {
560 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561 result = NULL;
562 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563 daddr, dport, dif) < badness)) {
564 sock_put(result);
565 goto begin;
566 }
567 }
568 rcu_read_unlock();
569 return result;
570 }
571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
572
573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574 __be16 sport, __be16 dport,
575 struct udp_table *udptable)
576 {
577 const struct iphdr *iph = ip_hdr(skb);
578
579 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580 iph->daddr, dport, inet_iif(skb),
581 udptable);
582 }
583
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 __be32 daddr, __be16 dport, int dif)
586 {
587 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
588 }
589 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
590
591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592 __be16 loc_port, __be32 loc_addr,
593 __be16 rmt_port, __be32 rmt_addr,
594 int dif, unsigned short hnum)
595 {
596 struct inet_sock *inet = inet_sk(sk);
597
598 if (!net_eq(sock_net(sk), net) ||
599 udp_sk(sk)->udp_port_hash != hnum ||
600 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601 (inet->inet_dport != rmt_port && inet->inet_dport) ||
602 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603 ipv6_only_sock(sk) ||
604 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605 return false;
606 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607 return false;
608 return true;
609 }
610
611 /*
612 * This routine is called by the ICMP module when it gets some
613 * sort of error condition. If err < 0 then the socket should
614 * be closed and the error returned to the user. If err > 0
615 * it's just the icmp type << 8 | icmp code.
616 * Header points to the ip header of the error packet. We move
617 * on past this. Then (as it used to claim before adjustment)
618 * header points to the first 8 bytes of the udp header. We need
619 * to find the appropriate port.
620 */
621
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 struct inet_sock *inet;
625 const struct iphdr *iph = (const struct iphdr *)skb->data;
626 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 const int type = icmp_hdr(skb)->type;
628 const int code = icmp_hdr(skb)->code;
629 struct sock *sk;
630 int harderr;
631 int err;
632 struct net *net = dev_net(skb->dev);
633
634 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 iph->saddr, uh->source, skb->dev->ifindex, udptable);
636 if (sk == NULL) {
637 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638 return; /* No socket for error */
639 }
640
641 err = 0;
642 harderr = 0;
643 inet = inet_sk(sk);
644
645 switch (type) {
646 default:
647 case ICMP_TIME_EXCEEDED:
648 err = EHOSTUNREACH;
649 break;
650 case ICMP_SOURCE_QUENCH:
651 goto out;
652 case ICMP_PARAMETERPROB:
653 err = EPROTO;
654 harderr = 1;
655 break;
656 case ICMP_DEST_UNREACH:
657 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658 ipv4_sk_update_pmtu(skb, sk, info);
659 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660 err = EMSGSIZE;
661 harderr = 1;
662 break;
663 }
664 goto out;
665 }
666 err = EHOSTUNREACH;
667 if (code <= NR_ICMP_UNREACH) {
668 harderr = icmp_err_convert[code].fatal;
669 err = icmp_err_convert[code].errno;
670 }
671 break;
672 case ICMP_REDIRECT:
673 ipv4_sk_redirect(skb, sk);
674 goto out;
675 }
676
677 /*
678 * RFC1122: OK. Passes ICMP errors back to application, as per
679 * 4.1.3.3.
680 */
681 if (!inet->recverr) {
682 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683 goto out;
684 } else
685 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
686
687 sk->sk_err = err;
688 sk->sk_error_report(sk);
689 out:
690 sock_put(sk);
691 }
692
693 void udp_err(struct sk_buff *skb, u32 info)
694 {
695 __udp4_lib_err(skb, info, &udp_table);
696 }
697
698 /*
699 * Throw away all pending data and cancel the corking. Socket is locked.
700 */
701 void udp_flush_pending_frames(struct sock *sk)
702 {
703 struct udp_sock *up = udp_sk(sk);
704
705 if (up->pending) {
706 up->len = 0;
707 up->pending = 0;
708 ip_flush_pending_frames(sk);
709 }
710 }
711 EXPORT_SYMBOL(udp_flush_pending_frames);
712
713 /**
714 * udp4_hwcsum - handle outgoing HW checksumming
715 * @skb: sk_buff containing the filled-in UDP header
716 * (checksum field must be zeroed out)
717 * @src: source IP address
718 * @dst: destination IP address
719 */
720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
721 {
722 struct udphdr *uh = udp_hdr(skb);
723 int offset = skb_transport_offset(skb);
724 int len = skb->len - offset;
725 int hlen = len;
726 __wsum csum = 0;
727
728 if (!skb_has_frag_list(skb)) {
729 /*
730 * Only one fragment on the socket.
731 */
732 skb->csum_start = skb_transport_header(skb) - skb->head;
733 skb->csum_offset = offsetof(struct udphdr, check);
734 uh->check = ~csum_tcpudp_magic(src, dst, len,
735 IPPROTO_UDP, 0);
736 } else {
737 struct sk_buff *frags;
738
739 /*
740 * HW-checksum won't work as there are two or more
741 * fragments on the socket so that all csums of sk_buffs
742 * should be together
743 */
744 skb_walk_frags(skb, frags) {
745 csum = csum_add(csum, frags->csum);
746 hlen -= frags->len;
747 }
748
749 csum = skb_checksum(skb, offset, hlen, csum);
750 skb->ip_summed = CHECKSUM_NONE;
751
752 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753 if (uh->check == 0)
754 uh->check = CSUM_MANGLED_0;
755 }
756 }
757 EXPORT_SYMBOL_GPL(udp4_hwcsum);
758
759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760 * for the simple case like when setting the checksum for a UDP tunnel.
761 */
762 void udp_set_csum(bool nocheck, struct sk_buff *skb,
763 __be32 saddr, __be32 daddr, int len)
764 {
765 struct udphdr *uh = udp_hdr(skb);
766
767 if (nocheck)
768 uh->check = 0;
769 else if (skb_is_gso(skb))
770 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771 else if (skb_dst(skb) && skb_dst(skb)->dev &&
772 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
773
774 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
775
776 skb->ip_summed = CHECKSUM_PARTIAL;
777 skb->csum_start = skb_transport_header(skb) - skb->head;
778 skb->csum_offset = offsetof(struct udphdr, check);
779 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 } else {
781 __wsum csum;
782
783 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
784
785 uh->check = 0;
786 csum = skb_checksum(skb, 0, len, 0);
787 uh->check = udp_v4_check(len, saddr, daddr, csum);
788 if (uh->check == 0)
789 uh->check = CSUM_MANGLED_0;
790
791 skb->ip_summed = CHECKSUM_UNNECESSARY;
792 }
793 }
794 EXPORT_SYMBOL(udp_set_csum);
795
796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
797 {
798 struct sock *sk = skb->sk;
799 struct inet_sock *inet = inet_sk(sk);
800 struct udphdr *uh;
801 int err = 0;
802 int is_udplite = IS_UDPLITE(sk);
803 int offset = skb_transport_offset(skb);
804 int len = skb->len - offset;
805 __wsum csum = 0;
806
807 /*
808 * Create a UDP header
809 */
810 uh = udp_hdr(skb);
811 uh->source = inet->inet_sport;
812 uh->dest = fl4->fl4_dport;
813 uh->len = htons(len);
814 uh->check = 0;
815
816 if (is_udplite) /* UDP-Lite */
817 csum = udplite_csum(skb);
818
819 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
820
821 skb->ip_summed = CHECKSUM_NONE;
822 goto send;
823
824 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
825
826 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827 goto send;
828
829 } else
830 csum = udp_csum(skb);
831
832 /* add protocol-dependent pseudo-header */
833 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834 sk->sk_protocol, csum);
835 if (uh->check == 0)
836 uh->check = CSUM_MANGLED_0;
837
838 send:
839 err = ip_send_skb(sock_net(sk), skb);
840 if (err) {
841 if (err == -ENOBUFS && !inet->recverr) {
842 UDP_INC_STATS_USER(sock_net(sk),
843 UDP_MIB_SNDBUFERRORS, is_udplite);
844 err = 0;
845 }
846 } else
847 UDP_INC_STATS_USER(sock_net(sk),
848 UDP_MIB_OUTDATAGRAMS, is_udplite);
849 return err;
850 }
851
852 /*
853 * Push out all pending data as one UDP datagram. Socket is locked.
854 */
855 int udp_push_pending_frames(struct sock *sk)
856 {
857 struct udp_sock *up = udp_sk(sk);
858 struct inet_sock *inet = inet_sk(sk);
859 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860 struct sk_buff *skb;
861 int err = 0;
862
863 skb = ip_finish_skb(sk, fl4);
864 if (!skb)
865 goto out;
866
867 err = udp_send_skb(skb, fl4);
868
869 out:
870 up->len = 0;
871 up->pending = 0;
872 return err;
873 }
874 EXPORT_SYMBOL(udp_push_pending_frames);
875
876 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
877 {
878 struct inet_sock *inet = inet_sk(sk);
879 struct udp_sock *up = udp_sk(sk);
880 struct flowi4 fl4_stack;
881 struct flowi4 *fl4;
882 int ulen = len;
883 struct ipcm_cookie ipc;
884 struct rtable *rt = NULL;
885 int free = 0;
886 int connected = 0;
887 __be32 daddr, faddr, saddr;
888 __be16 dport;
889 u8 tos;
890 int err, is_udplite = IS_UDPLITE(sk);
891 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
892 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
893 struct sk_buff *skb;
894 struct ip_options_data opt_copy;
895
896 if (len > 0xFFFF)
897 return -EMSGSIZE;
898
899 /*
900 * Check the flags.
901 */
902
903 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
904 return -EOPNOTSUPP;
905
906 ipc.opt = NULL;
907 ipc.tx_flags = 0;
908 ipc.ttl = 0;
909 ipc.tos = -1;
910
911 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
912
913 fl4 = &inet->cork.fl.u.ip4;
914 if (up->pending) {
915 /*
916 * There are pending frames.
917 * The socket lock must be held while it's corked.
918 */
919 lock_sock(sk);
920 if (likely(up->pending)) {
921 if (unlikely(up->pending != AF_INET)) {
922 release_sock(sk);
923 return -EINVAL;
924 }
925 goto do_append_data;
926 }
927 release_sock(sk);
928 }
929 ulen += sizeof(struct udphdr);
930
931 /*
932 * Get and verify the address.
933 */
934 if (msg->msg_name) {
935 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 if (msg->msg_namelen < sizeof(*usin))
937 return -EINVAL;
938 if (usin->sin_family != AF_INET) {
939 if (usin->sin_family != AF_UNSPEC)
940 return -EAFNOSUPPORT;
941 }
942
943 daddr = usin->sin_addr.s_addr;
944 dport = usin->sin_port;
945 if (dport == 0)
946 return -EINVAL;
947 } else {
948 if (sk->sk_state != TCP_ESTABLISHED)
949 return -EDESTADDRREQ;
950 daddr = inet->inet_daddr;
951 dport = inet->inet_dport;
952 /* Open fast path for connected socket.
953 Route will not be used, if at least one option is set.
954 */
955 connected = 1;
956 }
957 ipc.addr = inet->inet_saddr;
958
959 ipc.oif = sk->sk_bound_dev_if;
960
961 sock_tx_timestamp(sk, &ipc.tx_flags);
962
963 if (msg->msg_controllen) {
964 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
965 sk->sk_family == AF_INET6);
966 if (err)
967 return err;
968 if (ipc.opt)
969 free = 1;
970 connected = 0;
971 }
972 if (!ipc.opt) {
973 struct ip_options_rcu *inet_opt;
974
975 rcu_read_lock();
976 inet_opt = rcu_dereference(inet->inet_opt);
977 if (inet_opt) {
978 memcpy(&opt_copy, inet_opt,
979 sizeof(*inet_opt) + inet_opt->opt.optlen);
980 ipc.opt = &opt_copy.opt;
981 }
982 rcu_read_unlock();
983 }
984
985 saddr = ipc.addr;
986 ipc.addr = faddr = daddr;
987
988 if (ipc.opt && ipc.opt->opt.srr) {
989 if (!daddr)
990 return -EINVAL;
991 faddr = ipc.opt->opt.faddr;
992 connected = 0;
993 }
994 tos = get_rttos(&ipc, inet);
995 if (sock_flag(sk, SOCK_LOCALROUTE) ||
996 (msg->msg_flags & MSG_DONTROUTE) ||
997 (ipc.opt && ipc.opt->opt.is_strictroute)) {
998 tos |= RTO_ONLINK;
999 connected = 0;
1000 }
1001
1002 if (ipv4_is_multicast(daddr)) {
1003 if (!ipc.oif)
1004 ipc.oif = inet->mc_index;
1005 if (!saddr)
1006 saddr = inet->mc_addr;
1007 connected = 0;
1008 } else if (!ipc.oif)
1009 ipc.oif = inet->uc_index;
1010
1011 if (connected)
1012 rt = (struct rtable *)sk_dst_check(sk, 0);
1013
1014 if (rt == NULL) {
1015 struct net *net = sock_net(sk);
1016
1017 fl4 = &fl4_stack;
1018 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1019 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1020 inet_sk_flowi_flags(sk),
1021 faddr, saddr, dport, inet->inet_sport);
1022
1023 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1024 rt = ip_route_output_flow(net, fl4, sk);
1025 if (IS_ERR(rt)) {
1026 err = PTR_ERR(rt);
1027 rt = NULL;
1028 if (err == -ENETUNREACH)
1029 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1030 goto out;
1031 }
1032
1033 err = -EACCES;
1034 if ((rt->rt_flags & RTCF_BROADCAST) &&
1035 !sock_flag(sk, SOCK_BROADCAST))
1036 goto out;
1037 if (connected)
1038 sk_dst_set(sk, dst_clone(&rt->dst));
1039 }
1040
1041 if (msg->msg_flags&MSG_CONFIRM)
1042 goto do_confirm;
1043 back_from_confirm:
1044
1045 saddr = fl4->saddr;
1046 if (!ipc.addr)
1047 daddr = ipc.addr = fl4->daddr;
1048
1049 /* Lockless fast path for the non-corking case. */
1050 if (!corkreq) {
1051 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1052 sizeof(struct udphdr), &ipc, &rt,
1053 msg->msg_flags);
1054 err = PTR_ERR(skb);
1055 if (!IS_ERR_OR_NULL(skb))
1056 err = udp_send_skb(skb, fl4);
1057 goto out;
1058 }
1059
1060 lock_sock(sk);
1061 if (unlikely(up->pending)) {
1062 /* The socket is already corked while preparing it. */
1063 /* ... which is an evident application bug. --ANK */
1064 release_sock(sk);
1065
1066 net_dbg_ratelimited("cork app bug 2\n");
1067 err = -EINVAL;
1068 goto out;
1069 }
1070 /*
1071 * Now cork the socket to pend data.
1072 */
1073 fl4 = &inet->cork.fl.u.ip4;
1074 fl4->daddr = daddr;
1075 fl4->saddr = saddr;
1076 fl4->fl4_dport = dport;
1077 fl4->fl4_sport = inet->inet_sport;
1078 up->pending = AF_INET;
1079
1080 do_append_data:
1081 up->len += ulen;
1082 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1083 sizeof(struct udphdr), &ipc, &rt,
1084 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1085 if (err)
1086 udp_flush_pending_frames(sk);
1087 else if (!corkreq)
1088 err = udp_push_pending_frames(sk);
1089 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1090 up->pending = 0;
1091 release_sock(sk);
1092
1093 out:
1094 ip_rt_put(rt);
1095 if (free)
1096 kfree(ipc.opt);
1097 if (!err)
1098 return len;
1099 /*
1100 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1101 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1102 * we don't have a good statistic (IpOutDiscards but it can be too many
1103 * things). We could add another new stat but at least for now that
1104 * seems like overkill.
1105 */
1106 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1107 UDP_INC_STATS_USER(sock_net(sk),
1108 UDP_MIB_SNDBUFERRORS, is_udplite);
1109 }
1110 return err;
1111
1112 do_confirm:
1113 dst_confirm(&rt->dst);
1114 if (!(msg->msg_flags&MSG_PROBE) || len)
1115 goto back_from_confirm;
1116 err = 0;
1117 goto out;
1118 }
1119 EXPORT_SYMBOL(udp_sendmsg);
1120
1121 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1122 size_t size, int flags)
1123 {
1124 struct inet_sock *inet = inet_sk(sk);
1125 struct udp_sock *up = udp_sk(sk);
1126 int ret;
1127
1128 if (flags & MSG_SENDPAGE_NOTLAST)
1129 flags |= MSG_MORE;
1130
1131 if (!up->pending) {
1132 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1133
1134 /* Call udp_sendmsg to specify destination address which
1135 * sendpage interface can't pass.
1136 * This will succeed only when the socket is connected.
1137 */
1138 ret = udp_sendmsg(sk, &msg, 0);
1139 if (ret < 0)
1140 return ret;
1141 }
1142
1143 lock_sock(sk);
1144
1145 if (unlikely(!up->pending)) {
1146 release_sock(sk);
1147
1148 net_dbg_ratelimited("udp cork app bug 3\n");
1149 return -EINVAL;
1150 }
1151
1152 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1153 page, offset, size, flags);
1154 if (ret == -EOPNOTSUPP) {
1155 release_sock(sk);
1156 return sock_no_sendpage(sk->sk_socket, page, offset,
1157 size, flags);
1158 }
1159 if (ret < 0) {
1160 udp_flush_pending_frames(sk);
1161 goto out;
1162 }
1163
1164 up->len += size;
1165 if (!(up->corkflag || (flags&MSG_MORE)))
1166 ret = udp_push_pending_frames(sk);
1167 if (!ret)
1168 ret = size;
1169 out:
1170 release_sock(sk);
1171 return ret;
1172 }
1173
1174
1175 /**
1176 * first_packet_length - return length of first packet in receive queue
1177 * @sk: socket
1178 *
1179 * Drops all bad checksum frames, until a valid one is found.
1180 * Returns the length of found skb, or 0 if none is found.
1181 */
1182 static unsigned int first_packet_length(struct sock *sk)
1183 {
1184 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1185 struct sk_buff *skb;
1186 unsigned int res;
1187
1188 __skb_queue_head_init(&list_kill);
1189
1190 spin_lock_bh(&rcvq->lock);
1191 while ((skb = skb_peek(rcvq)) != NULL &&
1192 udp_lib_checksum_complete(skb)) {
1193 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1194 IS_UDPLITE(sk));
1195 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1196 IS_UDPLITE(sk));
1197 atomic_inc(&sk->sk_drops);
1198 __skb_unlink(skb, rcvq);
1199 __skb_queue_tail(&list_kill, skb);
1200 }
1201 res = skb ? skb->len : 0;
1202 spin_unlock_bh(&rcvq->lock);
1203
1204 if (!skb_queue_empty(&list_kill)) {
1205 bool slow = lock_sock_fast(sk);
1206
1207 __skb_queue_purge(&list_kill);
1208 sk_mem_reclaim_partial(sk);
1209 unlock_sock_fast(sk, slow);
1210 }
1211 return res;
1212 }
1213
1214 /*
1215 * IOCTL requests applicable to the UDP protocol
1216 */
1217
1218 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1219 {
1220 switch (cmd) {
1221 case SIOCOUTQ:
1222 {
1223 int amount = sk_wmem_alloc_get(sk);
1224
1225 return put_user(amount, (int __user *)arg);
1226 }
1227
1228 case SIOCINQ:
1229 {
1230 unsigned int amount = first_packet_length(sk);
1231
1232 if (amount)
1233 /*
1234 * We will only return the amount
1235 * of this packet since that is all
1236 * that will be read.
1237 */
1238 amount -= sizeof(struct udphdr);
1239
1240 return put_user(amount, (int __user *)arg);
1241 }
1242
1243 default:
1244 return -ENOIOCTLCMD;
1245 }
1246
1247 return 0;
1248 }
1249 EXPORT_SYMBOL(udp_ioctl);
1250
1251 /*
1252 * This should be easy, if there is something there we
1253 * return it, otherwise we block.
1254 */
1255
1256 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1257 int flags, int *addr_len)
1258 {
1259 struct inet_sock *inet = inet_sk(sk);
1260 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1261 struct sk_buff *skb;
1262 unsigned int ulen, copied;
1263 int peeked, off = 0;
1264 int err;
1265 int is_udplite = IS_UDPLITE(sk);
1266 bool slow;
1267
1268 if (flags & MSG_ERRQUEUE)
1269 return ip_recv_error(sk, msg, len, addr_len);
1270
1271 try_again:
1272 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1273 &peeked, &off, &err);
1274 if (!skb)
1275 goto out;
1276
1277 ulen = skb->len - sizeof(struct udphdr);
1278 copied = len;
1279 if (copied > ulen)
1280 copied = ulen;
1281 else if (copied < ulen)
1282 msg->msg_flags |= MSG_TRUNC;
1283
1284 /*
1285 * If checksum is needed at all, try to do it while copying the
1286 * data. If the data is truncated, or if we only want a partial
1287 * coverage checksum (UDP-Lite), do it before the copy.
1288 */
1289
1290 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1291 if (udp_lib_checksum_complete(skb))
1292 goto csum_copy_err;
1293 }
1294
1295 if (skb_csum_unnecessary(skb))
1296 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1297 msg, copied);
1298 else {
1299 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1300 msg);
1301
1302 if (err == -EINVAL)
1303 goto csum_copy_err;
1304 }
1305
1306 if (unlikely(err)) {
1307 trace_kfree_skb(skb, udp_recvmsg);
1308 if (!peeked) {
1309 atomic_inc(&sk->sk_drops);
1310 UDP_INC_STATS_USER(sock_net(sk),
1311 UDP_MIB_INERRORS, is_udplite);
1312 }
1313 goto out_free;
1314 }
1315
1316 if (!peeked)
1317 UDP_INC_STATS_USER(sock_net(sk),
1318 UDP_MIB_INDATAGRAMS, is_udplite);
1319
1320 sock_recv_ts_and_drops(msg, sk, skb);
1321
1322 /* Copy the address. */
1323 if (sin) {
1324 sin->sin_family = AF_INET;
1325 sin->sin_port = udp_hdr(skb)->source;
1326 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1327 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1328 *addr_len = sizeof(*sin);
1329 }
1330 if (inet->cmsg_flags)
1331 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1332
1333 err = copied;
1334 if (flags & MSG_TRUNC)
1335 err = ulen;
1336
1337 out_free:
1338 skb_free_datagram_locked(sk, skb);
1339 out:
1340 return err;
1341
1342 csum_copy_err:
1343 slow = lock_sock_fast(sk);
1344 if (!skb_kill_datagram(sk, skb, flags)) {
1345 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1346 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1347 }
1348 unlock_sock_fast(sk, slow);
1349
1350 if (noblock)
1351 return -EAGAIN;
1352
1353 /* starting over for a new packet */
1354 msg->msg_flags &= ~MSG_TRUNC;
1355 goto try_again;
1356 }
1357
1358
1359 int udp_disconnect(struct sock *sk, int flags)
1360 {
1361 struct inet_sock *inet = inet_sk(sk);
1362 /*
1363 * 1003.1g - break association.
1364 */
1365
1366 sk->sk_state = TCP_CLOSE;
1367 inet->inet_daddr = 0;
1368 inet->inet_dport = 0;
1369 sock_rps_reset_rxhash(sk);
1370 sk->sk_bound_dev_if = 0;
1371 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1372 inet_reset_saddr(sk);
1373
1374 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1375 sk->sk_prot->unhash(sk);
1376 inet->inet_sport = 0;
1377 }
1378 sk_dst_reset(sk);
1379 return 0;
1380 }
1381 EXPORT_SYMBOL(udp_disconnect);
1382
1383 void udp_lib_unhash(struct sock *sk)
1384 {
1385 if (sk_hashed(sk)) {
1386 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1387 struct udp_hslot *hslot, *hslot2;
1388
1389 hslot = udp_hashslot(udptable, sock_net(sk),
1390 udp_sk(sk)->udp_port_hash);
1391 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1392
1393 spin_lock_bh(&hslot->lock);
1394 if (sk_nulls_del_node_init_rcu(sk)) {
1395 hslot->count--;
1396 inet_sk(sk)->inet_num = 0;
1397 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1398
1399 spin_lock(&hslot2->lock);
1400 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1401 hslot2->count--;
1402 spin_unlock(&hslot2->lock);
1403 }
1404 spin_unlock_bh(&hslot->lock);
1405 }
1406 }
1407 EXPORT_SYMBOL(udp_lib_unhash);
1408
1409 /*
1410 * inet_rcv_saddr was changed, we must rehash secondary hash
1411 */
1412 void udp_lib_rehash(struct sock *sk, u16 newhash)
1413 {
1414 if (sk_hashed(sk)) {
1415 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1416 struct udp_hslot *hslot, *hslot2, *nhslot2;
1417
1418 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1419 nhslot2 = udp_hashslot2(udptable, newhash);
1420 udp_sk(sk)->udp_portaddr_hash = newhash;
1421 if (hslot2 != nhslot2) {
1422 hslot = udp_hashslot(udptable, sock_net(sk),
1423 udp_sk(sk)->udp_port_hash);
1424 /* we must lock primary chain too */
1425 spin_lock_bh(&hslot->lock);
1426
1427 spin_lock(&hslot2->lock);
1428 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1429 hslot2->count--;
1430 spin_unlock(&hslot2->lock);
1431
1432 spin_lock(&nhslot2->lock);
1433 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1434 &nhslot2->head);
1435 nhslot2->count++;
1436 spin_unlock(&nhslot2->lock);
1437
1438 spin_unlock_bh(&hslot->lock);
1439 }
1440 }
1441 }
1442 EXPORT_SYMBOL(udp_lib_rehash);
1443
1444 static void udp_v4_rehash(struct sock *sk)
1445 {
1446 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1447 inet_sk(sk)->inet_rcv_saddr,
1448 inet_sk(sk)->inet_num);
1449 udp_lib_rehash(sk, new_hash);
1450 }
1451
1452 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1453 {
1454 int rc;
1455
1456 if (inet_sk(sk)->inet_daddr) {
1457 sock_rps_save_rxhash(sk, skb);
1458 sk_mark_napi_id(sk, skb);
1459 sk_incoming_cpu_update(sk);
1460 }
1461
1462 rc = sock_queue_rcv_skb(sk, skb);
1463 if (rc < 0) {
1464 int is_udplite = IS_UDPLITE(sk);
1465
1466 /* Note that an ENOMEM error is charged twice */
1467 if (rc == -ENOMEM)
1468 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1469 is_udplite);
1470 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1471 kfree_skb(skb);
1472 trace_udp_fail_queue_rcv_skb(rc, sk);
1473 return -1;
1474 }
1475
1476 return 0;
1477
1478 }
1479
1480 static struct static_key udp_encap_needed __read_mostly;
1481 void udp_encap_enable(void)
1482 {
1483 if (!static_key_enabled(&udp_encap_needed))
1484 static_key_slow_inc(&udp_encap_needed);
1485 }
1486 EXPORT_SYMBOL(udp_encap_enable);
1487
1488 /* returns:
1489 * -1: error
1490 * 0: success
1491 * >0: "udp encap" protocol resubmission
1492 *
1493 * Note that in the success and error cases, the skb is assumed to
1494 * have either been requeued or freed.
1495 */
1496 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1497 {
1498 struct udp_sock *up = udp_sk(sk);
1499 int rc;
1500 int is_udplite = IS_UDPLITE(sk);
1501
1502 /*
1503 * Charge it to the socket, dropping if the queue is full.
1504 */
1505 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1506 goto drop;
1507 nf_reset(skb);
1508
1509 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1510 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1511
1512 /*
1513 * This is an encapsulation socket so pass the skb to
1514 * the socket's udp_encap_rcv() hook. Otherwise, just
1515 * fall through and pass this up the UDP socket.
1516 * up->encap_rcv() returns the following value:
1517 * =0 if skb was successfully passed to the encap
1518 * handler or was discarded by it.
1519 * >0 if skb should be passed on to UDP.
1520 * <0 if skb should be resubmitted as proto -N
1521 */
1522
1523 /* if we're overly short, let UDP handle it */
1524 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1525 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1526 int ret;
1527
1528 /* Verify checksum before giving to encap */
1529 if (udp_lib_checksum_complete(skb))
1530 goto csum_error;
1531
1532 ret = encap_rcv(sk, skb);
1533 if (ret <= 0) {
1534 UDP_INC_STATS_BH(sock_net(sk),
1535 UDP_MIB_INDATAGRAMS,
1536 is_udplite);
1537 return -ret;
1538 }
1539 }
1540
1541 /* FALLTHROUGH -- it's a UDP Packet */
1542 }
1543
1544 /*
1545 * UDP-Lite specific tests, ignored on UDP sockets
1546 */
1547 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1548
1549 /*
1550 * MIB statistics other than incrementing the error count are
1551 * disabled for the following two types of errors: these depend
1552 * on the application settings, not on the functioning of the
1553 * protocol stack as such.
1554 *
1555 * RFC 3828 here recommends (sec 3.3): "There should also be a
1556 * way ... to ... at least let the receiving application block
1557 * delivery of packets with coverage values less than a value
1558 * provided by the application."
1559 */
1560 if (up->pcrlen == 0) { /* full coverage was set */
1561 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1562 UDP_SKB_CB(skb)->cscov, skb->len);
1563 goto drop;
1564 }
1565 /* The next case involves violating the min. coverage requested
1566 * by the receiver. This is subtle: if receiver wants x and x is
1567 * greater than the buffersize/MTU then receiver will complain
1568 * that it wants x while sender emits packets of smaller size y.
1569 * Therefore the above ...()->partial_cov statement is essential.
1570 */
1571 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1572 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1573 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1574 goto drop;
1575 }
1576 }
1577
1578 if (rcu_access_pointer(sk->sk_filter) &&
1579 udp_lib_checksum_complete(skb))
1580 goto csum_error;
1581
1582
1583 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1584 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1585 is_udplite);
1586 goto drop;
1587 }
1588
1589 rc = 0;
1590
1591 ipv4_pktinfo_prepare(sk, skb);
1592 bh_lock_sock(sk);
1593 if (!sock_owned_by_user(sk))
1594 rc = __udp_queue_rcv_skb(sk, skb);
1595 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1596 bh_unlock_sock(sk);
1597 goto drop;
1598 }
1599 bh_unlock_sock(sk);
1600
1601 return rc;
1602
1603 csum_error:
1604 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1605 drop:
1606 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1607 atomic_inc(&sk->sk_drops);
1608 kfree_skb(skb);
1609 return -1;
1610 }
1611
1612
1613 static void flush_stack(struct sock **stack, unsigned int count,
1614 struct sk_buff *skb, unsigned int final)
1615 {
1616 unsigned int i;
1617 struct sk_buff *skb1 = NULL;
1618 struct sock *sk;
1619
1620 for (i = 0; i < count; i++) {
1621 sk = stack[i];
1622 if (likely(skb1 == NULL))
1623 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1624
1625 if (!skb1) {
1626 atomic_inc(&sk->sk_drops);
1627 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1628 IS_UDPLITE(sk));
1629 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1630 IS_UDPLITE(sk));
1631 }
1632
1633 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1634 skb1 = NULL;
1635
1636 sock_put(sk);
1637 }
1638 if (unlikely(skb1))
1639 kfree_skb(skb1);
1640 }
1641
1642 /* For TCP sockets, sk_rx_dst is protected by socket lock
1643 * For UDP, we use xchg() to guard against concurrent changes.
1644 */
1645 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1646 {
1647 struct dst_entry *old;
1648
1649 dst_hold(dst);
1650 old = xchg(&sk->sk_rx_dst, dst);
1651 dst_release(old);
1652 }
1653
1654 /*
1655 * Multicasts and broadcasts go to each listener.
1656 *
1657 * Note: called only from the BH handler context.
1658 */
1659 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1660 struct udphdr *uh,
1661 __be32 saddr, __be32 daddr,
1662 struct udp_table *udptable,
1663 int proto)
1664 {
1665 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1666 struct hlist_nulls_node *node;
1667 unsigned short hnum = ntohs(uh->dest);
1668 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1669 int dif = skb->dev->ifindex;
1670 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1671 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1672 bool inner_flushed = false;
1673
1674 if (use_hash2) {
1675 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1676 udp_table.mask;
1677 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1678 start_lookup:
1679 hslot = &udp_table.hash2[hash2];
1680 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1681 }
1682
1683 spin_lock(&hslot->lock);
1684 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1685 if (__udp_is_mcast_sock(net, sk,
1686 uh->dest, daddr,
1687 uh->source, saddr,
1688 dif, hnum)) {
1689 if (unlikely(count == ARRAY_SIZE(stack))) {
1690 flush_stack(stack, count, skb, ~0);
1691 inner_flushed = true;
1692 count = 0;
1693 }
1694 stack[count++] = sk;
1695 sock_hold(sk);
1696 }
1697 }
1698
1699 spin_unlock(&hslot->lock);
1700
1701 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1702 if (use_hash2 && hash2 != hash2_any) {
1703 hash2 = hash2_any;
1704 goto start_lookup;
1705 }
1706
1707 /*
1708 * do the slow work with no lock held
1709 */
1710 if (count) {
1711 flush_stack(stack, count, skb, count - 1);
1712 } else {
1713 if (!inner_flushed)
1714 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1715 proto == IPPROTO_UDPLITE);
1716 consume_skb(skb);
1717 }
1718 return 0;
1719 }
1720
1721 /* Initialize UDP checksum. If exited with zero value (success),
1722 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1723 * Otherwise, csum completion requires chacksumming packet body,
1724 * including udp header and folding it to skb->csum.
1725 */
1726 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1727 int proto)
1728 {
1729 int err;
1730
1731 UDP_SKB_CB(skb)->partial_cov = 0;
1732 UDP_SKB_CB(skb)->cscov = skb->len;
1733
1734 if (proto == IPPROTO_UDPLITE) {
1735 err = udplite_checksum_init(skb, uh);
1736 if (err)
1737 return err;
1738 }
1739
1740 return skb_checksum_init_zero_check(skb, proto, uh->check,
1741 inet_compute_pseudo);
1742 }
1743
1744 /*
1745 * All we need to do is get the socket, and then do a checksum.
1746 */
1747
1748 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1749 int proto)
1750 {
1751 struct sock *sk;
1752 struct udphdr *uh;
1753 unsigned short ulen;
1754 struct rtable *rt = skb_rtable(skb);
1755 __be32 saddr, daddr;
1756 struct net *net = dev_net(skb->dev);
1757
1758 /*
1759 * Validate the packet.
1760 */
1761 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1762 goto drop; /* No space for header. */
1763
1764 uh = udp_hdr(skb);
1765 ulen = ntohs(uh->len);
1766 saddr = ip_hdr(skb)->saddr;
1767 daddr = ip_hdr(skb)->daddr;
1768
1769 if (ulen > skb->len)
1770 goto short_packet;
1771
1772 if (proto == IPPROTO_UDP) {
1773 /* UDP validates ulen. */
1774 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1775 goto short_packet;
1776 uh = udp_hdr(skb);
1777 }
1778
1779 if (udp4_csum_init(skb, uh, proto))
1780 goto csum_error;
1781
1782 sk = skb_steal_sock(skb);
1783 if (sk) {
1784 struct dst_entry *dst = skb_dst(skb);
1785 int ret;
1786
1787 if (unlikely(sk->sk_rx_dst != dst))
1788 udp_sk_rx_dst_set(sk, dst);
1789
1790 ret = udp_queue_rcv_skb(sk, skb);
1791 sock_put(sk);
1792 /* a return value > 0 means to resubmit the input, but
1793 * it wants the return to be -protocol, or 0
1794 */
1795 if (ret > 0)
1796 return -ret;
1797 return 0;
1798 }
1799
1800 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1801 return __udp4_lib_mcast_deliver(net, skb, uh,
1802 saddr, daddr, udptable, proto);
1803
1804 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1805 if (sk != NULL) {
1806 int ret;
1807
1808 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1809 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1810 inet_compute_pseudo);
1811
1812 ret = udp_queue_rcv_skb(sk, skb);
1813 sock_put(sk);
1814
1815 /* a return value > 0 means to resubmit the input, but
1816 * it wants the return to be -protocol, or 0
1817 */
1818 if (ret > 0)
1819 return -ret;
1820 return 0;
1821 }
1822
1823 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1824 goto drop;
1825 nf_reset(skb);
1826
1827 /* No socket. Drop packet silently, if checksum is wrong */
1828 if (udp_lib_checksum_complete(skb))
1829 goto csum_error;
1830
1831 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1832 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1833
1834 /*
1835 * Hmm. We got an UDP packet to a port to which we
1836 * don't wanna listen. Ignore it.
1837 */
1838 kfree_skb(skb);
1839 return 0;
1840
1841 short_packet:
1842 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1843 proto == IPPROTO_UDPLITE ? "Lite" : "",
1844 &saddr, ntohs(uh->source),
1845 ulen, skb->len,
1846 &daddr, ntohs(uh->dest));
1847 goto drop;
1848
1849 csum_error:
1850 /*
1851 * RFC1122: OK. Discards the bad packet silently (as far as
1852 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1853 */
1854 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1855 proto == IPPROTO_UDPLITE ? "Lite" : "",
1856 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1857 ulen);
1858 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1859 drop:
1860 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1861 kfree_skb(skb);
1862 return 0;
1863 }
1864
1865 /* We can only early demux multicast if there is a single matching socket.
1866 * If more than one socket found returns NULL
1867 */
1868 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1869 __be16 loc_port, __be32 loc_addr,
1870 __be16 rmt_port, __be32 rmt_addr,
1871 int dif)
1872 {
1873 struct sock *sk, *result;
1874 struct hlist_nulls_node *node;
1875 unsigned short hnum = ntohs(loc_port);
1876 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1877 struct udp_hslot *hslot = &udp_table.hash[slot];
1878
1879 /* Do not bother scanning a too big list */
1880 if (hslot->count > 10)
1881 return NULL;
1882
1883 rcu_read_lock();
1884 begin:
1885 count = 0;
1886 result = NULL;
1887 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1888 if (__udp_is_mcast_sock(net, sk,
1889 loc_port, loc_addr,
1890 rmt_port, rmt_addr,
1891 dif, hnum)) {
1892 result = sk;
1893 ++count;
1894 }
1895 }
1896 /*
1897 * if the nulls value we got at the end of this lookup is
1898 * not the expected one, we must restart lookup.
1899 * We probably met an item that was moved to another chain.
1900 */
1901 if (get_nulls_value(node) != slot)
1902 goto begin;
1903
1904 if (result) {
1905 if (count != 1 ||
1906 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1907 result = NULL;
1908 else if (unlikely(!__udp_is_mcast_sock(net, result,
1909 loc_port, loc_addr,
1910 rmt_port, rmt_addr,
1911 dif, hnum))) {
1912 sock_put(result);
1913 result = NULL;
1914 }
1915 }
1916 rcu_read_unlock();
1917 return result;
1918 }
1919
1920 /* For unicast we should only early demux connected sockets or we can
1921 * break forwarding setups. The chains here can be long so only check
1922 * if the first socket is an exact match and if not move on.
1923 */
1924 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1925 __be16 loc_port, __be32 loc_addr,
1926 __be16 rmt_port, __be32 rmt_addr,
1927 int dif)
1928 {
1929 struct sock *sk, *result;
1930 struct hlist_nulls_node *node;
1931 unsigned short hnum = ntohs(loc_port);
1932 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1933 unsigned int slot2 = hash2 & udp_table.mask;
1934 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1935 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1936 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1937
1938 rcu_read_lock();
1939 result = NULL;
1940 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1941 if (INET_MATCH(sk, net, acookie,
1942 rmt_addr, loc_addr, ports, dif))
1943 result = sk;
1944 /* Only check first socket in chain */
1945 break;
1946 }
1947
1948 if (result) {
1949 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1950 result = NULL;
1951 else if (unlikely(!INET_MATCH(sk, net, acookie,
1952 rmt_addr, loc_addr,
1953 ports, dif))) {
1954 sock_put(result);
1955 result = NULL;
1956 }
1957 }
1958 rcu_read_unlock();
1959 return result;
1960 }
1961
1962 void udp_v4_early_demux(struct sk_buff *skb)
1963 {
1964 struct net *net = dev_net(skb->dev);
1965 const struct iphdr *iph;
1966 const struct udphdr *uh;
1967 struct sock *sk;
1968 struct dst_entry *dst;
1969 int dif = skb->dev->ifindex;
1970
1971 /* validate the packet */
1972 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1973 return;
1974
1975 iph = ip_hdr(skb);
1976 uh = udp_hdr(skb);
1977
1978 if (skb->pkt_type == PACKET_BROADCAST ||
1979 skb->pkt_type == PACKET_MULTICAST)
1980 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1981 uh->source, iph->saddr, dif);
1982 else if (skb->pkt_type == PACKET_HOST)
1983 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1984 uh->source, iph->saddr, dif);
1985 else
1986 return;
1987
1988 if (!sk)
1989 return;
1990
1991 skb->sk = sk;
1992 skb->destructor = sock_efree;
1993 dst = sk->sk_rx_dst;
1994
1995 if (dst)
1996 dst = dst_check(dst, 0);
1997 if (dst)
1998 skb_dst_set_noref(skb, dst);
1999 }
2000
2001 int udp_rcv(struct sk_buff *skb)
2002 {
2003 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2004 }
2005
2006 void udp_destroy_sock(struct sock *sk)
2007 {
2008 struct udp_sock *up = udp_sk(sk);
2009 bool slow = lock_sock_fast(sk);
2010 udp_flush_pending_frames(sk);
2011 unlock_sock_fast(sk, slow);
2012 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2013 void (*encap_destroy)(struct sock *sk);
2014 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2015 if (encap_destroy)
2016 encap_destroy(sk);
2017 }
2018 }
2019
2020 /*
2021 * Socket option code for UDP
2022 */
2023 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2024 char __user *optval, unsigned int optlen,
2025 int (*push_pending_frames)(struct sock *))
2026 {
2027 struct udp_sock *up = udp_sk(sk);
2028 int val, valbool;
2029 int err = 0;
2030 int is_udplite = IS_UDPLITE(sk);
2031
2032 if (optlen < sizeof(int))
2033 return -EINVAL;
2034
2035 if (get_user(val, (int __user *)optval))
2036 return -EFAULT;
2037
2038 valbool = val ? 1 : 0;
2039
2040 switch (optname) {
2041 case UDP_CORK:
2042 if (val != 0) {
2043 up->corkflag = 1;
2044 } else {
2045 up->corkflag = 0;
2046 lock_sock(sk);
2047 push_pending_frames(sk);
2048 release_sock(sk);
2049 }
2050 break;
2051
2052 case UDP_ENCAP:
2053 switch (val) {
2054 case 0:
2055 case UDP_ENCAP_ESPINUDP:
2056 case UDP_ENCAP_ESPINUDP_NON_IKE:
2057 up->encap_rcv = xfrm4_udp_encap_rcv;
2058 /* FALLTHROUGH */
2059 case UDP_ENCAP_L2TPINUDP:
2060 up->encap_type = val;
2061 udp_encap_enable();
2062 break;
2063 default:
2064 err = -ENOPROTOOPT;
2065 break;
2066 }
2067 break;
2068
2069 case UDP_NO_CHECK6_TX:
2070 up->no_check6_tx = valbool;
2071 break;
2072
2073 case UDP_NO_CHECK6_RX:
2074 up->no_check6_rx = valbool;
2075 break;
2076
2077 /*
2078 * UDP-Lite's partial checksum coverage (RFC 3828).
2079 */
2080 /* The sender sets actual checksum coverage length via this option.
2081 * The case coverage > packet length is handled by send module. */
2082 case UDPLITE_SEND_CSCOV:
2083 if (!is_udplite) /* Disable the option on UDP sockets */
2084 return -ENOPROTOOPT;
2085 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2086 val = 8;
2087 else if (val > USHRT_MAX)
2088 val = USHRT_MAX;
2089 up->pcslen = val;
2090 up->pcflag |= UDPLITE_SEND_CC;
2091 break;
2092
2093 /* The receiver specifies a minimum checksum coverage value. To make
2094 * sense, this should be set to at least 8 (as done below). If zero is
2095 * used, this again means full checksum coverage. */
2096 case UDPLITE_RECV_CSCOV:
2097 if (!is_udplite) /* Disable the option on UDP sockets */
2098 return -ENOPROTOOPT;
2099 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2100 val = 8;
2101 else if (val > USHRT_MAX)
2102 val = USHRT_MAX;
2103 up->pcrlen = val;
2104 up->pcflag |= UDPLITE_RECV_CC;
2105 break;
2106
2107 default:
2108 err = -ENOPROTOOPT;
2109 break;
2110 }
2111
2112 return err;
2113 }
2114 EXPORT_SYMBOL(udp_lib_setsockopt);
2115
2116 int udp_setsockopt(struct sock *sk, int level, int optname,
2117 char __user *optval, unsigned int optlen)
2118 {
2119 if (level == SOL_UDP || level == SOL_UDPLITE)
2120 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2121 udp_push_pending_frames);
2122 return ip_setsockopt(sk, level, optname, optval, optlen);
2123 }
2124
2125 #ifdef CONFIG_COMPAT
2126 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2127 char __user *optval, unsigned int optlen)
2128 {
2129 if (level == SOL_UDP || level == SOL_UDPLITE)
2130 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2131 udp_push_pending_frames);
2132 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2133 }
2134 #endif
2135
2136 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2137 char __user *optval, int __user *optlen)
2138 {
2139 struct udp_sock *up = udp_sk(sk);
2140 int val, len;
2141
2142 if (get_user(len, optlen))
2143 return -EFAULT;
2144
2145 len = min_t(unsigned int, len, sizeof(int));
2146
2147 if (len < 0)
2148 return -EINVAL;
2149
2150 switch (optname) {
2151 case UDP_CORK:
2152 val = up->corkflag;
2153 break;
2154
2155 case UDP_ENCAP:
2156 val = up->encap_type;
2157 break;
2158
2159 case UDP_NO_CHECK6_TX:
2160 val = up->no_check6_tx;
2161 break;
2162
2163 case UDP_NO_CHECK6_RX:
2164 val = up->no_check6_rx;
2165 break;
2166
2167 /* The following two cannot be changed on UDP sockets, the return is
2168 * always 0 (which corresponds to the full checksum coverage of UDP). */
2169 case UDPLITE_SEND_CSCOV:
2170 val = up->pcslen;
2171 break;
2172
2173 case UDPLITE_RECV_CSCOV:
2174 val = up->pcrlen;
2175 break;
2176
2177 default:
2178 return -ENOPROTOOPT;
2179 }
2180
2181 if (put_user(len, optlen))
2182 return -EFAULT;
2183 if (copy_to_user(optval, &val, len))
2184 return -EFAULT;
2185 return 0;
2186 }
2187 EXPORT_SYMBOL(udp_lib_getsockopt);
2188
2189 int udp_getsockopt(struct sock *sk, int level, int optname,
2190 char __user *optval, int __user *optlen)
2191 {
2192 if (level == SOL_UDP || level == SOL_UDPLITE)
2193 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2194 return ip_getsockopt(sk, level, optname, optval, optlen);
2195 }
2196
2197 #ifdef CONFIG_COMPAT
2198 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2199 char __user *optval, int __user *optlen)
2200 {
2201 if (level == SOL_UDP || level == SOL_UDPLITE)
2202 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2203 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2204 }
2205 #endif
2206 /**
2207 * udp_poll - wait for a UDP event.
2208 * @file - file struct
2209 * @sock - socket
2210 * @wait - poll table
2211 *
2212 * This is same as datagram poll, except for the special case of
2213 * blocking sockets. If application is using a blocking fd
2214 * and a packet with checksum error is in the queue;
2215 * then it could get return from select indicating data available
2216 * but then block when reading it. Add special case code
2217 * to work around these arguably broken applications.
2218 */
2219 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2220 {
2221 unsigned int mask = datagram_poll(file, sock, wait);
2222 struct sock *sk = sock->sk;
2223
2224 sock_rps_record_flow(sk);
2225
2226 /* Check for false positives due to checksum errors */
2227 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2228 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2229 mask &= ~(POLLIN | POLLRDNORM);
2230
2231 return mask;
2232
2233 }
2234 EXPORT_SYMBOL(udp_poll);
2235
2236 struct proto udp_prot = {
2237 .name = "UDP",
2238 .owner = THIS_MODULE,
2239 .close = udp_lib_close,
2240 .connect = ip4_datagram_connect,
2241 .disconnect = udp_disconnect,
2242 .ioctl = udp_ioctl,
2243 .destroy = udp_destroy_sock,
2244 .setsockopt = udp_setsockopt,
2245 .getsockopt = udp_getsockopt,
2246 .sendmsg = udp_sendmsg,
2247 .recvmsg = udp_recvmsg,
2248 .sendpage = udp_sendpage,
2249 .backlog_rcv = __udp_queue_rcv_skb,
2250 .release_cb = ip4_datagram_release_cb,
2251 .hash = udp_lib_hash,
2252 .unhash = udp_lib_unhash,
2253 .rehash = udp_v4_rehash,
2254 .get_port = udp_v4_get_port,
2255 .memory_allocated = &udp_memory_allocated,
2256 .sysctl_mem = sysctl_udp_mem,
2257 .sysctl_wmem = &sysctl_udp_wmem_min,
2258 .sysctl_rmem = &sysctl_udp_rmem_min,
2259 .obj_size = sizeof(struct udp_sock),
2260 .slab_flags = SLAB_DESTROY_BY_RCU,
2261 .h.udp_table = &udp_table,
2262 #ifdef CONFIG_COMPAT
2263 .compat_setsockopt = compat_udp_setsockopt,
2264 .compat_getsockopt = compat_udp_getsockopt,
2265 #endif
2266 .clear_sk = sk_prot_clear_portaddr_nulls,
2267 };
2268 EXPORT_SYMBOL(udp_prot);
2269
2270 /* ------------------------------------------------------------------------ */
2271 #ifdef CONFIG_PROC_FS
2272
2273 static struct sock *udp_get_first(struct seq_file *seq, int start)
2274 {
2275 struct sock *sk;
2276 struct udp_iter_state *state = seq->private;
2277 struct net *net = seq_file_net(seq);
2278
2279 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2280 ++state->bucket) {
2281 struct hlist_nulls_node *node;
2282 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2283
2284 if (hlist_nulls_empty(&hslot->head))
2285 continue;
2286
2287 spin_lock_bh(&hslot->lock);
2288 sk_nulls_for_each(sk, node, &hslot->head) {
2289 if (!net_eq(sock_net(sk), net))
2290 continue;
2291 if (sk->sk_family == state->family)
2292 goto found;
2293 }
2294 spin_unlock_bh(&hslot->lock);
2295 }
2296 sk = NULL;
2297 found:
2298 return sk;
2299 }
2300
2301 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2302 {
2303 struct udp_iter_state *state = seq->private;
2304 struct net *net = seq_file_net(seq);
2305
2306 do {
2307 sk = sk_nulls_next(sk);
2308 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2309
2310 if (!sk) {
2311 if (state->bucket <= state->udp_table->mask)
2312 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2313 return udp_get_first(seq, state->bucket + 1);
2314 }
2315 return sk;
2316 }
2317
2318 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2319 {
2320 struct sock *sk = udp_get_first(seq, 0);
2321
2322 if (sk)
2323 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2324 --pos;
2325 return pos ? NULL : sk;
2326 }
2327
2328 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2329 {
2330 struct udp_iter_state *state = seq->private;
2331 state->bucket = MAX_UDP_PORTS;
2332
2333 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2334 }
2335
2336 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2337 {
2338 struct sock *sk;
2339
2340 if (v == SEQ_START_TOKEN)
2341 sk = udp_get_idx(seq, 0);
2342 else
2343 sk = udp_get_next(seq, v);
2344
2345 ++*pos;
2346 return sk;
2347 }
2348
2349 static void udp_seq_stop(struct seq_file *seq, void *v)
2350 {
2351 struct udp_iter_state *state = seq->private;
2352
2353 if (state->bucket <= state->udp_table->mask)
2354 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2355 }
2356
2357 int udp_seq_open(struct inode *inode, struct file *file)
2358 {
2359 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2360 struct udp_iter_state *s;
2361 int err;
2362
2363 err = seq_open_net(inode, file, &afinfo->seq_ops,
2364 sizeof(struct udp_iter_state));
2365 if (err < 0)
2366 return err;
2367
2368 s = ((struct seq_file *)file->private_data)->private;
2369 s->family = afinfo->family;
2370 s->udp_table = afinfo->udp_table;
2371 return err;
2372 }
2373 EXPORT_SYMBOL(udp_seq_open);
2374
2375 /* ------------------------------------------------------------------------ */
2376 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2377 {
2378 struct proc_dir_entry *p;
2379 int rc = 0;
2380
2381 afinfo->seq_ops.start = udp_seq_start;
2382 afinfo->seq_ops.next = udp_seq_next;
2383 afinfo->seq_ops.stop = udp_seq_stop;
2384
2385 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2386 afinfo->seq_fops, afinfo);
2387 if (!p)
2388 rc = -ENOMEM;
2389 return rc;
2390 }
2391 EXPORT_SYMBOL(udp_proc_register);
2392
2393 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2394 {
2395 remove_proc_entry(afinfo->name, net->proc_net);
2396 }
2397 EXPORT_SYMBOL(udp_proc_unregister);
2398
2399 /* ------------------------------------------------------------------------ */
2400 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2401 int bucket)
2402 {
2403 struct inet_sock *inet = inet_sk(sp);
2404 __be32 dest = inet->inet_daddr;
2405 __be32 src = inet->inet_rcv_saddr;
2406 __u16 destp = ntohs(inet->inet_dport);
2407 __u16 srcp = ntohs(inet->inet_sport);
2408
2409 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2410 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2411 bucket, src, srcp, dest, destp, sp->sk_state,
2412 sk_wmem_alloc_get(sp),
2413 sk_rmem_alloc_get(sp),
2414 0, 0L, 0,
2415 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2416 0, sock_i_ino(sp),
2417 atomic_read(&sp->sk_refcnt), sp,
2418 atomic_read(&sp->sk_drops));
2419 }
2420
2421 int udp4_seq_show(struct seq_file *seq, void *v)
2422 {
2423 seq_setwidth(seq, 127);
2424 if (v == SEQ_START_TOKEN)
2425 seq_puts(seq, " sl local_address rem_address st tx_queue "
2426 "rx_queue tr tm->when retrnsmt uid timeout "
2427 "inode ref pointer drops");
2428 else {
2429 struct udp_iter_state *state = seq->private;
2430
2431 udp4_format_sock(v, seq, state->bucket);
2432 }
2433 seq_pad(seq, '\n');
2434 return 0;
2435 }
2436
2437 static const struct file_operations udp_afinfo_seq_fops = {
2438 .owner = THIS_MODULE,
2439 .open = udp_seq_open,
2440 .read = seq_read,
2441 .llseek = seq_lseek,
2442 .release = seq_release_net
2443 };
2444
2445 /* ------------------------------------------------------------------------ */
2446 static struct udp_seq_afinfo udp4_seq_afinfo = {
2447 .name = "udp",
2448 .family = AF_INET,
2449 .udp_table = &udp_table,
2450 .seq_fops = &udp_afinfo_seq_fops,
2451 .seq_ops = {
2452 .show = udp4_seq_show,
2453 },
2454 };
2455
2456 static int __net_init udp4_proc_init_net(struct net *net)
2457 {
2458 return udp_proc_register(net, &udp4_seq_afinfo);
2459 }
2460
2461 static void __net_exit udp4_proc_exit_net(struct net *net)
2462 {
2463 udp_proc_unregister(net, &udp4_seq_afinfo);
2464 }
2465
2466 static struct pernet_operations udp4_net_ops = {
2467 .init = udp4_proc_init_net,
2468 .exit = udp4_proc_exit_net,
2469 };
2470
2471 int __init udp4_proc_init(void)
2472 {
2473 return register_pernet_subsys(&udp4_net_ops);
2474 }
2475
2476 void udp4_proc_exit(void)
2477 {
2478 unregister_pernet_subsys(&udp4_net_ops);
2479 }
2480 #endif /* CONFIG_PROC_FS */
2481
2482 static __initdata unsigned long uhash_entries;
2483 static int __init set_uhash_entries(char *str)
2484 {
2485 ssize_t ret;
2486
2487 if (!str)
2488 return 0;
2489
2490 ret = kstrtoul(str, 0, &uhash_entries);
2491 if (ret)
2492 return 0;
2493
2494 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2495 uhash_entries = UDP_HTABLE_SIZE_MIN;
2496 return 1;
2497 }
2498 __setup("uhash_entries=", set_uhash_entries);
2499
2500 void __init udp_table_init(struct udp_table *table, const char *name)
2501 {
2502 unsigned int i;
2503
2504 table->hash = alloc_large_system_hash(name,
2505 2 * sizeof(struct udp_hslot),
2506 uhash_entries,
2507 21, /* one slot per 2 MB */
2508 0,
2509 &table->log,
2510 &table->mask,
2511 UDP_HTABLE_SIZE_MIN,
2512 64 * 1024);
2513
2514 table->hash2 = table->hash + (table->mask + 1);
2515 for (i = 0; i <= table->mask; i++) {
2516 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2517 table->hash[i].count = 0;
2518 spin_lock_init(&table->hash[i].lock);
2519 }
2520 for (i = 0; i <= table->mask; i++) {
2521 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2522 table->hash2[i].count = 0;
2523 spin_lock_init(&table->hash2[i].lock);
2524 }
2525 }
2526
2527 u32 udp_flow_hashrnd(void)
2528 {
2529 static u32 hashrnd __read_mostly;
2530
2531 net_get_random_once(&hashrnd, sizeof(hashrnd));
2532
2533 return hashrnd;
2534 }
2535 EXPORT_SYMBOL(udp_flow_hashrnd);
2536
2537 void __init udp_init(void)
2538 {
2539 unsigned long limit;
2540
2541 udp_table_init(&udp_table, "UDP");
2542 limit = nr_free_buffer_pages() / 8;
2543 limit = max(limit, 128UL);
2544 sysctl_udp_mem[0] = limit / 4 * 3;
2545 sysctl_udp_mem[1] = limit;
2546 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2547
2548 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2549 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2550 }
This page took 0.082063 seconds and 5 git commands to generate.