Merge remote-tracking branches 'regulator/topic/load', 'regulator/topic/max77802...
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/netdevice.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <net/net_namespace.h>
107 #include <net/icmp.h>
108 #include <net/inet_hashtables.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 const struct udp_hslot *hslot,
138 unsigned long *bitmap,
139 struct sock *sk,
140 int (*saddr_comp)(const struct sock *sk1,
141 const struct sock *sk2),
142 unsigned int log)
143 {
144 struct sock *sk2;
145 struct hlist_nulls_node *node;
146 kuid_t uid = sock_i_uid(sk);
147
148 sk_nulls_for_each(sk2, node, &hslot->head) {
149 if (net_eq(sock_net(sk2), net) &&
150 sk2 != sk &&
151 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
152 (!sk2->sk_reuse || !sk->sk_reuse) &&
153 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
154 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
155 (!sk2->sk_reuseport || !sk->sk_reuseport ||
156 !uid_eq(uid, sock_i_uid(sk2))) &&
157 saddr_comp(sk, sk2)) {
158 if (!bitmap)
159 return 1;
160 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
161 }
162 }
163 return 0;
164 }
165
166 /*
167 * Note: we still hold spinlock of primary hash chain, so no other writer
168 * can insert/delete a socket with local_port == num
169 */
170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 struct udp_hslot *hslot2,
172 struct sock *sk,
173 int (*saddr_comp)(const struct sock *sk1,
174 const struct sock *sk2))
175 {
176 struct sock *sk2;
177 struct hlist_nulls_node *node;
178 kuid_t uid = sock_i_uid(sk);
179 int res = 0;
180
181 spin_lock(&hslot2->lock);
182 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
183 if (net_eq(sock_net(sk2), net) &&
184 sk2 != sk &&
185 (udp_sk(sk2)->udp_port_hash == num) &&
186 (!sk2->sk_reuse || !sk->sk_reuse) &&
187 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
188 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
189 (!sk2->sk_reuseport || !sk->sk_reuseport ||
190 !uid_eq(uid, sock_i_uid(sk2))) &&
191 saddr_comp(sk, sk2)) {
192 res = 1;
193 break;
194 }
195 }
196 spin_unlock(&hslot2->lock);
197 return res;
198 }
199
200 /**
201 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
202 *
203 * @sk: socket struct in question
204 * @snum: port number to look up
205 * @saddr_comp: AF-dependent comparison of bound local IP addresses
206 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207 * with NULL address
208 */
209 int udp_lib_get_port(struct sock *sk, unsigned short snum,
210 int (*saddr_comp)(const struct sock *sk1,
211 const struct sock *sk2),
212 unsigned int hash2_nulladdr)
213 {
214 struct udp_hslot *hslot, *hslot2;
215 struct udp_table *udptable = sk->sk_prot->h.udp_table;
216 int error = 1;
217 struct net *net = sock_net(sk);
218
219 if (!snum) {
220 int low, high, remaining;
221 unsigned int rand;
222 unsigned short first, last;
223 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
224
225 inet_get_local_port_range(net, &low, &high);
226 remaining = (high - low) + 1;
227
228 rand = prandom_u32();
229 first = reciprocal_scale(rand, remaining) + low;
230 /*
231 * force rand to be an odd multiple of UDP_HTABLE_SIZE
232 */
233 rand = (rand | 1) * (udptable->mask + 1);
234 last = first + udptable->mask + 1;
235 do {
236 hslot = udp_hashslot(udptable, net, first);
237 bitmap_zero(bitmap, PORTS_PER_CHAIN);
238 spin_lock_bh(&hslot->lock);
239 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
240 saddr_comp, udptable->log);
241
242 snum = first;
243 /*
244 * Iterate on all possible values of snum for this hash.
245 * Using steps of an odd multiple of UDP_HTABLE_SIZE
246 * give us randomization and full range coverage.
247 */
248 do {
249 if (low <= snum && snum <= high &&
250 !test_bit(snum >> udptable->log, bitmap) &&
251 !inet_is_local_reserved_port(net, snum))
252 goto found;
253 snum += rand;
254 } while (snum != first);
255 spin_unlock_bh(&hslot->lock);
256 } while (++first != last);
257 goto fail;
258 } else {
259 hslot = udp_hashslot(udptable, net, snum);
260 spin_lock_bh(&hslot->lock);
261 if (hslot->count > 10) {
262 int exist;
263 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
264
265 slot2 &= udptable->mask;
266 hash2_nulladdr &= udptable->mask;
267
268 hslot2 = udp_hashslot2(udptable, slot2);
269 if (hslot->count < hslot2->count)
270 goto scan_primary_hash;
271
272 exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 sk, saddr_comp);
274 if (!exist && (hash2_nulladdr != slot2)) {
275 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
276 exist = udp_lib_lport_inuse2(net, snum, hslot2,
277 sk, saddr_comp);
278 }
279 if (exist)
280 goto fail_unlock;
281 else
282 goto found;
283 }
284 scan_primary_hash:
285 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
286 saddr_comp, 0))
287 goto fail_unlock;
288 }
289 found:
290 inet_sk(sk)->inet_num = snum;
291 udp_sk(sk)->udp_port_hash = snum;
292 udp_sk(sk)->udp_portaddr_hash ^= snum;
293 if (sk_unhashed(sk)) {
294 sk_nulls_add_node_rcu(sk, &hslot->head);
295 hslot->count++;
296 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
297
298 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
299 spin_lock(&hslot2->lock);
300 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
301 &hslot2->head);
302 hslot2->count++;
303 spin_unlock(&hslot2->lock);
304 }
305 error = 0;
306 fail_unlock:
307 spin_unlock_bh(&hslot->lock);
308 fail:
309 return error;
310 }
311 EXPORT_SYMBOL(udp_lib_get_port);
312
313 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
314 {
315 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
316
317 return (!ipv6_only_sock(sk2) &&
318 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
319 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
320 }
321
322 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
323 unsigned int port)
324 {
325 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
326 }
327
328 int udp_v4_get_port(struct sock *sk, unsigned short snum)
329 {
330 unsigned int hash2_nulladdr =
331 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
332 unsigned int hash2_partial =
333 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
334
335 /* precompute partial secondary hash */
336 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
337 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
338 }
339
340 static inline int compute_score(struct sock *sk, struct net *net,
341 __be32 saddr, unsigned short hnum, __be16 sport,
342 __be32 daddr, __be16 dport, int dif)
343 {
344 int score;
345 struct inet_sock *inet;
346
347 if (!net_eq(sock_net(sk), net) ||
348 udp_sk(sk)->udp_port_hash != hnum ||
349 ipv6_only_sock(sk))
350 return -1;
351
352 score = (sk->sk_family == PF_INET) ? 2 : 1;
353 inet = inet_sk(sk);
354
355 if (inet->inet_rcv_saddr) {
356 if (inet->inet_rcv_saddr != daddr)
357 return -1;
358 score += 4;
359 }
360
361 if (inet->inet_daddr) {
362 if (inet->inet_daddr != saddr)
363 return -1;
364 score += 4;
365 }
366
367 if (inet->inet_dport) {
368 if (inet->inet_dport != sport)
369 return -1;
370 score += 4;
371 }
372
373 if (sk->sk_bound_dev_if) {
374 if (sk->sk_bound_dev_if != dif)
375 return -1;
376 score += 4;
377 }
378
379 return score;
380 }
381
382 /*
383 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
384 */
385 static inline int compute_score2(struct sock *sk, struct net *net,
386 __be32 saddr, __be16 sport,
387 __be32 daddr, unsigned int hnum, int dif)
388 {
389 int score;
390 struct inet_sock *inet;
391
392 if (!net_eq(sock_net(sk), net) ||
393 ipv6_only_sock(sk))
394 return -1;
395
396 inet = inet_sk(sk);
397
398 if (inet->inet_rcv_saddr != daddr ||
399 inet->inet_num != hnum)
400 return -1;
401
402 score = (sk->sk_family == PF_INET) ? 2 : 1;
403
404 if (inet->inet_daddr) {
405 if (inet->inet_daddr != saddr)
406 return -1;
407 score += 4;
408 }
409
410 if (inet->inet_dport) {
411 if (inet->inet_dport != sport)
412 return -1;
413 score += 4;
414 }
415
416 if (sk->sk_bound_dev_if) {
417 if (sk->sk_bound_dev_if != dif)
418 return -1;
419 score += 4;
420 }
421
422 return score;
423 }
424
425 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
426 const __u16 lport, const __be32 faddr,
427 const __be16 fport)
428 {
429 static u32 udp_ehash_secret __read_mostly;
430
431 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
432
433 return __inet_ehashfn(laddr, lport, faddr, fport,
434 udp_ehash_secret + net_hash_mix(net));
435 }
436
437 /* called with read_rcu_lock() */
438 static struct sock *udp4_lib_lookup2(struct net *net,
439 __be32 saddr, __be16 sport,
440 __be32 daddr, unsigned int hnum, int dif,
441 struct udp_hslot *hslot2, unsigned int slot2)
442 {
443 struct sock *sk, *result;
444 struct hlist_nulls_node *node;
445 int score, badness, matches = 0, reuseport = 0;
446 u32 hash = 0;
447
448 begin:
449 result = NULL;
450 badness = 0;
451 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
452 score = compute_score2(sk, net, saddr, sport,
453 daddr, hnum, dif);
454 if (score > badness) {
455 result = sk;
456 badness = score;
457 reuseport = sk->sk_reuseport;
458 if (reuseport) {
459 hash = udp_ehashfn(net, daddr, hnum,
460 saddr, sport);
461 matches = 1;
462 }
463 } else if (score == badness && reuseport) {
464 matches++;
465 if (reciprocal_scale(hash, matches) == 0)
466 result = sk;
467 hash = next_pseudo_random32(hash);
468 }
469 }
470 /*
471 * if the nulls value we got at the end of this lookup is
472 * not the expected one, we must restart lookup.
473 * We probably met an item that was moved to another chain.
474 */
475 if (get_nulls_value(node) != slot2)
476 goto begin;
477 if (result) {
478 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
479 result = NULL;
480 else if (unlikely(compute_score2(result, net, saddr, sport,
481 daddr, hnum, dif) < badness)) {
482 sock_put(result);
483 goto begin;
484 }
485 }
486 return result;
487 }
488
489 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
490 * harder than this. -DaveM
491 */
492 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
493 __be16 sport, __be32 daddr, __be16 dport,
494 int dif, struct udp_table *udptable)
495 {
496 struct sock *sk, *result;
497 struct hlist_nulls_node *node;
498 unsigned short hnum = ntohs(dport);
499 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
500 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
501 int score, badness, matches = 0, reuseport = 0;
502 u32 hash = 0;
503
504 rcu_read_lock();
505 if (hslot->count > 10) {
506 hash2 = udp4_portaddr_hash(net, daddr, hnum);
507 slot2 = hash2 & udptable->mask;
508 hslot2 = &udptable->hash2[slot2];
509 if (hslot->count < hslot2->count)
510 goto begin;
511
512 result = udp4_lib_lookup2(net, saddr, sport,
513 daddr, hnum, dif,
514 hslot2, slot2);
515 if (!result) {
516 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
517 slot2 = hash2 & udptable->mask;
518 hslot2 = &udptable->hash2[slot2];
519 if (hslot->count < hslot2->count)
520 goto begin;
521
522 result = udp4_lib_lookup2(net, saddr, sport,
523 htonl(INADDR_ANY), hnum, dif,
524 hslot2, slot2);
525 }
526 rcu_read_unlock();
527 return result;
528 }
529 begin:
530 result = NULL;
531 badness = 0;
532 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
533 score = compute_score(sk, net, saddr, hnum, sport,
534 daddr, dport, dif);
535 if (score > badness) {
536 result = sk;
537 badness = score;
538 reuseport = sk->sk_reuseport;
539 if (reuseport) {
540 hash = udp_ehashfn(net, daddr, hnum,
541 saddr, sport);
542 matches = 1;
543 }
544 } else if (score == badness && reuseport) {
545 matches++;
546 if (reciprocal_scale(hash, matches) == 0)
547 result = sk;
548 hash = next_pseudo_random32(hash);
549 }
550 }
551 /*
552 * if the nulls value we got at the end of this lookup is
553 * not the expected one, we must restart lookup.
554 * We probably met an item that was moved to another chain.
555 */
556 if (get_nulls_value(node) != slot)
557 goto begin;
558
559 if (result) {
560 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
561 result = NULL;
562 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
563 daddr, dport, dif) < badness)) {
564 sock_put(result);
565 goto begin;
566 }
567 }
568 rcu_read_unlock();
569 return result;
570 }
571 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
572
573 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
574 __be16 sport, __be16 dport,
575 struct udp_table *udptable)
576 {
577 const struct iphdr *iph = ip_hdr(skb);
578
579 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
580 iph->daddr, dport, inet_iif(skb),
581 udptable);
582 }
583
584 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
585 __be32 daddr, __be16 dport, int dif)
586 {
587 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
588 }
589 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
590
591 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
592 __be16 loc_port, __be32 loc_addr,
593 __be16 rmt_port, __be32 rmt_addr,
594 int dif, unsigned short hnum)
595 {
596 struct inet_sock *inet = inet_sk(sk);
597
598 if (!net_eq(sock_net(sk), net) ||
599 udp_sk(sk)->udp_port_hash != hnum ||
600 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
601 (inet->inet_dport != rmt_port && inet->inet_dport) ||
602 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
603 ipv6_only_sock(sk) ||
604 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
605 return false;
606 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
607 return false;
608 return true;
609 }
610
611 /*
612 * This routine is called by the ICMP module when it gets some
613 * sort of error condition. If err < 0 then the socket should
614 * be closed and the error returned to the user. If err > 0
615 * it's just the icmp type << 8 | icmp code.
616 * Header points to the ip header of the error packet. We move
617 * on past this. Then (as it used to claim before adjustment)
618 * header points to the first 8 bytes of the udp header. We need
619 * to find the appropriate port.
620 */
621
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 struct inet_sock *inet;
625 const struct iphdr *iph = (const struct iphdr *)skb->data;
626 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 const int type = icmp_hdr(skb)->type;
628 const int code = icmp_hdr(skb)->code;
629 struct sock *sk;
630 int harderr;
631 int err;
632 struct net *net = dev_net(skb->dev);
633
634 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 iph->saddr, uh->source, skb->dev->ifindex, udptable);
636 if (!sk) {
637 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
638 return; /* No socket for error */
639 }
640
641 err = 0;
642 harderr = 0;
643 inet = inet_sk(sk);
644
645 switch (type) {
646 default:
647 case ICMP_TIME_EXCEEDED:
648 err = EHOSTUNREACH;
649 break;
650 case ICMP_SOURCE_QUENCH:
651 goto out;
652 case ICMP_PARAMETERPROB:
653 err = EPROTO;
654 harderr = 1;
655 break;
656 case ICMP_DEST_UNREACH:
657 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
658 ipv4_sk_update_pmtu(skb, sk, info);
659 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
660 err = EMSGSIZE;
661 harderr = 1;
662 break;
663 }
664 goto out;
665 }
666 err = EHOSTUNREACH;
667 if (code <= NR_ICMP_UNREACH) {
668 harderr = icmp_err_convert[code].fatal;
669 err = icmp_err_convert[code].errno;
670 }
671 break;
672 case ICMP_REDIRECT:
673 ipv4_sk_redirect(skb, sk);
674 goto out;
675 }
676
677 /*
678 * RFC1122: OK. Passes ICMP errors back to application, as per
679 * 4.1.3.3.
680 */
681 if (!inet->recverr) {
682 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
683 goto out;
684 } else
685 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
686
687 sk->sk_err = err;
688 sk->sk_error_report(sk);
689 out:
690 sock_put(sk);
691 }
692
693 void udp_err(struct sk_buff *skb, u32 info)
694 {
695 __udp4_lib_err(skb, info, &udp_table);
696 }
697
698 /*
699 * Throw away all pending data and cancel the corking. Socket is locked.
700 */
701 void udp_flush_pending_frames(struct sock *sk)
702 {
703 struct udp_sock *up = udp_sk(sk);
704
705 if (up->pending) {
706 up->len = 0;
707 up->pending = 0;
708 ip_flush_pending_frames(sk);
709 }
710 }
711 EXPORT_SYMBOL(udp_flush_pending_frames);
712
713 /**
714 * udp4_hwcsum - handle outgoing HW checksumming
715 * @skb: sk_buff containing the filled-in UDP header
716 * (checksum field must be zeroed out)
717 * @src: source IP address
718 * @dst: destination IP address
719 */
720 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
721 {
722 struct udphdr *uh = udp_hdr(skb);
723 int offset = skb_transport_offset(skb);
724 int len = skb->len - offset;
725 int hlen = len;
726 __wsum csum = 0;
727
728 if (!skb_has_frag_list(skb)) {
729 /*
730 * Only one fragment on the socket.
731 */
732 skb->csum_start = skb_transport_header(skb) - skb->head;
733 skb->csum_offset = offsetof(struct udphdr, check);
734 uh->check = ~csum_tcpudp_magic(src, dst, len,
735 IPPROTO_UDP, 0);
736 } else {
737 struct sk_buff *frags;
738
739 /*
740 * HW-checksum won't work as there are two or more
741 * fragments on the socket so that all csums of sk_buffs
742 * should be together
743 */
744 skb_walk_frags(skb, frags) {
745 csum = csum_add(csum, frags->csum);
746 hlen -= frags->len;
747 }
748
749 csum = skb_checksum(skb, offset, hlen, csum);
750 skb->ip_summed = CHECKSUM_NONE;
751
752 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
753 if (uh->check == 0)
754 uh->check = CSUM_MANGLED_0;
755 }
756 }
757 EXPORT_SYMBOL_GPL(udp4_hwcsum);
758
759 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
760 * for the simple case like when setting the checksum for a UDP tunnel.
761 */
762 void udp_set_csum(bool nocheck, struct sk_buff *skb,
763 __be32 saddr, __be32 daddr, int len)
764 {
765 struct udphdr *uh = udp_hdr(skb);
766
767 if (nocheck)
768 uh->check = 0;
769 else if (skb_is_gso(skb))
770 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
771 else if (skb_dst(skb) && skb_dst(skb)->dev &&
772 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
773
774 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
775
776 skb->ip_summed = CHECKSUM_PARTIAL;
777 skb->csum_start = skb_transport_header(skb) - skb->head;
778 skb->csum_offset = offsetof(struct udphdr, check);
779 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
780 } else {
781 __wsum csum;
782
783 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
784
785 uh->check = 0;
786 csum = skb_checksum(skb, 0, len, 0);
787 uh->check = udp_v4_check(len, saddr, daddr, csum);
788 if (uh->check == 0)
789 uh->check = CSUM_MANGLED_0;
790
791 skb->ip_summed = CHECKSUM_UNNECESSARY;
792 }
793 }
794 EXPORT_SYMBOL(udp_set_csum);
795
796 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
797 {
798 struct sock *sk = skb->sk;
799 struct inet_sock *inet = inet_sk(sk);
800 struct udphdr *uh;
801 int err = 0;
802 int is_udplite = IS_UDPLITE(sk);
803 int offset = skb_transport_offset(skb);
804 int len = skb->len - offset;
805 __wsum csum = 0;
806
807 /*
808 * Create a UDP header
809 */
810 uh = udp_hdr(skb);
811 uh->source = inet->inet_sport;
812 uh->dest = fl4->fl4_dport;
813 uh->len = htons(len);
814 uh->check = 0;
815
816 if (is_udplite) /* UDP-Lite */
817 csum = udplite_csum(skb);
818
819 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
820
821 skb->ip_summed = CHECKSUM_NONE;
822 goto send;
823
824 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
825
826 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
827 goto send;
828
829 } else
830 csum = udp_csum(skb);
831
832 /* add protocol-dependent pseudo-header */
833 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
834 sk->sk_protocol, csum);
835 if (uh->check == 0)
836 uh->check = CSUM_MANGLED_0;
837
838 send:
839 err = ip_send_skb(sock_net(sk), skb);
840 if (err) {
841 if (err == -ENOBUFS && !inet->recverr) {
842 UDP_INC_STATS_USER(sock_net(sk),
843 UDP_MIB_SNDBUFERRORS, is_udplite);
844 err = 0;
845 }
846 } else
847 UDP_INC_STATS_USER(sock_net(sk),
848 UDP_MIB_OUTDATAGRAMS, is_udplite);
849 return err;
850 }
851
852 /*
853 * Push out all pending data as one UDP datagram. Socket is locked.
854 */
855 int udp_push_pending_frames(struct sock *sk)
856 {
857 struct udp_sock *up = udp_sk(sk);
858 struct inet_sock *inet = inet_sk(sk);
859 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
860 struct sk_buff *skb;
861 int err = 0;
862
863 skb = ip_finish_skb(sk, fl4);
864 if (!skb)
865 goto out;
866
867 err = udp_send_skb(skb, fl4);
868
869 out:
870 up->len = 0;
871 up->pending = 0;
872 return err;
873 }
874 EXPORT_SYMBOL(udp_push_pending_frames);
875
876 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
877 {
878 struct inet_sock *inet = inet_sk(sk);
879 struct udp_sock *up = udp_sk(sk);
880 struct flowi4 fl4_stack;
881 struct flowi4 *fl4;
882 int ulen = len;
883 struct ipcm_cookie ipc;
884 struct rtable *rt = NULL;
885 int free = 0;
886 int connected = 0;
887 __be32 daddr, faddr, saddr;
888 __be16 dport;
889 u8 tos;
890 int err, is_udplite = IS_UDPLITE(sk);
891 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
892 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
893 struct sk_buff *skb;
894 struct ip_options_data opt_copy;
895
896 if (len > 0xFFFF)
897 return -EMSGSIZE;
898
899 /*
900 * Check the flags.
901 */
902
903 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
904 return -EOPNOTSUPP;
905
906 ipc.opt = NULL;
907 ipc.tx_flags = 0;
908 ipc.ttl = 0;
909 ipc.tos = -1;
910
911 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
912
913 fl4 = &inet->cork.fl.u.ip4;
914 if (up->pending) {
915 /*
916 * There are pending frames.
917 * The socket lock must be held while it's corked.
918 */
919 lock_sock(sk);
920 if (likely(up->pending)) {
921 if (unlikely(up->pending != AF_INET)) {
922 release_sock(sk);
923 return -EINVAL;
924 }
925 goto do_append_data;
926 }
927 release_sock(sk);
928 }
929 ulen += sizeof(struct udphdr);
930
931 /*
932 * Get and verify the address.
933 */
934 if (msg->msg_name) {
935 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
936 if (msg->msg_namelen < sizeof(*usin))
937 return -EINVAL;
938 if (usin->sin_family != AF_INET) {
939 if (usin->sin_family != AF_UNSPEC)
940 return -EAFNOSUPPORT;
941 }
942
943 daddr = usin->sin_addr.s_addr;
944 dport = usin->sin_port;
945 if (dport == 0)
946 return -EINVAL;
947 } else {
948 if (sk->sk_state != TCP_ESTABLISHED)
949 return -EDESTADDRREQ;
950 daddr = inet->inet_daddr;
951 dport = inet->inet_dport;
952 /* Open fast path for connected socket.
953 Route will not be used, if at least one option is set.
954 */
955 connected = 1;
956 }
957 ipc.addr = inet->inet_saddr;
958
959 ipc.oif = sk->sk_bound_dev_if;
960
961 sock_tx_timestamp(sk, &ipc.tx_flags);
962
963 if (msg->msg_controllen) {
964 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
965 sk->sk_family == AF_INET6);
966 if (err)
967 return err;
968 if (ipc.opt)
969 free = 1;
970 connected = 0;
971 }
972 if (!ipc.opt) {
973 struct ip_options_rcu *inet_opt;
974
975 rcu_read_lock();
976 inet_opt = rcu_dereference(inet->inet_opt);
977 if (inet_opt) {
978 memcpy(&opt_copy, inet_opt,
979 sizeof(*inet_opt) + inet_opt->opt.optlen);
980 ipc.opt = &opt_copy.opt;
981 }
982 rcu_read_unlock();
983 }
984
985 saddr = ipc.addr;
986 ipc.addr = faddr = daddr;
987
988 if (ipc.opt && ipc.opt->opt.srr) {
989 if (!daddr)
990 return -EINVAL;
991 faddr = ipc.opt->opt.faddr;
992 connected = 0;
993 }
994 tos = get_rttos(&ipc, inet);
995 if (sock_flag(sk, SOCK_LOCALROUTE) ||
996 (msg->msg_flags & MSG_DONTROUTE) ||
997 (ipc.opt && ipc.opt->opt.is_strictroute)) {
998 tos |= RTO_ONLINK;
999 connected = 0;
1000 }
1001
1002 if (ipv4_is_multicast(daddr)) {
1003 if (!ipc.oif)
1004 ipc.oif = inet->mc_index;
1005 if (!saddr)
1006 saddr = inet->mc_addr;
1007 connected = 0;
1008 } else if (!ipc.oif)
1009 ipc.oif = inet->uc_index;
1010
1011 if (connected)
1012 rt = (struct rtable *)sk_dst_check(sk, 0);
1013
1014 if (!rt) {
1015 struct net *net = sock_net(sk);
1016 __u8 flow_flags = inet_sk_flowi_flags(sk);
1017
1018 fl4 = &fl4_stack;
1019
1020 /* unconnected socket. If output device is enslaved to a VRF
1021 * device lookup source address from VRF table. This mimics
1022 * behavior of ip_route_connect{_init}.
1023 */
1024 if (netif_index_is_vrf(net, ipc.oif)) {
1025 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1026 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1027 (flow_flags | FLOWI_FLAG_VRFSRC |
1028 FLOWI_FLAG_SKIP_NH_OIF),
1029 faddr, saddr, dport,
1030 inet->inet_sport);
1031
1032 rt = ip_route_output_flow(net, fl4, sk);
1033 if (!IS_ERR(rt)) {
1034 saddr = fl4->saddr;
1035 ip_rt_put(rt);
1036 }
1037 }
1038
1039 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1040 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1041 flow_flags,
1042 faddr, saddr, dport, inet->inet_sport);
1043
1044 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1045 rt = ip_route_output_flow(net, fl4, sk);
1046 if (IS_ERR(rt)) {
1047 err = PTR_ERR(rt);
1048 rt = NULL;
1049 if (err == -ENETUNREACH)
1050 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1051 goto out;
1052 }
1053
1054 err = -EACCES;
1055 if ((rt->rt_flags & RTCF_BROADCAST) &&
1056 !sock_flag(sk, SOCK_BROADCAST))
1057 goto out;
1058 if (connected)
1059 sk_dst_set(sk, dst_clone(&rt->dst));
1060 }
1061
1062 if (msg->msg_flags&MSG_CONFIRM)
1063 goto do_confirm;
1064 back_from_confirm:
1065
1066 saddr = fl4->saddr;
1067 if (!ipc.addr)
1068 daddr = ipc.addr = fl4->daddr;
1069
1070 /* Lockless fast path for the non-corking case. */
1071 if (!corkreq) {
1072 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1073 sizeof(struct udphdr), &ipc, &rt,
1074 msg->msg_flags);
1075 err = PTR_ERR(skb);
1076 if (!IS_ERR_OR_NULL(skb))
1077 err = udp_send_skb(skb, fl4);
1078 goto out;
1079 }
1080
1081 lock_sock(sk);
1082 if (unlikely(up->pending)) {
1083 /* The socket is already corked while preparing it. */
1084 /* ... which is an evident application bug. --ANK */
1085 release_sock(sk);
1086
1087 net_dbg_ratelimited("cork app bug 2\n");
1088 err = -EINVAL;
1089 goto out;
1090 }
1091 /*
1092 * Now cork the socket to pend data.
1093 */
1094 fl4 = &inet->cork.fl.u.ip4;
1095 fl4->daddr = daddr;
1096 fl4->saddr = saddr;
1097 fl4->fl4_dport = dport;
1098 fl4->fl4_sport = inet->inet_sport;
1099 up->pending = AF_INET;
1100
1101 do_append_data:
1102 up->len += ulen;
1103 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1104 sizeof(struct udphdr), &ipc, &rt,
1105 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1106 if (err)
1107 udp_flush_pending_frames(sk);
1108 else if (!corkreq)
1109 err = udp_push_pending_frames(sk);
1110 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1111 up->pending = 0;
1112 release_sock(sk);
1113
1114 out:
1115 ip_rt_put(rt);
1116 if (free)
1117 kfree(ipc.opt);
1118 if (!err)
1119 return len;
1120 /*
1121 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1122 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1123 * we don't have a good statistic (IpOutDiscards but it can be too many
1124 * things). We could add another new stat but at least for now that
1125 * seems like overkill.
1126 */
1127 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1128 UDP_INC_STATS_USER(sock_net(sk),
1129 UDP_MIB_SNDBUFERRORS, is_udplite);
1130 }
1131 return err;
1132
1133 do_confirm:
1134 dst_confirm(&rt->dst);
1135 if (!(msg->msg_flags&MSG_PROBE) || len)
1136 goto back_from_confirm;
1137 err = 0;
1138 goto out;
1139 }
1140 EXPORT_SYMBOL(udp_sendmsg);
1141
1142 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1143 size_t size, int flags)
1144 {
1145 struct inet_sock *inet = inet_sk(sk);
1146 struct udp_sock *up = udp_sk(sk);
1147 int ret;
1148
1149 if (flags & MSG_SENDPAGE_NOTLAST)
1150 flags |= MSG_MORE;
1151
1152 if (!up->pending) {
1153 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1154
1155 /* Call udp_sendmsg to specify destination address which
1156 * sendpage interface can't pass.
1157 * This will succeed only when the socket is connected.
1158 */
1159 ret = udp_sendmsg(sk, &msg, 0);
1160 if (ret < 0)
1161 return ret;
1162 }
1163
1164 lock_sock(sk);
1165
1166 if (unlikely(!up->pending)) {
1167 release_sock(sk);
1168
1169 net_dbg_ratelimited("udp cork app bug 3\n");
1170 return -EINVAL;
1171 }
1172
1173 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1174 page, offset, size, flags);
1175 if (ret == -EOPNOTSUPP) {
1176 release_sock(sk);
1177 return sock_no_sendpage(sk->sk_socket, page, offset,
1178 size, flags);
1179 }
1180 if (ret < 0) {
1181 udp_flush_pending_frames(sk);
1182 goto out;
1183 }
1184
1185 up->len += size;
1186 if (!(up->corkflag || (flags&MSG_MORE)))
1187 ret = udp_push_pending_frames(sk);
1188 if (!ret)
1189 ret = size;
1190 out:
1191 release_sock(sk);
1192 return ret;
1193 }
1194
1195 /**
1196 * first_packet_length - return length of first packet in receive queue
1197 * @sk: socket
1198 *
1199 * Drops all bad checksum frames, until a valid one is found.
1200 * Returns the length of found skb, or 0 if none is found.
1201 */
1202 static unsigned int first_packet_length(struct sock *sk)
1203 {
1204 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1205 struct sk_buff *skb;
1206 unsigned int res;
1207
1208 __skb_queue_head_init(&list_kill);
1209
1210 spin_lock_bh(&rcvq->lock);
1211 while ((skb = skb_peek(rcvq)) != NULL &&
1212 udp_lib_checksum_complete(skb)) {
1213 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1214 IS_UDPLITE(sk));
1215 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1216 IS_UDPLITE(sk));
1217 atomic_inc(&sk->sk_drops);
1218 __skb_unlink(skb, rcvq);
1219 __skb_queue_tail(&list_kill, skb);
1220 }
1221 res = skb ? skb->len : 0;
1222 spin_unlock_bh(&rcvq->lock);
1223
1224 if (!skb_queue_empty(&list_kill)) {
1225 bool slow = lock_sock_fast(sk);
1226
1227 __skb_queue_purge(&list_kill);
1228 sk_mem_reclaim_partial(sk);
1229 unlock_sock_fast(sk, slow);
1230 }
1231 return res;
1232 }
1233
1234 /*
1235 * IOCTL requests applicable to the UDP protocol
1236 */
1237
1238 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1239 {
1240 switch (cmd) {
1241 case SIOCOUTQ:
1242 {
1243 int amount = sk_wmem_alloc_get(sk);
1244
1245 return put_user(amount, (int __user *)arg);
1246 }
1247
1248 case SIOCINQ:
1249 {
1250 unsigned int amount = first_packet_length(sk);
1251
1252 if (amount)
1253 /*
1254 * We will only return the amount
1255 * of this packet since that is all
1256 * that will be read.
1257 */
1258 amount -= sizeof(struct udphdr);
1259
1260 return put_user(amount, (int __user *)arg);
1261 }
1262
1263 default:
1264 return -ENOIOCTLCMD;
1265 }
1266
1267 return 0;
1268 }
1269 EXPORT_SYMBOL(udp_ioctl);
1270
1271 /*
1272 * This should be easy, if there is something there we
1273 * return it, otherwise we block.
1274 */
1275
1276 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1277 int flags, int *addr_len)
1278 {
1279 struct inet_sock *inet = inet_sk(sk);
1280 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1281 struct sk_buff *skb;
1282 unsigned int ulen, copied;
1283 int peeked, off = 0;
1284 int err;
1285 int is_udplite = IS_UDPLITE(sk);
1286 bool slow;
1287
1288 if (flags & MSG_ERRQUEUE)
1289 return ip_recv_error(sk, msg, len, addr_len);
1290
1291 try_again:
1292 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1293 &peeked, &off, &err);
1294 if (!skb)
1295 goto out;
1296
1297 ulen = skb->len - sizeof(struct udphdr);
1298 copied = len;
1299 if (copied > ulen)
1300 copied = ulen;
1301 else if (copied < ulen)
1302 msg->msg_flags |= MSG_TRUNC;
1303
1304 /*
1305 * If checksum is needed at all, try to do it while copying the
1306 * data. If the data is truncated, or if we only want a partial
1307 * coverage checksum (UDP-Lite), do it before the copy.
1308 */
1309
1310 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1311 if (udp_lib_checksum_complete(skb))
1312 goto csum_copy_err;
1313 }
1314
1315 if (skb_csum_unnecessary(skb))
1316 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1317 msg, copied);
1318 else {
1319 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1320 msg);
1321
1322 if (err == -EINVAL)
1323 goto csum_copy_err;
1324 }
1325
1326 if (unlikely(err)) {
1327 trace_kfree_skb(skb, udp_recvmsg);
1328 if (!peeked) {
1329 atomic_inc(&sk->sk_drops);
1330 UDP_INC_STATS_USER(sock_net(sk),
1331 UDP_MIB_INERRORS, is_udplite);
1332 }
1333 goto out_free;
1334 }
1335
1336 if (!peeked)
1337 UDP_INC_STATS_USER(sock_net(sk),
1338 UDP_MIB_INDATAGRAMS, is_udplite);
1339
1340 sock_recv_ts_and_drops(msg, sk, skb);
1341
1342 /* Copy the address. */
1343 if (sin) {
1344 sin->sin_family = AF_INET;
1345 sin->sin_port = udp_hdr(skb)->source;
1346 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1347 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1348 *addr_len = sizeof(*sin);
1349 }
1350 if (inet->cmsg_flags)
1351 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1352
1353 err = copied;
1354 if (flags & MSG_TRUNC)
1355 err = ulen;
1356
1357 out_free:
1358 skb_free_datagram_locked(sk, skb);
1359 out:
1360 return err;
1361
1362 csum_copy_err:
1363 slow = lock_sock_fast(sk);
1364 if (!skb_kill_datagram(sk, skb, flags)) {
1365 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1366 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1367 }
1368 unlock_sock_fast(sk, slow);
1369
1370 /* starting over for a new packet, but check if we need to yield */
1371 cond_resched();
1372 msg->msg_flags &= ~MSG_TRUNC;
1373 goto try_again;
1374 }
1375
1376 int udp_disconnect(struct sock *sk, int flags)
1377 {
1378 struct inet_sock *inet = inet_sk(sk);
1379 /*
1380 * 1003.1g - break association.
1381 */
1382
1383 sk->sk_state = TCP_CLOSE;
1384 inet->inet_daddr = 0;
1385 inet->inet_dport = 0;
1386 sock_rps_reset_rxhash(sk);
1387 sk->sk_bound_dev_if = 0;
1388 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1389 inet_reset_saddr(sk);
1390
1391 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1392 sk->sk_prot->unhash(sk);
1393 inet->inet_sport = 0;
1394 }
1395 sk_dst_reset(sk);
1396 return 0;
1397 }
1398 EXPORT_SYMBOL(udp_disconnect);
1399
1400 void udp_lib_unhash(struct sock *sk)
1401 {
1402 if (sk_hashed(sk)) {
1403 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1404 struct udp_hslot *hslot, *hslot2;
1405
1406 hslot = udp_hashslot(udptable, sock_net(sk),
1407 udp_sk(sk)->udp_port_hash);
1408 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1409
1410 spin_lock_bh(&hslot->lock);
1411 if (sk_nulls_del_node_init_rcu(sk)) {
1412 hslot->count--;
1413 inet_sk(sk)->inet_num = 0;
1414 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1415
1416 spin_lock(&hslot2->lock);
1417 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1418 hslot2->count--;
1419 spin_unlock(&hslot2->lock);
1420 }
1421 spin_unlock_bh(&hslot->lock);
1422 }
1423 }
1424 EXPORT_SYMBOL(udp_lib_unhash);
1425
1426 /*
1427 * inet_rcv_saddr was changed, we must rehash secondary hash
1428 */
1429 void udp_lib_rehash(struct sock *sk, u16 newhash)
1430 {
1431 if (sk_hashed(sk)) {
1432 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1433 struct udp_hslot *hslot, *hslot2, *nhslot2;
1434
1435 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1436 nhslot2 = udp_hashslot2(udptable, newhash);
1437 udp_sk(sk)->udp_portaddr_hash = newhash;
1438 if (hslot2 != nhslot2) {
1439 hslot = udp_hashslot(udptable, sock_net(sk),
1440 udp_sk(sk)->udp_port_hash);
1441 /* we must lock primary chain too */
1442 spin_lock_bh(&hslot->lock);
1443
1444 spin_lock(&hslot2->lock);
1445 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1446 hslot2->count--;
1447 spin_unlock(&hslot2->lock);
1448
1449 spin_lock(&nhslot2->lock);
1450 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1451 &nhslot2->head);
1452 nhslot2->count++;
1453 spin_unlock(&nhslot2->lock);
1454
1455 spin_unlock_bh(&hslot->lock);
1456 }
1457 }
1458 }
1459 EXPORT_SYMBOL(udp_lib_rehash);
1460
1461 static void udp_v4_rehash(struct sock *sk)
1462 {
1463 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1464 inet_sk(sk)->inet_rcv_saddr,
1465 inet_sk(sk)->inet_num);
1466 udp_lib_rehash(sk, new_hash);
1467 }
1468
1469 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1470 {
1471 int rc;
1472
1473 if (inet_sk(sk)->inet_daddr) {
1474 sock_rps_save_rxhash(sk, skb);
1475 sk_mark_napi_id(sk, skb);
1476 sk_incoming_cpu_update(sk);
1477 }
1478
1479 rc = sock_queue_rcv_skb(sk, skb);
1480 if (rc < 0) {
1481 int is_udplite = IS_UDPLITE(sk);
1482
1483 /* Note that an ENOMEM error is charged twice */
1484 if (rc == -ENOMEM)
1485 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1486 is_udplite);
1487 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1488 kfree_skb(skb);
1489 trace_udp_fail_queue_rcv_skb(rc, sk);
1490 return -1;
1491 }
1492
1493 return 0;
1494
1495 }
1496
1497 static struct static_key udp_encap_needed __read_mostly;
1498 void udp_encap_enable(void)
1499 {
1500 if (!static_key_enabled(&udp_encap_needed))
1501 static_key_slow_inc(&udp_encap_needed);
1502 }
1503 EXPORT_SYMBOL(udp_encap_enable);
1504
1505 /* returns:
1506 * -1: error
1507 * 0: success
1508 * >0: "udp encap" protocol resubmission
1509 *
1510 * Note that in the success and error cases, the skb is assumed to
1511 * have either been requeued or freed.
1512 */
1513 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1514 {
1515 struct udp_sock *up = udp_sk(sk);
1516 int rc;
1517 int is_udplite = IS_UDPLITE(sk);
1518
1519 /*
1520 * Charge it to the socket, dropping if the queue is full.
1521 */
1522 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1523 goto drop;
1524 nf_reset(skb);
1525
1526 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1527 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1528
1529 /*
1530 * This is an encapsulation socket so pass the skb to
1531 * the socket's udp_encap_rcv() hook. Otherwise, just
1532 * fall through and pass this up the UDP socket.
1533 * up->encap_rcv() returns the following value:
1534 * =0 if skb was successfully passed to the encap
1535 * handler or was discarded by it.
1536 * >0 if skb should be passed on to UDP.
1537 * <0 if skb should be resubmitted as proto -N
1538 */
1539
1540 /* if we're overly short, let UDP handle it */
1541 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1542 if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1543 int ret;
1544
1545 /* Verify checksum before giving to encap */
1546 if (udp_lib_checksum_complete(skb))
1547 goto csum_error;
1548
1549 ret = encap_rcv(sk, skb);
1550 if (ret <= 0) {
1551 UDP_INC_STATS_BH(sock_net(sk),
1552 UDP_MIB_INDATAGRAMS,
1553 is_udplite);
1554 return -ret;
1555 }
1556 }
1557
1558 /* FALLTHROUGH -- it's a UDP Packet */
1559 }
1560
1561 /*
1562 * UDP-Lite specific tests, ignored on UDP sockets
1563 */
1564 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1565
1566 /*
1567 * MIB statistics other than incrementing the error count are
1568 * disabled for the following two types of errors: these depend
1569 * on the application settings, not on the functioning of the
1570 * protocol stack as such.
1571 *
1572 * RFC 3828 here recommends (sec 3.3): "There should also be a
1573 * way ... to ... at least let the receiving application block
1574 * delivery of packets with coverage values less than a value
1575 * provided by the application."
1576 */
1577 if (up->pcrlen == 0) { /* full coverage was set */
1578 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1579 UDP_SKB_CB(skb)->cscov, skb->len);
1580 goto drop;
1581 }
1582 /* The next case involves violating the min. coverage requested
1583 * by the receiver. This is subtle: if receiver wants x and x is
1584 * greater than the buffersize/MTU then receiver will complain
1585 * that it wants x while sender emits packets of smaller size y.
1586 * Therefore the above ...()->partial_cov statement is essential.
1587 */
1588 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1589 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1590 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1591 goto drop;
1592 }
1593 }
1594
1595 if (rcu_access_pointer(sk->sk_filter) &&
1596 udp_lib_checksum_complete(skb))
1597 goto csum_error;
1598
1599 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1600 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1601 is_udplite);
1602 goto drop;
1603 }
1604
1605 rc = 0;
1606
1607 ipv4_pktinfo_prepare(sk, skb);
1608 bh_lock_sock(sk);
1609 if (!sock_owned_by_user(sk))
1610 rc = __udp_queue_rcv_skb(sk, skb);
1611 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1612 bh_unlock_sock(sk);
1613 goto drop;
1614 }
1615 bh_unlock_sock(sk);
1616
1617 return rc;
1618
1619 csum_error:
1620 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1621 drop:
1622 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1623 atomic_inc(&sk->sk_drops);
1624 kfree_skb(skb);
1625 return -1;
1626 }
1627
1628 static void flush_stack(struct sock **stack, unsigned int count,
1629 struct sk_buff *skb, unsigned int final)
1630 {
1631 unsigned int i;
1632 struct sk_buff *skb1 = NULL;
1633 struct sock *sk;
1634
1635 for (i = 0; i < count; i++) {
1636 sk = stack[i];
1637 if (likely(!skb1))
1638 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1639
1640 if (!skb1) {
1641 atomic_inc(&sk->sk_drops);
1642 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1643 IS_UDPLITE(sk));
1644 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1645 IS_UDPLITE(sk));
1646 }
1647
1648 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1649 skb1 = NULL;
1650
1651 sock_put(sk);
1652 }
1653 if (unlikely(skb1))
1654 kfree_skb(skb1);
1655 }
1656
1657 /* For TCP sockets, sk_rx_dst is protected by socket lock
1658 * For UDP, we use xchg() to guard against concurrent changes.
1659 */
1660 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1661 {
1662 struct dst_entry *old;
1663
1664 dst_hold(dst);
1665 old = xchg(&sk->sk_rx_dst, dst);
1666 dst_release(old);
1667 }
1668
1669 /*
1670 * Multicasts and broadcasts go to each listener.
1671 *
1672 * Note: called only from the BH handler context.
1673 */
1674 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1675 struct udphdr *uh,
1676 __be32 saddr, __be32 daddr,
1677 struct udp_table *udptable,
1678 int proto)
1679 {
1680 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1681 struct hlist_nulls_node *node;
1682 unsigned short hnum = ntohs(uh->dest);
1683 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1684 int dif = skb->dev->ifindex;
1685 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1686 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1687 bool inner_flushed = false;
1688
1689 if (use_hash2) {
1690 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1691 udp_table.mask;
1692 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1693 start_lookup:
1694 hslot = &udp_table.hash2[hash2];
1695 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1696 }
1697
1698 spin_lock(&hslot->lock);
1699 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1700 if (__udp_is_mcast_sock(net, sk,
1701 uh->dest, daddr,
1702 uh->source, saddr,
1703 dif, hnum)) {
1704 if (unlikely(count == ARRAY_SIZE(stack))) {
1705 flush_stack(stack, count, skb, ~0);
1706 inner_flushed = true;
1707 count = 0;
1708 }
1709 stack[count++] = sk;
1710 sock_hold(sk);
1711 }
1712 }
1713
1714 spin_unlock(&hslot->lock);
1715
1716 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1717 if (use_hash2 && hash2 != hash2_any) {
1718 hash2 = hash2_any;
1719 goto start_lookup;
1720 }
1721
1722 /*
1723 * do the slow work with no lock held
1724 */
1725 if (count) {
1726 flush_stack(stack, count, skb, count - 1);
1727 } else {
1728 if (!inner_flushed)
1729 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1730 proto == IPPROTO_UDPLITE);
1731 consume_skb(skb);
1732 }
1733 return 0;
1734 }
1735
1736 /* Initialize UDP checksum. If exited with zero value (success),
1737 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1738 * Otherwise, csum completion requires chacksumming packet body,
1739 * including udp header and folding it to skb->csum.
1740 */
1741 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1742 int proto)
1743 {
1744 int err;
1745
1746 UDP_SKB_CB(skb)->partial_cov = 0;
1747 UDP_SKB_CB(skb)->cscov = skb->len;
1748
1749 if (proto == IPPROTO_UDPLITE) {
1750 err = udplite_checksum_init(skb, uh);
1751 if (err)
1752 return err;
1753 }
1754
1755 return skb_checksum_init_zero_check(skb, proto, uh->check,
1756 inet_compute_pseudo);
1757 }
1758
1759 /*
1760 * All we need to do is get the socket, and then do a checksum.
1761 */
1762
1763 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1764 int proto)
1765 {
1766 struct sock *sk;
1767 struct udphdr *uh;
1768 unsigned short ulen;
1769 struct rtable *rt = skb_rtable(skb);
1770 __be32 saddr, daddr;
1771 struct net *net = dev_net(skb->dev);
1772
1773 /*
1774 * Validate the packet.
1775 */
1776 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1777 goto drop; /* No space for header. */
1778
1779 uh = udp_hdr(skb);
1780 ulen = ntohs(uh->len);
1781 saddr = ip_hdr(skb)->saddr;
1782 daddr = ip_hdr(skb)->daddr;
1783
1784 if (ulen > skb->len)
1785 goto short_packet;
1786
1787 if (proto == IPPROTO_UDP) {
1788 /* UDP validates ulen. */
1789 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1790 goto short_packet;
1791 uh = udp_hdr(skb);
1792 }
1793
1794 if (udp4_csum_init(skb, uh, proto))
1795 goto csum_error;
1796
1797 sk = skb_steal_sock(skb);
1798 if (sk) {
1799 struct dst_entry *dst = skb_dst(skb);
1800 int ret;
1801
1802 if (unlikely(sk->sk_rx_dst != dst))
1803 udp_sk_rx_dst_set(sk, dst);
1804
1805 ret = udp_queue_rcv_skb(sk, skb);
1806 sock_put(sk);
1807 /* a return value > 0 means to resubmit the input, but
1808 * it wants the return to be -protocol, or 0
1809 */
1810 if (ret > 0)
1811 return -ret;
1812 return 0;
1813 }
1814
1815 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1816 return __udp4_lib_mcast_deliver(net, skb, uh,
1817 saddr, daddr, udptable, proto);
1818
1819 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1820 if (sk) {
1821 int ret;
1822
1823 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1824 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1825 inet_compute_pseudo);
1826
1827 ret = udp_queue_rcv_skb(sk, skb);
1828 sock_put(sk);
1829
1830 /* a return value > 0 means to resubmit the input, but
1831 * it wants the return to be -protocol, or 0
1832 */
1833 if (ret > 0)
1834 return -ret;
1835 return 0;
1836 }
1837
1838 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1839 goto drop;
1840 nf_reset(skb);
1841
1842 /* No socket. Drop packet silently, if checksum is wrong */
1843 if (udp_lib_checksum_complete(skb))
1844 goto csum_error;
1845
1846 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1847 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1848
1849 /*
1850 * Hmm. We got an UDP packet to a port to which we
1851 * don't wanna listen. Ignore it.
1852 */
1853 kfree_skb(skb);
1854 return 0;
1855
1856 short_packet:
1857 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1858 proto == IPPROTO_UDPLITE ? "Lite" : "",
1859 &saddr, ntohs(uh->source),
1860 ulen, skb->len,
1861 &daddr, ntohs(uh->dest));
1862 goto drop;
1863
1864 csum_error:
1865 /*
1866 * RFC1122: OK. Discards the bad packet silently (as far as
1867 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1868 */
1869 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1870 proto == IPPROTO_UDPLITE ? "Lite" : "",
1871 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1872 ulen);
1873 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1874 drop:
1875 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1876 kfree_skb(skb);
1877 return 0;
1878 }
1879
1880 /* We can only early demux multicast if there is a single matching socket.
1881 * If more than one socket found returns NULL
1882 */
1883 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1884 __be16 loc_port, __be32 loc_addr,
1885 __be16 rmt_port, __be32 rmt_addr,
1886 int dif)
1887 {
1888 struct sock *sk, *result;
1889 struct hlist_nulls_node *node;
1890 unsigned short hnum = ntohs(loc_port);
1891 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1892 struct udp_hslot *hslot = &udp_table.hash[slot];
1893
1894 /* Do not bother scanning a too big list */
1895 if (hslot->count > 10)
1896 return NULL;
1897
1898 rcu_read_lock();
1899 begin:
1900 count = 0;
1901 result = NULL;
1902 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1903 if (__udp_is_mcast_sock(net, sk,
1904 loc_port, loc_addr,
1905 rmt_port, rmt_addr,
1906 dif, hnum)) {
1907 result = sk;
1908 ++count;
1909 }
1910 }
1911 /*
1912 * if the nulls value we got at the end of this lookup is
1913 * not the expected one, we must restart lookup.
1914 * We probably met an item that was moved to another chain.
1915 */
1916 if (get_nulls_value(node) != slot)
1917 goto begin;
1918
1919 if (result) {
1920 if (count != 1 ||
1921 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1922 result = NULL;
1923 else if (unlikely(!__udp_is_mcast_sock(net, result,
1924 loc_port, loc_addr,
1925 rmt_port, rmt_addr,
1926 dif, hnum))) {
1927 sock_put(result);
1928 result = NULL;
1929 }
1930 }
1931 rcu_read_unlock();
1932 return result;
1933 }
1934
1935 /* For unicast we should only early demux connected sockets or we can
1936 * break forwarding setups. The chains here can be long so only check
1937 * if the first socket is an exact match and if not move on.
1938 */
1939 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1940 __be16 loc_port, __be32 loc_addr,
1941 __be16 rmt_port, __be32 rmt_addr,
1942 int dif)
1943 {
1944 struct sock *sk, *result;
1945 struct hlist_nulls_node *node;
1946 unsigned short hnum = ntohs(loc_port);
1947 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1948 unsigned int slot2 = hash2 & udp_table.mask;
1949 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1950 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1951 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1952
1953 rcu_read_lock();
1954 result = NULL;
1955 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1956 if (INET_MATCH(sk, net, acookie,
1957 rmt_addr, loc_addr, ports, dif))
1958 result = sk;
1959 /* Only check first socket in chain */
1960 break;
1961 }
1962
1963 if (result) {
1964 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1965 result = NULL;
1966 else if (unlikely(!INET_MATCH(sk, net, acookie,
1967 rmt_addr, loc_addr,
1968 ports, dif))) {
1969 sock_put(result);
1970 result = NULL;
1971 }
1972 }
1973 rcu_read_unlock();
1974 return result;
1975 }
1976
1977 void udp_v4_early_demux(struct sk_buff *skb)
1978 {
1979 struct net *net = dev_net(skb->dev);
1980 const struct iphdr *iph;
1981 const struct udphdr *uh;
1982 struct sock *sk;
1983 struct dst_entry *dst;
1984 int dif = skb->dev->ifindex;
1985 int ours;
1986
1987 /* validate the packet */
1988 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1989 return;
1990
1991 iph = ip_hdr(skb);
1992 uh = udp_hdr(skb);
1993
1994 if (skb->pkt_type == PACKET_BROADCAST ||
1995 skb->pkt_type == PACKET_MULTICAST) {
1996 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1997
1998 if (!in_dev)
1999 return;
2000
2001 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2002 iph->protocol);
2003 if (!ours)
2004 return;
2005 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2006 uh->source, iph->saddr, dif);
2007 } else if (skb->pkt_type == PACKET_HOST) {
2008 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2009 uh->source, iph->saddr, dif);
2010 } else {
2011 return;
2012 }
2013
2014 if (!sk)
2015 return;
2016
2017 skb->sk = sk;
2018 skb->destructor = sock_efree;
2019 dst = READ_ONCE(sk->sk_rx_dst);
2020
2021 if (dst)
2022 dst = dst_check(dst, 0);
2023 if (dst) {
2024 /* DST_NOCACHE can not be used without taking a reference */
2025 if (dst->flags & DST_NOCACHE) {
2026 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2027 skb_dst_set(skb, dst);
2028 } else {
2029 skb_dst_set_noref(skb, dst);
2030 }
2031 }
2032 }
2033
2034 int udp_rcv(struct sk_buff *skb)
2035 {
2036 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2037 }
2038
2039 void udp_destroy_sock(struct sock *sk)
2040 {
2041 struct udp_sock *up = udp_sk(sk);
2042 bool slow = lock_sock_fast(sk);
2043 udp_flush_pending_frames(sk);
2044 unlock_sock_fast(sk, slow);
2045 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2046 void (*encap_destroy)(struct sock *sk);
2047 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2048 if (encap_destroy)
2049 encap_destroy(sk);
2050 }
2051 }
2052
2053 /*
2054 * Socket option code for UDP
2055 */
2056 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2057 char __user *optval, unsigned int optlen,
2058 int (*push_pending_frames)(struct sock *))
2059 {
2060 struct udp_sock *up = udp_sk(sk);
2061 int val, valbool;
2062 int err = 0;
2063 int is_udplite = IS_UDPLITE(sk);
2064
2065 if (optlen < sizeof(int))
2066 return -EINVAL;
2067
2068 if (get_user(val, (int __user *)optval))
2069 return -EFAULT;
2070
2071 valbool = val ? 1 : 0;
2072
2073 switch (optname) {
2074 case UDP_CORK:
2075 if (val != 0) {
2076 up->corkflag = 1;
2077 } else {
2078 up->corkflag = 0;
2079 lock_sock(sk);
2080 push_pending_frames(sk);
2081 release_sock(sk);
2082 }
2083 break;
2084
2085 case UDP_ENCAP:
2086 switch (val) {
2087 case 0:
2088 case UDP_ENCAP_ESPINUDP:
2089 case UDP_ENCAP_ESPINUDP_NON_IKE:
2090 up->encap_rcv = xfrm4_udp_encap_rcv;
2091 /* FALLTHROUGH */
2092 case UDP_ENCAP_L2TPINUDP:
2093 up->encap_type = val;
2094 udp_encap_enable();
2095 break;
2096 default:
2097 err = -ENOPROTOOPT;
2098 break;
2099 }
2100 break;
2101
2102 case UDP_NO_CHECK6_TX:
2103 up->no_check6_tx = valbool;
2104 break;
2105
2106 case UDP_NO_CHECK6_RX:
2107 up->no_check6_rx = valbool;
2108 break;
2109
2110 /*
2111 * UDP-Lite's partial checksum coverage (RFC 3828).
2112 */
2113 /* The sender sets actual checksum coverage length via this option.
2114 * The case coverage > packet length is handled by send module. */
2115 case UDPLITE_SEND_CSCOV:
2116 if (!is_udplite) /* Disable the option on UDP sockets */
2117 return -ENOPROTOOPT;
2118 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2119 val = 8;
2120 else if (val > USHRT_MAX)
2121 val = USHRT_MAX;
2122 up->pcslen = val;
2123 up->pcflag |= UDPLITE_SEND_CC;
2124 break;
2125
2126 /* The receiver specifies a minimum checksum coverage value. To make
2127 * sense, this should be set to at least 8 (as done below). If zero is
2128 * used, this again means full checksum coverage. */
2129 case UDPLITE_RECV_CSCOV:
2130 if (!is_udplite) /* Disable the option on UDP sockets */
2131 return -ENOPROTOOPT;
2132 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2133 val = 8;
2134 else if (val > USHRT_MAX)
2135 val = USHRT_MAX;
2136 up->pcrlen = val;
2137 up->pcflag |= UDPLITE_RECV_CC;
2138 break;
2139
2140 default:
2141 err = -ENOPROTOOPT;
2142 break;
2143 }
2144
2145 return err;
2146 }
2147 EXPORT_SYMBOL(udp_lib_setsockopt);
2148
2149 int udp_setsockopt(struct sock *sk, int level, int optname,
2150 char __user *optval, unsigned int optlen)
2151 {
2152 if (level == SOL_UDP || level == SOL_UDPLITE)
2153 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2154 udp_push_pending_frames);
2155 return ip_setsockopt(sk, level, optname, optval, optlen);
2156 }
2157
2158 #ifdef CONFIG_COMPAT
2159 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2160 char __user *optval, unsigned int optlen)
2161 {
2162 if (level == SOL_UDP || level == SOL_UDPLITE)
2163 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2164 udp_push_pending_frames);
2165 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2166 }
2167 #endif
2168
2169 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2170 char __user *optval, int __user *optlen)
2171 {
2172 struct udp_sock *up = udp_sk(sk);
2173 int val, len;
2174
2175 if (get_user(len, optlen))
2176 return -EFAULT;
2177
2178 len = min_t(unsigned int, len, sizeof(int));
2179
2180 if (len < 0)
2181 return -EINVAL;
2182
2183 switch (optname) {
2184 case UDP_CORK:
2185 val = up->corkflag;
2186 break;
2187
2188 case UDP_ENCAP:
2189 val = up->encap_type;
2190 break;
2191
2192 case UDP_NO_CHECK6_TX:
2193 val = up->no_check6_tx;
2194 break;
2195
2196 case UDP_NO_CHECK6_RX:
2197 val = up->no_check6_rx;
2198 break;
2199
2200 /* The following two cannot be changed on UDP sockets, the return is
2201 * always 0 (which corresponds to the full checksum coverage of UDP). */
2202 case UDPLITE_SEND_CSCOV:
2203 val = up->pcslen;
2204 break;
2205
2206 case UDPLITE_RECV_CSCOV:
2207 val = up->pcrlen;
2208 break;
2209
2210 default:
2211 return -ENOPROTOOPT;
2212 }
2213
2214 if (put_user(len, optlen))
2215 return -EFAULT;
2216 if (copy_to_user(optval, &val, len))
2217 return -EFAULT;
2218 return 0;
2219 }
2220 EXPORT_SYMBOL(udp_lib_getsockopt);
2221
2222 int udp_getsockopt(struct sock *sk, int level, int optname,
2223 char __user *optval, int __user *optlen)
2224 {
2225 if (level == SOL_UDP || level == SOL_UDPLITE)
2226 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2227 return ip_getsockopt(sk, level, optname, optval, optlen);
2228 }
2229
2230 #ifdef CONFIG_COMPAT
2231 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2232 char __user *optval, int __user *optlen)
2233 {
2234 if (level == SOL_UDP || level == SOL_UDPLITE)
2235 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2236 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2237 }
2238 #endif
2239 /**
2240 * udp_poll - wait for a UDP event.
2241 * @file - file struct
2242 * @sock - socket
2243 * @wait - poll table
2244 *
2245 * This is same as datagram poll, except for the special case of
2246 * blocking sockets. If application is using a blocking fd
2247 * and a packet with checksum error is in the queue;
2248 * then it could get return from select indicating data available
2249 * but then block when reading it. Add special case code
2250 * to work around these arguably broken applications.
2251 */
2252 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2253 {
2254 unsigned int mask = datagram_poll(file, sock, wait);
2255 struct sock *sk = sock->sk;
2256
2257 sock_rps_record_flow(sk);
2258
2259 /* Check for false positives due to checksum errors */
2260 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2261 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2262 mask &= ~(POLLIN | POLLRDNORM);
2263
2264 return mask;
2265
2266 }
2267 EXPORT_SYMBOL(udp_poll);
2268
2269 struct proto udp_prot = {
2270 .name = "UDP",
2271 .owner = THIS_MODULE,
2272 .close = udp_lib_close,
2273 .connect = ip4_datagram_connect,
2274 .disconnect = udp_disconnect,
2275 .ioctl = udp_ioctl,
2276 .destroy = udp_destroy_sock,
2277 .setsockopt = udp_setsockopt,
2278 .getsockopt = udp_getsockopt,
2279 .sendmsg = udp_sendmsg,
2280 .recvmsg = udp_recvmsg,
2281 .sendpage = udp_sendpage,
2282 .backlog_rcv = __udp_queue_rcv_skb,
2283 .release_cb = ip4_datagram_release_cb,
2284 .hash = udp_lib_hash,
2285 .unhash = udp_lib_unhash,
2286 .rehash = udp_v4_rehash,
2287 .get_port = udp_v4_get_port,
2288 .memory_allocated = &udp_memory_allocated,
2289 .sysctl_mem = sysctl_udp_mem,
2290 .sysctl_wmem = &sysctl_udp_wmem_min,
2291 .sysctl_rmem = &sysctl_udp_rmem_min,
2292 .obj_size = sizeof(struct udp_sock),
2293 .slab_flags = SLAB_DESTROY_BY_RCU,
2294 .h.udp_table = &udp_table,
2295 #ifdef CONFIG_COMPAT
2296 .compat_setsockopt = compat_udp_setsockopt,
2297 .compat_getsockopt = compat_udp_getsockopt,
2298 #endif
2299 .clear_sk = sk_prot_clear_portaddr_nulls,
2300 };
2301 EXPORT_SYMBOL(udp_prot);
2302
2303 /* ------------------------------------------------------------------------ */
2304 #ifdef CONFIG_PROC_FS
2305
2306 static struct sock *udp_get_first(struct seq_file *seq, int start)
2307 {
2308 struct sock *sk;
2309 struct udp_iter_state *state = seq->private;
2310 struct net *net = seq_file_net(seq);
2311
2312 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2313 ++state->bucket) {
2314 struct hlist_nulls_node *node;
2315 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2316
2317 if (hlist_nulls_empty(&hslot->head))
2318 continue;
2319
2320 spin_lock_bh(&hslot->lock);
2321 sk_nulls_for_each(sk, node, &hslot->head) {
2322 if (!net_eq(sock_net(sk), net))
2323 continue;
2324 if (sk->sk_family == state->family)
2325 goto found;
2326 }
2327 spin_unlock_bh(&hslot->lock);
2328 }
2329 sk = NULL;
2330 found:
2331 return sk;
2332 }
2333
2334 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2335 {
2336 struct udp_iter_state *state = seq->private;
2337 struct net *net = seq_file_net(seq);
2338
2339 do {
2340 sk = sk_nulls_next(sk);
2341 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2342
2343 if (!sk) {
2344 if (state->bucket <= state->udp_table->mask)
2345 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2346 return udp_get_first(seq, state->bucket + 1);
2347 }
2348 return sk;
2349 }
2350
2351 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2352 {
2353 struct sock *sk = udp_get_first(seq, 0);
2354
2355 if (sk)
2356 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2357 --pos;
2358 return pos ? NULL : sk;
2359 }
2360
2361 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2362 {
2363 struct udp_iter_state *state = seq->private;
2364 state->bucket = MAX_UDP_PORTS;
2365
2366 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2367 }
2368
2369 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2370 {
2371 struct sock *sk;
2372
2373 if (v == SEQ_START_TOKEN)
2374 sk = udp_get_idx(seq, 0);
2375 else
2376 sk = udp_get_next(seq, v);
2377
2378 ++*pos;
2379 return sk;
2380 }
2381
2382 static void udp_seq_stop(struct seq_file *seq, void *v)
2383 {
2384 struct udp_iter_state *state = seq->private;
2385
2386 if (state->bucket <= state->udp_table->mask)
2387 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2388 }
2389
2390 int udp_seq_open(struct inode *inode, struct file *file)
2391 {
2392 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2393 struct udp_iter_state *s;
2394 int err;
2395
2396 err = seq_open_net(inode, file, &afinfo->seq_ops,
2397 sizeof(struct udp_iter_state));
2398 if (err < 0)
2399 return err;
2400
2401 s = ((struct seq_file *)file->private_data)->private;
2402 s->family = afinfo->family;
2403 s->udp_table = afinfo->udp_table;
2404 return err;
2405 }
2406 EXPORT_SYMBOL(udp_seq_open);
2407
2408 /* ------------------------------------------------------------------------ */
2409 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2410 {
2411 struct proc_dir_entry *p;
2412 int rc = 0;
2413
2414 afinfo->seq_ops.start = udp_seq_start;
2415 afinfo->seq_ops.next = udp_seq_next;
2416 afinfo->seq_ops.stop = udp_seq_stop;
2417
2418 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2419 afinfo->seq_fops, afinfo);
2420 if (!p)
2421 rc = -ENOMEM;
2422 return rc;
2423 }
2424 EXPORT_SYMBOL(udp_proc_register);
2425
2426 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2427 {
2428 remove_proc_entry(afinfo->name, net->proc_net);
2429 }
2430 EXPORT_SYMBOL(udp_proc_unregister);
2431
2432 /* ------------------------------------------------------------------------ */
2433 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2434 int bucket)
2435 {
2436 struct inet_sock *inet = inet_sk(sp);
2437 __be32 dest = inet->inet_daddr;
2438 __be32 src = inet->inet_rcv_saddr;
2439 __u16 destp = ntohs(inet->inet_dport);
2440 __u16 srcp = ntohs(inet->inet_sport);
2441
2442 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2443 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2444 bucket, src, srcp, dest, destp, sp->sk_state,
2445 sk_wmem_alloc_get(sp),
2446 sk_rmem_alloc_get(sp),
2447 0, 0L, 0,
2448 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2449 0, sock_i_ino(sp),
2450 atomic_read(&sp->sk_refcnt), sp,
2451 atomic_read(&sp->sk_drops));
2452 }
2453
2454 int udp4_seq_show(struct seq_file *seq, void *v)
2455 {
2456 seq_setwidth(seq, 127);
2457 if (v == SEQ_START_TOKEN)
2458 seq_puts(seq, " sl local_address rem_address st tx_queue "
2459 "rx_queue tr tm->when retrnsmt uid timeout "
2460 "inode ref pointer drops");
2461 else {
2462 struct udp_iter_state *state = seq->private;
2463
2464 udp4_format_sock(v, seq, state->bucket);
2465 }
2466 seq_pad(seq, '\n');
2467 return 0;
2468 }
2469
2470 static const struct file_operations udp_afinfo_seq_fops = {
2471 .owner = THIS_MODULE,
2472 .open = udp_seq_open,
2473 .read = seq_read,
2474 .llseek = seq_lseek,
2475 .release = seq_release_net
2476 };
2477
2478 /* ------------------------------------------------------------------------ */
2479 static struct udp_seq_afinfo udp4_seq_afinfo = {
2480 .name = "udp",
2481 .family = AF_INET,
2482 .udp_table = &udp_table,
2483 .seq_fops = &udp_afinfo_seq_fops,
2484 .seq_ops = {
2485 .show = udp4_seq_show,
2486 },
2487 };
2488
2489 static int __net_init udp4_proc_init_net(struct net *net)
2490 {
2491 return udp_proc_register(net, &udp4_seq_afinfo);
2492 }
2493
2494 static void __net_exit udp4_proc_exit_net(struct net *net)
2495 {
2496 udp_proc_unregister(net, &udp4_seq_afinfo);
2497 }
2498
2499 static struct pernet_operations udp4_net_ops = {
2500 .init = udp4_proc_init_net,
2501 .exit = udp4_proc_exit_net,
2502 };
2503
2504 int __init udp4_proc_init(void)
2505 {
2506 return register_pernet_subsys(&udp4_net_ops);
2507 }
2508
2509 void udp4_proc_exit(void)
2510 {
2511 unregister_pernet_subsys(&udp4_net_ops);
2512 }
2513 #endif /* CONFIG_PROC_FS */
2514
2515 static __initdata unsigned long uhash_entries;
2516 static int __init set_uhash_entries(char *str)
2517 {
2518 ssize_t ret;
2519
2520 if (!str)
2521 return 0;
2522
2523 ret = kstrtoul(str, 0, &uhash_entries);
2524 if (ret)
2525 return 0;
2526
2527 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2528 uhash_entries = UDP_HTABLE_SIZE_MIN;
2529 return 1;
2530 }
2531 __setup("uhash_entries=", set_uhash_entries);
2532
2533 void __init udp_table_init(struct udp_table *table, const char *name)
2534 {
2535 unsigned int i;
2536
2537 table->hash = alloc_large_system_hash(name,
2538 2 * sizeof(struct udp_hslot),
2539 uhash_entries,
2540 21, /* one slot per 2 MB */
2541 0,
2542 &table->log,
2543 &table->mask,
2544 UDP_HTABLE_SIZE_MIN,
2545 64 * 1024);
2546
2547 table->hash2 = table->hash + (table->mask + 1);
2548 for (i = 0; i <= table->mask; i++) {
2549 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2550 table->hash[i].count = 0;
2551 spin_lock_init(&table->hash[i].lock);
2552 }
2553 for (i = 0; i <= table->mask; i++) {
2554 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2555 table->hash2[i].count = 0;
2556 spin_lock_init(&table->hash2[i].lock);
2557 }
2558 }
2559
2560 u32 udp_flow_hashrnd(void)
2561 {
2562 static u32 hashrnd __read_mostly;
2563
2564 net_get_random_once(&hashrnd, sizeof(hashrnd));
2565
2566 return hashrnd;
2567 }
2568 EXPORT_SYMBOL(udp_flow_hashrnd);
2569
2570 void __init udp_init(void)
2571 {
2572 unsigned long limit;
2573
2574 udp_table_init(&udp_table, "UDP");
2575 limit = nr_free_buffer_pages() / 8;
2576 limit = max(limit, 128UL);
2577 sysctl_udp_mem[0] = limit / 4 * 3;
2578 sysctl_udp_mem[1] = limit;
2579 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2580
2581 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2582 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2583 }
This page took 0.117906 seconds and 5 git commands to generate.