Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108
109 struct udp_table udp_table __read_mostly;
110 EXPORT_SYMBOL(udp_table);
111
112 int sysctl_udp_mem[3] __read_mostly;
113 EXPORT_SYMBOL(sysctl_udp_mem);
114
115 int sysctl_udp_rmem_min __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min);
117
118 int sysctl_udp_wmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min);
120
121 atomic_t udp_memory_allocated;
122 EXPORT_SYMBOL(udp_memory_allocated);
123
124 #define MAX_UDP_PORTS 65536
125 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
126
127 static int udp_lib_lport_inuse(struct net *net, __u16 num,
128 const struct udp_hslot *hslot,
129 unsigned long *bitmap,
130 struct sock *sk,
131 int (*saddr_comp)(const struct sock *sk1,
132 const struct sock *sk2),
133 unsigned int log)
134 {
135 struct sock *sk2;
136 struct hlist_nulls_node *node;
137
138 sk_nulls_for_each(sk2, node, &hslot->head)
139 if (net_eq(sock_net(sk2), net) &&
140 sk2 != sk &&
141 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
142 (!sk2->sk_reuse || !sk->sk_reuse) &&
143 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
144 || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
145 (*saddr_comp)(sk, sk2)) {
146 if (bitmap)
147 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
148 bitmap);
149 else
150 return 1;
151 }
152 return 0;
153 }
154
155 /**
156 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
157 *
158 * @sk: socket struct in question
159 * @snum: port number to look up
160 * @saddr_comp: AF-dependent comparison of bound local IP addresses
161 */
162 int udp_lib_get_port(struct sock *sk, unsigned short snum,
163 int (*saddr_comp)(const struct sock *sk1,
164 const struct sock *sk2))
165 {
166 struct udp_hslot *hslot, *hslot2;
167 struct udp_table *udptable = sk->sk_prot->h.udp_table;
168 int error = 1;
169 struct net *net = sock_net(sk);
170
171 if (!snum) {
172 int low, high, remaining;
173 unsigned rand;
174 unsigned short first, last;
175 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
176
177 inet_get_local_port_range(&low, &high);
178 remaining = (high - low) + 1;
179
180 rand = net_random();
181 first = (((u64)rand * remaining) >> 32) + low;
182 /*
183 * force rand to be an odd multiple of UDP_HTABLE_SIZE
184 */
185 rand = (rand | 1) * (udptable->mask + 1);
186 for (last = first + udptable->mask + 1;
187 first != last;
188 first++) {
189 hslot = udp_hashslot(udptable, net, first);
190 bitmap_zero(bitmap, PORTS_PER_CHAIN);
191 spin_lock_bh(&hslot->lock);
192 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
193 saddr_comp, udptable->log);
194
195 snum = first;
196 /*
197 * Iterate on all possible values of snum for this hash.
198 * Using steps of an odd multiple of UDP_HTABLE_SIZE
199 * give us randomization and full range coverage.
200 */
201 do {
202 if (low <= snum && snum <= high &&
203 !test_bit(snum >> udptable->log, bitmap))
204 goto found;
205 snum += rand;
206 } while (snum != first);
207 spin_unlock_bh(&hslot->lock);
208 }
209 goto fail;
210 } else {
211 hslot = udp_hashslot(udptable, net, snum);
212 spin_lock_bh(&hslot->lock);
213 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
214 saddr_comp, 0))
215 goto fail_unlock;
216 }
217 found:
218 inet_sk(sk)->inet_num = snum;
219 udp_sk(sk)->udp_port_hash = snum;
220 udp_sk(sk)->udp_portaddr_hash ^= snum;
221 if (sk_unhashed(sk)) {
222 sk_nulls_add_node_rcu(sk, &hslot->head);
223 hslot->count++;
224 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
225
226 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
227 spin_lock(&hslot2->lock);
228 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
229 &hslot2->head);
230 hslot2->count++;
231 spin_unlock(&hslot2->lock);
232 }
233 error = 0;
234 fail_unlock:
235 spin_unlock_bh(&hslot->lock);
236 fail:
237 return error;
238 }
239 EXPORT_SYMBOL(udp_lib_get_port);
240
241 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
242 {
243 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
244
245 return (!ipv6_only_sock(sk2) &&
246 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
247 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
248 }
249
250 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
251 unsigned int port)
252 {
253 return jhash_1word(saddr, net_hash_mix(net)) ^ port;
254 }
255
256 int udp_v4_get_port(struct sock *sk, unsigned short snum)
257 {
258 /* precompute partial secondary hash */
259 udp_sk(sk)->udp_portaddr_hash =
260 udp4_portaddr_hash(sock_net(sk),
261 inet_sk(sk)->inet_rcv_saddr,
262 0);
263 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
264 }
265
266 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
267 unsigned short hnum,
268 __be16 sport, __be32 daddr, __be16 dport, int dif)
269 {
270 int score = -1;
271
272 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
273 !ipv6_only_sock(sk)) {
274 struct inet_sock *inet = inet_sk(sk);
275
276 score = (sk->sk_family == PF_INET ? 1 : 0);
277 if (inet->inet_rcv_saddr) {
278 if (inet->inet_rcv_saddr != daddr)
279 return -1;
280 score += 2;
281 }
282 if (inet->inet_daddr) {
283 if (inet->inet_daddr != saddr)
284 return -1;
285 score += 2;
286 }
287 if (inet->inet_dport) {
288 if (inet->inet_dport != sport)
289 return -1;
290 score += 2;
291 }
292 if (sk->sk_bound_dev_if) {
293 if (sk->sk_bound_dev_if != dif)
294 return -1;
295 score += 2;
296 }
297 }
298 return score;
299 }
300
301 /*
302 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
303 */
304 #define SCORE2_MAX (1 + 2 + 2 + 2)
305 static inline int compute_score2(struct sock *sk, struct net *net,
306 __be32 saddr, __be16 sport,
307 __be32 daddr, unsigned int hnum, int dif)
308 {
309 int score = -1;
310
311 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
312 struct inet_sock *inet = inet_sk(sk);
313
314 if (inet->inet_rcv_saddr != daddr)
315 return -1;
316 if (inet->inet_num != hnum)
317 return -1;
318
319 score = (sk->sk_family == PF_INET ? 1 : 0);
320 if (inet->inet_daddr) {
321 if (inet->inet_daddr != saddr)
322 return -1;
323 score += 2;
324 }
325 if (inet->inet_dport) {
326 if (inet->inet_dport != sport)
327 return -1;
328 score += 2;
329 }
330 if (sk->sk_bound_dev_if) {
331 if (sk->sk_bound_dev_if != dif)
332 return -1;
333 score += 2;
334 }
335 }
336 return score;
337 }
338
339 #define udp_portaddr_for_each_entry_rcu(__sk, node, list) \
340 hlist_nulls_for_each_entry_rcu(__sk, node, list, __sk_common.skc_portaddr_node)
341
342 /* called with read_rcu_lock() */
343 static struct sock *udp4_lib_lookup2(struct net *net,
344 __be32 saddr, __be16 sport,
345 __be32 daddr, unsigned int hnum, int dif,
346 struct udp_hslot *hslot2, unsigned int slot2)
347 {
348 struct sock *sk, *result;
349 struct hlist_nulls_node *node;
350 int score, badness;
351
352 begin:
353 result = NULL;
354 badness = -1;
355 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
356 score = compute_score2(sk, net, saddr, sport,
357 daddr, hnum, dif);
358 if (score > badness) {
359 result = sk;
360 badness = score;
361 if (score == SCORE2_MAX)
362 goto exact_match;
363 }
364 }
365 /*
366 * if the nulls value we got at the end of this lookup is
367 * not the expected one, we must restart lookup.
368 * We probably met an item that was moved to another chain.
369 */
370 if (get_nulls_value(node) != slot2)
371 goto begin;
372
373 if (result) {
374 exact_match:
375 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
376 result = NULL;
377 else if (unlikely(compute_score2(result, net, saddr, sport,
378 daddr, hnum, dif) < badness)) {
379 sock_put(result);
380 goto begin;
381 }
382 }
383 return result;
384 }
385
386 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
387 * harder than this. -DaveM
388 */
389 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
390 __be16 sport, __be32 daddr, __be16 dport,
391 int dif, struct udp_table *udptable)
392 {
393 struct sock *sk, *result;
394 struct hlist_nulls_node *node;
395 unsigned short hnum = ntohs(dport);
396 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
397 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
398 int score, badness;
399
400 rcu_read_lock();
401 if (hslot->count > 10) {
402 hash2 = udp4_portaddr_hash(net, daddr, hnum);
403 slot2 = hash2 & udptable->mask;
404 hslot2 = &udptable->hash2[slot2];
405 if (hslot->count < hslot2->count)
406 goto begin;
407
408 result = udp4_lib_lookup2(net, saddr, sport,
409 daddr, hnum, dif,
410 hslot2, slot2);
411 if (!result) {
412 hash2 = udp4_portaddr_hash(net, INADDR_ANY, hnum);
413 slot2 = hash2 & udptable->mask;
414 hslot2 = &udptable->hash2[slot2];
415 if (hslot->count < hslot2->count)
416 goto begin;
417
418 result = udp4_lib_lookup2(net, INADDR_ANY, sport,
419 daddr, hnum, dif,
420 hslot2, slot2);
421 }
422 rcu_read_unlock();
423 return result;
424 }
425 begin:
426 result = NULL;
427 badness = -1;
428 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
429 score = compute_score(sk, net, saddr, hnum, sport,
430 daddr, dport, dif);
431 if (score > badness) {
432 result = sk;
433 badness = score;
434 }
435 }
436 /*
437 * if the nulls value we got at the end of this lookup is
438 * not the expected one, we must restart lookup.
439 * We probably met an item that was moved to another chain.
440 */
441 if (get_nulls_value(node) != slot)
442 goto begin;
443
444 if (result) {
445 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
446 result = NULL;
447 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
448 daddr, dport, dif) < badness)) {
449 sock_put(result);
450 goto begin;
451 }
452 }
453 rcu_read_unlock();
454 return result;
455 }
456
457 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
458 __be16 sport, __be16 dport,
459 struct udp_table *udptable)
460 {
461 struct sock *sk;
462 const struct iphdr *iph = ip_hdr(skb);
463
464 if (unlikely(sk = skb_steal_sock(skb)))
465 return sk;
466 else
467 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
468 iph->daddr, dport, inet_iif(skb),
469 udptable);
470 }
471
472 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
473 __be32 daddr, __be16 dport, int dif)
474 {
475 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
476 }
477 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
478
479 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
480 __be16 loc_port, __be32 loc_addr,
481 __be16 rmt_port, __be32 rmt_addr,
482 int dif)
483 {
484 struct hlist_nulls_node *node;
485 struct sock *s = sk;
486 unsigned short hnum = ntohs(loc_port);
487
488 sk_nulls_for_each_from(s, node) {
489 struct inet_sock *inet = inet_sk(s);
490
491 if (!net_eq(sock_net(s), net) ||
492 udp_sk(s)->udp_port_hash != hnum ||
493 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
494 (inet->inet_dport != rmt_port && inet->inet_dport) ||
495 (inet->inet_rcv_saddr &&
496 inet->inet_rcv_saddr != loc_addr) ||
497 ipv6_only_sock(s) ||
498 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
499 continue;
500 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
501 continue;
502 goto found;
503 }
504 s = NULL;
505 found:
506 return s;
507 }
508
509 /*
510 * This routine is called by the ICMP module when it gets some
511 * sort of error condition. If err < 0 then the socket should
512 * be closed and the error returned to the user. If err > 0
513 * it's just the icmp type << 8 | icmp code.
514 * Header points to the ip header of the error packet. We move
515 * on past this. Then (as it used to claim before adjustment)
516 * header points to the first 8 bytes of the udp header. We need
517 * to find the appropriate port.
518 */
519
520 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
521 {
522 struct inet_sock *inet;
523 struct iphdr *iph = (struct iphdr *)skb->data;
524 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
525 const int type = icmp_hdr(skb)->type;
526 const int code = icmp_hdr(skb)->code;
527 struct sock *sk;
528 int harderr;
529 int err;
530 struct net *net = dev_net(skb->dev);
531
532 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
533 iph->saddr, uh->source, skb->dev->ifindex, udptable);
534 if (sk == NULL) {
535 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
536 return; /* No socket for error */
537 }
538
539 err = 0;
540 harderr = 0;
541 inet = inet_sk(sk);
542
543 switch (type) {
544 default:
545 case ICMP_TIME_EXCEEDED:
546 err = EHOSTUNREACH;
547 break;
548 case ICMP_SOURCE_QUENCH:
549 goto out;
550 case ICMP_PARAMETERPROB:
551 err = EPROTO;
552 harderr = 1;
553 break;
554 case ICMP_DEST_UNREACH:
555 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
556 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
557 err = EMSGSIZE;
558 harderr = 1;
559 break;
560 }
561 goto out;
562 }
563 err = EHOSTUNREACH;
564 if (code <= NR_ICMP_UNREACH) {
565 harderr = icmp_err_convert[code].fatal;
566 err = icmp_err_convert[code].errno;
567 }
568 break;
569 }
570
571 /*
572 * RFC1122: OK. Passes ICMP errors back to application, as per
573 * 4.1.3.3.
574 */
575 if (!inet->recverr) {
576 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
577 goto out;
578 } else {
579 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
580 }
581 sk->sk_err = err;
582 sk->sk_error_report(sk);
583 out:
584 sock_put(sk);
585 }
586
587 void udp_err(struct sk_buff *skb, u32 info)
588 {
589 __udp4_lib_err(skb, info, &udp_table);
590 }
591
592 /*
593 * Throw away all pending data and cancel the corking. Socket is locked.
594 */
595 void udp_flush_pending_frames(struct sock *sk)
596 {
597 struct udp_sock *up = udp_sk(sk);
598
599 if (up->pending) {
600 up->len = 0;
601 up->pending = 0;
602 ip_flush_pending_frames(sk);
603 }
604 }
605 EXPORT_SYMBOL(udp_flush_pending_frames);
606
607 /**
608 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
609 * @sk: socket we are sending on
610 * @skb: sk_buff containing the filled-in UDP header
611 * (checksum field must be zeroed out)
612 */
613 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
614 __be32 src, __be32 dst, int len)
615 {
616 unsigned int offset;
617 struct udphdr *uh = udp_hdr(skb);
618 __wsum csum = 0;
619
620 if (skb_queue_len(&sk->sk_write_queue) == 1) {
621 /*
622 * Only one fragment on the socket.
623 */
624 skb->csum_start = skb_transport_header(skb) - skb->head;
625 skb->csum_offset = offsetof(struct udphdr, check);
626 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
627 } else {
628 /*
629 * HW-checksum won't work as there are two or more
630 * fragments on the socket so that all csums of sk_buffs
631 * should be together
632 */
633 offset = skb_transport_offset(skb);
634 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
635
636 skb->ip_summed = CHECKSUM_NONE;
637
638 skb_queue_walk(&sk->sk_write_queue, skb) {
639 csum = csum_add(csum, skb->csum);
640 }
641
642 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
643 if (uh->check == 0)
644 uh->check = CSUM_MANGLED_0;
645 }
646 }
647
648 /*
649 * Push out all pending data as one UDP datagram. Socket is locked.
650 */
651 static int udp_push_pending_frames(struct sock *sk)
652 {
653 struct udp_sock *up = udp_sk(sk);
654 struct inet_sock *inet = inet_sk(sk);
655 struct flowi *fl = &inet->cork.fl;
656 struct sk_buff *skb;
657 struct udphdr *uh;
658 int err = 0;
659 int is_udplite = IS_UDPLITE(sk);
660 __wsum csum = 0;
661
662 /* Grab the skbuff where UDP header space exists. */
663 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
664 goto out;
665
666 /*
667 * Create a UDP header
668 */
669 uh = udp_hdr(skb);
670 uh->source = fl->fl_ip_sport;
671 uh->dest = fl->fl_ip_dport;
672 uh->len = htons(up->len);
673 uh->check = 0;
674
675 if (is_udplite) /* UDP-Lite */
676 csum = udplite_csum_outgoing(sk, skb);
677
678 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
679
680 skb->ip_summed = CHECKSUM_NONE;
681 goto send;
682
683 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
684
685 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
686 goto send;
687
688 } else /* `normal' UDP */
689 csum = udp_csum_outgoing(sk, skb);
690
691 /* add protocol-dependent pseudo-header */
692 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
693 sk->sk_protocol, csum);
694 if (uh->check == 0)
695 uh->check = CSUM_MANGLED_0;
696
697 send:
698 err = ip_push_pending_frames(sk);
699 if (err) {
700 if (err == -ENOBUFS && !inet->recverr) {
701 UDP_INC_STATS_USER(sock_net(sk),
702 UDP_MIB_SNDBUFERRORS, is_udplite);
703 err = 0;
704 }
705 } else
706 UDP_INC_STATS_USER(sock_net(sk),
707 UDP_MIB_OUTDATAGRAMS, is_udplite);
708 out:
709 up->len = 0;
710 up->pending = 0;
711 return err;
712 }
713
714 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
715 size_t len)
716 {
717 struct inet_sock *inet = inet_sk(sk);
718 struct udp_sock *up = udp_sk(sk);
719 int ulen = len;
720 struct ipcm_cookie ipc;
721 struct rtable *rt = NULL;
722 int free = 0;
723 int connected = 0;
724 __be32 daddr, faddr, saddr;
725 __be16 dport;
726 u8 tos;
727 int err, is_udplite = IS_UDPLITE(sk);
728 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
729 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
730
731 if (len > 0xFFFF)
732 return -EMSGSIZE;
733
734 /*
735 * Check the flags.
736 */
737
738 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
739 return -EOPNOTSUPP;
740
741 ipc.opt = NULL;
742 ipc.shtx.flags = 0;
743
744 if (up->pending) {
745 /*
746 * There are pending frames.
747 * The socket lock must be held while it's corked.
748 */
749 lock_sock(sk);
750 if (likely(up->pending)) {
751 if (unlikely(up->pending != AF_INET)) {
752 release_sock(sk);
753 return -EINVAL;
754 }
755 goto do_append_data;
756 }
757 release_sock(sk);
758 }
759 ulen += sizeof(struct udphdr);
760
761 /*
762 * Get and verify the address.
763 */
764 if (msg->msg_name) {
765 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
766 if (msg->msg_namelen < sizeof(*usin))
767 return -EINVAL;
768 if (usin->sin_family != AF_INET) {
769 if (usin->sin_family != AF_UNSPEC)
770 return -EAFNOSUPPORT;
771 }
772
773 daddr = usin->sin_addr.s_addr;
774 dport = usin->sin_port;
775 if (dport == 0)
776 return -EINVAL;
777 } else {
778 if (sk->sk_state != TCP_ESTABLISHED)
779 return -EDESTADDRREQ;
780 daddr = inet->inet_daddr;
781 dport = inet->inet_dport;
782 /* Open fast path for connected socket.
783 Route will not be used, if at least one option is set.
784 */
785 connected = 1;
786 }
787 ipc.addr = inet->inet_saddr;
788
789 ipc.oif = sk->sk_bound_dev_if;
790 err = sock_tx_timestamp(msg, sk, &ipc.shtx);
791 if (err)
792 return err;
793 if (msg->msg_controllen) {
794 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
795 if (err)
796 return err;
797 if (ipc.opt)
798 free = 1;
799 connected = 0;
800 }
801 if (!ipc.opt)
802 ipc.opt = inet->opt;
803
804 saddr = ipc.addr;
805 ipc.addr = faddr = daddr;
806
807 if (ipc.opt && ipc.opt->srr) {
808 if (!daddr)
809 return -EINVAL;
810 faddr = ipc.opt->faddr;
811 connected = 0;
812 }
813 tos = RT_TOS(inet->tos);
814 if (sock_flag(sk, SOCK_LOCALROUTE) ||
815 (msg->msg_flags & MSG_DONTROUTE) ||
816 (ipc.opt && ipc.opt->is_strictroute)) {
817 tos |= RTO_ONLINK;
818 connected = 0;
819 }
820
821 if (ipv4_is_multicast(daddr)) {
822 if (!ipc.oif)
823 ipc.oif = inet->mc_index;
824 if (!saddr)
825 saddr = inet->mc_addr;
826 connected = 0;
827 }
828
829 if (connected)
830 rt = (struct rtable *)sk_dst_check(sk, 0);
831
832 if (rt == NULL) {
833 struct flowi fl = { .oif = ipc.oif,
834 .mark = sk->sk_mark,
835 .nl_u = { .ip4_u =
836 { .daddr = faddr,
837 .saddr = saddr,
838 .tos = tos } },
839 .proto = sk->sk_protocol,
840 .flags = inet_sk_flowi_flags(sk),
841 .uli_u = { .ports =
842 { .sport = inet->inet_sport,
843 .dport = dport } } };
844 struct net *net = sock_net(sk);
845
846 security_sk_classify_flow(sk, &fl);
847 err = ip_route_output_flow(net, &rt, &fl, sk, 1);
848 if (err) {
849 if (err == -ENETUNREACH)
850 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
851 goto out;
852 }
853
854 err = -EACCES;
855 if ((rt->rt_flags & RTCF_BROADCAST) &&
856 !sock_flag(sk, SOCK_BROADCAST))
857 goto out;
858 if (connected)
859 sk_dst_set(sk, dst_clone(&rt->u.dst));
860 }
861
862 if (msg->msg_flags&MSG_CONFIRM)
863 goto do_confirm;
864 back_from_confirm:
865
866 saddr = rt->rt_src;
867 if (!ipc.addr)
868 daddr = ipc.addr = rt->rt_dst;
869
870 lock_sock(sk);
871 if (unlikely(up->pending)) {
872 /* The socket is already corked while preparing it. */
873 /* ... which is an evident application bug. --ANK */
874 release_sock(sk);
875
876 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
877 err = -EINVAL;
878 goto out;
879 }
880 /*
881 * Now cork the socket to pend data.
882 */
883 inet->cork.fl.fl4_dst = daddr;
884 inet->cork.fl.fl_ip_dport = dport;
885 inet->cork.fl.fl4_src = saddr;
886 inet->cork.fl.fl_ip_sport = inet->inet_sport;
887 up->pending = AF_INET;
888
889 do_append_data:
890 up->len += ulen;
891 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
892 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
893 sizeof(struct udphdr), &ipc, &rt,
894 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
895 if (err)
896 udp_flush_pending_frames(sk);
897 else if (!corkreq)
898 err = udp_push_pending_frames(sk);
899 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
900 up->pending = 0;
901 release_sock(sk);
902
903 out:
904 ip_rt_put(rt);
905 if (free)
906 kfree(ipc.opt);
907 if (!err)
908 return len;
909 /*
910 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
911 * ENOBUFS might not be good (it's not tunable per se), but otherwise
912 * we don't have a good statistic (IpOutDiscards but it can be too many
913 * things). We could add another new stat but at least for now that
914 * seems like overkill.
915 */
916 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
917 UDP_INC_STATS_USER(sock_net(sk),
918 UDP_MIB_SNDBUFERRORS, is_udplite);
919 }
920 return err;
921
922 do_confirm:
923 dst_confirm(&rt->u.dst);
924 if (!(msg->msg_flags&MSG_PROBE) || len)
925 goto back_from_confirm;
926 err = 0;
927 goto out;
928 }
929 EXPORT_SYMBOL(udp_sendmsg);
930
931 int udp_sendpage(struct sock *sk, struct page *page, int offset,
932 size_t size, int flags)
933 {
934 struct udp_sock *up = udp_sk(sk);
935 int ret;
936
937 if (!up->pending) {
938 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
939
940 /* Call udp_sendmsg to specify destination address which
941 * sendpage interface can't pass.
942 * This will succeed only when the socket is connected.
943 */
944 ret = udp_sendmsg(NULL, sk, &msg, 0);
945 if (ret < 0)
946 return ret;
947 }
948
949 lock_sock(sk);
950
951 if (unlikely(!up->pending)) {
952 release_sock(sk);
953
954 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
955 return -EINVAL;
956 }
957
958 ret = ip_append_page(sk, page, offset, size, flags);
959 if (ret == -EOPNOTSUPP) {
960 release_sock(sk);
961 return sock_no_sendpage(sk->sk_socket, page, offset,
962 size, flags);
963 }
964 if (ret < 0) {
965 udp_flush_pending_frames(sk);
966 goto out;
967 }
968
969 up->len += size;
970 if (!(up->corkflag || (flags&MSG_MORE)))
971 ret = udp_push_pending_frames(sk);
972 if (!ret)
973 ret = size;
974 out:
975 release_sock(sk);
976 return ret;
977 }
978
979
980 /**
981 * first_packet_length - return length of first packet in receive queue
982 * @sk: socket
983 *
984 * Drops all bad checksum frames, until a valid one is found.
985 * Returns the length of found skb, or 0 if none is found.
986 */
987 static unsigned int first_packet_length(struct sock *sk)
988 {
989 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
990 struct sk_buff *skb;
991 unsigned int res;
992
993 __skb_queue_head_init(&list_kill);
994
995 spin_lock_bh(&rcvq->lock);
996 while ((skb = skb_peek(rcvq)) != NULL &&
997 udp_lib_checksum_complete(skb)) {
998 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
999 IS_UDPLITE(sk));
1000 atomic_inc(&sk->sk_drops);
1001 __skb_unlink(skb, rcvq);
1002 __skb_queue_tail(&list_kill, skb);
1003 }
1004 res = skb ? skb->len : 0;
1005 spin_unlock_bh(&rcvq->lock);
1006
1007 if (!skb_queue_empty(&list_kill)) {
1008 lock_sock(sk);
1009 __skb_queue_purge(&list_kill);
1010 sk_mem_reclaim_partial(sk);
1011 release_sock(sk);
1012 }
1013 return res;
1014 }
1015
1016 /*
1017 * IOCTL requests applicable to the UDP protocol
1018 */
1019
1020 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1021 {
1022 switch (cmd) {
1023 case SIOCOUTQ:
1024 {
1025 int amount = sk_wmem_alloc_get(sk);
1026
1027 return put_user(amount, (int __user *)arg);
1028 }
1029
1030 case SIOCINQ:
1031 {
1032 unsigned int amount = first_packet_length(sk);
1033
1034 if (amount)
1035 /*
1036 * We will only return the amount
1037 * of this packet since that is all
1038 * that will be read.
1039 */
1040 amount -= sizeof(struct udphdr);
1041
1042 return put_user(amount, (int __user *)arg);
1043 }
1044
1045 default:
1046 return -ENOIOCTLCMD;
1047 }
1048
1049 return 0;
1050 }
1051 EXPORT_SYMBOL(udp_ioctl);
1052
1053 /*
1054 * This should be easy, if there is something there we
1055 * return it, otherwise we block.
1056 */
1057
1058 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1059 size_t len, int noblock, int flags, int *addr_len)
1060 {
1061 struct inet_sock *inet = inet_sk(sk);
1062 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1063 struct sk_buff *skb;
1064 unsigned int ulen, copied;
1065 int peeked;
1066 int err;
1067 int is_udplite = IS_UDPLITE(sk);
1068
1069 /*
1070 * Check any passed addresses
1071 */
1072 if (addr_len)
1073 *addr_len = sizeof(*sin);
1074
1075 if (flags & MSG_ERRQUEUE)
1076 return ip_recv_error(sk, msg, len);
1077
1078 try_again:
1079 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1080 &peeked, &err);
1081 if (!skb)
1082 goto out;
1083
1084 ulen = skb->len - sizeof(struct udphdr);
1085 copied = len;
1086 if (copied > ulen)
1087 copied = ulen;
1088 else if (copied < ulen)
1089 msg->msg_flags |= MSG_TRUNC;
1090
1091 /*
1092 * If checksum is needed at all, try to do it while copying the
1093 * data. If the data is truncated, or if we only want a partial
1094 * coverage checksum (UDP-Lite), do it before the copy.
1095 */
1096
1097 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1098 if (udp_lib_checksum_complete(skb))
1099 goto csum_copy_err;
1100 }
1101
1102 if (skb_csum_unnecessary(skb))
1103 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1104 msg->msg_iov, copied);
1105 else {
1106 err = skb_copy_and_csum_datagram_iovec(skb,
1107 sizeof(struct udphdr),
1108 msg->msg_iov);
1109
1110 if (err == -EINVAL)
1111 goto csum_copy_err;
1112 }
1113
1114 if (err)
1115 goto out_free;
1116
1117 if (!peeked)
1118 UDP_INC_STATS_USER(sock_net(sk),
1119 UDP_MIB_INDATAGRAMS, is_udplite);
1120
1121 sock_recv_ts_and_drops(msg, sk, skb);
1122
1123 /* Copy the address. */
1124 if (sin) {
1125 sin->sin_family = AF_INET;
1126 sin->sin_port = udp_hdr(skb)->source;
1127 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1128 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1129 }
1130 if (inet->cmsg_flags)
1131 ip_cmsg_recv(msg, skb);
1132
1133 err = copied;
1134 if (flags & MSG_TRUNC)
1135 err = ulen;
1136
1137 out_free:
1138 skb_free_datagram_locked(sk, skb);
1139 out:
1140 return err;
1141
1142 csum_copy_err:
1143 lock_sock(sk);
1144 if (!skb_kill_datagram(sk, skb, flags))
1145 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1146 release_sock(sk);
1147
1148 if (noblock)
1149 return -EAGAIN;
1150 goto try_again;
1151 }
1152
1153
1154 int udp_disconnect(struct sock *sk, int flags)
1155 {
1156 struct inet_sock *inet = inet_sk(sk);
1157 /*
1158 * 1003.1g - break association.
1159 */
1160
1161 sk->sk_state = TCP_CLOSE;
1162 inet->inet_daddr = 0;
1163 inet->inet_dport = 0;
1164 sk->sk_bound_dev_if = 0;
1165 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1166 inet_reset_saddr(sk);
1167
1168 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1169 sk->sk_prot->unhash(sk);
1170 inet->inet_sport = 0;
1171 }
1172 sk_dst_reset(sk);
1173 return 0;
1174 }
1175 EXPORT_SYMBOL(udp_disconnect);
1176
1177 void udp_lib_unhash(struct sock *sk)
1178 {
1179 if (sk_hashed(sk)) {
1180 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1181 struct udp_hslot *hslot, *hslot2;
1182
1183 hslot = udp_hashslot(udptable, sock_net(sk),
1184 udp_sk(sk)->udp_port_hash);
1185 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1186
1187 spin_lock_bh(&hslot->lock);
1188 if (sk_nulls_del_node_init_rcu(sk)) {
1189 hslot->count--;
1190 inet_sk(sk)->inet_num = 0;
1191 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1192
1193 spin_lock(&hslot2->lock);
1194 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1195 hslot2->count--;
1196 spin_unlock(&hslot2->lock);
1197 }
1198 spin_unlock_bh(&hslot->lock);
1199 }
1200 }
1201 EXPORT_SYMBOL(udp_lib_unhash);
1202
1203 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1204 {
1205 int rc = sock_queue_rcv_skb(sk, skb);
1206
1207 if (rc < 0) {
1208 int is_udplite = IS_UDPLITE(sk);
1209
1210 /* Note that an ENOMEM error is charged twice */
1211 if (rc == -ENOMEM)
1212 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1213 is_udplite);
1214 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1215 kfree_skb(skb);
1216 return -1;
1217 }
1218
1219 return 0;
1220
1221 }
1222
1223 /* returns:
1224 * -1: error
1225 * 0: success
1226 * >0: "udp encap" protocol resubmission
1227 *
1228 * Note that in the success and error cases, the skb is assumed to
1229 * have either been requeued or freed.
1230 */
1231 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1232 {
1233 struct udp_sock *up = udp_sk(sk);
1234 int rc;
1235 int is_udplite = IS_UDPLITE(sk);
1236
1237 /*
1238 * Charge it to the socket, dropping if the queue is full.
1239 */
1240 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1241 goto drop;
1242 nf_reset(skb);
1243
1244 if (up->encap_type) {
1245 /*
1246 * This is an encapsulation socket so pass the skb to
1247 * the socket's udp_encap_rcv() hook. Otherwise, just
1248 * fall through and pass this up the UDP socket.
1249 * up->encap_rcv() returns the following value:
1250 * =0 if skb was successfully passed to the encap
1251 * handler or was discarded by it.
1252 * >0 if skb should be passed on to UDP.
1253 * <0 if skb should be resubmitted as proto -N
1254 */
1255
1256 /* if we're overly short, let UDP handle it */
1257 if (skb->len > sizeof(struct udphdr) &&
1258 up->encap_rcv != NULL) {
1259 int ret;
1260
1261 ret = (*up->encap_rcv)(sk, skb);
1262 if (ret <= 0) {
1263 UDP_INC_STATS_BH(sock_net(sk),
1264 UDP_MIB_INDATAGRAMS,
1265 is_udplite);
1266 return -ret;
1267 }
1268 }
1269
1270 /* FALLTHROUGH -- it's a UDP Packet */
1271 }
1272
1273 /*
1274 * UDP-Lite specific tests, ignored on UDP sockets
1275 */
1276 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1277
1278 /*
1279 * MIB statistics other than incrementing the error count are
1280 * disabled for the following two types of errors: these depend
1281 * on the application settings, not on the functioning of the
1282 * protocol stack as such.
1283 *
1284 * RFC 3828 here recommends (sec 3.3): "There should also be a
1285 * way ... to ... at least let the receiving application block
1286 * delivery of packets with coverage values less than a value
1287 * provided by the application."
1288 */
1289 if (up->pcrlen == 0) { /* full coverage was set */
1290 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1291 "%d while full coverage %d requested\n",
1292 UDP_SKB_CB(skb)->cscov, skb->len);
1293 goto drop;
1294 }
1295 /* The next case involves violating the min. coverage requested
1296 * by the receiver. This is subtle: if receiver wants x and x is
1297 * greater than the buffersize/MTU then receiver will complain
1298 * that it wants x while sender emits packets of smaller size y.
1299 * Therefore the above ...()->partial_cov statement is essential.
1300 */
1301 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1302 LIMIT_NETDEBUG(KERN_WARNING
1303 "UDPLITE: coverage %d too small, need min %d\n",
1304 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1305 goto drop;
1306 }
1307 }
1308
1309 if (sk->sk_filter) {
1310 if (udp_lib_checksum_complete(skb))
1311 goto drop;
1312 }
1313
1314 rc = 0;
1315
1316 bh_lock_sock(sk);
1317 if (!sock_owned_by_user(sk))
1318 rc = __udp_queue_rcv_skb(sk, skb);
1319 else
1320 sk_add_backlog(sk, skb);
1321 bh_unlock_sock(sk);
1322
1323 return rc;
1324
1325 drop:
1326 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1327 atomic_inc(&sk->sk_drops);
1328 kfree_skb(skb);
1329 return -1;
1330 }
1331
1332
1333 static void flush_stack(struct sock **stack, unsigned int count,
1334 struct sk_buff *skb, unsigned int final)
1335 {
1336 unsigned int i;
1337 struct sk_buff *skb1 = NULL;
1338 struct sock *sk;
1339
1340 for (i = 0; i < count; i++) {
1341 sk = stack[i];
1342 if (likely(skb1 == NULL))
1343 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1344
1345 if (!skb1) {
1346 atomic_inc(&sk->sk_drops);
1347 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1348 IS_UDPLITE(sk));
1349 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1350 IS_UDPLITE(sk));
1351 }
1352
1353 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1354 skb1 = NULL;
1355 }
1356 if (unlikely(skb1))
1357 kfree_skb(skb1);
1358 }
1359
1360 /*
1361 * Multicasts and broadcasts go to each listener.
1362 *
1363 * Note: called only from the BH handler context.
1364 */
1365 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1366 struct udphdr *uh,
1367 __be32 saddr, __be32 daddr,
1368 struct udp_table *udptable)
1369 {
1370 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1371 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1372 int dif;
1373 unsigned int i, count = 0;
1374
1375 spin_lock(&hslot->lock);
1376 sk = sk_nulls_head(&hslot->head);
1377 dif = skb->dev->ifindex;
1378 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1379 while (sk) {
1380 stack[count++] = sk;
1381 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1382 daddr, uh->source, saddr, dif);
1383 if (unlikely(count == ARRAY_SIZE(stack))) {
1384 if (!sk)
1385 break;
1386 flush_stack(stack, count, skb, ~0);
1387 count = 0;
1388 }
1389 }
1390 /*
1391 * before releasing chain lock, we must take a reference on sockets
1392 */
1393 for (i = 0; i < count; i++)
1394 sock_hold(stack[i]);
1395
1396 spin_unlock(&hslot->lock);
1397
1398 /*
1399 * do the slow work with no lock held
1400 */
1401 if (count) {
1402 flush_stack(stack, count, skb, count - 1);
1403
1404 for (i = 0; i < count; i++)
1405 sock_put(stack[i]);
1406 } else {
1407 kfree_skb(skb);
1408 }
1409 return 0;
1410 }
1411
1412 /* Initialize UDP checksum. If exited with zero value (success),
1413 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1414 * Otherwise, csum completion requires chacksumming packet body,
1415 * including udp header and folding it to skb->csum.
1416 */
1417 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1418 int proto)
1419 {
1420 const struct iphdr *iph;
1421 int err;
1422
1423 UDP_SKB_CB(skb)->partial_cov = 0;
1424 UDP_SKB_CB(skb)->cscov = skb->len;
1425
1426 if (proto == IPPROTO_UDPLITE) {
1427 err = udplite_checksum_init(skb, uh);
1428 if (err)
1429 return err;
1430 }
1431
1432 iph = ip_hdr(skb);
1433 if (uh->check == 0) {
1434 skb->ip_summed = CHECKSUM_UNNECESSARY;
1435 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1436 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1437 proto, skb->csum))
1438 skb->ip_summed = CHECKSUM_UNNECESSARY;
1439 }
1440 if (!skb_csum_unnecessary(skb))
1441 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1442 skb->len, proto, 0);
1443 /* Probably, we should checksum udp header (it should be in cache
1444 * in any case) and data in tiny packets (< rx copybreak).
1445 */
1446
1447 return 0;
1448 }
1449
1450 /*
1451 * All we need to do is get the socket, and then do a checksum.
1452 */
1453
1454 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1455 int proto)
1456 {
1457 struct sock *sk;
1458 struct udphdr *uh;
1459 unsigned short ulen;
1460 struct rtable *rt = skb_rtable(skb);
1461 __be32 saddr, daddr;
1462 struct net *net = dev_net(skb->dev);
1463
1464 /*
1465 * Validate the packet.
1466 */
1467 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1468 goto drop; /* No space for header. */
1469
1470 uh = udp_hdr(skb);
1471 ulen = ntohs(uh->len);
1472 if (ulen > skb->len)
1473 goto short_packet;
1474
1475 if (proto == IPPROTO_UDP) {
1476 /* UDP validates ulen. */
1477 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1478 goto short_packet;
1479 uh = udp_hdr(skb);
1480 }
1481
1482 if (udp4_csum_init(skb, uh, proto))
1483 goto csum_error;
1484
1485 saddr = ip_hdr(skb)->saddr;
1486 daddr = ip_hdr(skb)->daddr;
1487
1488 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1489 return __udp4_lib_mcast_deliver(net, skb, uh,
1490 saddr, daddr, udptable);
1491
1492 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1493
1494 if (sk != NULL) {
1495 int ret = udp_queue_rcv_skb(sk, skb);
1496 sock_put(sk);
1497
1498 /* a return value > 0 means to resubmit the input, but
1499 * it wants the return to be -protocol, or 0
1500 */
1501 if (ret > 0)
1502 return -ret;
1503 return 0;
1504 }
1505
1506 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1507 goto drop;
1508 nf_reset(skb);
1509
1510 /* No socket. Drop packet silently, if checksum is wrong */
1511 if (udp_lib_checksum_complete(skb))
1512 goto csum_error;
1513
1514 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1515 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1516
1517 /*
1518 * Hmm. We got an UDP packet to a port to which we
1519 * don't wanna listen. Ignore it.
1520 */
1521 kfree_skb(skb);
1522 return 0;
1523
1524 short_packet:
1525 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1526 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1527 &saddr,
1528 ntohs(uh->source),
1529 ulen,
1530 skb->len,
1531 &daddr,
1532 ntohs(uh->dest));
1533 goto drop;
1534
1535 csum_error:
1536 /*
1537 * RFC1122: OK. Discards the bad packet silently (as far as
1538 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1539 */
1540 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1541 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1542 &saddr,
1543 ntohs(uh->source),
1544 &daddr,
1545 ntohs(uh->dest),
1546 ulen);
1547 drop:
1548 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1549 kfree_skb(skb);
1550 return 0;
1551 }
1552
1553 int udp_rcv(struct sk_buff *skb)
1554 {
1555 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1556 }
1557
1558 void udp_destroy_sock(struct sock *sk)
1559 {
1560 lock_sock(sk);
1561 udp_flush_pending_frames(sk);
1562 release_sock(sk);
1563 }
1564
1565 /*
1566 * Socket option code for UDP
1567 */
1568 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1569 char __user *optval, unsigned int optlen,
1570 int (*push_pending_frames)(struct sock *))
1571 {
1572 struct udp_sock *up = udp_sk(sk);
1573 int val;
1574 int err = 0;
1575 int is_udplite = IS_UDPLITE(sk);
1576
1577 if (optlen < sizeof(int))
1578 return -EINVAL;
1579
1580 if (get_user(val, (int __user *)optval))
1581 return -EFAULT;
1582
1583 switch (optname) {
1584 case UDP_CORK:
1585 if (val != 0) {
1586 up->corkflag = 1;
1587 } else {
1588 up->corkflag = 0;
1589 lock_sock(sk);
1590 (*push_pending_frames)(sk);
1591 release_sock(sk);
1592 }
1593 break;
1594
1595 case UDP_ENCAP:
1596 switch (val) {
1597 case 0:
1598 case UDP_ENCAP_ESPINUDP:
1599 case UDP_ENCAP_ESPINUDP_NON_IKE:
1600 up->encap_rcv = xfrm4_udp_encap_rcv;
1601 /* FALLTHROUGH */
1602 case UDP_ENCAP_L2TPINUDP:
1603 up->encap_type = val;
1604 break;
1605 default:
1606 err = -ENOPROTOOPT;
1607 break;
1608 }
1609 break;
1610
1611 /*
1612 * UDP-Lite's partial checksum coverage (RFC 3828).
1613 */
1614 /* The sender sets actual checksum coverage length via this option.
1615 * The case coverage > packet length is handled by send module. */
1616 case UDPLITE_SEND_CSCOV:
1617 if (!is_udplite) /* Disable the option on UDP sockets */
1618 return -ENOPROTOOPT;
1619 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1620 val = 8;
1621 else if (val > USHORT_MAX)
1622 val = USHORT_MAX;
1623 up->pcslen = val;
1624 up->pcflag |= UDPLITE_SEND_CC;
1625 break;
1626
1627 /* The receiver specifies a minimum checksum coverage value. To make
1628 * sense, this should be set to at least 8 (as done below). If zero is
1629 * used, this again means full checksum coverage. */
1630 case UDPLITE_RECV_CSCOV:
1631 if (!is_udplite) /* Disable the option on UDP sockets */
1632 return -ENOPROTOOPT;
1633 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1634 val = 8;
1635 else if (val > USHORT_MAX)
1636 val = USHORT_MAX;
1637 up->pcrlen = val;
1638 up->pcflag |= UDPLITE_RECV_CC;
1639 break;
1640
1641 default:
1642 err = -ENOPROTOOPT;
1643 break;
1644 }
1645
1646 return err;
1647 }
1648 EXPORT_SYMBOL(udp_lib_setsockopt);
1649
1650 int udp_setsockopt(struct sock *sk, int level, int optname,
1651 char __user *optval, unsigned int optlen)
1652 {
1653 if (level == SOL_UDP || level == SOL_UDPLITE)
1654 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1655 udp_push_pending_frames);
1656 return ip_setsockopt(sk, level, optname, optval, optlen);
1657 }
1658
1659 #ifdef CONFIG_COMPAT
1660 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1661 char __user *optval, unsigned int optlen)
1662 {
1663 if (level == SOL_UDP || level == SOL_UDPLITE)
1664 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1665 udp_push_pending_frames);
1666 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1667 }
1668 #endif
1669
1670 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1671 char __user *optval, int __user *optlen)
1672 {
1673 struct udp_sock *up = udp_sk(sk);
1674 int val, len;
1675
1676 if (get_user(len, optlen))
1677 return -EFAULT;
1678
1679 len = min_t(unsigned int, len, sizeof(int));
1680
1681 if (len < 0)
1682 return -EINVAL;
1683
1684 switch (optname) {
1685 case UDP_CORK:
1686 val = up->corkflag;
1687 break;
1688
1689 case UDP_ENCAP:
1690 val = up->encap_type;
1691 break;
1692
1693 /* The following two cannot be changed on UDP sockets, the return is
1694 * always 0 (which corresponds to the full checksum coverage of UDP). */
1695 case UDPLITE_SEND_CSCOV:
1696 val = up->pcslen;
1697 break;
1698
1699 case UDPLITE_RECV_CSCOV:
1700 val = up->pcrlen;
1701 break;
1702
1703 default:
1704 return -ENOPROTOOPT;
1705 }
1706
1707 if (put_user(len, optlen))
1708 return -EFAULT;
1709 if (copy_to_user(optval, &val, len))
1710 return -EFAULT;
1711 return 0;
1712 }
1713 EXPORT_SYMBOL(udp_lib_getsockopt);
1714
1715 int udp_getsockopt(struct sock *sk, int level, int optname,
1716 char __user *optval, int __user *optlen)
1717 {
1718 if (level == SOL_UDP || level == SOL_UDPLITE)
1719 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1720 return ip_getsockopt(sk, level, optname, optval, optlen);
1721 }
1722
1723 #ifdef CONFIG_COMPAT
1724 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1725 char __user *optval, int __user *optlen)
1726 {
1727 if (level == SOL_UDP || level == SOL_UDPLITE)
1728 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1729 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1730 }
1731 #endif
1732 /**
1733 * udp_poll - wait for a UDP event.
1734 * @file - file struct
1735 * @sock - socket
1736 * @wait - poll table
1737 *
1738 * This is same as datagram poll, except for the special case of
1739 * blocking sockets. If application is using a blocking fd
1740 * and a packet with checksum error is in the queue;
1741 * then it could get return from select indicating data available
1742 * but then block when reading it. Add special case code
1743 * to work around these arguably broken applications.
1744 */
1745 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1746 {
1747 unsigned int mask = datagram_poll(file, sock, wait);
1748 struct sock *sk = sock->sk;
1749
1750 /* Check for false positives due to checksum errors */
1751 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1752 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1753 mask &= ~(POLLIN | POLLRDNORM);
1754
1755 return mask;
1756
1757 }
1758 EXPORT_SYMBOL(udp_poll);
1759
1760 struct proto udp_prot = {
1761 .name = "UDP",
1762 .owner = THIS_MODULE,
1763 .close = udp_lib_close,
1764 .connect = ip4_datagram_connect,
1765 .disconnect = udp_disconnect,
1766 .ioctl = udp_ioctl,
1767 .destroy = udp_destroy_sock,
1768 .setsockopt = udp_setsockopt,
1769 .getsockopt = udp_getsockopt,
1770 .sendmsg = udp_sendmsg,
1771 .recvmsg = udp_recvmsg,
1772 .sendpage = udp_sendpage,
1773 .backlog_rcv = __udp_queue_rcv_skb,
1774 .hash = udp_lib_hash,
1775 .unhash = udp_lib_unhash,
1776 .get_port = udp_v4_get_port,
1777 .memory_allocated = &udp_memory_allocated,
1778 .sysctl_mem = sysctl_udp_mem,
1779 .sysctl_wmem = &sysctl_udp_wmem_min,
1780 .sysctl_rmem = &sysctl_udp_rmem_min,
1781 .obj_size = sizeof(struct udp_sock),
1782 .slab_flags = SLAB_DESTROY_BY_RCU,
1783 .h.udp_table = &udp_table,
1784 #ifdef CONFIG_COMPAT
1785 .compat_setsockopt = compat_udp_setsockopt,
1786 .compat_getsockopt = compat_udp_getsockopt,
1787 #endif
1788 };
1789 EXPORT_SYMBOL(udp_prot);
1790
1791 /* ------------------------------------------------------------------------ */
1792 #ifdef CONFIG_PROC_FS
1793
1794 static struct sock *udp_get_first(struct seq_file *seq, int start)
1795 {
1796 struct sock *sk;
1797 struct udp_iter_state *state = seq->private;
1798 struct net *net = seq_file_net(seq);
1799
1800 for (state->bucket = start; state->bucket <= state->udp_table->mask;
1801 ++state->bucket) {
1802 struct hlist_nulls_node *node;
1803 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1804
1805 if (hlist_nulls_empty(&hslot->head))
1806 continue;
1807
1808 spin_lock_bh(&hslot->lock);
1809 sk_nulls_for_each(sk, node, &hslot->head) {
1810 if (!net_eq(sock_net(sk), net))
1811 continue;
1812 if (sk->sk_family == state->family)
1813 goto found;
1814 }
1815 spin_unlock_bh(&hslot->lock);
1816 }
1817 sk = NULL;
1818 found:
1819 return sk;
1820 }
1821
1822 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1823 {
1824 struct udp_iter_state *state = seq->private;
1825 struct net *net = seq_file_net(seq);
1826
1827 do {
1828 sk = sk_nulls_next(sk);
1829 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1830
1831 if (!sk) {
1832 if (state->bucket <= state->udp_table->mask)
1833 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1834 return udp_get_first(seq, state->bucket + 1);
1835 }
1836 return sk;
1837 }
1838
1839 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1840 {
1841 struct sock *sk = udp_get_first(seq, 0);
1842
1843 if (sk)
1844 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1845 --pos;
1846 return pos ? NULL : sk;
1847 }
1848
1849 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1850 {
1851 struct udp_iter_state *state = seq->private;
1852 state->bucket = MAX_UDP_PORTS;
1853
1854 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1855 }
1856
1857 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1858 {
1859 struct sock *sk;
1860
1861 if (v == SEQ_START_TOKEN)
1862 sk = udp_get_idx(seq, 0);
1863 else
1864 sk = udp_get_next(seq, v);
1865
1866 ++*pos;
1867 return sk;
1868 }
1869
1870 static void udp_seq_stop(struct seq_file *seq, void *v)
1871 {
1872 struct udp_iter_state *state = seq->private;
1873
1874 if (state->bucket <= state->udp_table->mask)
1875 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1876 }
1877
1878 static int udp_seq_open(struct inode *inode, struct file *file)
1879 {
1880 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1881 struct udp_iter_state *s;
1882 int err;
1883
1884 err = seq_open_net(inode, file, &afinfo->seq_ops,
1885 sizeof(struct udp_iter_state));
1886 if (err < 0)
1887 return err;
1888
1889 s = ((struct seq_file *)file->private_data)->private;
1890 s->family = afinfo->family;
1891 s->udp_table = afinfo->udp_table;
1892 return err;
1893 }
1894
1895 /* ------------------------------------------------------------------------ */
1896 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1897 {
1898 struct proc_dir_entry *p;
1899 int rc = 0;
1900
1901 afinfo->seq_fops.open = udp_seq_open;
1902 afinfo->seq_fops.read = seq_read;
1903 afinfo->seq_fops.llseek = seq_lseek;
1904 afinfo->seq_fops.release = seq_release_net;
1905
1906 afinfo->seq_ops.start = udp_seq_start;
1907 afinfo->seq_ops.next = udp_seq_next;
1908 afinfo->seq_ops.stop = udp_seq_stop;
1909
1910 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1911 &afinfo->seq_fops, afinfo);
1912 if (!p)
1913 rc = -ENOMEM;
1914 return rc;
1915 }
1916 EXPORT_SYMBOL(udp_proc_register);
1917
1918 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1919 {
1920 proc_net_remove(net, afinfo->name);
1921 }
1922 EXPORT_SYMBOL(udp_proc_unregister);
1923
1924 /* ------------------------------------------------------------------------ */
1925 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1926 int bucket, int *len)
1927 {
1928 struct inet_sock *inet = inet_sk(sp);
1929 __be32 dest = inet->inet_daddr;
1930 __be32 src = inet->inet_rcv_saddr;
1931 __u16 destp = ntohs(inet->inet_dport);
1932 __u16 srcp = ntohs(inet->inet_sport);
1933
1934 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
1935 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1936 bucket, src, srcp, dest, destp, sp->sk_state,
1937 sk_wmem_alloc_get(sp),
1938 sk_rmem_alloc_get(sp),
1939 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1940 atomic_read(&sp->sk_refcnt), sp,
1941 atomic_read(&sp->sk_drops), len);
1942 }
1943
1944 int udp4_seq_show(struct seq_file *seq, void *v)
1945 {
1946 if (v == SEQ_START_TOKEN)
1947 seq_printf(seq, "%-127s\n",
1948 " sl local_address rem_address st tx_queue "
1949 "rx_queue tr tm->when retrnsmt uid timeout "
1950 "inode ref pointer drops");
1951 else {
1952 struct udp_iter_state *state = seq->private;
1953 int len;
1954
1955 udp4_format_sock(v, seq, state->bucket, &len);
1956 seq_printf(seq, "%*s\n", 127 - len, "");
1957 }
1958 return 0;
1959 }
1960
1961 /* ------------------------------------------------------------------------ */
1962 static struct udp_seq_afinfo udp4_seq_afinfo = {
1963 .name = "udp",
1964 .family = AF_INET,
1965 .udp_table = &udp_table,
1966 .seq_fops = {
1967 .owner = THIS_MODULE,
1968 },
1969 .seq_ops = {
1970 .show = udp4_seq_show,
1971 },
1972 };
1973
1974 static int udp4_proc_init_net(struct net *net)
1975 {
1976 return udp_proc_register(net, &udp4_seq_afinfo);
1977 }
1978
1979 static void udp4_proc_exit_net(struct net *net)
1980 {
1981 udp_proc_unregister(net, &udp4_seq_afinfo);
1982 }
1983
1984 static struct pernet_operations udp4_net_ops = {
1985 .init = udp4_proc_init_net,
1986 .exit = udp4_proc_exit_net,
1987 };
1988
1989 int __init udp4_proc_init(void)
1990 {
1991 return register_pernet_subsys(&udp4_net_ops);
1992 }
1993
1994 void udp4_proc_exit(void)
1995 {
1996 unregister_pernet_subsys(&udp4_net_ops);
1997 }
1998 #endif /* CONFIG_PROC_FS */
1999
2000 static __initdata unsigned long uhash_entries;
2001 static int __init set_uhash_entries(char *str)
2002 {
2003 if (!str)
2004 return 0;
2005 uhash_entries = simple_strtoul(str, &str, 0);
2006 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2007 uhash_entries = UDP_HTABLE_SIZE_MIN;
2008 return 1;
2009 }
2010 __setup("uhash_entries=", set_uhash_entries);
2011
2012 void __init udp_table_init(struct udp_table *table, const char *name)
2013 {
2014 unsigned int i;
2015
2016 if (!CONFIG_BASE_SMALL)
2017 table->hash = alloc_large_system_hash(name,
2018 2 * sizeof(struct udp_hslot),
2019 uhash_entries,
2020 21, /* one slot per 2 MB */
2021 0,
2022 &table->log,
2023 &table->mask,
2024 64 * 1024);
2025 /*
2026 * Make sure hash table has the minimum size
2027 */
2028 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2029 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2030 2 * sizeof(struct udp_hslot), GFP_KERNEL);
2031 if (!table->hash)
2032 panic(name);
2033 table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2034 table->mask = UDP_HTABLE_SIZE_MIN - 1;
2035 }
2036 table->hash2 = table->hash + (table->mask + 1);
2037 for (i = 0; i <= table->mask; i++) {
2038 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2039 table->hash[i].count = 0;
2040 spin_lock_init(&table->hash[i].lock);
2041 }
2042 for (i = 0; i <= table->mask; i++) {
2043 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2044 table->hash2[i].count = 0;
2045 spin_lock_init(&table->hash2[i].lock);
2046 }
2047 }
2048
2049 void __init udp_init(void)
2050 {
2051 unsigned long nr_pages, limit;
2052
2053 udp_table_init(&udp_table, "UDP");
2054 /* Set the pressure threshold up by the same strategy of TCP. It is a
2055 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2056 * toward zero with the amount of memory, with a floor of 128 pages.
2057 */
2058 nr_pages = totalram_pages - totalhigh_pages;
2059 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2060 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2061 limit = max(limit, 128UL);
2062 sysctl_udp_mem[0] = limit / 4 * 3;
2063 sysctl_udp_mem[1] = limit;
2064 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2065
2066 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2067 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2068 }
2069
2070 int udp4_ufo_send_check(struct sk_buff *skb)
2071 {
2072 const struct iphdr *iph;
2073 struct udphdr *uh;
2074
2075 if (!pskb_may_pull(skb, sizeof(*uh)))
2076 return -EINVAL;
2077
2078 iph = ip_hdr(skb);
2079 uh = udp_hdr(skb);
2080
2081 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2082 IPPROTO_UDP, 0);
2083 skb->csum_start = skb_transport_header(skb) - skb->head;
2084 skb->csum_offset = offsetof(struct udphdr, check);
2085 skb->ip_summed = CHECKSUM_PARTIAL;
2086 return 0;
2087 }
2088
2089 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
2090 {
2091 struct sk_buff *segs = ERR_PTR(-EINVAL);
2092 unsigned int mss;
2093 int offset;
2094 __wsum csum;
2095
2096 mss = skb_shinfo(skb)->gso_size;
2097 if (unlikely(skb->len <= mss))
2098 goto out;
2099
2100 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2101 /* Packet is from an untrusted source, reset gso_segs. */
2102 int type = skb_shinfo(skb)->gso_type;
2103
2104 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2105 !(type & (SKB_GSO_UDP))))
2106 goto out;
2107
2108 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2109
2110 segs = NULL;
2111 goto out;
2112 }
2113
2114 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2115 * do checksum of UDP packets sent as multiple IP fragments.
2116 */
2117 offset = skb->csum_start - skb_headroom(skb);
2118 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2119 offset += skb->csum_offset;
2120 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2121 skb->ip_summed = CHECKSUM_NONE;
2122
2123 /* Fragment the skb. IP headers of the fragments are updated in
2124 * inet_gso_segment()
2125 */
2126 segs = skb_segment(skb, features);
2127 out:
2128 return segs;
2129 }
2130
This page took 0.072861 seconds and 6 git commands to generate.