block: Change bio_split() to respect the current value of bi_idx
[deliverable/linux.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21
22 #define pr_fmt(fmt) "IPv6: " fmt
23
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 #define RT6_DEBUG 2
42
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 FWS_S,
55 #endif
56 FWS_L,
57 FWS_R,
58 FWS_C,
59 FWS_U
60 };
61
62 struct fib6_cleaner_t
63 {
64 struct fib6_walker_t w;
65 struct net *net;
66 int (*func)(struct rt6_info *, void *arg);
67 void *arg;
68 };
69
70 static DEFINE_RWLOCK(fib6_walker_lock);
71
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84
85 /*
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
90 */
91
92 static __u32 rt_sernum;
93
94 static void fib6_gc_timer_cb(unsigned long arg);
95
96 static LIST_HEAD(fib6_walkers);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
98
99 static inline void fib6_walker_link(struct fib6_walker_t *w)
100 {
101 write_lock_bh(&fib6_walker_lock);
102 list_add(&w->lh, &fib6_walkers);
103 write_unlock_bh(&fib6_walker_lock);
104 }
105
106 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
107 {
108 write_lock_bh(&fib6_walker_lock);
109 list_del(&w->lh);
110 write_unlock_bh(&fib6_walker_lock);
111 }
112 static __inline__ u32 fib6_new_sernum(void)
113 {
114 u32 n = ++rt_sernum;
115 if ((__s32)n <= 0)
116 rt_sernum = n = 1;
117 return n;
118 }
119
120 /*
121 * Auxiliary address test functions for the radix tree.
122 *
123 * These assume a 32bit processor (although it will work on
124 * 64bit processors)
125 */
126
127 /*
128 * test bit
129 */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE 0
134 #endif
135
136 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138 const __be32 *addr = token;
139 /*
140 * Here,
141 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 * is optimized version of
143 * htonl(1 << ((~fn_bit)&0x1F))
144 * See include/asm-generic/bitops/le.h.
145 */
146 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 addr[fn_bit >> 5];
148 }
149
150 static __inline__ struct fib6_node * node_alloc(void)
151 {
152 struct fib6_node *fn;
153
154 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
155
156 return fn;
157 }
158
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161 kmem_cache_free(fib6_node_kmem, fn);
162 }
163
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166 if (atomic_dec_and_test(&rt->rt6i_ref))
167 dst_free(&rt->dst);
168 }
169
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
171 {
172 unsigned int h;
173
174 /*
175 * Initialize table lock at a single place to give lockdep a key,
176 * tables aren't visible prior to being linked to the list.
177 */
178 rwlock_init(&tb->tb6_lock);
179
180 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
181
182 /*
183 * No protection necessary, this is the only list mutatation
184 * operation, tables never disappear once they exist.
185 */
186 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
187 }
188
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
190
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
192 {
193 struct fib6_table *table;
194
195 table = kzalloc(sizeof(*table), GFP_ATOMIC);
196 if (table) {
197 table->tb6_id = id;
198 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200 inet_peer_base_init(&table->tb6_peers);
201 }
202
203 return table;
204 }
205
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208 struct fib6_table *tb;
209
210 if (id == 0)
211 id = RT6_TABLE_MAIN;
212 tb = fib6_get_table(net, id);
213 if (tb)
214 return tb;
215
216 tb = fib6_alloc_table(net, id);
217 if (tb)
218 fib6_link_table(net, tb);
219
220 return tb;
221 }
222
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225 struct fib6_table *tb;
226 struct hlist_head *head;
227 unsigned int h;
228
229 if (id == 0)
230 id = RT6_TABLE_MAIN;
231 h = id & (FIB6_TABLE_HASHSZ - 1);
232 rcu_read_lock();
233 head = &net->ipv6.fib_table_hash[h];
234 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
235 if (tb->tb6_id == id) {
236 rcu_read_unlock();
237 return tb;
238 }
239 }
240 rcu_read_unlock();
241
242 return NULL;
243 }
244
245 static void __net_init fib6_tables_init(struct net *net)
246 {
247 fib6_link_table(net, net->ipv6.fib6_main_tbl);
248 fib6_link_table(net, net->ipv6.fib6_local_tbl);
249 }
250 #else
251
252 struct fib6_table *fib6_new_table(struct net *net, u32 id)
253 {
254 return fib6_get_table(net, id);
255 }
256
257 struct fib6_table *fib6_get_table(struct net *net, u32 id)
258 {
259 return net->ipv6.fib6_main_tbl;
260 }
261
262 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
263 int flags, pol_lookup_t lookup)
264 {
265 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
266 }
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270 fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 }
272
273 #endif
274
275 static int fib6_dump_node(struct fib6_walker_t *w)
276 {
277 int res;
278 struct rt6_info *rt;
279
280 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
281 res = rt6_dump_route(rt, w->args);
282 if (res < 0) {
283 /* Frame is full, suspend walking */
284 w->leaf = rt;
285 return 1;
286 }
287 WARN_ON(res == 0);
288 }
289 w->leaf = NULL;
290 return 0;
291 }
292
293 static void fib6_dump_end(struct netlink_callback *cb)
294 {
295 struct fib6_walker_t *w = (void*)cb->args[2];
296
297 if (w) {
298 if (cb->args[4]) {
299 cb->args[4] = 0;
300 fib6_walker_unlink(w);
301 }
302 cb->args[2] = 0;
303 kfree(w);
304 }
305 cb->done = (void*)cb->args[3];
306 cb->args[1] = 3;
307 }
308
309 static int fib6_dump_done(struct netlink_callback *cb)
310 {
311 fib6_dump_end(cb);
312 return cb->done ? cb->done(cb) : 0;
313 }
314
315 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
316 struct netlink_callback *cb)
317 {
318 struct fib6_walker_t *w;
319 int res;
320
321 w = (void *)cb->args[2];
322 w->root = &table->tb6_root;
323
324 if (cb->args[4] == 0) {
325 w->count = 0;
326 w->skip = 0;
327
328 read_lock_bh(&table->tb6_lock);
329 res = fib6_walk(w);
330 read_unlock_bh(&table->tb6_lock);
331 if (res > 0) {
332 cb->args[4] = 1;
333 cb->args[5] = w->root->fn_sernum;
334 }
335 } else {
336 if (cb->args[5] != w->root->fn_sernum) {
337 /* Begin at the root if the tree changed */
338 cb->args[5] = w->root->fn_sernum;
339 w->state = FWS_INIT;
340 w->node = w->root;
341 w->skip = w->count;
342 } else
343 w->skip = 0;
344
345 read_lock_bh(&table->tb6_lock);
346 res = fib6_walk_continue(w);
347 read_unlock_bh(&table->tb6_lock);
348 if (res <= 0) {
349 fib6_walker_unlink(w);
350 cb->args[4] = 0;
351 }
352 }
353
354 return res;
355 }
356
357 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
358 {
359 struct net *net = sock_net(skb->sk);
360 unsigned int h, s_h;
361 unsigned int e = 0, s_e;
362 struct rt6_rtnl_dump_arg arg;
363 struct fib6_walker_t *w;
364 struct fib6_table *tb;
365 struct hlist_head *head;
366 int res = 0;
367
368 s_h = cb->args[0];
369 s_e = cb->args[1];
370
371 w = (void *)cb->args[2];
372 if (!w) {
373 /* New dump:
374 *
375 * 1. hook callback destructor.
376 */
377 cb->args[3] = (long)cb->done;
378 cb->done = fib6_dump_done;
379
380 /*
381 * 2. allocate and initialize walker.
382 */
383 w = kzalloc(sizeof(*w), GFP_ATOMIC);
384 if (!w)
385 return -ENOMEM;
386 w->func = fib6_dump_node;
387 cb->args[2] = (long)w;
388 }
389
390 arg.skb = skb;
391 arg.cb = cb;
392 arg.net = net;
393 w->args = &arg;
394
395 rcu_read_lock();
396 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
397 e = 0;
398 head = &net->ipv6.fib_table_hash[h];
399 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
400 if (e < s_e)
401 goto next;
402 res = fib6_dump_table(tb, skb, cb);
403 if (res != 0)
404 goto out;
405 next:
406 e++;
407 }
408 }
409 out:
410 rcu_read_unlock();
411 cb->args[1] = e;
412 cb->args[0] = h;
413
414 res = res < 0 ? res : skb->len;
415 if (res <= 0)
416 fib6_dump_end(cb);
417 return res;
418 }
419
420 /*
421 * Routing Table
422 *
423 * return the appropriate node for a routing tree "add" operation
424 * by either creating and inserting or by returning an existing
425 * node.
426 */
427
428 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
429 int addrlen, int plen,
430 int offset, int allow_create,
431 int replace_required)
432 {
433 struct fib6_node *fn, *in, *ln;
434 struct fib6_node *pn = NULL;
435 struct rt6key *key;
436 int bit;
437 __be32 dir = 0;
438 __u32 sernum = fib6_new_sernum();
439
440 RT6_TRACE("fib6_add_1\n");
441
442 /* insert node in tree */
443
444 fn = root;
445
446 do {
447 key = (struct rt6key *)((u8 *)fn->leaf + offset);
448
449 /*
450 * Prefix match
451 */
452 if (plen < fn->fn_bit ||
453 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
454 if (!allow_create) {
455 if (replace_required) {
456 pr_warn("Can't replace route, no match found\n");
457 return ERR_PTR(-ENOENT);
458 }
459 pr_warn("NLM_F_CREATE should be set when creating new route\n");
460 }
461 goto insert_above;
462 }
463
464 /*
465 * Exact match ?
466 */
467
468 if (plen == fn->fn_bit) {
469 /* clean up an intermediate node */
470 if (!(fn->fn_flags & RTN_RTINFO)) {
471 rt6_release(fn->leaf);
472 fn->leaf = NULL;
473 }
474
475 fn->fn_sernum = sernum;
476
477 return fn;
478 }
479
480 /*
481 * We have more bits to go
482 */
483
484 /* Try to walk down on tree. */
485 fn->fn_sernum = sernum;
486 dir = addr_bit_set(addr, fn->fn_bit);
487 pn = fn;
488 fn = dir ? fn->right: fn->left;
489 } while (fn);
490
491 if (!allow_create) {
492 /* We should not create new node because
493 * NLM_F_REPLACE was specified without NLM_F_CREATE
494 * I assume it is safe to require NLM_F_CREATE when
495 * REPLACE flag is used! Later we may want to remove the
496 * check for replace_required, because according
497 * to netlink specification, NLM_F_CREATE
498 * MUST be specified if new route is created.
499 * That would keep IPv6 consistent with IPv4
500 */
501 if (replace_required) {
502 pr_warn("Can't replace route, no match found\n");
503 return ERR_PTR(-ENOENT);
504 }
505 pr_warn("NLM_F_CREATE should be set when creating new route\n");
506 }
507 /*
508 * We walked to the bottom of tree.
509 * Create new leaf node without children.
510 */
511
512 ln = node_alloc();
513
514 if (!ln)
515 return ERR_PTR(-ENOMEM);
516 ln->fn_bit = plen;
517
518 ln->parent = pn;
519 ln->fn_sernum = sernum;
520
521 if (dir)
522 pn->right = ln;
523 else
524 pn->left = ln;
525
526 return ln;
527
528
529 insert_above:
530 /*
531 * split since we don't have a common prefix anymore or
532 * we have a less significant route.
533 * we've to insert an intermediate node on the list
534 * this new node will point to the one we need to create
535 * and the current
536 */
537
538 pn = fn->parent;
539
540 /* find 1st bit in difference between the 2 addrs.
541
542 See comment in __ipv6_addr_diff: bit may be an invalid value,
543 but if it is >= plen, the value is ignored in any case.
544 */
545
546 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
547
548 /*
549 * (intermediate)[in]
550 * / \
551 * (new leaf node)[ln] (old node)[fn]
552 */
553 if (plen > bit) {
554 in = node_alloc();
555 ln = node_alloc();
556
557 if (!in || !ln) {
558 if (in)
559 node_free(in);
560 if (ln)
561 node_free(ln);
562 return ERR_PTR(-ENOMEM);
563 }
564
565 /*
566 * new intermediate node.
567 * RTN_RTINFO will
568 * be off since that an address that chooses one of
569 * the branches would not match less specific routes
570 * in the other branch
571 */
572
573 in->fn_bit = bit;
574
575 in->parent = pn;
576 in->leaf = fn->leaf;
577 atomic_inc(&in->leaf->rt6i_ref);
578
579 in->fn_sernum = sernum;
580
581 /* update parent pointer */
582 if (dir)
583 pn->right = in;
584 else
585 pn->left = in;
586
587 ln->fn_bit = plen;
588
589 ln->parent = in;
590 fn->parent = in;
591
592 ln->fn_sernum = sernum;
593
594 if (addr_bit_set(addr, bit)) {
595 in->right = ln;
596 in->left = fn;
597 } else {
598 in->left = ln;
599 in->right = fn;
600 }
601 } else { /* plen <= bit */
602
603 /*
604 * (new leaf node)[ln]
605 * / \
606 * (old node)[fn] NULL
607 */
608
609 ln = node_alloc();
610
611 if (!ln)
612 return ERR_PTR(-ENOMEM);
613
614 ln->fn_bit = plen;
615
616 ln->parent = pn;
617
618 ln->fn_sernum = sernum;
619
620 if (dir)
621 pn->right = ln;
622 else
623 pn->left = ln;
624
625 if (addr_bit_set(&key->addr, plen))
626 ln->right = fn;
627 else
628 ln->left = fn;
629
630 fn->parent = ln;
631 }
632 return ln;
633 }
634
635 /*
636 * Insert routing information in a node.
637 */
638
639 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
640 struct nl_info *info)
641 {
642 struct rt6_info *iter = NULL;
643 struct rt6_info **ins;
644 int replace = (info->nlh &&
645 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
646 int add = (!info->nlh ||
647 (info->nlh->nlmsg_flags & NLM_F_CREATE));
648 int found = 0;
649
650 ins = &fn->leaf;
651
652 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
653 /*
654 * Search for duplicates
655 */
656
657 if (iter->rt6i_metric == rt->rt6i_metric) {
658 /*
659 * Same priority level
660 */
661 if (info->nlh &&
662 (info->nlh->nlmsg_flags & NLM_F_EXCL))
663 return -EEXIST;
664 if (replace) {
665 found++;
666 break;
667 }
668
669 if (iter->dst.dev == rt->dst.dev &&
670 iter->rt6i_idev == rt->rt6i_idev &&
671 ipv6_addr_equal(&iter->rt6i_gateway,
672 &rt->rt6i_gateway)) {
673 if (rt->rt6i_nsiblings)
674 rt->rt6i_nsiblings = 0;
675 if (!(iter->rt6i_flags & RTF_EXPIRES))
676 return -EEXIST;
677 if (!(rt->rt6i_flags & RTF_EXPIRES))
678 rt6_clean_expires(iter);
679 else
680 rt6_set_expires(iter, rt->dst.expires);
681 return -EEXIST;
682 }
683 /* If we have the same destination and the same metric,
684 * but not the same gateway, then the route we try to
685 * add is sibling to this route, increment our counter
686 * of siblings, and later we will add our route to the
687 * list.
688 * Only static routes (which don't have flag
689 * RTF_EXPIRES) are used for ECMPv6.
690 *
691 * To avoid long list, we only had siblings if the
692 * route have a gateway.
693 */
694 if (rt->rt6i_flags & RTF_GATEWAY &&
695 !(rt->rt6i_flags & RTF_EXPIRES) &&
696 !(iter->rt6i_flags & RTF_EXPIRES))
697 rt->rt6i_nsiblings++;
698 }
699
700 if (iter->rt6i_metric > rt->rt6i_metric)
701 break;
702
703 ins = &iter->dst.rt6_next;
704 }
705
706 /* Reset round-robin state, if necessary */
707 if (ins == &fn->leaf)
708 fn->rr_ptr = NULL;
709
710 /* Link this route to others same route. */
711 if (rt->rt6i_nsiblings) {
712 unsigned int rt6i_nsiblings;
713 struct rt6_info *sibling, *temp_sibling;
714
715 /* Find the first route that have the same metric */
716 sibling = fn->leaf;
717 while (sibling) {
718 if (sibling->rt6i_metric == rt->rt6i_metric) {
719 list_add_tail(&rt->rt6i_siblings,
720 &sibling->rt6i_siblings);
721 break;
722 }
723 sibling = sibling->dst.rt6_next;
724 }
725 /* For each sibling in the list, increment the counter of
726 * siblings. BUG() if counters does not match, list of siblings
727 * is broken!
728 */
729 rt6i_nsiblings = 0;
730 list_for_each_entry_safe(sibling, temp_sibling,
731 &rt->rt6i_siblings, rt6i_siblings) {
732 sibling->rt6i_nsiblings++;
733 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
734 rt6i_nsiblings++;
735 }
736 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
737 }
738
739 /*
740 * insert node
741 */
742 if (!replace) {
743 if (!add)
744 pr_warn("NLM_F_CREATE should be set when creating new route\n");
745
746 add:
747 rt->dst.rt6_next = iter;
748 *ins = rt;
749 rt->rt6i_node = fn;
750 atomic_inc(&rt->rt6i_ref);
751 inet6_rt_notify(RTM_NEWROUTE, rt, info);
752 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
753
754 if (!(fn->fn_flags & RTN_RTINFO)) {
755 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
756 fn->fn_flags |= RTN_RTINFO;
757 }
758
759 } else {
760 if (!found) {
761 if (add)
762 goto add;
763 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
764 return -ENOENT;
765 }
766 *ins = rt;
767 rt->rt6i_node = fn;
768 rt->dst.rt6_next = iter->dst.rt6_next;
769 atomic_inc(&rt->rt6i_ref);
770 inet6_rt_notify(RTM_NEWROUTE, rt, info);
771 rt6_release(iter);
772 if (!(fn->fn_flags & RTN_RTINFO)) {
773 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
774 fn->fn_flags |= RTN_RTINFO;
775 }
776 }
777
778 return 0;
779 }
780
781 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
782 {
783 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
784 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
785 mod_timer(&net->ipv6.ip6_fib_timer,
786 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
787 }
788
789 void fib6_force_start_gc(struct net *net)
790 {
791 if (!timer_pending(&net->ipv6.ip6_fib_timer))
792 mod_timer(&net->ipv6.ip6_fib_timer,
793 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
794 }
795
796 /*
797 * Add routing information to the routing tree.
798 * <destination addr>/<source addr>
799 * with source addr info in sub-trees
800 */
801
802 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
803 {
804 struct fib6_node *fn, *pn = NULL;
805 int err = -ENOMEM;
806 int allow_create = 1;
807 int replace_required = 0;
808
809 if (info->nlh) {
810 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
811 allow_create = 0;
812 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
813 replace_required = 1;
814 }
815 if (!allow_create && !replace_required)
816 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
817
818 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
819 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
820 allow_create, replace_required);
821
822 if (IS_ERR(fn)) {
823 err = PTR_ERR(fn);
824 goto out;
825 }
826
827 pn = fn;
828
829 #ifdef CONFIG_IPV6_SUBTREES
830 if (rt->rt6i_src.plen) {
831 struct fib6_node *sn;
832
833 if (!fn->subtree) {
834 struct fib6_node *sfn;
835
836 /*
837 * Create subtree.
838 *
839 * fn[main tree]
840 * |
841 * sfn[subtree root]
842 * \
843 * sn[new leaf node]
844 */
845
846 /* Create subtree root node */
847 sfn = node_alloc();
848 if (!sfn)
849 goto st_failure;
850
851 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
852 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
853 sfn->fn_flags = RTN_ROOT;
854 sfn->fn_sernum = fib6_new_sernum();
855
856 /* Now add the first leaf node to new subtree */
857
858 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
859 sizeof(struct in6_addr), rt->rt6i_src.plen,
860 offsetof(struct rt6_info, rt6i_src),
861 allow_create, replace_required);
862
863 if (IS_ERR(sn)) {
864 /* If it is failed, discard just allocated
865 root, and then (in st_failure) stale node
866 in main tree.
867 */
868 node_free(sfn);
869 err = PTR_ERR(sn);
870 goto st_failure;
871 }
872
873 /* Now link new subtree to main tree */
874 sfn->parent = fn;
875 fn->subtree = sfn;
876 } else {
877 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
878 sizeof(struct in6_addr), rt->rt6i_src.plen,
879 offsetof(struct rt6_info, rt6i_src),
880 allow_create, replace_required);
881
882 if (IS_ERR(sn)) {
883 err = PTR_ERR(sn);
884 goto st_failure;
885 }
886 }
887
888 if (!fn->leaf) {
889 fn->leaf = rt;
890 atomic_inc(&rt->rt6i_ref);
891 }
892 fn = sn;
893 }
894 #endif
895
896 err = fib6_add_rt2node(fn, rt, info);
897 if (!err) {
898 fib6_start_gc(info->nl_net, rt);
899 if (!(rt->rt6i_flags & RTF_CACHE))
900 fib6_prune_clones(info->nl_net, pn, rt);
901 }
902
903 out:
904 if (err) {
905 #ifdef CONFIG_IPV6_SUBTREES
906 /*
907 * If fib6_add_1 has cleared the old leaf pointer in the
908 * super-tree leaf node we have to find a new one for it.
909 */
910 if (pn != fn && pn->leaf == rt) {
911 pn->leaf = NULL;
912 atomic_dec(&rt->rt6i_ref);
913 }
914 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
915 pn->leaf = fib6_find_prefix(info->nl_net, pn);
916 #if RT6_DEBUG >= 2
917 if (!pn->leaf) {
918 WARN_ON(pn->leaf == NULL);
919 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
920 }
921 #endif
922 atomic_inc(&pn->leaf->rt6i_ref);
923 }
924 #endif
925 dst_free(&rt->dst);
926 }
927 return err;
928
929 #ifdef CONFIG_IPV6_SUBTREES
930 /* Subtree creation failed, probably main tree node
931 is orphan. If it is, shoot it.
932 */
933 st_failure:
934 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
935 fib6_repair_tree(info->nl_net, fn);
936 dst_free(&rt->dst);
937 return err;
938 #endif
939 }
940
941 /*
942 * Routing tree lookup
943 *
944 */
945
946 struct lookup_args {
947 int offset; /* key offset on rt6_info */
948 const struct in6_addr *addr; /* search key */
949 };
950
951 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
952 struct lookup_args *args)
953 {
954 struct fib6_node *fn;
955 __be32 dir;
956
957 if (unlikely(args->offset == 0))
958 return NULL;
959
960 /*
961 * Descend on a tree
962 */
963
964 fn = root;
965
966 for (;;) {
967 struct fib6_node *next;
968
969 dir = addr_bit_set(args->addr, fn->fn_bit);
970
971 next = dir ? fn->right : fn->left;
972
973 if (next) {
974 fn = next;
975 continue;
976 }
977 break;
978 }
979
980 while (fn) {
981 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
982 struct rt6key *key;
983
984 key = (struct rt6key *) ((u8 *) fn->leaf +
985 args->offset);
986
987 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
988 #ifdef CONFIG_IPV6_SUBTREES
989 if (fn->subtree)
990 fn = fib6_lookup_1(fn->subtree, args + 1);
991 #endif
992 if (!fn || fn->fn_flags & RTN_RTINFO)
993 return fn;
994 }
995 }
996
997 if (fn->fn_flags & RTN_ROOT)
998 break;
999
1000 fn = fn->parent;
1001 }
1002
1003 return NULL;
1004 }
1005
1006 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1007 const struct in6_addr *saddr)
1008 {
1009 struct fib6_node *fn;
1010 struct lookup_args args[] = {
1011 {
1012 .offset = offsetof(struct rt6_info, rt6i_dst),
1013 .addr = daddr,
1014 },
1015 #ifdef CONFIG_IPV6_SUBTREES
1016 {
1017 .offset = offsetof(struct rt6_info, rt6i_src),
1018 .addr = saddr,
1019 },
1020 #endif
1021 {
1022 .offset = 0, /* sentinel */
1023 }
1024 };
1025
1026 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1027 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1028 fn = root;
1029
1030 return fn;
1031 }
1032
1033 /*
1034 * Get node with specified destination prefix (and source prefix,
1035 * if subtrees are used)
1036 */
1037
1038
1039 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1040 const struct in6_addr *addr,
1041 int plen, int offset)
1042 {
1043 struct fib6_node *fn;
1044
1045 for (fn = root; fn ; ) {
1046 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1047
1048 /*
1049 * Prefix match
1050 */
1051 if (plen < fn->fn_bit ||
1052 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1053 return NULL;
1054
1055 if (plen == fn->fn_bit)
1056 return fn;
1057
1058 /*
1059 * We have more bits to go
1060 */
1061 if (addr_bit_set(addr, fn->fn_bit))
1062 fn = fn->right;
1063 else
1064 fn = fn->left;
1065 }
1066 return NULL;
1067 }
1068
1069 struct fib6_node * fib6_locate(struct fib6_node *root,
1070 const struct in6_addr *daddr, int dst_len,
1071 const struct in6_addr *saddr, int src_len)
1072 {
1073 struct fib6_node *fn;
1074
1075 fn = fib6_locate_1(root, daddr, dst_len,
1076 offsetof(struct rt6_info, rt6i_dst));
1077
1078 #ifdef CONFIG_IPV6_SUBTREES
1079 if (src_len) {
1080 WARN_ON(saddr == NULL);
1081 if (fn && fn->subtree)
1082 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1083 offsetof(struct rt6_info, rt6i_src));
1084 }
1085 #endif
1086
1087 if (fn && fn->fn_flags & RTN_RTINFO)
1088 return fn;
1089
1090 return NULL;
1091 }
1092
1093
1094 /*
1095 * Deletion
1096 *
1097 */
1098
1099 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1100 {
1101 if (fn->fn_flags & RTN_ROOT)
1102 return net->ipv6.ip6_null_entry;
1103
1104 while (fn) {
1105 if (fn->left)
1106 return fn->left->leaf;
1107 if (fn->right)
1108 return fn->right->leaf;
1109
1110 fn = FIB6_SUBTREE(fn);
1111 }
1112 return NULL;
1113 }
1114
1115 /*
1116 * Called to trim the tree of intermediate nodes when possible. "fn"
1117 * is the node we want to try and remove.
1118 */
1119
1120 static struct fib6_node *fib6_repair_tree(struct net *net,
1121 struct fib6_node *fn)
1122 {
1123 int children;
1124 int nstate;
1125 struct fib6_node *child, *pn;
1126 struct fib6_walker_t *w;
1127 int iter = 0;
1128
1129 for (;;) {
1130 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1131 iter++;
1132
1133 WARN_ON(fn->fn_flags & RTN_RTINFO);
1134 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1135 WARN_ON(fn->leaf != NULL);
1136
1137 children = 0;
1138 child = NULL;
1139 if (fn->right) child = fn->right, children |= 1;
1140 if (fn->left) child = fn->left, children |= 2;
1141
1142 if (children == 3 || FIB6_SUBTREE(fn)
1143 #ifdef CONFIG_IPV6_SUBTREES
1144 /* Subtree root (i.e. fn) may have one child */
1145 || (children && fn->fn_flags & RTN_ROOT)
1146 #endif
1147 ) {
1148 fn->leaf = fib6_find_prefix(net, fn);
1149 #if RT6_DEBUG >= 2
1150 if (!fn->leaf) {
1151 WARN_ON(!fn->leaf);
1152 fn->leaf = net->ipv6.ip6_null_entry;
1153 }
1154 #endif
1155 atomic_inc(&fn->leaf->rt6i_ref);
1156 return fn->parent;
1157 }
1158
1159 pn = fn->parent;
1160 #ifdef CONFIG_IPV6_SUBTREES
1161 if (FIB6_SUBTREE(pn) == fn) {
1162 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1163 FIB6_SUBTREE(pn) = NULL;
1164 nstate = FWS_L;
1165 } else {
1166 WARN_ON(fn->fn_flags & RTN_ROOT);
1167 #endif
1168 if (pn->right == fn) pn->right = child;
1169 else if (pn->left == fn) pn->left = child;
1170 #if RT6_DEBUG >= 2
1171 else
1172 WARN_ON(1);
1173 #endif
1174 if (child)
1175 child->parent = pn;
1176 nstate = FWS_R;
1177 #ifdef CONFIG_IPV6_SUBTREES
1178 }
1179 #endif
1180
1181 read_lock(&fib6_walker_lock);
1182 FOR_WALKERS(w) {
1183 if (!child) {
1184 if (w->root == fn) {
1185 w->root = w->node = NULL;
1186 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1187 } else if (w->node == fn) {
1188 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1189 w->node = pn;
1190 w->state = nstate;
1191 }
1192 } else {
1193 if (w->root == fn) {
1194 w->root = child;
1195 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1196 }
1197 if (w->node == fn) {
1198 w->node = child;
1199 if (children&2) {
1200 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1201 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1202 } else {
1203 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1204 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1205 }
1206 }
1207 }
1208 }
1209 read_unlock(&fib6_walker_lock);
1210
1211 node_free(fn);
1212 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1213 return pn;
1214
1215 rt6_release(pn->leaf);
1216 pn->leaf = NULL;
1217 fn = pn;
1218 }
1219 }
1220
1221 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1222 struct nl_info *info)
1223 {
1224 struct fib6_walker_t *w;
1225 struct rt6_info *rt = *rtp;
1226 struct net *net = info->nl_net;
1227
1228 RT6_TRACE("fib6_del_route\n");
1229
1230 /* Unlink it */
1231 *rtp = rt->dst.rt6_next;
1232 rt->rt6i_node = NULL;
1233 net->ipv6.rt6_stats->fib_rt_entries--;
1234 net->ipv6.rt6_stats->fib_discarded_routes++;
1235
1236 /* Reset round-robin state, if necessary */
1237 if (fn->rr_ptr == rt)
1238 fn->rr_ptr = NULL;
1239
1240 /* Remove this entry from other siblings */
1241 if (rt->rt6i_nsiblings) {
1242 struct rt6_info *sibling, *next_sibling;
1243
1244 list_for_each_entry_safe(sibling, next_sibling,
1245 &rt->rt6i_siblings, rt6i_siblings)
1246 sibling->rt6i_nsiblings--;
1247 rt->rt6i_nsiblings = 0;
1248 list_del_init(&rt->rt6i_siblings);
1249 }
1250
1251 /* Adjust walkers */
1252 read_lock(&fib6_walker_lock);
1253 FOR_WALKERS(w) {
1254 if (w->state == FWS_C && w->leaf == rt) {
1255 RT6_TRACE("walker %p adjusted by delroute\n", w);
1256 w->leaf = rt->dst.rt6_next;
1257 if (!w->leaf)
1258 w->state = FWS_U;
1259 }
1260 }
1261 read_unlock(&fib6_walker_lock);
1262
1263 rt->dst.rt6_next = NULL;
1264
1265 /* If it was last route, expunge its radix tree node */
1266 if (!fn->leaf) {
1267 fn->fn_flags &= ~RTN_RTINFO;
1268 net->ipv6.rt6_stats->fib_route_nodes--;
1269 fn = fib6_repair_tree(net, fn);
1270 }
1271
1272 if (atomic_read(&rt->rt6i_ref) != 1) {
1273 /* This route is used as dummy address holder in some split
1274 * nodes. It is not leaked, but it still holds other resources,
1275 * which must be released in time. So, scan ascendant nodes
1276 * and replace dummy references to this route with references
1277 * to still alive ones.
1278 */
1279 while (fn) {
1280 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1281 fn->leaf = fib6_find_prefix(net, fn);
1282 atomic_inc(&fn->leaf->rt6i_ref);
1283 rt6_release(rt);
1284 }
1285 fn = fn->parent;
1286 }
1287 /* No more references are possible at this point. */
1288 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1289 }
1290
1291 inet6_rt_notify(RTM_DELROUTE, rt, info);
1292 rt6_release(rt);
1293 }
1294
1295 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1296 {
1297 struct net *net = info->nl_net;
1298 struct fib6_node *fn = rt->rt6i_node;
1299 struct rt6_info **rtp;
1300
1301 #if RT6_DEBUG >= 2
1302 if (rt->dst.obsolete>0) {
1303 WARN_ON(fn != NULL);
1304 return -ENOENT;
1305 }
1306 #endif
1307 if (!fn || rt == net->ipv6.ip6_null_entry)
1308 return -ENOENT;
1309
1310 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1311
1312 if (!(rt->rt6i_flags & RTF_CACHE)) {
1313 struct fib6_node *pn = fn;
1314 #ifdef CONFIG_IPV6_SUBTREES
1315 /* clones of this route might be in another subtree */
1316 if (rt->rt6i_src.plen) {
1317 while (!(pn->fn_flags & RTN_ROOT))
1318 pn = pn->parent;
1319 pn = pn->parent;
1320 }
1321 #endif
1322 fib6_prune_clones(info->nl_net, pn, rt);
1323 }
1324
1325 /*
1326 * Walk the leaf entries looking for ourself
1327 */
1328
1329 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1330 if (*rtp == rt) {
1331 fib6_del_route(fn, rtp, info);
1332 return 0;
1333 }
1334 }
1335 return -ENOENT;
1336 }
1337
1338 /*
1339 * Tree traversal function.
1340 *
1341 * Certainly, it is not interrupt safe.
1342 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1343 * It means, that we can modify tree during walking
1344 * and use this function for garbage collection, clone pruning,
1345 * cleaning tree when a device goes down etc. etc.
1346 *
1347 * It guarantees that every node will be traversed,
1348 * and that it will be traversed only once.
1349 *
1350 * Callback function w->func may return:
1351 * 0 -> continue walking.
1352 * positive value -> walking is suspended (used by tree dumps,
1353 * and probably by gc, if it will be split to several slices)
1354 * negative value -> terminate walking.
1355 *
1356 * The function itself returns:
1357 * 0 -> walk is complete.
1358 * >0 -> walk is incomplete (i.e. suspended)
1359 * <0 -> walk is terminated by an error.
1360 */
1361
1362 static int fib6_walk_continue(struct fib6_walker_t *w)
1363 {
1364 struct fib6_node *fn, *pn;
1365
1366 for (;;) {
1367 fn = w->node;
1368 if (!fn)
1369 return 0;
1370
1371 if (w->prune && fn != w->root &&
1372 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1373 w->state = FWS_C;
1374 w->leaf = fn->leaf;
1375 }
1376 switch (w->state) {
1377 #ifdef CONFIG_IPV6_SUBTREES
1378 case FWS_S:
1379 if (FIB6_SUBTREE(fn)) {
1380 w->node = FIB6_SUBTREE(fn);
1381 continue;
1382 }
1383 w->state = FWS_L;
1384 #endif
1385 case FWS_L:
1386 if (fn->left) {
1387 w->node = fn->left;
1388 w->state = FWS_INIT;
1389 continue;
1390 }
1391 w->state = FWS_R;
1392 case FWS_R:
1393 if (fn->right) {
1394 w->node = fn->right;
1395 w->state = FWS_INIT;
1396 continue;
1397 }
1398 w->state = FWS_C;
1399 w->leaf = fn->leaf;
1400 case FWS_C:
1401 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1402 int err;
1403
1404 if (w->skip) {
1405 w->skip--;
1406 continue;
1407 }
1408
1409 err = w->func(w);
1410 if (err)
1411 return err;
1412
1413 w->count++;
1414 continue;
1415 }
1416 w->state = FWS_U;
1417 case FWS_U:
1418 if (fn == w->root)
1419 return 0;
1420 pn = fn->parent;
1421 w->node = pn;
1422 #ifdef CONFIG_IPV6_SUBTREES
1423 if (FIB6_SUBTREE(pn) == fn) {
1424 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1425 w->state = FWS_L;
1426 continue;
1427 }
1428 #endif
1429 if (pn->left == fn) {
1430 w->state = FWS_R;
1431 continue;
1432 }
1433 if (pn->right == fn) {
1434 w->state = FWS_C;
1435 w->leaf = w->node->leaf;
1436 continue;
1437 }
1438 #if RT6_DEBUG >= 2
1439 WARN_ON(1);
1440 #endif
1441 }
1442 }
1443 }
1444
1445 static int fib6_walk(struct fib6_walker_t *w)
1446 {
1447 int res;
1448
1449 w->state = FWS_INIT;
1450 w->node = w->root;
1451
1452 fib6_walker_link(w);
1453 res = fib6_walk_continue(w);
1454 if (res <= 0)
1455 fib6_walker_unlink(w);
1456 return res;
1457 }
1458
1459 static int fib6_clean_node(struct fib6_walker_t *w)
1460 {
1461 int res;
1462 struct rt6_info *rt;
1463 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1464 struct nl_info info = {
1465 .nl_net = c->net,
1466 };
1467
1468 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1469 res = c->func(rt, c->arg);
1470 if (res < 0) {
1471 w->leaf = rt;
1472 res = fib6_del(rt, &info);
1473 if (res) {
1474 #if RT6_DEBUG >= 2
1475 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1476 __func__, rt, rt->rt6i_node, res);
1477 #endif
1478 continue;
1479 }
1480 return 0;
1481 }
1482 WARN_ON(res != 0);
1483 }
1484 w->leaf = rt;
1485 return 0;
1486 }
1487
1488 /*
1489 * Convenient frontend to tree walker.
1490 *
1491 * func is called on each route.
1492 * It may return -1 -> delete this route.
1493 * 0 -> continue walking
1494 *
1495 * prune==1 -> only immediate children of node (certainly,
1496 * ignoring pure split nodes) will be scanned.
1497 */
1498
1499 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1500 int (*func)(struct rt6_info *, void *arg),
1501 int prune, void *arg)
1502 {
1503 struct fib6_cleaner_t c;
1504
1505 c.w.root = root;
1506 c.w.func = fib6_clean_node;
1507 c.w.prune = prune;
1508 c.w.count = 0;
1509 c.w.skip = 0;
1510 c.func = func;
1511 c.arg = arg;
1512 c.net = net;
1513
1514 fib6_walk(&c.w);
1515 }
1516
1517 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1518 int prune, void *arg)
1519 {
1520 struct fib6_table *table;
1521 struct hlist_head *head;
1522 unsigned int h;
1523
1524 rcu_read_lock();
1525 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1526 head = &net->ipv6.fib_table_hash[h];
1527 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1528 read_lock_bh(&table->tb6_lock);
1529 fib6_clean_tree(net, &table->tb6_root,
1530 func, prune, arg);
1531 read_unlock_bh(&table->tb6_lock);
1532 }
1533 }
1534 rcu_read_unlock();
1535 }
1536 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1537 int prune, void *arg)
1538 {
1539 struct fib6_table *table;
1540 struct hlist_head *head;
1541 unsigned int h;
1542
1543 rcu_read_lock();
1544 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1545 head = &net->ipv6.fib_table_hash[h];
1546 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1547 write_lock_bh(&table->tb6_lock);
1548 fib6_clean_tree(net, &table->tb6_root,
1549 func, prune, arg);
1550 write_unlock_bh(&table->tb6_lock);
1551 }
1552 }
1553 rcu_read_unlock();
1554 }
1555
1556 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1557 {
1558 if (rt->rt6i_flags & RTF_CACHE) {
1559 RT6_TRACE("pruning clone %p\n", rt);
1560 return -1;
1561 }
1562
1563 return 0;
1564 }
1565
1566 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1567 struct rt6_info *rt)
1568 {
1569 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1570 }
1571
1572 /*
1573 * Garbage collection
1574 */
1575
1576 static struct fib6_gc_args
1577 {
1578 int timeout;
1579 int more;
1580 } gc_args;
1581
1582 static int fib6_age(struct rt6_info *rt, void *arg)
1583 {
1584 unsigned long now = jiffies;
1585
1586 /*
1587 * check addrconf expiration here.
1588 * Routes are expired even if they are in use.
1589 *
1590 * Also age clones. Note, that clones are aged out
1591 * only if they are not in use now.
1592 */
1593
1594 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1595 if (time_after(now, rt->dst.expires)) {
1596 RT6_TRACE("expiring %p\n", rt);
1597 return -1;
1598 }
1599 gc_args.more++;
1600 } else if (rt->rt6i_flags & RTF_CACHE) {
1601 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1602 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1603 RT6_TRACE("aging clone %p\n", rt);
1604 return -1;
1605 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1606 struct neighbour *neigh;
1607 __u8 neigh_flags = 0;
1608
1609 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1610 if (neigh) {
1611 neigh_flags = neigh->flags;
1612 neigh_release(neigh);
1613 }
1614 if (!(neigh_flags & NTF_ROUTER)) {
1615 RT6_TRACE("purging route %p via non-router but gateway\n",
1616 rt);
1617 return -1;
1618 }
1619 }
1620 gc_args.more++;
1621 }
1622
1623 return 0;
1624 }
1625
1626 static DEFINE_SPINLOCK(fib6_gc_lock);
1627
1628 void fib6_run_gc(unsigned long expires, struct net *net)
1629 {
1630 if (expires != ~0UL) {
1631 spin_lock_bh(&fib6_gc_lock);
1632 gc_args.timeout = expires ? (int)expires :
1633 net->ipv6.sysctl.ip6_rt_gc_interval;
1634 } else {
1635 if (!spin_trylock_bh(&fib6_gc_lock)) {
1636 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1637 return;
1638 }
1639 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1640 }
1641
1642 gc_args.more = icmp6_dst_gc();
1643
1644 fib6_clean_all(net, fib6_age, 0, NULL);
1645
1646 if (gc_args.more)
1647 mod_timer(&net->ipv6.ip6_fib_timer,
1648 round_jiffies(jiffies
1649 + net->ipv6.sysctl.ip6_rt_gc_interval));
1650 else
1651 del_timer(&net->ipv6.ip6_fib_timer);
1652 spin_unlock_bh(&fib6_gc_lock);
1653 }
1654
1655 static void fib6_gc_timer_cb(unsigned long arg)
1656 {
1657 fib6_run_gc(0, (struct net *)arg);
1658 }
1659
1660 static int __net_init fib6_net_init(struct net *net)
1661 {
1662 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1663
1664 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1665
1666 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1667 if (!net->ipv6.rt6_stats)
1668 goto out_timer;
1669
1670 /* Avoid false sharing : Use at least a full cache line */
1671 size = max_t(size_t, size, L1_CACHE_BYTES);
1672
1673 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1674 if (!net->ipv6.fib_table_hash)
1675 goto out_rt6_stats;
1676
1677 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1678 GFP_KERNEL);
1679 if (!net->ipv6.fib6_main_tbl)
1680 goto out_fib_table_hash;
1681
1682 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1683 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1684 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1685 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1686 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1687
1688 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1689 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1690 GFP_KERNEL);
1691 if (!net->ipv6.fib6_local_tbl)
1692 goto out_fib6_main_tbl;
1693 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1694 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1695 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1696 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1697 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1698 #endif
1699 fib6_tables_init(net);
1700
1701 return 0;
1702
1703 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1704 out_fib6_main_tbl:
1705 kfree(net->ipv6.fib6_main_tbl);
1706 #endif
1707 out_fib_table_hash:
1708 kfree(net->ipv6.fib_table_hash);
1709 out_rt6_stats:
1710 kfree(net->ipv6.rt6_stats);
1711 out_timer:
1712 return -ENOMEM;
1713 }
1714
1715 static void fib6_net_exit(struct net *net)
1716 {
1717 rt6_ifdown(net, NULL);
1718 del_timer_sync(&net->ipv6.ip6_fib_timer);
1719
1720 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1721 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1722 kfree(net->ipv6.fib6_local_tbl);
1723 #endif
1724 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1725 kfree(net->ipv6.fib6_main_tbl);
1726 kfree(net->ipv6.fib_table_hash);
1727 kfree(net->ipv6.rt6_stats);
1728 }
1729
1730 static struct pernet_operations fib6_net_ops = {
1731 .init = fib6_net_init,
1732 .exit = fib6_net_exit,
1733 };
1734
1735 int __init fib6_init(void)
1736 {
1737 int ret = -ENOMEM;
1738
1739 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1740 sizeof(struct fib6_node),
1741 0, SLAB_HWCACHE_ALIGN,
1742 NULL);
1743 if (!fib6_node_kmem)
1744 goto out;
1745
1746 ret = register_pernet_subsys(&fib6_net_ops);
1747 if (ret)
1748 goto out_kmem_cache_create;
1749
1750 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1751 NULL);
1752 if (ret)
1753 goto out_unregister_subsys;
1754 out:
1755 return ret;
1756
1757 out_unregister_subsys:
1758 unregister_pernet_subsys(&fib6_net_ops);
1759 out_kmem_cache_create:
1760 kmem_cache_destroy(fib6_node_kmem);
1761 goto out;
1762 }
1763
1764 void fib6_gc_cleanup(void)
1765 {
1766 unregister_pernet_subsys(&fib6_net_ops);
1767 kmem_cache_destroy(fib6_node_kmem);
1768 }
This page took 0.067572 seconds and 5 git commands to generate.